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Abstract

Wavelet analysis and compression tools are reviewed and different ap-
plications to study MHD and plasma turbulence are presented. We in-
troduce the continuous and the orthogonal wavelet transform and detail
several statistical diagnostics based on the wavelet coefficients. We then
show how to extract coherent structures out of fully developed turbulent
flows using wavelet-based denoising. Finally some multiscale numerical
simulation schemes using wavelets are described. Several examples for
analyzing, compressing and computing one, two and three dimensional
turbulent MHD or plasma flows are presented.
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1 Introduction

Turbulence is ubiquitous and plays a critical role for the plasma stability and
confinement properties of fusion devices, e.g., in the tokamak edge region. Tur-
bulence is a regime of fluid, gas and plasma flows characterized by its highly
nonlinear dynamics [5]. It exhibits a chaotic, i.e., unpredictible behavior and ro-
tational motion all along a wide range of dynamically active scales. In contrast
to classical dynamical systems, which are low dimensional and conservative, a
turbulent flow is a dissipative dynamical system, whose behavior is governed by
a very large, even maybe infinite, number of degrees of freedom. Each field, e.g.,
velocity, vorticity, magnetic field or current density, strongly fluctuates around
a mean value and one observes that these fluctuations tend to self-organize into
so-called coherent structures, i.e., vortex tubes in hydrodynamics and vorticty
sheets and current sheets in magnehydrodynamics (MHD). The presence of co-
herent structures results in the strong spatial and temporal flow intermittency,
which is a key feature of turbulence. Intermittency is understood here that the
fluctuations become stronger for decreasing scale and are hence more localized.
The appropriate tool to study intermittency is the wavelet representation due
to its intrinsic multiscale nature. Indeed, it yields a sparse multiscale represen-
tation of intermittent fields since wavelets are well localized functions in both
physical and Fourier space.

The classical theory of homogeneous turbulence [4] assumes that turbu-
lent flows are statistically stationary and homogeneous. This allows to use the
Fourier space representation to analyze it (e.g., the energy spectrum is the mod-
ulus of the Fourier transform of the velocity auto-correlation), to model it (e.g.,
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using Large Eddy Simulation) and to compute it (e.g., using spectral methods).
Hence, since the Fourier representation spreads information among the phases
of all Fourier coefficients, the structural information (i.e., locality in time and in
space) is lost when one considers only the modulus of the Fourier coefficients, as
usually done. This is a major drawback of the classical theory of turbulence and
the reason why we proposed in 1988 [17] to replace the Fourier representation by
the wavelet representation to define new analysis and computational tools able
to preserve time and space local information. If the Fourier representation is
well suited to study linear dynamical systems (whose behaviour either persists
at the initial scale or spreads over larger ones), it is not the case for nonlinear dy-
namical systems for which the superposition principle no more holds (i.e., they
cannot be decomposed into a sum of independent subsystems to be separately
studied). Moreover, the evolution of nonlinear dynamical systems develop over
a wide range of scales, since energy is spread from the initially excited scale
towards smaller and smaller ones (the so-called energy cascade) until finite-time
singularities develop (e.g., shocks), unless some dissipative mechanisms damp
energy and thus avoid its ultra-violet divergence. The art of predicting the
evolution of nonlinear dynamical systems consists of disentangling their active
components from their passive components, the former being deterministically
computed while the latter being discarded or statistically modeled. One thus
performs a distillation process to only retain the components essential to predict
the nonlinear behaviour. The wavelet representation is particularly appropriate
for this since it allows to track the evolution in both space and scale and to only
retain the degrees of freedom in charge of the nonlinear dynamics. Turbulent
flows are archetypes of nonlinear dynamical systems and therefore good candi-
dates to be analyzed, modelled and computed using the wavelet representation.

If we now focus on plasma turbulence we are uneasy about the fact that we
have two different descriptions, depending on which side of the Fourier transform
we look from.

• On the one hand, we have a theory [4] that assumes a nonlinear cascade
in Fourier space for a range of scales, the so-called ‘inertial range’, where
the flow kinetic energy is statistically (i.e., for ensemble or time or space
averages) transferred towards smaller scales until reaching Kolmogorov’s
scale where molecular dissipation transforms kinetic energy into heat. Un-
der these hypotheses, the theory predicts a power-law behaviour for the
modulus of the energy spectrum in the inertial range.

• On the other hand, if we study the flow in physical space we do not have
yet a predictive theory but only empirical observations (from laboratory
and numerical experiments) showing the emergence and persistence of
coherent structures, e.g., blobs and current sheets that concentrate most
of the kinetic and magnetic energy, even for very high Reynolds number
flows.

The classical methods for modeling turbulent flows, e.g., Large Eddy Sim-
ulation (LES), suppose a scale separation (i.e., a spectral gap) and neglect the
small scale motions, although their effect onto the large scale motions is sta-
tistically modelled (supposing their dynamics to be linear or slaved to them).
Unfortunately for those methods we have strong evidence, from both labora-
tory and numerical experiments, that there is no spectral gap since all scales
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of the inertial range are coupled and nonlinearly interact. Moreover, one ob-
serves that coherent structures play a major dynamical role and are responsible
for the transport and mixing properties of turbulent flows. In consequence one
might ask the following questions: are coherent structures the dynamical build-
ing blocks of turbulent flows and can we extract them? If we succeed to do
so, would it be possible to represent them with a reduced number of degrees of
freedom and would those be sufficient to compute the flow nonlinear dynamics?

The aim of this review is to offer a primer on wavelets for both continu-
ous and orthogonal transforms. We then detail different diagnostics based on
wavelet coefficients to analyze and to compress turbulent flows by extracting
coherent structures. Examples for experimental data from the tokamak Tore
Supra (Cadarache, France) and numerical simulation data of resistive drift-wave
and MHD turbulence, illustrate the wavelet tools. Wavelet-based density esti-
mation techniques to improve particle-in-cell numerical schemes are presented,
together with a particle-in-wavelet scheme that we developed for solving the
Vlasov–Poisson equations directly in wavelet space. Coherent Vorticity and
Current sheet Simulation (CVCS), that applies wavelet filtering to the resis-
tive non-ideal MHD equations, is proposed as a new model for turbulent MHD
flows. It allows to reduce the number of degrees of freedom necessary to com-
pute them, while capturing the nonlinear dynamics of the flow. This review is
based on the work and publications we have performed within the last 15 years,
in collaboration with the CEA-Cadarache and other teams in France, Japan and
United States. Almost all material presented here has already been published
in some of our papers (cited in the references), and parts have been adapted
for this review. Let us only mention few references of wavelet techniques that
have been used to analyze and quantify plasma turbulence: e.g., transients [14],
bicoherence [16, 45, 44, 15], intermittency [8] and anisotropy [2]. An exhaustive
review is beyond the scope of our paper and we focus here exclusively on our
contributions.

The outline of this review is the following: first, in section 2 we present
wavelet analysis tools, including a short primer on continuous and orthogonal
wavelets. Statistical tools in wavelet coefficient space are also introduced. Sec-
tion 3 focusses on coherent structure extraction using wavelet-based denoising.
Wavelet-based simulation schemes are reviewed in section 4 and section 5 draws
some conclusions.

2 Wavelet analysis

2.1 Wavelets: a short primer

2.1.1 Continuous wavelet transform

The wavelet transform [25] unfolds any signal (e.g., in time) or any field (e.g.,
in three-dimensional space) into both space (or time) and scale (or time scale),
and possibly directions (for dimensions higher than one). The building block
of the wavelet transform is the ‘mother wavelet’, ψ(x) ∈ L2(R) with x ∈ R,
that is a well-localized function with fast decay at infinity and at least one
vanishing moment (i.e., zero mean) or more. It is also smooth enough in order

its Fourier transform, ψ̂(k), exhibits fast decay for |k| tending to infinity. From
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the mother wavelet one then generates a family of wavelets, translated by b ∈ R,
the position parameter, dilated (or contracted) by a ∈ R+, the scale parameter,
and normalized in L2-norm (i.e., ||ψa,b||2 = 1) to obtain the set

ψa,b(x) =
1√
a
ψ

(
x− b
a

)
(1)

The wavelet transform of f ∈ L2(R) is the inner product of f with the analyzing
wavelets ψa,b, and the wavelet coefficients, that measure the fluctuations of f
at scale a and position b, are

f̃(a, b) = 〈f, ψa,b〉 =

∫
R
f(x)ψ?a,b(x)dx (2)

with ? denoting the complex conjugate. The function f is reconstructed from its
wavelet coefficients, as the inner product of f̃ with the set of analyzing wavelets
ψa,b

f(x) =
1

Cψ

∫
R+

∫
R
f̃(a, b)ψa,b(x)

dadb

a2
, (3)

where Cψ =
∫
R+ |ψ̂(k)|2k−1dk is a constant that depends on the wavelet ψ. Sim-

ilarly to the Fourier transform, the wavelet transform corresponds to a change of
basis (from physical space to wavelet space) and, since it is an isometry, it pre-

serves the inner product (〈f, g〉 = 〈f̃ , g̃〉) (Plancherel’s theorem) and conserves
energy (Parseval’s identity), therefore∫

R
|f(x)|2dx =

1

Cψ

∫
R+

∫
R
|f̃(a, b)|2 dadb

a2
(4)

Note that the wavelet coefficients of the continuous wavelet transform are re-
dundant and therefore correlated. This could be illustrated by the patterns
one observes within the continuous wavelet coefficients of a white noise, which
correspond to the correlation between the dilated and translated wavelets (the
white noise being decorrelated by construction) and visualizes the ‘reproduc-
ing kernel’ of the continuous wavelet transform. Due to the fact that wavelets
are well localized in physical space, the behaviour of the signal at infinity does
not play any role. Therefore both wavelet analysis and wavelet synthesis can
be performed locally, in contrast to the Fourier transform which is intrinsically
non local (Fourier modes are spread all over space). One can also construct
peculiar wavelets on a dyadic grid λ = (j, i) (i.e., scale is sampled by octaves
j and space by positions 2−ji) that are orthogonal to each other and are used
to construct wavelet orthonormal bases. In contrast to the continuous wavelet
coefficients eq. (2) that are redundant and correlated, the orthogonal wavelet
coefficients are decorrelated and non redundant (i.e., a signal sampled on N
points is perfectly represented by N orthogonal wavelet coefficients only). As
for the Fourier transform, there exists a Fast Wavelet Transform (FWT) that is
even faster than the Fast Fourier Transform (FFT) whose operation count for
a one dimensional signal sampled on N points is proportional to N , instead of
N log2N for the FFT.

2.1.2 Orthogonal wavelet transform

A discrete wavelet representation is obtained by sampling dyadically the scale
a and the position b introducing aj = 2−j and bji = iaj with i, j ∈ Z. The
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resulting discrete wavelets

ψji(x) = a
−1/2
j ψ

(
x− bji
aj

)
= 2j/2ψ

(
2jx− i

)
(5)

generate orthogonal bases for peculiar wavelets. Figure 1 shows five discrete
wavelets ψji for j = 3, ..., 7 and their corresponding Fourier transforms, the

modulus |ψ̂ji|. Note that the scale 2−j is related to the wavenumber kj as

kj = kψ2j , (6)

where kψ =
∫∞
0
k|ψ̂(k)|dk/

∫∞
0
|ψ̂(k)|dk is the centroid wavenumber of the cho-

sen wavelet. In Fig. 1 we observe the duality between physical and spectral
space, namely small scale wavelets are well localized in physical space and badly
localized in spectral space, and vice-versa. Denoting the support of a wavelet
in physical space by ∆x and the one in spectral space by ∆k the Fourier un-
certainty principle requires that the product ∆x∆k is bounded from below. In

Figure 1: Wavelet representation. Physical space (left) and spectral space
(right). Note that ∆x∆k > C is due to the Fourier uncertainty principle.

this case the orthogonal wavelet coefficients of a function f ∈ L2(R) are given
by

f̃ji = 〈f, ψji〉 (7)

and the corresponding orthogonal wavelet series reads

f(x) =
∑
j,i∈Z

f̃ji ψji(x) . (8)

The integral in the continuous reconstruction forumla, eq. (3), can thus be
replaced by a discrete sum. In practical applications the infinite sums of the
wavelet series have to be truncated in both scale and position. Limiting the
analysis to the largest accessible scale of the domain 20 = L the scaling function
associated to the wavelet has to be introduced and the wavelet series becomes

f(x) =
∑
i∈Z

f φ0i(x) +
∑

j≥0,i∈Z
f̃ji ψji(x) (9)
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where φ is the scaling function and f = 〈f, φ0i〉 the corresponding scaling co-
efficients. The smallest scale 2−J is given by the sampling rate of the function
f which determines the number of grid points N = 2J . The finite domain size
implies that the number of positions becomes also finite and, choosing L = 1,
we obtain the range i = 0, ..., 2j − 1 for j = 0, ..., J − 1. Figure 2 illustrates
for an orthogonal spline wavelet the discrete scale-space representation for three
different scales (j = 6, 7, 8) and positions. There exists a fast wavelet transform

Figure 2: Space-scale representation of an orthogonal spline wavelet at three
different scales and positions, i.e., ψ6,6, ψ7,32, ψ8,108. The modulus of the Fourier
transform of three corresponding wavelets is shown in the insert (top, left).

algorithm which computes the orthogonal wavelet coefficients in O(N) oper-
ations, therefore even faster than the fast Fourier transform whose operation
count is O(N log2N) [29].

As example we show in Fig. 3 the orthogonal wavelet coefficients of an aca-
demic function presenting discontinuities. We observe that wavelet coefficients
at small scales only have significant values in the vicinity of the discontinuities.
Hence only few coefficients are needed to represent the function after discarding
the small wavelet coefficients.

Extension to higher dimensions: The orthogonal wavelet representation
can be extended to represent functions in higher space dimensions using tensor
product constructions, see e.g., [9, 29, 39]. Figure 4 shows two-dimensional
orthogonal wavelets constructed by tensor products.

The wavelet transform can also be generalized to treat vector-valued func-
tions (e.g., velocity or magnetic fields) in d space dimensions by decomposing
each vector component into an orthogonal wavelet series. In the following we
consider a vector field v = (v(1), v(2), v(3)) for d = 3 sampled at resolution
N = 23J with periodic boundary conditions. Its orthogonal wavelet series reads

v(x) =

J−1∑
j=0

7∑
µ=1

2j−1∑
i1,i2,i3=0

ṽj,µ,i ψj,µ,i(x), (10)
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Figure 3: Academic example: function with two discontinuities and one in its
derivative (top), corresponding modulus of orthogonal wavelet coefficients in
logarithmic scale using periodic spline wavelets of degree five.

Figure 4: Two-dimensional orthogonal wavelets. Scaling function (top, left) and
the three associated directional wavelets in the horizontal (top, right), vertical
(bottom, left) and diagonal (bottom, right) direction.
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using 3D orthogonal wavelets ψj,µ,i(x). The basis functions are constructed by
tensor products of a set of one-dimensional wavelets and scaling functions [9, 29]
which have been periodized since the boundary conditions considered here are
periodic. The scale index j varies from 0 to J−1, the spatial index i = (i1, i2, i3)
has 23j values for each scale 2−j and each angle indexed by µ = 1, · · · , 7. The
three Cartesian directions x = x(1), x(2), x(3) correspond to µ = 1, 2, 3, while
µ = 4, 5, 6, 7 denote the remaining diagonal directions. The wavelet coefficients
measure the fluctuations of v at scale 2−j and around position 2−ji for each of
the seven possible directions µ. The contribution of the vector field v at scale
2−j and direction µ can be reconstructed by summation of ṽj,µ,iψj,µ,i(x) over
all positions i:

vj,µ(x) =

2j−1∑
i1,i2,i3=0

ṽj,µ,i ψj,µ,i(x). (11)

The contribution of v at scale 2−j is obtained by

vj(x) =
7∑

µ=1

vj,µ(x). (12)

For more details on wavelets, we refer the reader to several review articles,
e.g., [18, 23, 39] and textbooks, e.g., [9, 29].

2.2 Wavelet-based statistical diagnostics

The physical representation gives access to both position and direction, the
latter when the space dimension is larger than one. The spectral representation
gives access to both wavenumber and direction, when the space dimension is
larger than one, but the information on position is spread among the phases of all
Fourier coefficients. The wavelet representation combines the advantages of both
representations, while also giving access to scale. For instance if we consider a
three-dimensional vector-valued field, its orthogonal wavelet coefficients of each
of its three components are indexed by three positions, seven directions and
one scale. Thus using the wavelet representation new statistical diagnostics
can be designed by computing moments of coefficients using summation, either
over position, direction or scale, or any combination of them. Second order
moments correspond to energy distributions (e.g., the energy spectrum), while
higher order moments allow to compute skewness and flatness. In the following
we will present scale dependent moments, scale-dependent directional statistics
and scale dependent topological statistics. By topological statistics we mean
the statistics of bilinear quantities, like the scalar product of a vector field and
its curl, e.g., helicity.

In the following, we give a summary of statistical diagnostics based on
orthogonal wavelet analysis, here applied to a generic vector field following
the lines of [35]. Decomposing a vector field into orthogonal wavelets, scale-
dependent distributions of turbulent flows can be measured, including indiffer-
ent directions and also of different flow components. For example, the energy
and its spatial fluctuations can be quantified at different length scales and in
different directions and hence longitudinal or transverse contributions can be
determined. In the case of an imposed magnetic field the contributions in the
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directions perpendicular or parallel to it can be distinguished. To this end, sta-
tistical quantities based on the wavelet representation can be introduced, and
the scale-dependent anisotropy and the corresponding intermittency of MHD
turbulence can be examined. Here we define intermittency as a departure from
Gaussianity, which is reflected by increasing flatness when scale decreases. Sand-
born [37] introduced this definition in the context of boundary layer flows and
for a historical overview on intermittency we refer to [38]. Alternative defi-
nitions of intermittency can be found, e.g., in [24], for example a steepening
of the energy spectrum proposed by Kolmogorov in 1962 [26]. In [28, 27, 42]
related techniques to quantify the anisotropy of the flow and its intermittency
have been proposed. They used structure functions of either tensorial compo-
nents or applied the SO3 decomposition, which is based on spherical harmonics.
Structure functions which correspond to moments of increments can be directly
linked to wavelet decompositions (see, e.g., [38]). The increments are wavelet
coefficients using the poor man’s wavelet, i.e., the difference of two delta dis-
tributions, which has only one vanishing moment, its mean value. This implies
that the exponent of the detectable scaling laws is limited by the order of the
structure function and the scale selectivity is reduced as the frequency localiza-
tion of the poor man’s wavelet is rather bad. These drawbacks can be overcome
using higher order wavelets.

2.2.1 Scale dependent moments

To study the scale-dependent directional statistics we consider the component
v` with ` = 1, 2, 3 of a generic vector field v. First we define the q-th order

moment of the scale-dependent vector vj(x) = (v
(1)
j , v

(2)
j , v

(3)
j ), which is here

either the vector field at scale 2−j and direction µ, v
(`)
j,µ, or the vector field at

scale 2−j , v
(`)
j ,

Mq[v
(`)
j ] = 〈(v(`)j )q〉. (13)

By construction the mean value satisfies 〈v(`)j 〉 = 0 and hence the moments are
automatically centered. These scale-dependent moments are related to the q-th
order structure functions, as shown , e.g., in [38]. In the following we consider

the second order moment M2[v
(`)
j ], which is a scale-dependent quadratic mean

intensity of v
(`)
j , and the fourth order moment M4[v

(`)
j ] which contains the scale-

dependent spatial fluctuations. Both moments are related via the flatness factor.
In anisotropic turbulence typically a preferred direction can be defined, e.g.,

for low magnetic Reynolds number turbulence, or rotating turbulence. These
flows have statistical symmetries, which we suppose here with respect to the x3-
axis. For the remaining perpendicular components, ` = 1, 2, the average of these

two components is taken, Mq[v
⊥
j ] = {Mq[v

(1)
j ]+Mq[v

(2)
j ]}/2, and the superscript

⊥ represents the perpendicular contribution. The parallel contribution v
(3)
j is

denoted by v
‖
j .

The wavelet energy spectrum for v
(`)
j is obtained using M2[v

(`)
j ] and eq. (6),

E[v
(`)
j ] =

1

2∆kj
M2[v

(`)
j ], (14)
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where ∆kj = (kj+1 − kj) ln 2 [30, 1]. It is thus directly related to the Fourier
energy spectrum and yields a smoothed version [18, 30]. The orthogonality of
the wavelets with respect to scale and direction guarantees that the total energy

is obtained by direct summation, E =
∑
`,j E[v

(`)
j ] =

∑
`,j,µE[v

(`)
j,µ].

The standard deviation of the energy spectrum at a given wavenumber kj
quantifies the spatial variability

σ[v
(`)
j ] =

1

2∆kj

√
M4[v

(`)
j ]−

(
M2[v

(`)
j ]
)2
. (15)

The ratio of the fourth and second order moments defines the scale-dependent
flatness factor,

F [v
(`)
j ] =

M4[v
(`)
j ](

M2[v
(`)
j ]
)2 . (16)

which quantifies the flow intermittency at scale 2−j .
The scale-dependent flatness is related to the energy spectrum (14) and the

standard deviation (15),

F [v
(`)
j ] =

(
σ[v

(`)
j ]

E[v
(`)
j ]

)2

+ 1. (17)

as shown in [6]. This relation illustrates that the spatial variability of the energy
spectrum is directly reflected by the scale-dependent flatness.

2.2.2 Scale-dependent directional statistics

To quantify scale-dependent spatial flow anisotropy and anisotropic flow inter-
mittency we introduce wavelet-based measures. Both component-wise anisotropy
and directional anisotropy of the flow are considered in the following. For the

scale-dependent mean energy, E[v
(`)
j ], the anisotropy measure can be defined

similarly to the classical Fourier representation. Analoguously this can be ex-

tended for its spatial fluctuations, σ[v
(`)
j ]. Using the relation between the scale-

dependent flatness with the energy spectrum and its spatial fluctuations, eq.
(17), various measures of anisotropic flow intermittency can be defined.

Component-wise anisotropy: The scale-dependent component-wise aniso-
tropy is defined by the ratio of perpendicular to parallel energy, and its fluctu-
ation, at a given scale scale 2−j , respectively,

cE(kj) =
E[v⊥j ]

E[v
‖
j ]
, cσ(kj) =

σ[v⊥j ]

σ[v
‖
j ]
. (18)

The scale-dependent mean energy, cE(kj) is a smoothed version of the Fourier
counterpart c(k). The component-wise anisotropy of the spatial fluctuations is
quantified by cσ(kj). These measures are directly related to the component-wise
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flatness factors of v
(`)
j , i.e., F [v⊥j ] and F [v

‖
j ], as shown in [35]. Combining eqs.

(17) and (18) results in

ΛCj ≡
{
cσ(kj)

cE(kj)

}2

=
F [v⊥j ]− 1

F [v
‖
j ]− 1

, (19)

which yields a scale-dependent measure of component-wise anisotropic intermit-
tency.

Directional anisotropy: Scale-dependent measures for directional anisotropy
can be defined using ratios of perpendicular to parallel energy and fluctuations
in longitudinal or transverse directions,

dLE(kj) =
E[v⊥j,L]

E[v
‖
j,L]

, dLσ (kj) =
σ[v⊥j,L]

σ[v
‖
j,L]

, (20)

dTE(kj) =
E[v⊥j,3]

E[v⊥j,T ]
, dTσ (kj) =

σ[v⊥j,3]

σ[v⊥j,T ]
. (21)

The longitudinal direction is denoted by the index L, i.e., L = µ = `. The
subscript µ = 3 corresponds to a transverse direction of the perpendicular com-
ponents, while T represents the other transverse direction of the perpendicular

components, i.e., T = µ = 1 for v
(2)
j,µ or T = µ = 2 for v

(1)
j,µ.

Three principal directions, i.e., µ = 1, 2 and 3, out of the seven possible
directions have been selected for the directional statistics.

The measures dLE(kj) and dTE(kj) are smoothed versions of the Fourier rep-
resentation 2e(3)(k3)/{e(1)(k1) + e(2)(k2)} and {e(1)(k3) + e(2)(k3)}/{e(1)(k2) +
e(2)(k1)}, respectively, following the interpretation of the directional statistics
proposed in [6]. Furthermore these quantities can be related to second order
structure functions defined in physical space, and respectively we have:

2D(3)(rl̂3)

{D(1)(rl̂1) +D(2)(rl̂2)}
and

{D(1)(rl̂3) +D(2)(rl̂3)}
{D(1)(rl̂2) +D(2)(rl̂1)}

. (22)

Structure functions are defined as the spatial average of velocity increments,
D(`)(r) = 〈{v(`)(x + r) − v(`)(x)}2〉. Here v(`) consists of contributions of
v(`) to scales larger than 2−j . which are obtained by low pass filtering using the
three-dimensional scaling function at scale 2−j . The unit vector of the Cartesian
direction x` is denoted by l̂`.

Combining eq. (17) and eqs. (20)-(21), yields directional anisotropy mea-
sures [35]:

ΛLj ≡
{
dLσ (kj)

dLE(kj)

}2

=
F [v⊥j,L]− 1

F [v
‖
j,L]− 1

, (23)

ΛTj ≡
{
dTσ (kj)

dTE(kj)

}2

=
F [v⊥j,3]− 1

F [v⊥j,T ]− 1
, (24)

which quantify the scale-dependent anisotropic intermittency in the transverse
and longitudinal directions. They measure intermittency, not only in the plane
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perpendicular or in the direction parallel to for example a magnetic field B0,
but also in the longitudinal or transverse directions. These measures are equal
to one for isotropic fields, and their departure from the value one indicates the
degree of flow anisotropy.

2.2.3 Scale-dependent topological statistics

Considering the velocity field u and the corresponding vorticity ω = ∇×u the
kinetic helicity, H(x) = u · ω, can be defined. The helicity yields a measure of
the geometrical statistics of turbulence. Integrating the helicity over space one
obtains the mean helicity H = 〈u · ω〉. The scale-dependent helicity Hj was
introduced in [46] and is defined by

Hj(x) = uj · ωj (25)

It preserves Galilean invariance, though the kinetic helicity itself does not.
The corresponding mean helicity is obtained by summing Hj over scale, H =∑
j 〈Hj〉 due to the orthogonality of the wavelet decomposition.
The relative helicity

h(x) =
H

|u| |ω|
(26)

defines the cosine of the angle between the velocity and the vorticity at each
spatial position. The range of h lies between −1 and +1. The scale dependent
relative helicity can be defined correspondingly

hj(x) =
Hj

|uj | |ωj |
(27)

The Euler equations of hydrodynamics conserve the mean kinetic helicity,

while in ideal MHD turbulence the mean cross helicity H
C

= 〈u · b〉 and the

mean magnetic helicity H
M

= 〈a · b〉 are conserved quantities. Here a is the
vector potential of the magnetic field b. The scale dependent versions of the
relative cross and magnetic helicities have been introduced in [48] and are defined
respectively by

hCj (x) =
HC
j

|uj ||bj |
(28)

with HC(x) = u · b and

hMj (x) =
HM
j

|aj ||bj |
(29)

with HM (x) = a · b. These quantities define the cosine of the angle between
the two vector fields.

2.3 Application to 3D MHD turbulence

In the following we show applications of the above scale-dependent wavelet-
based measures to three-dimensional incompressible magnetohydrodynamic tur-
bulence. To study the anisotropy we analyze flows with uniformly imposed
magnetic field considering the quasistatic approximation at moderate Reynolds
numbers for different interaction parameters [35]. For the geometrical statistics
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full MHD turbulence without imposed mean field is analyzed [48]. The flows
are computed by direct numerical simulation with a Fourier pseudo-spectral
method at resolution 5123 and for further details we refer the reader to the
respective publications. The flow structure of the quasistatic MHD turbulence

Figure 5: QS-3D-MHD: Modulus of vorticity for quasistatic 3D MHD at Rλ =
235, with N = 0, (left) and N = 2 (right) computed by DNS, from [35].

is illustrated in Fig. 5. Shown are isosurfaces of the modulus of vorticity for
two different interaction parameters N . The interaction parameter characterizes
the intensity of the imposed magnetic field B0 (here chosen in the z direction)

relative to the flow nonlinearity. It is defined by N =
σB2

0L
ρu′ , where σ is the

electrical conductivity, L the integral length scale, ρ the density and u′ the rms
velocity. In the case without imposed magnetic field, i.e., N = 0 the flow is
equivalent to isotropic hydrodynamic turbulence and entangled vortex turbes
can be observed in Fig. 5, left. For N = 2 the structures are aligned parallel to
the z direction, i.e., the direction of the imposed magnetic field, and the flow is
thus strongly anisotropic.

The wavelet energy spectra (Fig. 6, left) yield information on the kinetic
energy at scale 2−j and the spatial fluctuations are quantified by the standard
deviation spectra (Fig. 6, right). All spectra have been multiplied by k5/3 to
enhance their differences at small scale. We observe that the spectra decay
with increasing normalized wavenumber kjη where η is the Kolmogorov length
scale. Furthermore the wavelet spectra (dotted lines) do agree well with the
corresponding Fourier spectra (solid lines). For larger values of N the spectra
E[u⊥j ] decay faster for increasing kjη. The standard deviation spectra of u⊥j
also decay more rapidly when N becomes larger.

The scale-dependent anisotropy measures allow to analyze the anisotropy at
different scales. The scale-dependent component-wise anisotropy cE(kj) shown
in Fig. 7, left, quantifies the anisotropy of the wavelet mean energy spectrum.
As expected we find for N = 0 that cE(kj) ≈ 1 as the flow is isotropic. The
departure from the value one corresponds to flow anisotropy, i.e., for values
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Figure 6: QS-3D-MHD: Wavelet mean energy spectra (left) k
5/3
j E⊥(kj) together

with the Fourier energy spectra (solid lines). Wavelet standard deviation spec-

tra (right) k
5/3
j σ⊥(kj). All quantites are shown for the perpendicular velocity

components. The inset (left) shows the corresponding forcing Fourier spectra
k5/3Ef (k). From [35].

smaller than one the energy of the parallel component is predominant of that of
the perpendicular component, an obervation which holds for both cases, N = 1
and N = 2. Furthermore the anisotropy is persistent at the small scales and
yields smaller values for N = 2. Now we examine the anisotropy in different
directions. Figure 7, right, shows dLE , the flow anisotropy of the mean wavelet
spectrum in the longitudinal direction. We find that this measure yields values
larger than one for N = 1 and 2 and values close to one for N = 0. For N 6= 0
the correlation of the velocity component parallel to the imposed magnetic field
in its longitudinal direction is supposed to be stronger than the correlation of
the perpendicular components. We also see that the scale dependence gets weak
for kjη > 0.1.

Figure 7: QS-3D-MHD: Component-wise anisotropy measure cE(kj) (left) and
directional anisotropy measure in the longitudinal direction dLE(kj). From [35].

The scale-dependent flatness of the perpendicular velocity F [u⊥j ] and of the

parallel velocity F [u
‖
j ], shown in Fig. 8, left, quantify the intermittency of the

different flow components. In all cases we find that the flatness does indeed

15



increase for decreasing scale. At small scales, kjη > 1 we also see that the

flatness is larger for larger values of N . The inset shows that F [u
‖
j ] behaves

similarily.
The component-wise anisotropy of the intermittency at each scale can be

quantified with ΛC(kj), see Fig. 8, right. Again we find that for N = 0 values
close to one are found, as expected due to the isotropy of the flow. For N = 1
and 2 the component-wise anisotropic intermittency ΛC(kj) has values larger
than one for kjη > 0.1, which means that the perpendicular velocity becomes
more intermittent than the parallel velocity at small scales. For N = 2 this
becomes even more pronounced.

Figure 8: QS-3D-MHD: Scale-dependent flatness of the perpendicular velocity
F⊥j with in the inset the corresponding flatness for the parallel velocity (left).
Anisotropic measure of intermittency Λ(kj) (right). From [35].

To illustrate the scale-dependent geometric statistics we consider homoge-
neous magnetohydrodynamic turbulence at unit Prandtl number without mean
magnetic field. The flow has been computed by direct numerical simulation
at resolution 5123 with random forcing and for further details we refer to [48].
Figure 9 shows the PDFs of the relative scale-dependent cross and magnetic
helicity, hCj and hMj . Figure 9 (left) exhibits two peaks at hCj = ±1 which
corresponds to a pronounced scale-dependent dynamic alignment. The peaks
even become larger for smaller scales and thus the probability of alignement
(or anti-alignement) of the velocity and the magnetic field increases. Figure 9
(right) illustrates that the distribution of the scale-dependent magnetic helicity
becomes more symmetric at small scales. The inset shows that the total rela-
tive magnetic helicity is strongly skewed with a peak at +1, which is due to the
presence of substantical mean magnetic helicity.

3 Extraction of coherent structures using wavelets

In this section we illustrate the extraction of coherent structures using an al-
gorithm which is based on wavelet denoising. We first describe it for one-
dimensional scalar-valued signals and illustrate its performance on an academic
test signal. We then generalize the algorithm to higher dimensions and to vector-
valued fields. Finally, different applications to experimental and numerical data
are shown:
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Figure 9: 3D-MHD: Scale-dependent PDFs of the relative helicities. Cross
helicity hCj (left) and magnetic helicity hMj (right). The insets show the PDFs
of the corresponding total relative helicities From [48].

• a scalar-valued signal varying in time measured by a Langmuir probe in
the scrape-off layer of the tokamak Tore Supra (Cadarache, France),

• a two-dimensional academic example of the synthetic emissivity of a radi-
ating toric shell with additive noise,

• experimental movies obtained by a fast camera implemented in Tore Supra,

• two-dimensional vorticity fields computed for resistive drift-wave turbu-
lence (Hasegawa-Wakatani model) using a pseudo-spectral method,

• three-dimensional vorticity and current density fields computed for resis-
tive MHD turbulence (incompressible MHD equations) using a pseudo-
spectral method.

3.1 Extraction algorithm

3.1.1 Principle

We propose a wavelet-based method to extract coherent structures that emerge
out of turbulent flows, both in fluids (e.g., vortices, shock waves in compressible
fluids, ...) and in plasmas (e.g., bursts, blobs, ...). The goal is to study their role
regarding the transport and mixing properties of flows in the turbulent regime.

For this, we use the wavelet representation that keeps track of both time
and scale, instead of the Fourier representation that keeps track of frequency
only. Since there is not yet an universal definition of the coherent structures
encountered in turbulent flows, we use an apophatic method (introduced in
Hinduist theology several thousands years ago) where one does not try to define
what an entity (e.g., a phenomenon, a noumenon, ...) is but rather what it
is not. We thus agree on the minimal and hopefully consensual statement :
’coherent structures are not noise’, and propose to define them as : ’coherent
structures are what remains after denoising’.

The mathematical definition of noise states that a signal is a noise if it cannot
be compressed in any functional basis. As a result the shortest description of a
noise is itself. Note that in most of the cases the experimental noise generated
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by a measure device does not fit the definition of mathematical noise since it
could be compressed in at least one functional basis (e.g., parasite frequencies
can be removed in the Fourier basis).

This new way of defining coherent structures allows to process signals and
fields, but also their cuts or projections (e.g., a probe located at one point
provides a one dimensional cut of a four dimensional space-time field). Indeed,
the algorithms commonly used to extract coherent structures cannot work for
cuts or projections, because they require a template of the structures to extract
(one would need to take into account how the probe sees all possible translations
and distortions of the coherent structures). The strength of our algorithm is
that it treats fields and projections the same way.

Since we assume that coherent structures are what remains after denoising,
we need a model, not for the structures themselves, but for the noise. Applying
‘Ockham’s Razor principle’ (or the ‘law of parsimony’), we choose as first guess
the simplest possible model: we suppose the noise to be additive, Gaussian and
white (i.e., uncorrelated). We then project the turbulent signal (in 1D), or
turbulent field (in higher dimensions), into wavelet space and retain only the
coefficients having their modulus larger than a given threshold. As threshold
value we follow Donoho and Johnstone’s proposition of a threshold value that
depends on the variance of the Gaussian noise we want to remove and on the
chosen sampling rate [11]. Since the noise variance is not known a priori for
turbulent signals (the noise being produced by their intrinsic nonlinear dynam-
ics), we designed a recursive method [3] to estimate it from the variance of the
weakest wavelet coefficients, i.e., those whose modulus is below the threshold
value. After applying our algorithm we obtain two orthogonal fields: the coher-
ent field retaining all coherent structures and the incoherent field corresponding
to the noise. We then check a posteriori that the latter is indeed noise-like (i.e.,
spread all over physical space), Gaussian and uncorrelated (i.e., also spread all
over Fourier space), and thus confirm the hypotheses we have a priori chosen
for the noise.

3.1.2 Wavelet denoising

We consider a signal s(t) sampled on N = 2J points that we want to denoise,
assuming the noise to be additive, Gaussian and white. We first project s(t) onto
an orthogonal wavelet basis and then filter out some of the wavelet coefficients
thus obtained, s̃ij . We retain only the wavelet coefficients whose modulus is
larger than a threshold value. The main difficulty is to estimate it a priori and
we encounter two possible cases:

• If we a priori know the noise’s variance σ2, the optimal threshold value is
given by Donoho and Johnstone’s formula [11]

ε = (2σ2 lnN)1/2 . (30)

In 1994 they proved [11] that such a wavelet thresholding method is op-
timal to denoise signals in presence of additive Gaussian white noise, be-
cause it minimizes the maximal L2-error (between the denoised signal and
the noise-free signal) for functions whose regularity is inhomogeneous, such
as bursty or intermittent turbulent signals.
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• If we do not a priori know the variance of the noise, that is the most
usual case, one should use the wavelet-based recursive algorithm we pro-
posed in 1999 [19, 3]. This algorithm first estimates the variance of the
noise by considering the variance of the noisy signal σ2

0 and computes the
corresponding threshold

ε0 = (2σ2
0 lnN)1/2 . (31)

The algorithm splits the wavelet coefficients into two classes: the weak co-
efficients whose modulus is smaller than the threshold, and the remaining
strong coefficients. It then computes the variance of the weak coefficients
σn to obtain a better estimation of the variance of the noise (estimated
from the wavelet coefficients using Parseval’s theorem)

σ2
n =

1

N

∑
(j,i)∈IJ ,|s̃ji|<εn

|s̃ji|2 (32)

where IJ = {0 ≤ j < J, i = 0, ..., 2j − 1} is the index set of the wavelet
coefficients. The algorithm then replaces ε0 by εn = (2σ2

n lnN)1/2, that
yields a better estimate of the threshold. This procedure is iterated until
it reaches the optimal threshold value, when εn+1 ≈ εn.

In [3] we proved that this algorithm converges for signals having a suf-
ficiently sparse representation in wavelet space, such as the intermittent
signals encountered in turbulence. We also showed that the larger the sig-
nal to noise ratio is, the faster the convergence. Hence, if the signal s(t)
is only a noise it converges in one iteration and retains ε0 as the optimal
threshold.

Using the optimal threshold we then separate the wavelet coefficients s̃ij into
two contributions: the coherent coefficients s̃Cij whose modulus is larger than ε

and the remaining incoherent coefficients s̃Iij . Finally, the coherent component

sC(t) is reconstructed in physical space using the inverse wavelet transform,
while the incoherent component is obtained as sI(t) = s(t)− sC(t).

3.1.3 Extraction algorithm for one-dimensional signals

We detail the iterative extraction algorithm for the one-dimensional case and
quote it from [3]:

Initialization

• given the signal s(t) of duration T , sampled on an equidistant grid ti =
iT/N for i = 0, N − 1, with N = 2J ,

• set n = 0 and perform a wavelet decomposition, i.e., apply the Fast
Wavelet Transform [29] to s to obtain the wavelet coefficients s̃ji for
(j, i) ∈ IJ ,

• compute the variance σ2
0 of s as a rough estimate of the variance of

the incoherent signal sI and compute the corresponding threshold ε0 =(
2 lnNσ2

0

)1/2
, where σ2

0 = 1
N

∑
(j,i)∈IJ |s̃ji|2,
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• set the number of coefficients considered as noise to NI = N , i.e., to the
total number of wavelet coefficients.

Main loop
Repeat

• set Nold
I = NI and count the number of wavelet coefficients smaller than

εn, which yields a new value for NI ,

• compute the new variance σ2
n+1 from the wavelet coefficiens smaller than

εn, i.e., σ2
n+1 = 1

N

∑
(j,i)∈IJ |s̃Iji|2, where

s̃Iji =

{
s̃ji for |s̃ji| ≤ εn
0 else,

(33)

and the new threshold εn+1 = (2 lnNσ2
n+1)1/2,

• set n = n+ 1

until (NI==Nold
I ).

Final step

• reconstruct the coherent signal sC from the coefficients s̃Cji using the in-
verse Fast Wavelet Transform, where

s̃Cji =

{
s̃ji for |s̃ji| > εn
0 else

(34)

• finally, compute pointwise the incoherent signal sI(ti) = s(ti)− sC(ti) for
i = 0, ..., N − 1.

End

Note that the signal is split into s(t) = sC(t) + sI(t) and its energy into
σ2 = σ2

C + σ2
I , since the coherent and incoherent components are orthogonal,

i.e., 〈sC , sI〉 = 0.
We use the Fast Wavelet Transform (FWT) [29] that is computed with

(2MN) multiplications, M being the length of the discrete filter defining the
orthogonal wavelet used. Remark: for all applications presented in this pa-
per, we use Coiflet 12 wavelets [9], unless otherwise stated. As long as the
filter length M < 1

2 log2N , the FWT is faster than the FFT (Fast Fourier
Transform) computed with N log2N operations. Consequently, the extraction
algorithm requires (2nMN) operations, n being the number of iterations, that
is small, typically less than log2N .

This algorithm defines a sequence of estimated thresholds (εn)n∈N and the

corresponding sequence of estimated variances
(
σ2
n

)
n∈N. In [3] we proved that

this sequence converges after a finite number of iterations by applying a fixed
point type argument to the iteration function

Fs,N (εn+1) =

2 lnN

N

∑
(j,i)∈IJ

|s̃Iji(εn)|2
1/2

. (35)
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The algorithm stops after n iterations, when Fs,N (εn) = εn+1, since the
number of samples N is finite. In [3] we have also proved that the convergence
rate depends on the signal to noise ratio (SNR = 10 log10(σ2/σ2

I )), since the
smaller the SNR, i.e., the stronger the noise, the faster the convergence is.
Moreover, if the algorithm is applied to a Gaussian white noise, it converges in
one iteration only. If it is applied to a signal without noise, the signal is fully
preserved. In [3] we have also proven the algorithm’s idempotence, i.e., if it
is applied several times the noise is eliminated the first time and the coherent
signal will remain the same if the algorithm is reapplied several times. This
would be the case for a Gaussian filter which, in contrast, is not idempotent.

3.1.4 Application to an academic test signal

To illustrate the performance of the iterative algorithm we consider a one-
dimensional noisy test signal s(t) sampled on N = 213 = 8192 points (Fig. 10,
middle). It is made by adding a Gaussian white noise w(t), of mean zero and
variance σ2

w = 25, to a piecewise regular academic signal a(t) presenting sev-
eral discontinuities, in the function or in its derivatives (Fig. 10, top). The
signal to noise ratio is SNR = 10 log10(σ2

a/σ
2
w) = 11 dB. After applying the

extraction algorithm we estimate the noise variance to be 25.6 and we obtain
a coherent signal sC(t) very close to the original academic signal a(t) (Fig. 10,
bottom). The incoherent part sI(t) is homogeneous and noise like with flatness
3.03, which corresponds to quasi–Gaussianity. In Fig. 10 (bottom) we observe
that the coherent signal retains all discontinuities and peaks present in the aca-
demic signal a(t), which is an advantage with respect to standard denoising
techniques, e.g., low pass Fourier filtering, which have smoothed them. In the
vicinity of the discontinuities we observe slight overshoots, which are more local
than the classical Gibbs phenomena and could for example be removed using
the translation invariant wavelet transform [29].

3.1.5 Extension of the algorithm to higher dimensional scalar and
vector-valued fields

The extraction algorithm was described in section 3.1.3 for one-dimensional
scalar-valued signals s(t) varying in time. First, it can be extended to higher-
dimensional scalar fields s(x) varying in space x ∈ Rd where d is the space
dimension. To this end the extraction algorithm only requires that the one-
dimensional wavelets are replaced by their equivalent d-dimensional wavelets
using tensor product constructions, see, e.g., [9, 29, 39].

Second, the extraction algorithm can also be extended to vector-valued fields
v = (v(1), ..., v(d)) where each component v`, ` = 1, ..., d is a scalar valued field.
The extraction algorithm is then applied to each component of the vector field.
For thresholding the wavelet coefficients we consider the vector ṽj,µ,i in eq. (10).
Assuming statistical isotropy of the noise, the modulus of the wavelet coef-
ficient vector is computed. The coherent contribution is then reconstructed
from those coefficients whose modulus is larger than the threshold defined as
ε = (2/d σ2 lnN)1/2 where d is the dimensionality of the vector field, σ the vari-
ance of the noise and N the total number of grid points. The iterative algorithm
in section 3.1.3 can then be applied in a straightforward way.
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Figure 10: Denoising of a piecewise regular signal using iterative wavelet thresh-
olding. Top: original academic signal a(t). Middle: Noisy signal s(t) with a SNR
= 11 dB. Bottom: Denoised signal sC(t) with a SNR = 28 dB.
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To extract coherent structures out of turbulent flows we consider the vor-
ticity field, which is decomposed in wavelet space. Applying the extraction
algorithm then yields two orthogonal components, the coherent and incoher-
ent vorticity fields. Subsequently the corresponding induced velocity fields can
be reconstructed by applying the Biot–Savart kernel, which is the inverse curl
operator. For MHD turbulence, we consider in addition the current density
and we likewise split it into two components, the coherent and incoherent cur-
rent density fields. Using Biot–Savart’s kernel we reconstruct the coherent and
incoherent magnetic fields.

Note that the employed wavelet bases do not a priori constitute divergence-
free bases. Thus the resulting coherent and incoherent vector fields are not
necessarily divergence free. However, we checked that the departure from in-
compressibility only occurs in the dissipative range and remains negligible [47].
Another solution would be to use directly div-free wavelets, but they are much
more cumbersome to implement [10].

3.2 Application to 1D experimental signals from tokamaks

In [22] we presented a new method to extract coherent bursts from turbulent
signals. Ion density plasma fluctuations were measured by a fast reciprocating
Langmuir probe in the scrape-off layer of the tokamak Tore Supra (Cadarache,
France), for a schematic view we refer to Fig. 11. The resulting turbulent signal

Figure 11: Left: Position of the reciprocating Langmuir probe in the scrape-off
layer of the tokamak Tore Supra in Cadarache. Right: Schematic top view of
the probe.

is shown in Fig. 12 (top). To extract the coherent burst the wavelet represen-
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tation is used which keeps track of both time and scale and thus preserves the
temporal structure of the analyzed signal, in contrast to the Fourier represen-
tation which scrambles it among the phases of all Fourier coefficients. Apply-
ing the extraction algorithm described in section 3.1.3 the turbulent signal in
Fig. 12 (top) is decomposed into coherent and incoherent components (Fig. 12,
bottom). Both signals are orthogonal to each other and their properties can
thus be studied independently. This procedure disentangles the coherent bursts,
which contain most of the density variance, are intermittent and correlated with
non-Gaussian statistics, from the incoherent background fluctuations, which are
much weaker, non-intermittent, noise-like and almost decorrelated with quasi-
Gaussian statistics.

Figure 12: Signal s(t) of duration 8.192 ms, corresponding to the saturation
current fluctuations measured at 1 MHz in the scrape-off layer of the tokamak
Tore Supra (Cadarache, France). Top: total signal s, bottom left coherent part
sC , and bottom right incoherent part sI . From [22].

The corresponding PDFs are shown in Fig. 13 which confirm that the in-
coherent part is indeed Gaussian like, while the total and coherent signal have
similar skewed PDFs with algebraic heavy tails for positive signal values. Di-
agnostics based on the wavelet representation were also introduced in [22]
which allow to compare the statistical properties of the original signals with
their coherent and incoherent components. The wavelet spectra in comparison
with classical Fourier spectra (obtained via modified periodograms) in Fig. 14
(left) confirm that the total and coherent signals have almost the same scale
energy distribution with a power law behavior close to −5/3. Furthermore the
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Figure 13: Probability density function p(s) estimated using histograms with 50
bins. PDF of the total signal s (green dashed line), of the coherent component
sC (red solid line) and of the incoherent component sI (blue dotted line, together
with a Gaussian fit with variance σ2

I (black dotted line). From [22].

wavelet spectra agree well with the Fourier spectra. The incoherent signal yields
an energy equipartition for more than two magnitudes, which corresponds to
decorelation in physical space. To quantify the intermittency we plot in Fig. 14
(right) the scale dependent flatness of the different signals which shows that
the coherent contribution extracted from the total signal has the largest values
at small scale (i.e., high frequency) and is thus the most intermittent. In [22]
we conjectured that the coherent bursts are responsible for turbulent transport,
whereas the remaining incoherent fluctuations only contribute to turbulent dif-
fusion. This is confirmed by the resulting energy flux of the total, coherent and
incoherent parts given in Fig. 15. Note that cross correlation between coherent

Figure 14: Left: wavelet spectra Ẽ(ωj) (lines with symbols) and modified peri-
odograms E(ω) (lines) of the total signal s (green and +) , coherent signal sC
(red and �) and incoherent signal sI (blue and ◦). Right: corresponding scale

dependent flatness F̃ vs frequency ωj . The horizontal dotted line F̃ (ωj) = 3
corresponds to the flatness of a Gaussian process. From [22].

and incoherent contributions of the electric potential and the saturation current
are not shown.
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Figure 15: Energy flux: total (green), coherent (red) and incoherent (blue). The
split is made using complex valued wavelets.

3.3 Application to 2D experimental movies from toka-
maks

3.3.1 Tomographic reconstruction using wavelet-vaguelette decom-
position

Cameras installed in tokamaks aquire images which are difficult to interpret,
since the three-dimensional structure of the plasma is mapped onto two space
dimensions and thus flattened in a non-trivial way. This implies that the re-
ceived flux cannot be directly related to the volumic emissivity of the plasma,
which is a major limitation of such optical diagnostics. The reason is that the
photons collected by each pixel on the camera sensor have been emitted along
a corresponding ray, rather than out of a single point in space. Nevertheless
the three-dimensional radiation can be related to the two-dimensional image
using tomographic reconstruction, because the dominant structures in tokamak
edge turbulence happen to be field-aligned filaments, commonly known as blobs.
They have a higher density than their surroundings, and their structure varies
more slowly along magnetic field lines than in their orthogonal directions.

Mathematically the tomographic reconstruction corresponds to an inverse
problem which has a formal solution under the assumed symmetry, but is ill-
posed in the presence of noise. Taking advantage of the slow variation of the
fluctuations along magnetic field lines in tokamaks, this inverse problem can be
modelled by a helical Abel transform, which is a Volterra integral operator of
the first kind. In [33] we proposed a tomographic inversion technique, based on
a wavelet-vaguelette decomposition and coupled with wavelet denoising to ex-
tract coherent structures, that allows to detect individual blobs on the projected
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movie and to analyse their behaviour. The wavelet-vaguelette decomposition
(WVD) was introduced by Tchamitchian [43] and used by Donoho [12] to solve
inverse problems in the presence of localized structures. Tomographic inversion
using the wavelet-vaguelette decomposition is as an alternative to SVD (Singu-
lar Value Decomposition). SVD and WVD regularize the problem by damping
the modes of the inverse transform to prevent amplification of the noise, i.e.,
modes below a given threshold are eliminated. For WVD the nonlinear it-
erative thresholding procedure (see section 3.1.3) is applied to the vaguelette
coefficients. Here Coiflets with two vanishing moments are used [9]. However,
in contrast to SVD, WVD takes in addition advantage of the spatial localization
of coherent structures present in the plasma.

The technicalities of WVD are described in detail in [33], in the following
we only explain the principle. The helical Abel transform related the plasma
light emissivity S (a scalar-valued field) to the integral of the volume emissivity
received by the camera I = KS, where K is a compact continuous operator.
The reconstruction of the plasma light emissivity S from I is an inverse problem
which becomes very difficult when S is corrupted by noise, since computing K−1

is an ill-posed problem which amplifies the noise. The vaguelettes are operator
adapted wavelets and a biorthogonal set of basis functions is obtained from
the wavelet bases ψλ by computing Kψλ and K?−1ψλ, where K?−1 denotes
the adjoint inverse operator [43]. Note that vaguelettes inherit the localization
features of wavelets but may loose the translation and scale invariance, and thus
the fast wavelet transform cannot be applied anymore.

3.3.2 Application to an academic example

To illustrate the method we first consider an academic test case with an given
emissivity map S, having a uniform radiating shell at constant value one and
zero elsewhere. A two-dimensional cut in the poloidal plane is shown in Fig. 16,
left. Applying the helical Abel transform we generate the corresponding syn-
thetic image I = KS (Fig. 16, middle). Then we add a Gaussian white noise
with standard deviation 0.5, which yields the synthetic noisy image (Fig. 16,
right).

Figure 16: Denoising WVD academic test case with a uniform radiating shell.
Left: source emission intensity S in the poloidal plane. Middle: corresponding
noiseless image I = KS in the image plane. Right: noisy image obtained by
adding Gaussian white noise with variance 0.5. From [33].
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Applying the WVD reconstrution to the synthetic noisy image (Fig. 16,
right) gives a denoised emissivity map, a poloidal cut is shown in Fig. 17, left.
We observe that the main features are preserved, i.e., the constant emissivity
shell is well recovered, besides some spurious oscillations close to discontinuities.
The corresponding denoised image Id = KSd (Fig. 17, right) illustrates that the
noise has been successfully removed. A comparison with the standard SVD
technique in [33] (not shown here) illustrates the superiority of the wavelet-
vaguelette technique.

Figure 17: Denoising WVD academic test case. WVD inversion results. Left:
reconstructed poloidal emissivity map Sd. Right: denoised image Id = KSd.
From [33].

3.3.3 Application to fast camera data from tokamaks

Now we present an application to an experimental movie acquired during the
Tore Supra discharge TS42967, where the plasma was fully detached and stabi-
lized over several seconds using a feedback control. The movie has been obtained
using a fast camera recording at 40 kHz. Moreover, the time average of the whole
movie was subtracted from each frame, which helps us to decrease the effect of
reflection on the chamber wall. The algorithm is then applied directly to the
fluctuations in the signal instead of the full signal. The experimental conditions
can be found in [33]. One frame of the movie is shown in Fig. 18, left and
used as input for the WVD reconstruction algorithm. The resulting emissivity
map in the poloidal plane, in Fig. 18, middle, shows the presence of localized
blobs, which propagate counterclockwise as observed in the movies, not shown
here. Thus their propagation velocity can be determined. The corresponding
denoised movie frame Id (Fig. 18, right) is obtained by applying the operator K
to the inverted emissivity map Sd. We observe that the noise has been removed
and the local features such as blobs and fronts have been extracted.
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Figure 18: WVD-inversion of a snapshot from a movie obtained from Tore
Supra, discharge TS42967. Left: noisy frame used as input for the WVD al-
gorithm. Middle: reconstructed emissivity map obtained as a result of WVD.
Right: denoised frame obtained by applying the operator K to the reconstructed
emissivity map. From [33].

3.4 Application to 2D simulations of resistive drift-wave
turbulence

At the edge of the plasma in tokamaks drift-waves play an important role in
the dynamics and transport. In [7] we considered a two-dimensional slab geom-
etry and performed direct numerical simulations using a two-field model, the
Hasegawa–Wakatani system which describes the main features of resistive drift-
waves. The evolution equations for the plasma density fluctuations and the
electrostatic potential fluctuations are coupled via the adiabaticity parameter
which models the intensity of the parallel electron resistivity. A Poisson equa-
tion relates the vorticity with the electrostatic potential. The wavelet-based
coherent vortex extraction method (see section 3.1.3) is then applied in [7] to
assess the role of coherent vorticity for radial transport and to identify only the
active degrees of freedom which are responsible for the transport.

Visualizations of the vorticity field for two regimes, the quasi-hydrodynamic
case and the quasi-adiabatic case, corresponding respectively to low and high
collisionality of the plasma, are given in Fig. 19. In both cases coherent vor-
tices can be observed and a dipolar structure is framed by the white rectangles.
Applying the CVE algorithm we split the vorticity fields into coherent and in-
coherent contributions. In the quasi-hydrodynamics case we find that 1.3% of
the wavelet coefficients are sufficient to retain 99.9% of the energy, while in
the quasi-adiabatic case 1.8% of the modes retain 99.0% of the energy. The
statistical properties of the total, coherent and incoherent vorticity fields are
assessed in Fig. 20 by plotting the vorticity PDFs and the Fourier enstrophy
spectra for the two cases. For the quasi-hydrodynamic vorticity the PDFs of
the total and the coherent field are slightly skewed and exhibit a non–Gaussian
distribution, while for the quasi-adiabatic case a symmetric almost Gaussian
like distribution can be observed. The variances of the incoherent parts are
strongly reduced in both cases with respect to the total fields and the PDFs
have a Gaussian-like shape. The enstrophy spectra illustrate that coherent and
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Figure 19: Snapshots of the vorticity field for the quasi-hydrodynamic case (left)
and for the quasi-adiabatic case (right). Abscissa and ordinate correspond to
the radial and poloidal position, respectively. The white rectangles indicate the
selected dipoles. From [7].

incoherent contributions exhibit a multiscale behavior. The spectra of total and
coherent vorticity agree well all over the inertial range. The spectra of the inco-
herent contributions have a powerlaw behavior close to k3 which corresponds to
an equipartition of kinetic energy. In [7] it is furthermore shown that the radial
density flux, i.e., more than 98%, is indeed carried by these coherent modes.
In the quasi-hydrodynamic regime, coherent vortices exhibit depletion of the
polarization-drift nonlinearity as shown in the scatter plot of vorticity against
the electrostatic potential in Fig. 21. Moreover vorticity strongly dominates
over strain, in contrast to the quasiadiabatic regime. Details can be found in
[7].

3.5 Application to 3D simulations of resistive MHD tur-
bulence

In [47] we proposed a method for extracting coherent vorticity sheets and current
sheets out of three-dimensional homogeneous magnetohydrodynamic (MHD)
turbulence. To this end the wavelet-based coherent vortex extraction method
(see section 3.1.3) has been applied to vorticity and current density fields com-
puted by direct numerical simulation (DNS) of forced incompressible MHD tur-
bulence without mean magnetic field at resolution of 5123. Coherent vorticity
sheets and current sheets are extracted from the DNS data at a given time in-
stant. A visualization of isosurfaces of vorticity and current density of the total,
coherent and incoherent fields is shown in Fig. 22. The coherent vorticity and
current density are found to preserve both the vorticity sheets and the current
sheets present in the total fields while retaining only a few percent of the degrees
of freedom. The incoherent vorticity and current density are shown to be struc-
tureless and of mainly dissipative nature. The spectral distributions in Fig. 23
of kinetic and magnetic energies of the coherent fields only differ in the dissipa-
tive range, while the corresponding incoherent fields exhibit quasi-equipartition
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Figure 20: Top: PDFs of the vorticity. Bottom: Fourier spectrum of the enstro-
phy versus wavenumber. Left: quasi-hydrodynamic case. Right: quasi-adiabatic
case. Dashed line: total field, solid line: coherent part, dotted line: incoher-
ent part. Note that the coherent contribution (solid) superposes the total field
(dashed), which is thus hidden under the solid line in all four figures. The
straight lines indicating power laws are plotted for reference. From [7].
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Figure 21: Scatter plot of vorticity against electrostatic potential for the coher-
ent part (top) and incoherent part (bottom). Left: quasi-hydrodynamic case;
right: quasi-adiabatic case. The red dots correspond to the total field, the blue
dots correspond to a selected vortex dipole in Fig. 19. From [7].
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Figure 22: Isosurfaces of vorticity (left) and current density (right) of the total
(top), coherent (middle) and incoherent contributions (bottom). From [47].
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of energy, corresponding to a k2 slope. The probability distribution functions

Figure 23: Kinetic (a) and magnetic (b) energy spectra of the total, coherent and
incoherent fields. The wavenumber is normalized with the Iroshnikov-Kraichnan
scale. From [47].

(PDFs) of total and coherent fields, for both vorticity and current density, in
Fig. 24 coincide almost perfectly, while the incoherent vorticity and current den-
sity fields have strongly reduced variances. The energy flux shown in Fig. 25

Figure 24: PDFs of the `-th component of the velocity (a), vorticity (b), mag-
netic field (c) and current density (d) for the total, coherent and incoherent
contributions. From [47].

confirms that the nonlinear dynamics is indeed fully captured by the coherent
fields only. The scale-dependent flatness of the velocity and the magnetic field
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Figure 25: Contributions to the energy flux normalized by the energy dissipation
rate versus the wavenumber, which is normalized with the Iroshnikov-Kraichnan
scale. From [47].

in Fig. 26 illustrate that the total and coherent fields have similar scale depen-
dent high order moments and reflect strong intermittency characterized by the
strong increase of the flatness for decreasing scale. The flatness values of the
incoherent contributions, of both the velocity and the magnetic field are are
much smaller and do not increase significanlty for decreasing scale, i.e., they
are not intermittent.

Figure 26: Scale-dependent flatness of velocity (a) and magnetic field (b) ver-
sus the wavenumber, which is normalized with the Iroshnikov-Kraichnan scale.
From [47].

4 Wavelet-based simulation schemes

In the following two wavelet-based methods for solving kinetic plasma equations
are presented: an application of nonlinear wavelet denoising to improve the con-
vergence of particle-in-cell schemes (PIC) and a particle-in-wavelet scheme for
solving the Vlasov-Poisson equation directly in wavelet space. We also present
the Coherent Vorticity and Current sheet Simulation (CVCS) method which
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extends the Coherent Vorticity Simulation (CVS) [19, 20] developed for the
Navier–Stokes equations to the resistive non-ideal MHD equations. Numerical
examples illustrate the properties and the efficiency of the different methods.

4.1 Improving particle-in-cell (PIC) schemes by wavelet
denoising

Plasma simulations using particles are characterized by the presence of noise, a
typical feature of Monte–Carlo type simulations. The number of particles, which
is restricted by the computational resources, limits the statistical sampling and
thus the accuracy of the reconstructed particle distribution function.

The discretization error generically known as particle noise due to its random-
like character of the method quantifies the difference between the distribution
function reconstructed from a simulation using Np particles and the exact dis-
tribution function. The weak scaling of the error with the number of particles,
∝ 1/

√
Np, however limits the reduction of particle noise by increasing the num-

ber of computational particles in practical applications. This has motivated the
development of various noise reduction techniques, see, e.g., [31], which is of
importance in the validation and verification of particle codes.

In [31] we proposed a wavelet-based method for noise reduction in the recon-
struction of particle distribution functions from particle simulation data, called
wavelet-based density estimation (WBDE). The method was originally intro-
duced in [13] in the context of statistics to estimate probability densities given
a finite number of independent measurements. WBDE, as used in [31], is based
on a truncation of the wavelet representation of the Dirac delta function associ-
ated with each particle. The method yields almost optimal results for functions
with unknown local smoothness without compromising computational efficiency,
assuming that the particles coordinates are statistically independent. It can be
viewed as a natural extension of the finite size particles (FSP) approach, with
the advantage of estimating more accurately distribution functions that have
localized sharp features. The proposed method preserves the moments of the
particle distribution function to a good level of accuracy, has no constraints
on the dimensionality of the system, does not require an a priori selection of a
global smoothing scale, and is able to adapt locally to the smoothness of the
density based on the given discrete particle data. Indeed, the projection space is
determined from the data itself, which allows for a refined representation around
sharp features, and could make the method more precise than PIC for a given
computational cost. Moreover, the computational cost of the denoising stage is
of the same order as one time step of a FSP simulation.

The underlying idea of WBDE is to expand the sampled particle distribution
function, represented by a histogram, into an orthogonal wavelet basis using
the fast wavelet transform. We define the empirical density associated to the
particles positions xn for n = 1, ..., Np where Np is the number of particles,

ρδ(x) =
1

Np

Np∑
n=1

δ(x− xn) (36)

and where δ is the Dirac measure. We then project ρδ(x) onto an orthogonal
wavelet basis retaining only scales j such that L ≤ j ≤ J where the scales L

36



and J denote the largest and smallest retained scales, respectively [13]. The
remaining wavelet coefficients are then thresholded retaining only those whose
modulus is larger than the scale-dependent threshold K

√
j/Np, where K is a

constant which depends on the regularity of the solution [13]. Finally the de-
noised particle density is obtained by applying an inverse fast wavelet transform.
In [31] Daubechies wavelets with 6 vanishing moments were used.

In [31] we treated three cases in order to test how the efficiency of the denois-
ing algorithm depends on the level of collisionality of the plasma. A strongly
collisional, weakly collisional and collisionless regimes were considered. For the
strongly collisional regime we computed particle data of force-free collisional re-
laxation involving energy and pinch-angle scattering. The collisionless regime is
studied using PIC-data corresponding to bump-on-tail and two-stream instabil-
ities in the Vlasov–Poisson system. The third case of a weakly collisional regime
is illustrated here using guiding-center particle data of a magnetically confined
plasma in toroidal geometry. The data was generated with the code DELTA5D.
Figure 27 shows contour plots of the histogram (top row) and the reconstructed
densities using WBDE for increasing number of particles. It can be seen that
the WBDE results in efficiently denoised densities and that the error has been
reduced by a factor two with respect to the raw histograms as shown in Fig. 28.

Figure 27: Contour plots of estimates of δf for the collisional guiding center
transport particle data: histogram method (top row) and WBDE method (bot-
tom row). The left, center and right columns correspond to Np = 32 · 103 (left),
Np = 128 · 103 (middle) and Np = 1024 · 103 (right), respectively. The plots
show 17 isolines equally spaced within the interval [0.5, 0.5]. From [31].

4.2 Particle-in-wavelets scheme (PIW)

In [32] we proposed a new numerical scheme, called particle-in-wavelets, for the
Vlasov–Poisson equations describing the evolution of the particle distribution
function f in collisionless plasma, and assessed its efficiency in the simplest case
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Figure 28: RMS error estimate for collisional guiding center transport particle
data according to the histogram, the POD, and the wavelet methods. The
reference density is computed with Np = 1024 · 103. From [31].

of one spatial dimension. In non-dimensional form the equations read

∂tf + v∂xf + ∂xφ∂vf = 0 (37)

∂xxφ+ 1− 2π

∫
R
f(x, v, t) dv = 0 (38)

where φ is electric potential. The particle distribution function f is discretized
using tracer particles, and the charge distribution is reconstructed using wavelet-
based density estimation (WBDE), discussed in the previous section. The lat-
ter consists in projecting the Delta distributions corresponding to the parti-
cles onto a finite dimensional linear space spanned by a family of wavelets,
which is chosen adaptively. A wavelet-Galerkin Poisson solver is used to com-
pute the electric potential once the wavelet coefficients of the electron den-
sity ρ(x, t) =

∫
R f(x, v, t)dv have been obtained by WBDE. The properties

of wavelets are exploited for diagonal preconditioning of the linear system in
wavelet space, which is solved by an iterative method, here conjugated gradi-
ents. Similar to classical PIC codes the interpolation method is compatible with
the charge assignment scheme. Once the electric field E(x, t) = −∂xφ(x, t) has
been interpolated at the particle positions the characteristic trajectories, defined
by x′(t) = v(t) and v′(t) = −E(x(t), v(t), t) can be advanced in time using the
Verlet integrator.

To demonstrate the validity of the PIW scheme, numerical computations
of Landau damping and of the two-stream instability have been performed in
[32]. The stability and accuracy have been assessed with respect to reference
computations obtained with a precise semi-Lagrangian scheme [41]. We showed
that the precision is improved roughly by a factor three compared to a classical
PIC scheme, for a given number of particles [32], as illustrated in Fig. 29 for the
two-stream instability. We observe that PIW remains uniformely more precise
for any number of particles thanks to its adaptive properties (Fig. 29, left).
The total CPU time measured in seconds scaled for the PIW code inversely
proportional to the number of particles, while for PIC and L-PIW the scaling
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Figure 29: Comparisons between PIW and PIC for the two-stream instability
test case. Relative L2 error of the electric field at t = 30, as a function of the
number of particles (left) and the corresponding computing time (right). Note
that L-PIW is a variant of PIW where only linear filtering has been applied.
From [32].

changes when the number of particles is too low for a given spatial resolution.
However, note that the actual CPU time may depend on the implementation,
since the PIC code is written in Fortran, while the PIW code is written in C++,
although the same computer was used for both codes.

4.3 Coherent Vorticity and Current sheet Simulation (CVCS)

Direct numerical simulation (DNS) of turbulent flow has a large computational
cost due to the huge number of degrees of freedom to be taken into account.
The required spatial resolution thus becomes prohibitive, e.g., scaling as Re9/4

for hydrodynamics using Kolmogorov like arguments [36]. The CVS method,
introduced in [19, 20], proposes to reduce the computational cost by taking only
into account the degrees of freedom that are nonlinearly active. To this end,
the coherent structure extraction method (presented in section 3) is combined
with a deterministic integration of the Navier–Stokes equations. At each time
step the CVE is applied to retain only the coherent degrees of freedom, typically
a few percent of the coefficients. Then, a set of neighbor coefficients in space
and scale, called ‘safety zone’, is added to account for the advection of coherent
vortices and the generation of small scales due to their interaction. Afterwards
the Navier–Stokes equations are advanced in time using this reduced set of a
degrees of freedom. Subsequently, the CVE is applied to reduce the number
of degrees of freedom and the procedure is repeated for the next time step.
A graphical illustration, in wavelet coefficient space, of the degrees of freedom
retained at a given time step, is given in Fig. 30. This procedure allows to track
the flow evolution in space and scale selecting a reduced number of degrees
of freedom in a dynamically adaptive way. With respect to simulations on a
regular grid, much less grid points are used in CVS.

In [49] we extended CVS to compute 3D incompressible magnetohydrody-
namic (MHD) turbulent flow and developed a simulation method called coherent
vorticity and current sheet simulation (CVCS). The idea is to track the time
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Figure 30: Illustration of the safety zone in wavelet coefficient space used in
CVS. The degrees of freedom retained by CVE are drawn in red, the adjacent
coefficients of the safety zone are drawn in green, while the coefficients in blue
correspond to the inactive degrees of freedom which are not computed. The
interface η, defined in space and scale, separates the region dominated by non-
linear interaction (red) from the region dominated by linear dissipation (blue).
The horizontal green line corresponds to the Kolmogorov dissipation scale 〈η〉
is defined by the statistical mean (either ensemble or space average).
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evolution of both coherent vorticity and coherent current density, i.e., current
sheets. Both the vorticity and current density fields are, respectively, decom-
posed at each time step into two orthogonal components, corresponding to the
coherent and incoherent contribution, using an orthogonal wavelet representa-
tion. Each of the coherent fields is reconstructed from the wavelet coefficients
whose modulus is larger than a threshold, while their incoherent counterparts
are obtained from the remaining coefficients. The two threshold values depend
on the instantaneous kinetic and magnetic enstrophies. The induced coherent
velocity and magnetic fields are computed from the coherent vorticity and cur-
rent density, respectively, using the Biot–Savart kernel. In order to compute
the flow evolution, one should retain not only the coherent wavelet coefficients
but also their neighbors in wavelet space, the safety zone. A flowchart sum-

Figure 31: Flowchart describing the principle of CVCS. The superscripts n and
n + 1 denote time steps. FWT and FWT−1 denote the fast wavelet transform
and its inverse. Operators performed in wavelet coefficient space are framed by
the dashed rectangle. From [49].

marizing the principle of CVCS is shown in Fig. 31 and the adaption strategy
in orthogonal wavelet coefficient space in Fig. 32.

In [49] CVCS was performed for 3D forced incompressible homogeneous
MHD turbulence without mean magnetic field, for a magnetic Prandtl num-
ber equal to unity. The Navier–Stokes equations coupled with the induction
equation were solved with a pseudospectral method using 2563 grid points and
integrated in time with a Runge–Kutta scheme. Different adaption strategies
to select the optimal saftey zone for CVCS have been studied. We tested the
influence of the safety zone and of the threshold, as defined in section 3.1.3, by
considering three cases:

• CVCS0 with safety zone but without iterating the threshold ε0,

• CVCS1 with safety zone but with iterating the threshold once ε1,
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Figure 32: Adaption strategy in wavelet coefficient space used in CVCS: retained
wavelet coefficients (blue), added wavelet coefficients to ensure a graded tree
(red) and added wavelet coefficients corresponding to the safety zone (green).
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• CVCS2 without safety zone but without iterating the threshold ε0,

details can be found in [49]. The quality of CVCS was then assessed by com-
paring the results with a direct numerical simulation. It is found that CVCS
with the safety zone well preserves the statistical predictability of the turbulent
flow with a reduced number of degrees of freedom. CVCS was also compared
with a Fourier truncated simulation using a spectral cutoff filter, where the
number of retained Fourier modes is similar to the number of the wavelet coef-
ficients retained by CVCS0. Figure 33 shows the percentage of retained wavelet
coefficients for CVCS (with three different adaption strategies) in comparison
to Fourier filtering (FT0) with a fixed cut-off wavenumber. The percentage of

Figure 33: Evolution of the percentage C of retained wavelet coefficients for
CVCS with three different adaption strategies in comparison with Fourier fil-
tering (FT0) with a fixed cut-off wavenumber. From [49].

retained kinetic energy, magnetic energy, kinetic enstrophy and magnetic enstro-
phy for the three different CVCS strategies in comparison with Fourier filtering
(FT0) is plotted in Fig. 34.

Probability density functions of vorticity and current density, normalized by
the corresponding standard deviation, in Fig. 35 show that CVCS0 and CVCS1
capture well the high order statistics of the flow, while in FT0 and in CVCS2
the tails of the PDFs are reduced with respect to the DNS results. The energy
spectra of kinetic and magnetic energy in Fig. 36 confirm that CVCS0 and
CVCS1 reproduce perfectly the DNS results in the inertial range, where all
nonlinear acticity takes place, and only differs in the dissipative range.

The results thus show that the wavelet representation is more suitable than
the Fourier representation, especially concerning the probability density func-
tions of vorticity and current density and that only about 13% of the degrees
of freedom (CVCS0) compared to DNS are sufficient to represent the nonlinear
dynamics of the flow. A visualization comparing both the vorticity and current
density field for DNS and CVCS0 is presented in Fig. 37.

5 Conclusion

This paper reviewed different wavelet techniques and showed several of their ap-
plications to MHD and plasma turbulence. Continuous and orthogonal wavelet
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Figure 34: Percentage of retained kinetic energy (a), magnetic energy (b), ki-
netic enstrophy (c) and magnetic enstrophy (d) for the three different CVCS
strategies in comparison with Fourier filtering (FT0). From [49].

Figure 35: PDFs of the `-th component of vorticity (a) and current density (b)
normalized by the corresponding standard deviation. From [49].
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Figure 36: Kinetic (a) and magnetic energy spectra (b). The wavenumber is
normalized with the Iroshnikov-Kraichnan scale. From [49].

Figure 37: Visualization of isosurfaces of modulus of vorticity (top) and modulus
of current density (bottom) for DNS (left) and CVCS0 (right). From [49].
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transforms were presented and some wavelet-based statistical tools described, af-
ter selecting those most appropriate to study turbulence, such as scale-dependent
second and higher order moments, intermittency measure, together with scale-
dependent directional statistical measures. Examples of applications to three-
dimensional incompressible MHD turbulence, computed by DNS, illustrated
how the flow intermittency can be quantified and how its anisotropy and he-
licity might vary with scale. The wavelet-based coherent structure extraction
algorithm was detailed and validated for a test signal. Different applications
to experimental and numerical turbulent plasma data, in one, two and three
dimensions, were shown. The underlying methodology of a wavelet-based to-
mographic reconstruction algorithm for denoising images and movies obtained
with fast cameras in tokamaks were explained and results were presented. Ap-
plications to an academic example and to fast camera data from Tore Supra
proved the efficiency of the algorithm to extract blobs and fronts while denoising
the data. Wavelet-based simulation schemes developed in the context of kinetic
plasma equations were also described. Results computed with them showed how
wavelet denoising accelerates the convergence of classical PIC schemes and how
a particle-in wavelet (PIW) scheme solves the Vlasov-Poisson equation directly
and efficiently in wavelet space. Concerning the fluid equations, in particular
the resistive non-ideal MHD equations, the coherent vorticity and current sheet
simulation (CVCS) methods were explained and examples illustrated the prop-
erties and insights the wavelet-based approach offers in the context of MHD and
plasma turbulence.
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