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The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical
simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together
with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability
density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on
the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values
of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it
is observed that flatness yields values close to three, corresponding to Gaussian-like behavior, and for moderate
and vanishing rotation the flatness increases. Furthermore, the Lagrangian and Eulerian accelerations are shown
to be strongly correlated for strong rotation due to a reduced nonlinear term in this case. A wavelet-based
scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian accelerations increases as scale
decreases, which provides evidence for intermittent behavior. For strong rotation the Eulerian acceleration is even
more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation.
Moreover, the dynamics of a passive scalar with gradient production in the direction of the mean velocity gradient
is analyzed and the influence of the rotation to shear ratio is studied. Concerning the concentration of a passive
scalar spread by the flow, the pdf of its Eulerian time rate of change presents higher extreme values than those
of its Lagrangian time rate of change. This suggests that the Eulerian time rate of change of scalar concentration
is mainly due to advection, while its Lagrangian counterpart is only due to gradient production and viscous
dissipation.

DOI: 10.1103/PhysRevE.93.013113

I. INTRODUCTION

The statistical description of the fluid particle acceleration
is of fundamental importance for theoretical investigations
of turbulence (e.g., Tsinober [1]) and for the Lagrangian
modeling of particle dispersion (e.g., Pope [2]). Applications
of these models include transport and mixing in geophysical
flows, such as the spreading of nutrients or pollutants in the
atmosphere and oceans. An initial prediction of the statistics
of the fluid particle acceleration in turbulent flows can be
found in the works of Heisenberg [3] and Yaglom [4]. Since
then, both extensive experimental investigations, aided by the
development of advanced diagnostics (e.g., La Porta et al. [5]),
as well as numerous numerical simulations, enabled by the
increasing power of supercomputers, have been performed.
For reviews on Lagrangian properties of turbulent flows we
refer the reader to Toschi and Bodenschatz [6] and Yeung [7].

The Lagrangian acceleration du/dt consists of the two
Eulerian terms ∂u/∂t and u · ∇u, where u denotes the velocity
vector in an Eulerian reference frame. By definition, the
Lagrangian acceleration is invariant with respect to Galilean
transformations. In contrast, the local acceleration ∂u/∂t , also
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called Eulerian acceleration, depends on the reference frame.
The convective acceleration u · ∇u contains effects due to
spatial changes of the velocity vector, and it represents the
nonlinearity of the Navier-Stokes equation.

Considering the incompressible Navier-Stokes equations,
the Lagrangian acceleration can be further split into an
irrotational part, corresponding to the pressure-gradient term
−1/ρ0∇p, and a solenoidal part, corresponding to the viscous
dissipation term ν∇2u. For flows subjected to external body
and surface forces, such as the Coriolis force or shear forces,
additional terms have to be included, and such terms may alter
the influence of the pressure-gradient term.

Most studies of acceleration statistics almost exclusively
focus on isotropic turbulence (Toschi and Bodenschatz [6];
Yeung [7]). It was found that the Lagrangian acceleration
exhibits a strong intermittency, which is reflected in the
stretched-exponential tails of the probability density functions
(pdfs). For example in La Porta et al. [5] it was shown
that particles undergo accelerations of up to 1500 times the
acceleration of gravity. Numerical simulations of isotropic
turbulence confirmed these results (Toschi and Bodenschatz
[6]). In addition, Bos et al. [8] analyzed and scaled the relative
importance of the pressure-gradient and viscous term.

Kamps et al. [9] established a formal connection between
Lagrangian and Eulerian velocity increment pdfs and gave
an exact relation for the transition pdfs assuming stationarity,
homogeneity, and isotropy of the flow. The limit of small
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increments yields thus the acceleration pdfs. The two transition
pdfs correspond to conditional pdfs describing the transition
from Eulerian pdfs to mixed Euler-Lagrangian pdfs and then
to Lagrangian pdfs. In Homann et al. [10] reconstruction of
Lagrangian statistics from Eulerian data using numerically
calculated transition pdfs has been presented for isotropic
turbulence. Modeling of the two transition pdfs has also been
proposed, and good agreement with the DNS data was found.

For an incompressible Gaussian random velocity field,
Holzer and Siggia [11] have shown that the pressure pdf is
negatively skewed and that it has exponential tails. From that
purely kinematic result it can be deduced that the pressure-
gradient term exhibits a Laplace distribution with flatness
equal to six, as confirmed in Yoshimatsu et al. [12]. Hence,
exponential tails of the Lagrangian acceleration should not
be interpreted as a signature of intermittency, in contrast to
stretched exponential tails. This has been discussed in Bos
et al. [13] in the context of drift-wave turbulence.

Scale-dependent statistics for turbulent flows using the
orthogonal wavelet decomposition have been introduced in
Meneveau [14], Farge [15], and more recently Bos et al.
[16] and have been applied to study acceleration statistics
for isotropic turbulence in Yoshimatsu et al. [12]. There it
was shown that intermittency increases at smaller scales. The
influence of nonslip walls on the Lagrangian acceleration has
been investigated in Kadoch et al. [17]. It was found that the
boundary layer which generates vorticity leads to even stronger
intermittency of the acceleration compared to homogeneous
flows.

The aim of the present work is to study acceleration
statistics in turbulent shear flow. We consider three types of
homogeneous shear flows: without rotation, with moderate
rotation, and with strong rotation, where the direction of
system rotation is either parallel or antiparallel to the dominant
vorticity component induced by the mean shear. The direct
numerical simulation data discussed in Jacobitz et al. [18,19]
are analyzed to study the statistics of Lagrangian and Eulerian
accelerations with a particular focus on the influence of shear
and rotation as well as on the scale dependence of the statistics.
In addition, the variances of the Lagrangian and Eulerian
accelerations are compared to estimates obtained by scaling
arguments applied to the terms in the equations of motion.

Moreover, the time rate of change of passive scalar
fluctuations is studied from Lagrangian and Eulerian points of
view. The passive scalar can represent a variety of quantities,
including pollutants or nutrients transported in geophysical
flows. An additional aim of the present study is to analyze
the influence of rotation on the structure and dynamics of a
passive scalar. A similar flow configuration has been studied
by Brethouwer [20] using a much higher shear rate in order
to enable a comparison with boundary layer turbulence.
Brethouwer observed a strong dependence of the scalar flux on
the rotation to shear ratio and an agreement with predictions
from linear theory in the high shear range.

The outline of the paper is the following. In Sec. II, the
equations of motion are recalled, the numerical simulations are
described, and estimates for the variances of the Lagrangian
and Eulerian accelerations are obtained. The results of the
acceleration statistics, including a detailed assessment of
the different contributions and a scale dependent analysis,

are presented in Sec. III, together with some passive scalar
statistics. Finally, in Sec. IV conclusions are drawn. Appendix
A summarizes the acceleration statistics for an isotropic
turbulence field.

II. MATHEMATICAL PRELIMINARIES AND
PHENOMENOLOGICAL ESTIMATES

In this section, the equations of motion are introduced,
the numerical approach is discussed, and an estimation of
the variances of the Lagrangian and Eulerian accelerations is
provided.

A. Equations of motion

This study is based on existing direct numerical simulation
results of sheared and rotating homogeneous turbulence
[18,19]. Properties of homogeneous turbulence with shear and
rotation are discussed in Ref. [21], and a general discussion
of homogeneous turbulence can be found in the monograph of
Sagaut and Cambon [22].

A decomposition of the total velocity into a constant mean
part U = (U,V,W ) with

U = Sy, V = W = 0 (1)

leads to the following form of the incompressible Navier-
Stokes equations for the fluctuating velocity u = (u,v,w):

∇ · u = 0, (2)

∂u
∂t

+ u · ∇u + Sy
∂u
∂x

+ Svex + 2� × u

= − 1

ρ0
∇p + ν∇2u. (3)

Here S = ∂U/∂y is the constant shear rate, f = 2� the
constant Coriolis parameter for system rotation about the
z-coordinate axis, ρ0 the density, ν the kinematic viscosity,
and ex the unit vector in the x direction.

Similarly, a decomposition of a passive scalar into a
constant mean part C with

C = Scy (4)

leads to the following advection-diffusion equation for the
fluctuating scalar component c:

∂c

∂t
+ u · ∇c + Sy

∂c

∂x
+ Scv = α∇2c. (5)

In this equation, Sc = ∂C/∂y is the constant scalar gradient
in the y direction and α is the molecular diffusion rate of the
scalar. A schematic of the mean flow is shown in Fig. 1.

The above equations are transformed into a frame of
reference moving with the y-dependent mean velocity by
applying the Rogallo transform [23], which is also called
shearing box approximation in the astrophysics community.
In the Rogallo frame, the equations of motion for fluctuating
velocity and scalar read:

∇ · u − St
∂v

∂x
= 0, (6)
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FIG. 1. Schematic of the mean flow with mean velocity U , mean
scalar C, and system rotation �. In this example the system rotation
is antiparallel to the vorticity from the mean shear.

∂u
∂t

+ u · ∇u − Stw
∂u
∂x

+ Svex + 2� × u

= − 1

ρ0

(
∇p − St

∂p

∂x
ey

)

+ ν

[
∇2 − 2St

∂2

∂x∂y
+ (St)2 ∂2

∂2x

]
u, (7)

∂c

∂t
+ u · ∇c − Stv

∂c

∂x
+ Scv

= α

[
∇2 − 2St

∂2

∂x∂y
+ (St)2 ∂2

∂2x

]
c. (8)

In addition, a regridding approach is used: when the
simulations reach the nondimensional time (= shear rate ×
time) St = 0.5, the grid is remapped to a nondimensional time
St = −0.5. The regridding is accomplished using the periodic
properties of the turbulent fields, and it does not require any
interpolation at the chosen nondimensional time. Hence, the
local time St in the Rogallo frame with regridding varies
repeatedly from St = −0.5 to 0.5 and additional regridding
procedures are applied when St = 0.5 is repeatedly reached.
The Rogallo frame is not distorted for St = 0, corresponding
to integer values of the nondimensional time, and the flow
is analyzed at those integer times for simplicity. Jacobitz
et al. [24] provide a more detailed explanation of the Rogallo
transform and the regridding approach.

B. Numerical simulations

In a flow with uniform mean gradients, the use of the
Rogallo reference frame enables the application of periodic
boundary conditions for the fluctuating components of velocity
and for the passive scalar. A spectral collocation method is used
for the spatial discretization. The solution is advanced in time
with a fourth-order Runge-Kutta scheme. The simulations are
performed on a parallel computer using 256 × 256 × 256 grid
points. More details about the simulations used in this study
can be found in Jacobitz et al. [18,19].

The results from five simulations of sheared and rotating
turbulence with rotation to shear ratios of f/S = −5, −0.5,
0, +0.5, and +5 are considered. Negative values of f/S

correspond to a parallel configuration and positive values

correspond to an antiparallel configuration between the system
rotation and the mean flow vorticity. Isotropic turbulence fields
are used to initialize all simulations and the initial values of the
Taylor microscale Reynolds number Reλ = qλ/ν = 45 and
the shear number SK/ε = 2 are fixed, where K denotes the
turbulent kinetic energy, q = √

2K the velocity magnitude,
λ = 5νq2/ε the Taylor microscale, and ε the dissipation rate.

The initial value of the Taylor microscale Reynolds number
is chosen to fully resolve all dynamically important scales
throughout the simulations. Its values depend on the eventual
evolution of the turbulence and reach values as high as Reλ =
120. The shear number varies only weakly with f/S, and it
eventually assumes a value of about SK/ε = 6. In comparison
to Brethouwer [20], who uses a high shear rate to enable a
comparison to boundary layer turbulence, the shear rate in
the present study is moderate and results in a fully nonlinear
evolution of the base shear flow without rotation. Hence, the
impact of a variation of the rotation to shear ratio f/S on the
flow dynamics can be studied. The initial energy spectrum has
a peak at wave number k = 10, which allows for both large-
and small-scale growth as the simulations advance in time.
The simulations are initialized without scalar fluctuations, and
the Prandtl number is Pr = ν/α = 0.7.

The eventual evolution of the flow, growth or decay,
depends on the value of the rotation to shear ratio f/S. The
nonrotating case with f/S = 0 shows eventual exponential
growth of the kinetic energy K . For moderate rotation to
shear ratios, the antiparallel case with f/S = +0.5 leads to
a strong growth of the turbulent kinetic energy, while the
parallel case with f/S = −0.5 results in a decay of K . For
strong rotation to shear ratios, however, both the antiparallel
case with f/S = +5 and the parallel case with f/S = −5 lead
to a strong decay of K due to the importance and dominance
of linear effects.

C. Lagrangian and Eulerian accelerations

In this section, the Lagrangian and Eulerian accelerations
are introduced, and estimates for their variances are obtained
for isotropic turbulence as well as sheared and rotating
turbulence. Finally, the Lagrangian and Eulerian time rates
of change for a scalar are introduced as well.

1. Expressions for the accelerations

The Lagrangian and Eulerian accelerations are defined as

aL = ∂u
∂t

+ u · ∇u (9)

and

aE = ∂u
∂t

, (10)

respectively. The Lagrangian and Eulerian accelerations are
computed as a volume average at a fixed time. The volume
average is an appropriate choice for homogeneous flow and
effects of shear and rotation are considered to be external
forces.

The Navier-Stokes equation can be written as

∂u
∂t

= −N − � − �, (11)
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and at integer nondimensional time St the right-hand-side
terms take the form

N = u · ∇u, � = ∇(p/ρ0),
(12)

� = Svex + 2� × u − ν∇2u.

Here N is the nonlinear term, � the pressure-gradient term,
and � the linear term with contributions from shear, rotation,
and viscous effects.

Taking the divergence of the Navier-Stokes equation (11),
a Poisson equation for the pressure is obtained,

∇2p/ρ0 = −∇ · (N + �), (13)

and we prove the identity

〈‖N + � + �‖2〉 = 〈‖N + �‖2〉 − 〈‖�‖2〉 (14)

in Appendix B. Here ‖ · ‖ denotes the magnitude of a vector
and 〈·〉 the volume average for a homogeneous field.

Hence, the variance of the Eulerian acceleration is given by

a2
E ≡

〈∥∥∥∥∂u
∂t

∥∥∥∥2〉
= 〈‖N + � + �‖2〉 (15)

= 〈‖N + �‖2〉 − 〈‖�‖2〉, (16)

and the variance of the Lagrangian acceleration is obtained as

a2
L ≡

〈∥∥∥∥∂u
∂t

+ u · ∇u

∥∥∥∥2〉
= 〈‖� + �‖2〉. (17)

The goal now is to give an estimate of the different con-
tributions to the acceleration as a function of dimensionless
quantities.

2. Isotropic turbulence

For isotropic turbulence the shear and rotation terms are
zero and the expression for the linear term becomes � =
−ν∇2u. Taking the divergence of the Navier-Stokes equations,
we obtain a Poisson equation for the pressure

∇2p/ρ0 = −∇ · N. (18)

The pressure is thus determined by the divergence of the
nonlinear term alone. Since this term is a quadratic quantity,
even in the case of a Gaussian velocity field, the pressure will
be non-Gaussian due to this nonlinearity [11].

We now introduce the notation

N2 = 〈‖N‖2〉 (19)

for the variance of the nonlinear term and

	2
NL = 〈‖�‖2〉Isotropic (20)

for the variance of the pressure gradient. The subscript NL

indicates the fact that in isotropic turbulence the pressure is
entirely determined by the nonlinear interaction term.

For turbulent flows, the viscous contribution to the accelera-
tion is small [25], and it will be neglected in the following. The
expressions for the variance of the Eulerian and Lagrangian
acceleration become then, respectively,

a2
E ≈ N2 − 	2

NL, (21)

a2
L ≈ 	2

NL. (22)

In isotropic turbulence at high Reynolds number, the magni-
tude of the nonlinear term can be estimated using a Tennekes
sweeping estimate [8,26] as

N2 ∼ U 2ε/ν ∼ U 4

L2
RL, (23)

where

RL = UL/ν (24)

is an integral-scale Reynolds number. An appropriate choice
for the velocity scale is the magnitude of the fluctuating
velocity U = q and the integral scale can be estimated as
L ∼ U 3/ε. This scaling follows from the assumption that the
velocity gradients, measured by ε/ν, become independent of
the large-scale velocities, measured by U . This approximation
seems to hold already at relatively low Reynolds numbers [8].

The pressure-gradient approximately satisfies Kolmogorov
scaling [27] leading to

	2
NL ∼ ε3/2/ν1/2 ∼ U 4

L2
R

1/2
L , (25)

where the second approximation again uses L ∼ U 3/ε. There-
fore, for isotropic turbulence at large Reynolds numbers, the
variance of the Eulerian acceleration is large compared to the
variance of the Lagrangian acceleration:

a2
E 
 a2

L. (26)

3. Rotating shear flow

We will now determine the order of magnitude of the
linear terms in sheared and rotating turbulence. To obtain
an estimate, we will consider the turbulence to be isotropic.
This approximation is thus valid only at the beginning of
the simulations. At later times deviations from the following
results are expected as the isotropy assumption is a crucial
simplification. The validity of this assumption can only be
assessed a posteriori. However, strong assumptions are needed
if anything sensible is to be derived from the equations without
introducing too complicated technical machinery. Ignoring the
viscous contribution, we find from (12) that


2 ≡ 〈‖�‖2〉 = 1

3
S2

(
1 − 2

f

S
+ 2

f 2

S2

)
〈‖u‖2〉. (27)

In the case of rotating shear flow, the Poisson equation now
contains the linear contribution as in Eq. (13). In order to
simplify the considerations, we will solve the equation

∇2p/ρ0 = −∇ · � (28)

to obtain an estimate for the strength of the linear contribution
to the pressure gradient �L. This amounts to a rapid distortion
approximation [28] valid in the limit of strong linear effects.
This is a straightforward but rather tedious computation, which
we carried out in Fourier space. We find that

	2
L ≡ 〈‖�L‖2〉 = 2

15
S2

(
1 − 5

2

f

S
+ 5

2

f 2

S2

)
〈‖u‖2〉. (29)
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We now consider order of magnitude estimates in the limit
of strong and weak linear effects, using the rotation number

f

S
(30)

and the shear number

SK

ε
, (31)

where K is the kinetic energy.
In the limit of strong rotation we find

	2
L ∼ U 4

L2

(
f

S

)2

, 
2 ∼ U 4

L2

(
f

S

)2

. (32)

Equivalently, for strong shear, we obtain

	2
L ∼ U 4

L2

(
SK

ε

)2

, 
2 ∼ U 4

L2

(
SK

ε

)2

. (33)

If the linear effects are weak, the dominant terms are

	2
NL ∼ U 4

L2
R

1/2
L , N2 ∼ U 4

L2
RL. (34)

For pure shear flow to dominate the Lagrangian acceleration,
we need thus that the linear pressure contribution becomes
stronger than the nonlinear contribution, implying(

SK

ε

)2


 R
1/2
L . (35)

For the linear effects to dominate the Eulerian acceleration,
we need the stronger condition(

SK

ε

)2


 RL, (36)

since the norm of the nonlinear term is determined by the
sweeping of the large scales. Similar relations, replacing SK/ε

by f/S will give the conditions for rotation to be the dominant
contribution to the Lagrangian acceleration as(

f

S

)2


 R
1/2
L (37)

and for the Eulerian acceleration as(
f

S

)2


 RL. (38)

4. Scalar rate of change

Similarly to the accelerations, the time rate of change of
the scalar fluctuations can be considered from Lagrangian and
Eulerian point of views:

sL = ∂c

∂t
+ u · ∇c (39)

and

sE = ∂c

∂t
, (40)

respectively.
The scalar equation can be written as

∂c

∂t
= −Nc − 
c, (41)

where the term Nc for the advection of scalar concentration
and the term 
c for the diffusion of scalar concentration take
the following forms for integer nondimensional time St:

Nc = u · ∇c, 
c = Scv − α∇2c. (42)

We will now focus on the scaling of N2
c and 
2

c . When
advecting a passive scalar in isotropic turbulence, the term N2

c

can be estimated by a sweeping estimate [29] such as

N2
c ∼ U 2εc/α, (43)

where εc is the scalar dissipation rate. In the presence of a
uniform scalar gradient, the production term will be of order
of magnitude (assuming isotropy 〈v2〉 = U 2/3)

O(Scv) ∼ USc. (44)

Estimating that the dissipation of scalar fluctuations is in
approximate balance with the production term, we have
εc ∼ S2

c LU . We therefore obtain the following estimates for
the advection and linear terms of the scalar equation:

N2
c ∼ (USc)2 UL

α
(45)
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FIG. 2. Pdfs of Lagrangian (left) and Eulerian (right) accelerations.
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FIG. 3. Pdfs normalized with their corresponding standard deviation of Lagrangian (left) and Eulerian (right) accelerations.

and


2
c ∼ (USc)2. (46)

The mean-square advection term (and Eulerian rate of change)
is hence dominant over the linear term (and Lagrangian rate
of change) at high Péclet number Pe, which is the product
of Reynolds number and Prandtl number Pr = Pe/Re. Since
rotation and shear do not appear explicitly in the scalar
evolution equation, we cannot provide any further prediction
considering those equations only.

III. RESULTS

In this section, the statistical properties of Lagrangian and
Eulerian accelerations are discussed, the contributions to those
accelerations from the different terms of the Navier-Stokes
equation to the accelerations are presented, the scale depen-
dence of the accelerations is considered, and the Lagrangian
and Eulerian time rates of change of passive scalar fluctuations
are investigated. The results are presented at nondimensional
time St = 5. At that nondimensional time, the effects of shear
are developed and all cases, including those with strongly
growing turbulent kinetic energy, are well resolved at the
largest and smallest scales of the motion.

A. Acceleration statistics

The pdfs (one-point pdfs estimated using histograms with
128 bins and averaging over the three components) of
Lagrangian and Eulerian accelerations for sheared and rotating
turbulence at nondimensional time St = 5 are shown in Fig. 2.
A strong and similar dependence on the rotation to shear
ratio f/S is obtained for both accelerations. Figure 3 presents
both acceleration pdfs normalized with their correspond-
ing standard deviation. Two families of pdfs are obtained:
Gaussian-like behavior for strong rotation with f/S = ±5 and
stretched-exponential-like behavior for the remaining cases.

Figure 4 (left) compares the variances of the Lagrangian
and Eulerian accelerations. The variance of the Eulerian
acceleration aE is always larger than the variance of the
Lagrangian acceleration aL at a given value of f/S in
agreement with results for isotropic turbulence (see Appendix
A). Also, the extreme values of the Eulerian acceleration are
above those of the Lagrangian acceleration for all cases in
Fig. 2. The fluctuating pressure gradients thus seem to be
less important in rotating and sheared turbulence as compared
to isotropic turbulence. The difference is most pronounced
for the case with f/S = +0.5, while the variance values are
almost equal for the strongly rotating cases with f/S = ±5.
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FIG. 5. Joint pdfs of Lagrangian and Eulerian accelerations for f/S = +0.5 (left) and f/S = +5 (right).

The variances of both accelerations are smallest for the case
with f/S = −0.5. This is due to the pressure-gradient term to
be discussed in the next section.

Contrary to the results for isotropic turbulence reported
by Ishihara et al. [30] (see also Appendix A), the Eulerian
acceleration pdfs consistently exhibit heavier tails than their
Lagrangian counterparts at the Reynolds number of this study.
This behavior is also reflected in the flatness, which is defined
as the ratio of the fourth order moment divided by the square
of the second order moment, which is shown in Fig. 4 (right).
The flatness can also be used to quantify the influence of
the rotation to shear ratio f/S on the intermittency of the
turbulent flow. For strong rotation with f/S = ±5, we find
flatness values close to three, which confirms the Gaussian-like
behavior of the acceleration pdfs. For the remaining cases
larger values are observed for the flatness, with a maximum
at f/S = 0 for the Eulerian acceleration, and f/S = +0.5 for
the Lagrangian acceleration. For positive values of f/S, the
flatness of the Eulerian acceleration is larger than the flatness
of the Lagrangian acceleration. The difference between the two
accelerations decreases with increasing f/S, and for f/S =
+5 we find a value close to three.

To check the correlation between Lagrangian and Eulerian
accelerations, we show in Fig. 5 the joint pdfs for a strongly
growing case with f/S = +0.5 and a decaying case with
f/S = +5. The results indicate that the case with strong
rotation with f/S = +5 exhibits indeed a strong correlation.
To further quantify the level of correlation, the Pearson
product-moment correlation coefficient r ([[31], p. 162])
is given in Table I for a computation based on the three

TABLE I. Pearson product-moment correlation coefficient r

for the Lagrangian and Eulerian accelerations at nondimensional
time St = 5. The correlation coefficient is determined for all three
components as well as the magnitude of the accelerations.

f/S −5 −0.5 0 +0.5 +5

r (component) 0.9620 0.2825 0.0926 0.0826 0.9507
r (magnitude) 0.9186 0.3267 0.3175 0.2822 0.9010

acceleration components as well as for a computation based
on the acceleration magnitudes.

For a computation of the Pearson product-moment correla-
tion coefficient r based on the three components of Lagrangian
and Eulerian accelerations, small values are found for the
cases with growing turbulence with f/S = 0 and f/S = +0.5,
which indicates a lack of correlation between the accelerations.
A moderate value is obtained for the slightly decaying case
with f/S = −0.5, and a large value is observed for the
strongly rotating cases with f/S = ±5, indicating a strong
correlation for the Lagrangian and Eulerian accelerations. This
large correlation coefficient is due to a reduced nonlinear term
in the cases with strong rotation. For a computation of the
Pearson product-moment correlation coefficient r based on
the magnitudes of the Lagrangian and Eulerian accelerations,
a moderate level of correlation is observed for the cases with
growing turbulence with f/S = 0 and f/S = +0.5.

The anisotropy of the Lagrangian and Eulerian accelera-
tions is considered in Fig. 6 and Table II. The normalized
Lagrangian and Eulerian acceleration pdfs do not differ sig-
nificantly in shape between the vector fields and the different
vector components as shown in Fig. 6. Hence, the anisotropy
of the accelerations is described by their variances, which are
provided in Table II. We observe that the anisotropy is most
pronounced for the strongly rotating cases with f/S = ±5.
The variance of the z components is reduced by almost a
factor of two.

B. Contributions to the acceleration statistics

To clarify our understanding of the Lagrangian and Eulerian
acceleration pdfs, we now consider the pdfs of the velocity and
of all terms in the Navier-Stokes equation, as shown in Fig. 7.
To quantify the relative importance and shapes of the pdfs
of the terms in the Navier-Stokes equation, the variance and
flatness values are presented in Tables III and IV, respectively.

As expected, the pdf of the velocity field is quasi-Gaussian,
as shown in Fig. 7 (top, left). By definition, the variance of
the velocity field is twice the turbulent kinetic energy. Hence,
the variance of the velocity pdfs changes according to the
evolution of the turbulent kinetic energy and the largest value
is found for the case with the strongest growth for f/S = +0.5.
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FIG. 6. Normalized pdfs of Lagrangian (top) and Eulerian (bottom) accelerations for f/S = +0.5 (left) and f/S = +5 (right).

Since the shape of the velocity pdfs remains quasi-Gaussian,
the flatness values remain close to three.

Figure 7 (top, right) shows that the pdfs of the viscous term
have a stretched exponential behavior. The variance of the
viscous term remains small compared to those of other terms
in the Navier-Stokes equations and the flatness assumes values
between five and seven.

The pdfs of the shear term in Fig. 7 (center, left) and of
the rotation term in Fig. 7 (center, right) are quasi-Gaussian,
because the corresponding terms in the Navier-Stokes equation

TABLE II. Ratio of the component variance to the total variance
of the vector field to quantify the anisotropy of Lagrangian and
Eulerian acceleration components at nondimensional time St = 5.
A value of 1/3 corresponds to isotropy.

f/S −5 −0.5 0 +0.5 +5

a2
Lx/a

2
L 0.434 0.335 0.317 0.263 0.426

a2
Ly/a

2
L 0.345 0.297 0.300 0.359 0.395

a2
Lz/a

2
L 0.221 0.368 0.383 0.378 0.180

a2
Ex/a

2
E 0.436 0.389 0.346 0.273 0.426

a2
Ey/a

2
E 0.330 0.226 0.258 0.278 0.371

a2
Ez/a

2
E 0.235 0.385 0.397 0.449 0.203

are proportional to velocity. Note that the shear term is only
nonzero for the x component of the Navier-Stokes equation,
while the rotation term only contributes to the x and y

components. Hence, one or two of the vector components
are zero, and those vanishing components have been excluded
from the computation of the pdfs and flatness to avoid biasing
of the results. The variance, however, is computed from all
three components.

The variance of the shear term follows the variance of the
velocity, because the shear rate is constant in the simulations.
For the cases with growing turbulent kinetic energy with
f/S = 0 and f/S = +0.5, the shear term is stronger than
the rotation term. For the cases with strong rotation with
f/S = ±5, the importance of the shear term is reduced, while
the variance of the rotation term is increased, confirming the
dominance of rotation over shear. The flatness of the shear
and rotation terms are always close to three as they follow
quasi-Gaussian distributions.

The pdfs of the pressure-gradient term in Fig. 7 (bottom,
left) and of the nonlinear term in Fig. 7 (bottom, right)
exhibit both stretched-exponential behavior. Only the strongly
rotating cases with f/S = ±5 show an approximately
Gaussian shape for the pressure-gradient pdfs. Note that the
source term of the Poisson equation contains contributions of
shear and rotation. Due to the dominance of the rotation term
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FIG. 7. Pdfs of velocity (top, left), viscous term (top, right), shear term (center, left), rotation term (center, right), pressure-gradient term
(bottom, left), and nonlinear term (bottom, right).

for f/S = ±5, flatness values smaller than six of the pressure
gradient are obtained.

For the nonlinear term, we again find that the variance
is strongest for the growing case with f/S = +0.5 and, as
expected, the smallest for f/S = ±5 because linear effects
dominate, as discussed in Ref. [21]. Consequently, for these
two cases, the variances of the Lagrangian and Eulerian
accelerations are almost identical due to the small variance
observed for the nonlinear term.

However, the accelerations are different for the two strongly
rotating cases: The parallel configuration with f/S = −5
exhibits a much larger variance value as compared to the
antiparallel case with f/S = +5. This is due to a stronger
rotation term for f/S = −5, where the system vorticity and
shear vorticity are parallel and thus add. Note that the Coriolis
force is a fictitious (or pseudo-) force without an effect on
the energy, which is reflected in the almost equal variances of
the velocity field for the two cases. The large rotation term
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TABLE III. Variance of velocity, viscous term, shear term,
rotation term, pressure-gradient term, nonlinear term, Lagrangian
acceleration, and Eulerian acceleration, for five values of the rotation
to shear ratio f/S.

f/S

Term −5 −0.5 0 +0.5 +5

u 0.17 0.32 0.77 1.19 0.15
ν∇2u 0.16 0.66 1.46 1.73 0.15
Svex 1.41 1.72 4.65 14.05 1.41
2� × u 90.62 1.57 – 6.46 77.30
∇p/ρ0 79.89 11.60 36.34 73.13 35.34
u · ∇u 3.05 14.68 78.27 174.24 2.56
aL 39.05 8.98 34.50 72.15 25.09
aE 40.84 11.43 51.58 117.28 26.49

2 (DNS estimate) 92.19 3.95 6.11 22.24 78.86

2 [Eq. (28)] 108.47 8.37 8.05 12.45 64.33
	2

L [Eq. (31)] 54.06 3.85 3.22 1.86 32.01

is also responsible for the large pressure-gradient term and
the divergence of the Coriolis force is a source term on the
right-hand side of the Poisson equation for pressure.

Finally, the Lagrangian and Eulerian accelerations have
flatness values close to three due to the dominance of the
rotation term for f/S = ±5. This result differs from the finding

TABLE IV. Flatness of velocity, viscous term, shear term,
rotation term, pressure-gradient term, nonlinear term, Lagrangian
acceleration, and Eulerian acceleration, for five values of the rotation
to shear ratio f/S.

f/S

Term −5 −0.5 0 +0.5 +5

u 3.14 3.39 3.36 2.93 3.02
ν∇2u 4.78 6.50 7.16 7.35 5.01
Svex 3.04 3.15 3.16 2.90 2.87
2� × u 3.19 3.65 – 2.92 2.97
∇p/ρ0 3.74 6.03 7.22 7.46 4.37
u · ∇u 8.65 9.61 9.71 9.36 8.27
aL 3.27 6.34 7.15 7.37 3.24
aE 3.36 6.38 8.86 8.55 3.41

of a value of six characteristic for a Laplace distribution. Using
a Gaussian velocity field as a model for isotropic turbulence,
Holzer and Siggia [11] have shown that the nonlinear quadratic
term on the right-hand side of the Poisson equation for pressure
results in exponential tails of the pressure and its gradient.

A comparison with the accelerations in Fig. 2 illustrates
that the Lagrangian acceleration is mostly determined by the
contribution of the pressure-gradient term, while the Eulerian

FIG. 8. Isosurfaces of vorticity magnitude at |ω| = 2σ (left) and |ω| = 4σ (right) colored with the magnitude of Lagrangian acceleration
(top) and Eulerian acceleration (bottom) for f/S = +0.5 at St = 5. The view is onto the plane of shear with the x direction to the right and the
y direction up.
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FIG. 9. Scale-dependent pdfs (j = 3 corresponds to large scale and j = 7 to the smallest scale) of Lagrangian (top) and Eulerian (bottom)
acceleration for f/S = +0.5 (left) and f/S = +5 (right) together with the pdf of the total fields.

acceleration is mostly determined by the nonlinear term
(except for the strongly rotating cases with f/S = ±5).

In the simulations the shear-number varies from two to
about six. For these moderate values, we cannot expect the
inequalities (35) and (36) to hold, so that the variance of the
acceleration is not directly dominated by the influence of shear.
Indirectly, however, this is the case, since the shear acts as an
energy input to the system. Indeed, we see in Table III that the
shear contribution to the acceleration is never the dominant
term for all simulations. The rotation rate is considerably
stronger for the cases f/S = ±5, and its effect is therefore
dominant in at least the Lagrangian acceleration and perhaps
also in the Eulerian acceleration.

The shape of the pdfs of the Eulerian and Lagrangian
accelerations is consistent with the scaling arguments. For
the cases in which the dynamics are dominated by linear
effects, for the cases f/S = ±5, the pdfs become Gaussian,
reflecting the Gaussian character of the velocity. Also, the
predicted variance of the linear terms 
2 follows the trend of
the DNS estimate, which is computed as an upper bound as the
sum of the variances of the viscous, shear, and rotation terms
(Table III).

The scaling behavior of the nonlinear term, compared to
the nonlinear pressure-gradient term is not verifiable, since
the pressure in the simulations contains both linear and

nonlinear contributions. However, for the case with f/S = 0,
where linear effects are weak, it is clearly observed that the
nonlinear term is stronger than the pressure term. Hence,
the predicted variance of the pressure-gradient term based
on linear contributions only, 	2

L, compares well with the
actual variance of the pressure-gradient term for the cases with
f/S = ±5 (Table III). This comparison fails for the remaining
cases in which nonlinear effects dominate the dynamics.

We also refer to Appendix A, where the acceleration pdfs
and the contributions of the different terms in the Navier-
Stokes equation have been analyzed for isotropic turbulence.

C. Scale-dependent analysis

In order to motivate a scale analysis of the acceleration
statistics, Fig. 8 shows isovorticity surfaces at twice (left)
and four times (right) the vorticity variance, colored with
Lagrangian (top) and Eulerian (bottom) accelerations for the
most strongly growing case with f/S = +0.5 at nondimen-
sional time St = 5. We observe inclined vortical structures.
A comprehensive discussion of the inclination angle can be
found in Jacobitz et al. [18]. Doubling the isovalues and hence
considering stronger and larger vortical structures, we see
larger values of both Lagrangian and Eulerian accelerations.
Furthermore, locations with strong Lagrangian and Eulerian
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FIG. 10. Normalized scale-dependent pdfs of Lagrangian (top) and Eulerian (bottom) acceleration for f/S = +0.5 (left) and f/S = +5
(right).

accelerations often coincide, in agreement with the joint pdfs
shown in Fig. 5 and the Pearson product-moment correlation
coefficient given in Table I.

The scale-dependent Lagrangian or Eulerian accelerations
are obtained by decomposing the vector a = (a1,a2,a3) with
a = aL or aE , respectively, given at resolution N = 23J with
J = 8, into an orthogonal wavelet series using Coiflet 12

wavelets

a(x) =
∑

λ

ãλψλ(x), (47)

where the multi-index λ = (j,i,μ) denotes scale index j

(with 0 � j � J − 1), spatial position i (with 23j values for
each j and μ), and seven spatial directions μ = 1, . . . ,7 of
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FIG. 11. Variance (left) and flatness (right) of Lagrangian and Eulerian acceleration as a function of scale index j .
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TABLE V. Bradshaw number B = f/S(f/s − 1), large-scale
Rossby number RoL = ε/(2f K), and small-scale Rossby number
Ros = ω/f at nondimensional time St = 5.

f/S −5 −0.5 0 +0.5 +5

B 30 0.75 0 −0.25 20
RoL −0.0171 −0.244 ∞ 0.166 0.0169
Ros −0.285 −4.645 ∞ 7.440 0.269

each wavelet ψλ [15]. Orthogonality implies that the wavelet
coefficients are given by ãλ = 〈a,ψλ〉, where 〈·,·〉 denotes
the L2-inner product. The coefficients measure fluctuations
of a at scale 2−j and around position i/2j for each of the 7
possible directions. Fixing j and summing only over i and μ,
the contribution of a at scale j is obtained, and by construction
we have a = ∑

j aj . Note that the scalewise contributions aj

are orthogonal to each other, and hence the total variance of a
is obtained by summing the variances of aj .

For the wavelet-based scale-dependent analysis, two typical
cases, one with moderate rotation to shear ratio f/S = +0.5
and another with strong rotation to shear ratio f/S = +5, are
considered. Figure 9 shows the scale-dependent pdfs of La-
grangian acceleration (top) and Eulerian acceleration (bottom)
for f/S = +0.5 (left) and f/S = +5 (right). For the growing
case with f/S = +0.5, a stretched-exponential-like behavior
is observed for the Lagrangian acceleration at most scales
(excluding the largest scales), while the decaying case with
f/S = +5 shows Gaussian-like behavior at all scales. The
corresponding Eulerian accelerations for cases with f/S =
+0.5 and f/S = +5 show similar features. However, the
tendency for larger extreme values of the Eulerian acceleration
observed for the total pdf persists at all scales.

Figure 10 shows the normalized scale-dependent pdfs of
both Lagrangian (top) and Eulerian (bottom) accelerations
for f/S = +0.5 (left) and f/S = +5 (right). The shapes of
both accelerations vary with scale. With decreasing scale, i.e.,
increasing scale index j , the tails become heavier. Again,

heavier tails are present at all scales for the case f/S = +0.5,
which reflect the stronger intermittency of the flow.

The scale-dependent flatness of both the Lagrangian and
Eulerian accelerations for the two f/S values (see Fig. 11)
shows a strong increase for decreasing scale (increasing
j ), which quantifies that small-scale contributions are more
intermittent than large-scale contributions. For f/S = +0.5,
the flatness of the Lagrangian acceleration is larger than the
flatness of the Eulerian acceleration (for j < 4), similar to
observations for isotropic turbulence in Yoshimatsu et al. [12].
In the case f/S = +5, the values of the Eulerian acceleration
are larger than the values of the Lagrangian acceleration (for
j > 4), which must be due to the fact that the effect of the
nonlinear term becomes weaker for increasing rotation.

The Bradshaw number together with large and small
scale Rossby numbers at the nondimensional time St = 5
are assembled in Table V. The Bradshaw number is often
used as an alternative to the rotation to shear ratio f/S in
the description of rotating turbulence. However, it assumes
the same value for f/S = 0 and f/S = 1, while the flows
evolve quite differently for the two cases [21]. The large-scale
Rossby number RoL remains small for all cases considered
here, except the case without rotation f/S = 0. The small-
scale Rossby number Ros , however, assumes somewhat larger
values for the cases with moderate rotation f/S = ±0.5.

D. Passive scalar structure and dynamics

In order to gain more insight into the structure and dynamics
of turbulence with shear and rotation, the evolution of a passive
scalar with a vertical mean gradient is considered in this
section. In the context of homogeneous turbulent shear flows
with rotation, Brethouwer [20] studied the dynamics of passive
scalars. Here, we focus on the Lagrangian and Eulerian time
rate of change terms in the advection-diffusion equation for a
scalar in analogy to the Lagrangian and Eulerian acceleration
terms in the Navier-Stokes equation.

Figure 12 shows a volume visualization of the fluctuating
scalar for two cases with rotation to shear ratios f/S = +0.5
(left) and f/S = +5 (right) at nondimensional time St = 5. In

FIG. 12. Volume visualization of the fluctuating scalar component for f/S = +0.5 (left) and f/S = +5 (right).
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FIG. 13. Pdfs of Lagrangian (left) and Eulerian (right) time rate of change.

both cases, the view onto the plane of shear (view from the left
onto the xy plane) shows structures inclined to the downstream
x direction in the vertical y direction due to the action of shear.
This effect is similar to previous results for inclined vortex
structures discussed previously [18]. For strong rotation with
f/S = +5, the fluctuating scalar exhibits inclined sheetlike
structures, while moderate rotation with f/S = +0.5 results
in a less organized distribution of the scalar fluctuation in the
spanwise z direction. The sheetlike structure in the presence of
strong rotation implies smaller scalar fluctuations within the
plane defined by the sheetlike structures.

Figure 13 shows the pdfs of the Lagrangian time rate of
change (left) and the Eulerian time rate of change (right).
Again, a strong and similar dependence on the rotation to shear
ratio f/S is obtained for both quantities. Figure 14 presents the
Lagrangian and Eulerian time rate of change pdfs normalized
with their corresponding standard deviation. Two families are
obtained for the Lagrangian time rate of change pdf (left):
Gaussian-like behavior for strong rotation with f/S = ±5,
and stretched-exponential behavior for the remaining cases.
The Eulerian time rate of change pdf (right) generally shows
a stretched-exponential-like behavior with a trend towards
exponential-like shape for the strongly rotating cases. Hence,
the normalized Lagrangian time rate of change pdfs distinguish

ranges for linear and advection-dominated scalar dynamics,
but no such information can easily be obtained from the
Eulerian time rate of change pdfs.

The variances of the Lagrangian and Eulerian time rates
of change differ by about a factor of two for the strongly
rotating cases with f/S = ±5 to an order of magnitude for
the case with f/S = +0.5 (Table VII). In agreement with
the findings for the accelerations, the extreme values of the
Eulerian time rate of change are above those of the Lagrangian
time rate of change. The flatness of the Eulerian time rate of
change varies from the Gaussian value of 3 for f/S = ±5 to a
maximum of about 4.5 for f/S = 0 (Table VIII). The flatness
of the Eulerian time rate of change assumes significantly larger
values ranging from about 6 to almost 16, indicating a higher
level of intermittency in the Eulerian time rate of change as
compared to its Lagrangian counterpart.

To check the correlation between Lagrangian and Eule-
rian time rates of change, we show in Fig. 15 the joint
pdfs for a growing case with f/S = +0.5 and a decaying
case with f/S = +5. Again, the strongly rotating case
with f/S = +5 indicates correlation of the time rates of
change, but the correlation is not as pronounced as that
observed for the corresponding accelerations. These observa-
tions are further quantified with the Pearson product-moment
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FIG. 14. Normalized pdfs of Lagrangian (left) and Eulerian (right) time rate of change.
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FIG. 15. Joint pdfs of the time rate of change of fluctuating density for f/S = +0.5 (left) and f/S = +5 (right).

correlation coefficient r , given in Table VI. The correlation
coefficient for the Lagrangian and Eulerian time rates of
change shows a similar trend as that observed for the
accelerations. Again, the correlation coefficient remains small
for the growing cases with f/S = 0 and f/S = +0.5, which
indicates a lack of correlation between the time rates of change,
and a moderate value is obtained for the case with f/S =
−0.5. The strongly rotating cases with f/S = ±5 exhibit the
largest correlation coefficients, indicating a correlation of the
Lagrangian and Eulerian time rates of change. However, these
correlation coefficients for the time rates of change are smaller
than those observed for the accelerations. Again, a diminished
advection term is the main reason for the increased correlation
between Lagrangian and Eulerian time rates of change in the
case of strong rotation.

In order to further explain the properties of the Lagrangian
and Eulerian time rates of change, pdfs of the fluctuating
scalar and all terms in the advection-diffusion equation for
its evolution are presented in Fig. 16. The variance and
flatness values of the pdfs are provided in Tables VII and
VIII, respectively.

The pdfs of the fluctuating scalar are shown in Fig. 16
(top, left) and they have, as expected, a quasi-Gaussian shape.
The variance of the fluctuating scalar roughly follows that of
the velocity and the strongest scalar fluctuations are observed
for the strongly growing case with f/S = +0.5. The lowest
scalar fluctuations are observed for the strongly rotating cases
with f/S = ±5. Confirming their quasi-Gaussian shapes, the
flatness of the pdfs is close to three for all cases.

As there is no analogon to the pressure-gradient term
present in the advection-diffusion equation for the fluctuating
scalar, the Lagrangian time rate of change is completely
determined by linear effects due to the scalar viscous and

TABLE VI. Pearson product-moment correlation coefficient r for
the Lagrangian and Eulerian time rates of change at nondimensional
time St = 5.

f/S −5 −0.5 0 +0.5 +5

r 0.6388 0.2505 0.0939 0.0759 0.6441

production terms. The pdfs of the scalar viscous term generally
have a stretched-exponential-like shape, but they tend to a
more Gaussian shape for the strongly rotating cases with
f/S = ±5, as shown in Fig. 16 (top, right). The pdfs of the
scalar production term, however, always have a quasi-Gaussian
shape as shown in Fig. 16 (bottom, left). The variances of
the scalar production term are larger than those of the scalar
viscous term for strong rotation with f/S = ±5, but they are
fairly balanced for the remaining cases. The flatness of the
scalar production term remains always close to 3, but it varies
from about 4 at f/S = ±5 to a maximum of about 8.5 at
f/S = +0.5 for the scalar viscous term.

The pdfs of the scalar advection term are presented in
Fig. 16 (bottom, right) and they are characterized by stretched-
exponential shapes. The flatness of the scalar advection term is
comparable to the flatness of the linear terms for the strongly
rotating cases with f/S = ±5 only. For the other cases,
however, the scalar advection term is an order of magnitude
larger than the linear terms. Hence, it dominates the Eulerian
time rate of change.

IV. CONCLUSIONS

In this study, the Lagrangian and Eulerian acceleration
statistics of sheared and rotating homogeneous turbulence are
evaluated from direct numerical simulations for a variety of
rotation to shear ratios f/S. The pdfs of both Lagrangian and
Eulerian accelerations exhibit a pronounced dependence on
f/S and the extreme values of the Eulerian acceleration are
observed to be above those of the Lagrangian acceleration.
The derived estimates of the variance of the linear term and
its contribution to the pressure-gradient agreed reasonably
well with the DNS data although they are based on the
assumption of isotropy. Using the Pearson product-moment
correlation coefficient, the accelerations were found to be
strongly correlated in the cases with strong rotation, due to
a reduced nonlinear term. The anisotropy of rotating and
sheared turbulence is also observed in the components of the
Lagrangian and Eulerian accelerations. In the case of strong
rotation, the variances of the accelerations are reduced in
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FIG. 16. Pdfs of the fluctuating scalar (top, left), scalar viscous term (top, right), scalar production term (bottom, left), and scalar advection
term (bottom, right) as a function of f/S.

the direction of the rotation axis. However, the pdfs of the
acceleration components exhibit similar shapes.

For both accelerations, the flatness yields values close
to three for strong rotation, which indicates a Gaussian-like
behavior. For moderate and vanishing rotations, however,
the flatness of the Eulerian acceleration is larger than that
of the Lagrangian acceleration at the Reynolds number of
this study, contrary to previous and present results obtained
for isotropic turbulence. A wavelet-based scale-dependent
analysis shows that the flatness of both Lagrangian and

TABLE VII. Variance of scalar, scalar viscous term, scalar
production term, scalar advection term, Lagrangian time rate of
change, and Eulerian time rate of change, for five values of the rotation
to shear ratio f/S. All values are multiplied with 106.

f/S

Term −5 −0.5 0 +0.5 +5

c 0.014 0.031 0.065 0.148 0.013
α∇2c 0.019 0.141 0.454 1.036 0.020
Scv 0.135 0.165 0.445 1.343 0.135
u · ∇c 0.194 1.092 7.177 25.864 0.189
sL 0.151 0.289 0.836 2.200 0.152
sE 0.327 1.084 6.789 24.785 0.321

Eulerian accelerations increases as scale decreases and hence
their intermittency increases. For strong rotation, as reflected
in the scale-dependent flatness, the Eulerian acceleration is
more intermittent than the Lagrangian acceleration, while
the opposite result is obtained for moderate rotation. These
observations suggest that linear theory will likely predict the
acceleration statistics correctly in the case of strong rotation,
extending the work by Salhi et al. [21].

TABLE VIII. Flatness of scalar, scalar viscous term, scalar
production term, scalar advection term, Lagrangian time rate of
change, and Eulerian time rate of change, for five values of the rotation
to shear ratio f/S.

f/S

Term −5 −0.5 0 +0.5 +5

c 2.89 2.92 2.95 2.91 2.81
α∇2c 3.82 7.41 8.40 8.46 3.85
Scv 3.05 3.15 3.16 2.90 2.87
u · ∇c 9.35 11.24 15.75 14.81 7.59
sL 3.06 4.00 4.49 3.95 2.93
sE 8.16 11.79 17.72 16.76 6.12
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In addition, the Lagrangian and Eulerian time rates of
change of a fluctuating passive scalar are considered. Phys-
ically, the Lagrangian time rate of change is determined
completely by linear effects, which would ease any modeling
efforts. The advection term dominates over the viscous
and production terms, enhancing the differences between
Lagrangian and Eulerian viewpoints, which are present in
the scalar evolution due to the absence of a term analog to
the pressure-gradient in the Navier-Stokes equation. However,
advection results in more extreme Eulerian time rate of change
values due to the transport of scalar packets past a stationary
Eulerian observer.

Computations at higher resolution, i.e., 5123, increasing
the Reynolds number by about 50%, showed only minor
differences for the Lagrangian and Eulerian acceleration pdfs.
Analyzing the pdfs at later nondimensional times, i.e., St = 10,
also showed that our main findings do not change. Hence we
anticipate that the obtained results are robust and generally
valid for higher Reynolds numbers.

The relation between Eulerian and Lagrangian statistics
remains a challenging and unsolved problem in turbulence that
is strongly related to the spatial and temporal flow structures.
Kamps et al. [9] proposed a formal connection of the pdfs of
velocity increments for statistical stationary homogeneous and
isotropic flows. Extending their work could be a perspective
to bridge both viewpoints for turbulent rotating shear flows.
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APPENDIX A: ACCELERATION STATISTICS
OF ISOTROPIC TURBULENCE

In order to compare the results for acceleration statistics
of sheared and rotating turbulence to those of isotropic

TABLE IX. Variance and flatness of velocity, viscous term,
pressure-gradient term, nonlinear term, Lagrangian acceleration, and
Eulerian acceleration for isotropic turbulence.

Term Variance Flatness

u 0.074 2.87
ν∇2u 0.053 4.06
∇p/ρ0 0.225 6.30
u · ∇u 0.540 6.08
aL 0.278 5.63
aE 0.316 4.91
aL estimate from Eq. (22) 0.225
aE estimate from Eq. (21) 0.315

turbulence, an additional simulation without shear nor rotation
was performed. This isotropic turbulence simulation was
initialized with the same initial condition as the sheared
and rotating turbulence cases. The simulation is analyzed at
approximately five eddy turn over times. Results for variance
and flatness are given in Table IX.

Figure 17 compares the pdfs of Lagrangian and Eulerian
accelerations (left) and their normalized counterparts (right).
While the shapes of the two pdfs are similar, the pdf of aL

shows heavier tails than the pdf of aE . In agreement with
the estimate (26) and our findings for sheared and rotating
turbulence, the variance of aE is larger than the variance of aL.

The heavier tails of the pdf of aL indicate that the
Lagrangian acceleration is characterized by stronger extreme
events as compared to the Eulerian acceleration for isotropic
turbulence. These heavier tails result in a larger flatness of aL

as compared to the flatness of aE . This result differs from our
findings for sheared and rotating turbulence at the Reynolds
number of this study, but it agrees with previous work: Ishihara
et al. [30] found that the flatness of aL is larger than that of aE

in forced isotropic turbulence and that this difference is more
pronounced at higher Reynolds numbers.

The Pearson product-moment correlation coefficient r

based on the three components of Lagrangian and Eulerian
accelerations was found to be 0.0911, which indicates a
lack of correlation between the accelerations in decaying
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FIG. 17. Pdfs of Lagrangian and Eulerian accelerations of isotropic turbulence (left) and their normalized counterparts (right).
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isotropic turbulence. This correlation coefficient is similar
to that observed in the growing cases with f/S = 0 and
f/S = +0.5. Hence, the correlation between the accelerations
observed for strong rotation is indeed due to rotation (and not
due to decaying turbulence). The Pearson product-moment
correlation coefficient based on the magnitudes of the accel-
erations assumes a moderate value of 0.2377 for decaying
isotropic turbulence.

Figure 18 shows the pdfs of the pressure-gradient, nonlinear
term, and viscous term for isotropic turbulence. In agreement
with Holzer and Siggia [11], the pdf of the nonlinear term
shows exponential tails with a corresponding flatness value of
6.08, which is characteristic for a Laplace distribution. The
pdf of the pressure-gradient also yields exponential tails with
a flatness value of 6.3. These results can be explained by the
fact that the velocity field is almost Gaussian.

Due to the orthogonality of the pressure-gradient to the
viscous term, which is the only contributor to the linear term
in isotropic turbulence, Eq. (17) can be written as

a2
L = 〈‖�‖2〉 + 〈‖�‖2〉. (A1)

While this equation is exact for isotropic turbulence, the
Lagrangian acceleration is dominated by the pressure-gradient
term as the variance of the viscous term remains small.
Hence, Eq. (22) provides a good estimate for the variance
of the Lagrangian acceleration aL. The variance of the
Eulerian acceleration is also determined well by Eq. (21),
and the variance of the Eulerian acceleration aE is given
by the difference of the variances of the nonlinear term and
the pressure gradient (Table IX).

APPENDIX B: POISSON EQUATION FOR PRESSURE

To prove expression (14), we Fourier-transform the Poisson
equation for pressure (13) to obtain the Fourier coefficients p̂,

p̂

ρ0
= ikj

k2
(N̂j + 
̂j ) (B1)

so that

	̂i = −kikj

k2
(N̂j + 
̂j ). (B2)

We obtain that

	̂i	̂
∗
i = kmkn

k2
(N̂m + 
̂m)(N̂n + 
̂n)∗, (B3)

where ∗ indicates a complex conjugate. We further have

	̂i(N̂i + 
̂i)
∗ = −kikj

k2
(N̂j + 
̂j )(N̂i + 
̂i)

∗ = −	̂i	̂
∗
i

(B4)
and

	̂∗
i (N̂i + 
̂i) = −	̂i	̂

∗
i . (B5)

Therefore,

(	̂i + N̂i + 
̂i)(	̂i + N̂i + 
̂i)
∗

= (N̂i + 
̂i)(N̂i + 
̂i)
∗ − 	̂i	̂

∗
i , (B6)

and using Parseval’s identity,

〈‖� + N + �‖2〉 = 〈(�̂ + N̂ + �̂)·(�̂ + N̂ + �̂)∗〉
= 〈(N̂ + �̂)·(N̂ + �̂)∗〉 − 〈�̂·�̂∗〉
= 〈‖N + �‖2〉 − 〈‖�‖2〉. (B7)
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