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Abstract

We present a novel scheme for the numerical simulation of fluid–structure interaction problems.
It extends the volume penalization method, a member of the family of immersed boundary
methods, to take into account flexible obstacles. We show how the introduction of a smoothing
layer, physically interpreted as surface roughness, allows for arbitrary motion of the deformable
obstacle. The approach is carefully validated and good agreement with various results in the
literature is found. A simple one dimensional solid model is derived, capable of modeling arbi-
trarily large deformations and imposed motion at the leading edge, as it is requiblack for the
simulation of simplified models for insect flight. The model error is shown to be small, while
the one dimensional character of the model features a reasonably easy implementation. The
coupled fluid–solid interaction solver is shown not to introduce artificial energy in the numerical
coupling, and validated using a widely used bechmark. We conclude with the application of
our method to models for insect flight and study the propulsive efficiency of one and two wing
sections.

Keywords: Fluid-structure interaction, Insect flight, Volume-penalization method, Spectral
method

1. Introduction

The numerical simulation of fluid-structure interaction is of fundamental interest in computa-
tional fluid dynamics (CFD) given the challenging applications encounteblack, for example the
numerical simulation and optimization of insect flight, swimming fish or sailing boats.The fluid
can deform the solid, which in turn alters vortical structures, and vice-versa. The key feature is
thus that the fluid-solid interface is not known a priori, but rather is a part of the solution itself.
Some systems can be simplified by considering rigid solid bodies, a rather strong simplification
that still proves to be challenging by its own, if the obstacle moves or features a complicated
shape. Aside from the experimental approach, the method of numerically solving the coupled
problem proved suitable for a large variety of problems, from swimming fish [1, 2], flying insects
[3, 4] to parachutes [5, 6].

The time-varying interface in fluid-structure interaction (FSI) problems is more than an in-
gblackient to be added to existing codes; it rather requiblack developing entirely new tools,
especially if large deformations are involved, which is the case in the present work. A broad
classification of FSI algorithms can be made either by the coupling of fluid and solids, where
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monolithic and partionned solvers can be distinguished, or by the fluid mesh, which can either
be conformal or non-conformal.

Monolithic solvers [7, 8, 9] describe both media, fluid and solid, using one set of equations that are
solved using same numerical schemes for both components, with all interaction resolved. These
approaches are usually very stable and accurate, but require a significant code development
effort, and their highly problem-specific coding makes it difficult to provide them with new
features. Partitioned solvers, on the other hand, use distinct approaches for fluid and solid,
allowing the use of legacy codes that have been developed previously. Special care has to be
devoted to treating the coupling condition, which may cause numerical instabilities [10, 11, 12,
13, 14].

Another distinctive feature of FSI solvers is the fluid mesh, which may be body-fitted or not.
In the former group, Gomes et al. [15] used a structublack, partitioned mesh that matches
the interface of a flexible appendix in the wake of a cylinder, and studied the flow-induced
vibrations both numerically and experimentally. A general difficulty of this family of methods
is the generation of suitable meshed, a question which has been addressed for example by Wick
[16] for structublack, moving meshes or by Bathe et al. [17] based on unstructublack grids.
These methods have been used succesfully for a wide range of problems [18, 19, 20].

Despite their succes, alternatives to the classical methods have been developed. These ap-
proaches do not require body-fitted moving grids, but rather rely on a fixed grid. The obstacle
is then taken into account by either locally modifying the discretization, or by adding specific
terms to the underlying equations. Immersed boundary techniques which are still of rising in-
terest in CFD are particularly attractive due to their simplicity in terms of implementation
in existing solvers and their flexibility in terms of handling non-academic geometries moving
or even deforming in time. This branch has been pioneeblack by Peskin [21, 22, 23] and has
been popularized since for around a decade and a half now. The key feature of these methods,
which are also used in the present work, is their simplicity. Arbitrary geometries can easily be
incorporated in existing fluid solvers, and the fixed fluid mesh allows using fast solvers. Such
an approach has been used to simulate thrust production of plunging foils [24], investigate the
stability of a foil in uniform stream [25] or for elastic swimmer models [26], to name but a few.
An overview can also be found in [27]. The fluid-structure interaction solver presented in this
paper belongs to this category, relying on the volume penalization method [28, 29, 30], which
belongs to the family of immersed boundary and fictitious domain methods.

This article is a part of our on-going work on the development of a tool for numerical simulation of
the flapping flight of insects. The basic Fourier pseudo-spectral method with volume penalization
for modeling rigid flapping wings was proposed in [31], extended to three-dimensional flows in
[32] and successfully employed to explore aspects of insect flight such as the dynamics of leading-
edge vortices [33] and the force balance during takeoff [34].

Though the rigid wing assumption proved to be useful for understanding some basic aerody-
namic mechanisms of insect flight, it is recognized that insect wings can undergo deformation
that significantly affects the aerodynamic forces [35]. The mechanics of flapping flight is essen-
tially three-dimensional. The relative importance of chordwise, spanwise and twist deformations
depends on the species and the overall effect of the wing flexibility varies [36, 3, 37]. However,
in some cases, the problem can be simplified by only considering one type of deformations. For
example, flexible membrane wings driven by stiff leading edges have been used for micro air
vehicles [38]. The efficiency of this design strongly depends on the chordwise flexibility, and,
even if the flow is three-dimensional, a two-dimensional model can explain many experimental
observations [39].

In view of the above, in this work we focus on modeling the chordwise flexibility only, we
consider a two-dimensional approximation, and we develop a numerical method for studying the
propulsion of flexible flapping foils. There have been a number of numerical methods proposed
for this problem that differ in their treatment of the fluid, the solid model and the interface. For
high Reynolds number fluid flows, vortex methods have been employed [40, 41], as well as the
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solution of the Navier–Stokes equations using body-fitted grids [42, 43]. Navier–Stokes solvers
on Cartesian grids and immersed boundary methods have been used at lower Reynolds numbers
[44, 45, 46]. Solid solvers based on finite element [43, 4] of finite difference [40] methods have
been developed.

In this work, we propose a technique for fluid–structure interaction based on the volume penal-
ization method, which was proposed for modeling and computing flow around fixed obstacles
with complicated geometries on simple numerical grids [28]. It is physically motivated by re-
placing the solid obstacle by a porous medium and its distinctive feature is the existence of a
rigorous convergence proof [29] which shows that the solution of the penalized Navier-Stokes
equations tends indeed towards the exact solution of Navier-Stokes imposing no-slip boundary
conditions. In [31], a first extension to moving, rigid obstacles has been presented. The present
article is the successor to this paper and develops techniques requiblack for the computation of
flexible obstacles.

The remainder of this article is organized as follows. First, we summarize the fluid solver and
the volume penalization method we will use in this article. In the next step we address the
question how the free penalization parameter of this method can be chosen in order to optimize
its precision. In section 4, we extend the method to deal with fluid–structure interaction and
derive an adequate solid model to be used in the simulations. The method is then extensively
validated. In the last section, we apply our method to simplified models for insect flight and
study the propulsive efficiency of heaving foils. Finally, conclusions are drawn and an outlook
on future work is given.

2. Governing equations and numerical method

2.1. Governing equations

We consider a viscous, incompressible Newtonian fluid governed by the Navier–Stokes equations,
in a two-dimensional, periodic domain Ωf , with an immersed obstacle Ωs, i.e. Ωf = T

2\Ωs:

∂tu+ ω × u = F p −∇q +
1

Re
∇2u (1a)

∇ · u = 0 (1b)

u|∂Ωs(t)
(s, t) = us (s, t) (1c)

u (x, t = 0) = u0 (x) (1d)

where s is a curvilinear coordinate along the fluid–solid interface ∂Ωs, u (x, t) is the velocity,
q (x, t) is the total pressure, F p (t) is an external force, ω = ∇×u is the vorticity and Re = u∞ℓ/ν
is the Reynolds number, based on the free-stream velocity u∞, a length scale ℓ and the kinematic
viscosity ν. Normalization units are chosen such that the density ̺ is unity. The external force
F p is equivalent to the presence of an externally imposed pressure gradient. Indeed the term
∇q has by construction vanishing spatial average, since Ωf is periodic. Thus, ∇q cannot model
an external pressure gradient. Problem (1a-1d) can be challenging to solve numerically if the
fluid–solid interface features a complicated, time-dependend geometry, which is the case in the
present article.

To solve the Dirichlet problem (1a-1d) numerically, we use the volume penalization method
[28, 29].

Thus we consider a computational domain Ω, which the two-dimensional torus T2. The original
domain Ωf is embedded into Ω, see figure 1. Equation (1a) is supplemented by adding a
penalization term to impose the Dirichlet boundary condition on ∂Ωs:

∂tu+ ω × u = F p −∇q +
1

Re
∇2u− χ

ε
(u− us) (2a)

∇ · u = 0 (2b)

u (x, t = 0) = u0 (x) (2c)
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Figure 1: Domain definitions. The original Dirichlet problem in the fluid domain Ωf is
replaced by the penalized problem in Ω = Ωf ∪ Ωs ∪ Ωsp, where Ω is the two-dimensional
torus T

2. The solid domains Ωs represent solid obstacles, while the sponge domain Ωsp is
used to prevent the obstacles’ wakes from re-entering the domain.

where

χ (x, t) =

{
1 x ∈ Ωs

0 x ∈ Ωf

(3)

is the mask function, us is the velocity field of the solid in Ωs and ε ≪ 1 is the so-called
penalization parameter. Note that equations (2a-2c) do no longer include Dirichlet boundary
conditions, as all geometric information is now encoded in the χ-function. In view of our
application to moving boundaries, we will allow the χ-function to smoothly fade from the fluid
to the solid, using interim values between 0 and 1. This gives rise to a thin smoothing layer, as
specified later. The penalization approach is physically motivated by the intuition that a solid
wall can be modeled as a permeable solid with small permeability ε.

Using the penalization method, one enjoys a significant blackuction in computational complexity,
as the discretization scheme can be chosen independently of the geometry at hand. This, in turn,
implies that equations (2a-2c) can be solved on a regular Cartesian grid.

For two-dimensional flows exclusively consideblack in this work, it is convenient to work with
the vorticity-velocity formulation, since the vorticity is scalar-valued in this case. The governing
equation then reads

∂tω + (u · ∇)ω =
1

Re
∇2ω −∇×

(χ
ε
(u− us)

)
. (4)

The velocity can be determined as u = ∇⊥ψ, introducing the streamfunction ψ, which satisfies
∇2ψ=ω, and ∇⊥ = (−∂y, ∂x)

T
as the orthogonal gradient. The velocity u is defined up to an

irrotational contribution that can be forced independently, i.e. u = ∇⊥ψ + U . Since the only
periodic potential flow is a constant velocity, U = u∞ can be interpreted as the mean velocity.
The mean flow u∞ can be forced to a desiblack value, or it can be determined dynamically by
imposing an external pressure force. In the latter case, an ordinary differential equation for u∞

can be derived by spatially averaging equation (2a),

ˆ

T2

∂tu dx+

ˆ

T2

ω × u dx

︸ ︷︷ ︸
=0

= F p −
ˆ

T2

∇q dx

︸ ︷︷ ︸
=0

+
1

Re

ˆ

T2

∇2u dx

︸ ︷︷ ︸
=0

−
ˆ

T2

χ

ε
(u− us) dx

du∞

dt
= F p −

ˆ

V

χ

ε
(u− us) dx.

A Poisson equation for the total pressure q is obtained by taking the divergence of equation
(2a), yielding

−∇2q = ∇ · (ω × u)−∇ ·
(χ
ε
(u− us)

)
, (5)
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where we note that the penalization term itself is not divergence-free. The hydrostatic pressure
p is then obtained by substracting the kinetic energy from the total pressure, i.e. p = q− 1

2u ·u.

2.2. Discretization

Equations (2a-2c) can be discretized with an arbitrary discretization scheme. In particular, we
can enjoy a fast and accurate Fourier pseudo-spectral discretization on a regular Cartesian mesh
[47, 48]. Hence, we represent the vorticity and all other variables as truncated Fourier series:

ω (x, t) =

Nx/2−1∑

kx=−Nx/2

Ny/2−1∑

ky=−Ny/2

ω̂ (k, t) exp (ιk · x) (6)

where k = (kx, ky)
T

is the wave vector, ι =
√
−1 and the hat superscript denotes the Fourier

coefficients. The fast Fourier transform (FFT) is used to compute the Fourier coefficients with
N log (N) complexity, where N = NxNy. Domain lengths different from 2π can easily be
rescaled. The gradient and Laplace operator can then be computed by multiplying with ιk
and − |k|2, respectively. Products are evaluated in physical space, thus avoiding expensive
convolutions with O

(
N2
)

complexity. Denoting the Fourier transform with F , i.e. ω̂ = F (ω),
we can write the semi-discrete version of equation (4):

∂tω̂ = −F
(
u · F−1 (ιkω̂)

)
− 1

Re
|k|2 ω̂ − ιk ×F

(
χ

η
(u− us)

)
(7)

û =
ιk⊥

|k|2
ω̂ + u∞, |k| �= 0 (8)

Due to the diagonality of the Laplacian in Fourier space, a Poisson equation can be solved
without solving a linear system, as can be seen from equation (8). Equation (7) is yet to be
discretized in time. We can again enjoy the diagonality of the Laplace-operator to integrate the
diffusive term exactly. This method is known as integrating factor technique. To simplify the
notation, we rewrite equation (7) as

∂tω̂ +
1

Re
|k|2 ω̂ = f̂ (ω̂) (9)

we can easily find the solution of the homogeneous problem. The solution of the complete
equation (9) then reads

ω̂
(
k, tn+1

)
= ω̂ (k, tn) exp

(
−∆t

Re
|k|2
)
+

ˆ tn+1

tn
exp
(
− τ

Re
|k|2
)
f̂
(
ω
(
x, tn+1 − τ

))
dτ. (10)

The Duhamel-integral on the right hand side is discretized with an explicit Adams–Bashforth
scheme of second order accuracy. The exact treatment of the diffusive term avoids introducing
an additional stability condition on the time step ∆t.

On the other hand, the penalty term introduces additional numerical stiffness and thus imposes
a restriction on the time step. Using this time marching scheme, the stability condition for the
time step is

∆t ≤ min

(
η,CFL

∆xα

umax

)
, 0 < CFL < 1 (11)

where α = 4/3 [49]. Further details about this time marching scheme and the spatial discretiza-
tion can be found in [50, 31].
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2.3. Hydrodynamic forces

The hydrodynamic forces acting on the solid obstacles can be computed by integrating the stress
tensor over the surface:

F =

˛

∂Ωs

σ · n dγ. (12)

σ = −∇p+
ν

2

(
∇u+ (∇u)

T
)

(13)

If one is interested in the integral forces only, as opposed to the local distribution, volume
integration can be employed. Volume integrals are computationally more efficient than surface
integrals. We consider a control volume V , that may or may not coincide with an obstacle.
Integrating (2a) over V and rearranging yields:

F =

˛

∂V

σ · n dγ =

ˆ

V

χ

η
(u− us) dV +

ˆ

V

(∂tu+ u · ∇u) dV (14)

where we used
ˆ

V

ν∇2u−∇pdV =

ˆ

V

∇ · σ dV =

˛

∂V

σ · n dγ.

If V coincides with an obstacle at rest, then (14) blackuces to its first term, F =
´

V
χ
η udV ,

which is the classical formula [28]. If V coincides with a moving obstacle, then we are left
with the additional second term known as unsteady correction. If the obstacle is rigid, it can be
computed as Vsu̇s, as described in [51], where Vs is the obstacles’ volume and u̇s its acceleration.
If the object is flexible, the unsteady correction has to be computed numerically. This can be
done by either explicitly deriving the integral over the solid velocity field, d/dt

´

V
χusdV , or

by integrating the right hand side of the penalized Navier–Stokes equation (2a). In the present
work, we choose the former way and numerically integrate the unsteady correction.

Analogously, the moment on the obstacle can be computed using

M =

˛

∂V

r × (σ · n) dγ =

ˆ

V

r × (∂tu+ u · ∇u) dV +

ˆ

V

r × χ

η
(u− us) dV (15)

where r = x − xc is the position vector relative to the center of gravity. Again the unsteady
correction appears, which blackuces to

´

V
r × (∂tu+ u · ∇u) dV = JcΘ̈c in the case of rigid

objects. Therein, Jc is the geometrical moment of inertia and Θ is the angle of rotation.

2.4. Wake removal techniques

The inherent periodicity of Fourier methods can be alleviated by again using the volume penal-
ization method. Since we work with the vorticity formulation of the Navier–Stokes equations,
we can directly use the penalty method to impose a Dirichlet boundary condition on the vor-
ticity, thus preventing the wake from re-entering the domain. The corresponding domain Ωsp is
illustrated in figure 1. This can be done by adding another penalization term to equation (4):

∂tω + (u · ∇)ω =
1

Re
∇2ω −∇×

(χ
ε
(u− us)

)
− χω

sp

εωsp
(ω − ω0) (16)

where χω
sp is the mask function of the vorticity sponge. This technique will be used for simu-

lations of unbounded flows, such as the simulations of the spanwise wing sections of flapping
wings in section 5. The desiblack vorticity profile ω0 is usually zero.

In the case of a channel flow with a given Dirichlet condition on the velocity, one can use an
alternative technique and directly impose a Dirichlet condition on the velocity, as it was already
done for the obstacle:

∂tω + (u · ∇)ω =
1

Re
∇2ω −∇×

(
χ

ε
(u− us) +

χu
sp

εusp
(u− u0)

)
. (17)
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The difference between the actual obstacle and the sponge is that χu
sp does not depend on time.

Note that the supplementary term in equation (16) does not appear in the Poisson equation for
the pressure (5), while the one in equation (17) does.

In both cases, the respective penalization parameters can be chosen independently. In general,
the upstream influence of the sponges should be minimized. This can be achieved by either
choosing a large corresponding ε, or by smoothing the χω,u

sp functions accordingly. Both u and
ω sponge techniques can also be combined, as discussed in section 5.1.

3. Convergence properties: how to choose ε?

The penalization method described previously is proved to converge to the solution of the original
Dirichlet problem in the limit ε → 0, with a convergence rate of O (

√
ε) [28, 29]. These proofs

are obtained using rigorous mathematics in the continuous setting and thus neglect the aspect
of discretization, which is important from a practical point of view.

The error of the numerical solution of the penalized problem (2a-2c) with respect to the original
problem can be decomposed into two components,

∣∣∣∣uex − uN
ε

∣∣∣∣ ≤ ||uex − uε||+
∣∣∣∣uε − uN

ε

∣∣∣∣ , (18)

where uex is the exact solution of (1a-1d) and uε, uN
ε is the exact and numerical solution of

(2a-2c), respectively. The first contribution in equation (18) is the penalization error which has
been shown to decay as O (

√
ε). The second contribution is the discretization error which decays

as O
(
∆x2

)
, since uε is in C1 only.

From the physical interpretation of ε as permeability and in view of the slow O (
√
ε) convergence,

a first intuition would be to choose a very small value, say around machine precision, i.e. ε =
10−13. Unfortunately, the time step restriction (11) for our explicit time marching scheme
prevents us from doing so. An apparent way out would be to treat the penalization term with
an implicit time marching scheme. This approach has been discussed for the Burgers equation in
[31]. In [52], an extension to the Navier–Stokes equation was presented, revealing the intimate
coupling between ε and ∆t: the error saturates around ε ≈ ∆t. Thus, there is no gain in
choosing a very small ε and a larger time step; the error is almost the same as if one would
have chosen both of the same order of magnitude. This behavior can be understood by the
interpretation of the penalty term as a strong damping term on the velocity in equation (2a).
It introduces a characteristic time scale, which is of order ε, that has to be resolved by the time
marching scheme.

The central question when using the penalization method is thus how to appropriately choose
ε for a given problem.

To answer it, one may consider the Taylor-Couette flow between two coaxial cylinders. Let the
cylinders have radii R1 = 0.5 and R2 = 1.0. The inner one rotates with an angular velocity Ω,
and the outer one is fixed. The exact solution for the steady state is a azimuthal velocity field
[53]:

uΘ (r) = −Ω
R2

1

R2
2 −R2

1

r +Ω
R2

1R
2
2

R2
2 −R2

1

1

r
. (19)

Our numerical solution is obtained using a [0, 2.5] × [0, 2.5] domain and a viscosity of ν =
0.1. A discontinuous mask function is used. The initial condition is taken to equal the exact
solution, and the computation is stopped when the time derivatives of both L2 and L∞ norms
are smaller than 10−4, which corresponds to a final time of around T = 1.0. This test case being
computationally cheap, we can afford to test five resolutions, 322, 642, 1282, 2562 and 5122 with
30 values of ε each, distributed logarithmically equidistant in ε =

[
10−6, 10−1

]
. The time step

is ∆t = min
(
10−4, ε

)
to keep the time discretization error negligible.
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Figure 2: Relative L2 error
∣∣∣∣uex − uN

ε

∣∣∣∣ / ||uex|| for the Taylor-Couette flow. Left: conver-
gence with respect to ε. Resolutions are 322 (�), 642 (©), 1282 (+), 2562 (∇) and 5122

(⋆). The dashed line marks the
√
ε slope. Right: convergence with respect to ∆x. Here, ε is

slaved to ∆x: ε = ε0 (∆x/∆x0)
2

where the penalty parameter ε0 at the coarsest resolution
is 10−2 (�), 2.5 · 10−4 (©), 5 · 10−4 (+) and 10−3 (⋆). Note an intermediate value ε yields
best results. Dashed lines indicate first (top) and second (bottom) order convergence.

Figure 2 (left) illustrates the relative error in L2 norm as a function of ε and the spatial resolution.
It exhibits the coupling between the spatial resolution and the penalization parameter. First,
one observes the

√
ε slope pblackicted from theory [28] and the saturation of the error for small

ε. The behavior is consistent with the loss of the C1 regularity of the exact solution of the
penalized problem in the limit of small ε. For each resolution, one can identify an optimal value
of ε, that minimizes the error. This is also consistent with [30], where the penalized Laplace
and Stokes operators were analyzed analytically and the relation between ε and ∆x has been
shown to be

ε ∝ ∆x2. (20)

In view of the connection between ε and both the spatial and temporal discretization, it is clear
that the strategy of choosing some fixed, small value of ε is sure to give sub-optimal results.
Instead, one should choose ε according to eqn (20). Figure 2 (right) illustrates the spatial
convergence for four different values of ε at the coarsest resolution (322). All curves exhibit
first- to second order convergence, but the choice of the constant of proportionality in equation
(20) modifies the error offset. The smallest error is obtained for ε0 = ε (Nx = 32) = 10−3.

Although the order of convergence remains the same, we can thus tune the penalization method
by carefully choosing ε0. Due to the action of viscosity ν, a small penalization boundary layer
with a characteristic length scale of

√
νε forms inside the solid, see also [29]. This boundary

layer can be used to get an idea on how to choose ε. When looking at the vorticity in the case
of the Taylor-Couette flow, one notices that this boundary layer is far from being resolved when
the error is minimal. As a practical guideline, one should consider a coarse resolution and start
with a large ε, which is decreased until the boundary layer in the vorticity is no longer resolved.
This value is then chosen as constant of proportionality. The resulting value depends on the
Reynolds number, and the penalization method works better when ν is small, i.e. for larger Re.

It should be noted that it is likely to be impossible to find the optimal value of ε in cases where
no reference solution exists.

Due to the restriction ∆t < ε ∝ ∆x2, a first order scheme in time would in principle be sufficient.
However, the Adams-Bashforth scheme does not introduce a significant additional cost but
ensures that the time discretization error is negligible in front of the other error contributions.
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4. Fluid–Structure Interaction

In previous work, the penalization method has been extended to take moving rigid obstacles
into account. The algorithm has been presented in [31], and we recall only the essential idea by
considering an obstacle that undergoes pure translational motion with a velocity us. Basically,
the approach consists in solving a transport equation for the mask function,

∂tχ+ us · ∇χ = 0 , (21)

using the same discretization as for the Navier–Stokes equation. The gradient operator being
diagonal in Fourier space, this equation can be solved exactly. Thus, the obstacle at time tn is
described by

χ (x, tn) = F−1
(
e−ik·u

s
tF
(
χ
(
x, t0

)))
. (22)

Using equation (22) the obstacle can be displaced by less than one grid point. Always using the
initial mask, χ

(
x, t0

)
, avoids error accumulation. For general us the motion can be decomposed

in a sequence of one dimensional transformations [31]. Hence, arbitrary motion can be simulated
with this approach. In order to avoid Gibbs oscillations, the discontinuous χ-function can be
smoothed by solving a few steps of a diffusion equation prior to the simulation.

4.1. Penalization method for flexible obstacles

For fully flexible obstacles the approach of shifting the mask in Fourier space is no longer
applicable, because the velocity field us in equation (21) is no longer constant. On the other
hand, the discontinuous mask function cannot be translated in physical space by less than one
grid point, and this jerky motion produces spurious oscillations in the hydrodynamic forces,
as shown in [31]. One could solve the transport equation (21) with a different discretization
scheme, but this would introduce additional difficulties such as numerical diffusion. A way out
of this dilemma is to make use of the smoothing layer that has already been introduced.

In the present work, we use an analytical expression for the mask function, that can easily be
resampled on the Eulerian grid. To this end we introduce a smoothed Heaviside function

H (x) =
1

2

[
erf

(
t− x

δ

)
+ erf

(
t + x

δ

)]
(23)

where

δ = csm ∆x max

(
∂H

∂x

)
=

csm ∆x√
π

[exp (−4)− 1] .

The parameter csm defines the thickness of the smoothing layer in mesh widths. This particular
choice for H (x) is motivated by the fact that it provides a good compromise between compact
support in Fourier and physical space.

To validate this approach we use the setup proposed by Wan et al. [54]. It consists of a circular
cylinder of radius R = 0.05 immersed in a channel of length L = 2.2 and height H = 0.41. The
coordinate of the cylinder center is given by

xc (t) =

(
x0 +A sin (2πf0t)

y0

)

where x0 = 1.1, y0 = 0.2, A = 0.25 and f0 = 0.25. The penalization parameter is ε = 10−3 at
the coarse resolution (1024×284) and ε = 2.5·10−4 at the finer one (2048×568). The smoothing
parameter is csm = 2. The reference computation in [54] is computed with a FEM solver using
a body-fitted grid in a moving reference frame. Figure 3 illustrates the hydrodynamic forces
acting on the cylinder. Good agreement can be observed. Quantitatively, the difference for the
drag is 4.58% and 2.57%, and for the lift we find 12.05% and 7.04% for the coarse and fine
resolution, respectively. The difference is computed by the L2 norm of the time series of the
difference, normalized by the L2 norm of the reference signal. We can thus conclude that the
smoothed mask function yields reasonable results.
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Figure 3: Hydrodynamic forces acting on an oscillating cylinder in a channel. Top: snapshot
of the vorticity field. Bottom: lift (left) and drag force (right). Solid lines are present results
(1024×284: �, 2048×568: ⋆) and results of Wan et al. [54] are represented by dashed lines.

Figure 4: Illustration of the solid model used in the present work. The beam is clamped
with respect to the relative coordinate system, which is translated by x0 and rotated by α.

4.2. Solid model

4.2.1. Model equations

The focus in the present work lies on the simulation of fluid–structure interaction. Thus, a
suitable solid model is requiblack. To this end, we introduce a one-dimensional model equation
instead of solving the two-dimensional elastic continuum equations. We will show that this
model performs well compablack to the reference solution obtained by Turek et al. [18], while
being computationally cheap and reasonably easy to implement.

Our model consists in a beam, which is a thin inextensible structure made out of linear elastic
material. A key aspect is that we must account for large deflections and cannot use geometrically
linear models, as their deflections have to be comparable to the beam thickness and thus to be
very small. It is assumed that the beam is clamped at its leading edge, while the trailing one is
free. In view of our application to biolocomotion, an arbitrary motion at the leading edge must
be consideblack. This imposed motion is described by the position vector x0 (t) and the rotation
angle α (t), that are both arbitrary functions of time, see figure 4. The beam is parametrized by
its local deflection angle Θ and its longitudinal force T , which are both functions of the arclength
coordinate s ∈ (0, 1) and time. The model equation is the extension of the one used in [55]. It
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is derived by considering force- and torque balance on a deformed beam element, yielding

∂2T

∂s2
− T

(
∂Θ

∂s

)2

= − [p]
± ∂Θ

∂s
− 2η

∂Θ

∂s

∂3Θ

∂s3
− η

(
∂2Θ

∂s2

)2

− μ
(
Θ̇ + α̇

)2
− ∂ [τ ]

±

∂s
(24a)

μΘ̈ + μα̈+
∂ [p]

±

∂s
= −η

∂4Θ

∂s4
+

(
T + η

(
∂Θ

∂s

)2
)

∂2Θ

∂s2
+ 2

∂T

∂s

∂Θ

∂s
+ [τ ]

± ∂Θ

∂s
, (24b)

where

μ =
h̺s
ℓ̺f

η =
Eh3

12ℓ3̺fu2
∞

(25)

are the dimensionless density and rigidity, respectively. The external forces acting on the beam
are the pressure jump across the beam [p]

±
and the viscous tensions [τ ]

±
on the surface. The

thickness, length and density are denoted by h, ℓ, ̺s, and the fluid density ̺f and the free-stream
velocity u∞ are used for normalization. Dots denote time derivatives. Note that unlike in our
earlier work [56], equations (24a) - (24b) account for the viscous tensions. The set of PDE’s
(24a) - (24b) has to be completed with the clamped-free boundary conditions:

Θ = 0
∂T
∂s + η ∂2Θ

∂s2
∂Θ
∂s = μ (ẍ0 cosα+ ÿ0 sinα+ g sinα)− [τ ]

±

T ∂Θ
∂s − η ∂3Θ

∂s3 = μ (ÿ0 cosα− ẍ0 sinα+ g cosα) + [p]
±

⎫
⎬
⎭ at s = 0 (26a)

T = 0
∂Θ
∂s = 0
∂2Θ
∂s2 = 0

⎫
⎬
⎭ at s = 1 (26b)

where ẍ0 and ÿ0 are the components of the position vector x0 and g is the gravity, which acts
always in negative y direction. From the local deflection angle Θ, the global deflection line xs

and velocity us can be obtained by computing:

xc (s) = x0 +

(
cosα

´ s

0
cosΘds− sinα

´ s

0
sinΘds

cosα
´ s

0
sinΘds+ sinα

´ s

0
cosΘds

)
(27a)

us (s) = ẋ0 +

⎛
⎝ cosα

(
´ s

0
−Θ̇ sinΘds− α̇

´ s

0
sinΘds

)
− sinα

(
´ s

0
−Θ̇ sinΘds+ α̇

´ s

0
cosΘds

)

cosα
(
´ s

0
−Θ̇ sinΘds+ α̇

´ s

0
cosΘds

)
+ sinα

(
´ s

0
−Θ̇ sinΘds− α̇

´ s

0
sinΘds

)
⎞
⎠ .(27b)

4.2.2. Numerical solution

The set of equations (24a-24b, 26a-26b, 27a-27b) are solved numerically using finite difference
approximations of the differential operators. Special care has to be devoted to time integra-
tion. First, the equations are stiff and require an implicit time marching scheme. Second, the
eigenvalues of the discrete (linearized) operator lie on the imaginary axis, which happens to be
the stability limit of the second order Crank-Nicolson scheme which was used in previous works
[56]. Hence we employ a second order backward differentiation scheme with variable time steps
[57]:

wn+1 =
(1 + ξ)

2

1 + 2ξ
wn − ξ2

1 + 2ξ
wn−1 +

1 + ξ

1 + 2ξ
∆tnf

(
wn+1

)
(28)

where ξ = ∆tn/∆tn−1. The vector w = ( Θ Θ̇ ) has been introduced to rewrite equation

(24b) as a first order system and f
(
wn+1

)
is the right-hand side of this first order system. All

terms are treated implicitly and the inextensibility constraint (24a) is fulfilled at the new time
level. The resulting non-linear system is solved using Newton-Raphson iterations, with a relative
error below 10−10 as stopping criterion. The Jacobian is computed analytically and hard-coded
in the solver, speeding up the computation. Typically, three iterations are performed until the
stopping criterion is reached. The time step ∆t is determined by the fluid.
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frequency x-displacement
[
×10−3

]
y-displacement

[
×10−3

]

mean amplitude mean amplitude

Turek et al. [18] 1.0995 -14.3051 14.3057 -63.6077 65.1607

Present results 1.1012 -14.4442 14.4442 -63.3999 65.2898

Table 1: Results of the CSM3 test. The present results are obtained with the non-linear
beam equation, while the reference solution is obtained by solving a full 2D continuum model.

4.2.3. Validation

Our numerical algorithm is verified to be of second order accuracy with respect to both ∆x and
∆t, by comparing with the solution on the finest grid. To study the model error, we compare our
solver with the reference data for test case CSM3 proposed in [18]. This test considers a beam
without surrounding fluid and without imposed motion. The motion is driven by gravity. The
normalized parameters (25) characterizing the solid are η = 2.592 · 10−2 and μ = 5.714 · 10−2

and the normalized gravity is g = 0.7. We should point out that Young’s modulus has to be
corrected when passing to a plane stress state, E = E0/

(
1− n2

)
, where E0 is the usual Young’s

modulus and n is the Poisson ratio.

The results of the comparison are summarized in table 1. The numerical resolution is sufficiently
high for the model error to become dominant. Although our model is only one-dimensional, it
agrees reasonably well with the reference solution.

4.3. Fluid–solid coupling

In order to couple the previously described fluid and solid models, two distinct tasks have to
be performed. First, the fluid solver requires the current geometry of the problem, hence the
mask function χ (t) has to be constructed from the current deflection line of the solid. Second,
the fluid forces acting on the solid and determining its dynamics must be transferblack from
the Eulerian description of the fluid to the Lagrangian description of the solid. This requires
interpolation.

The algorithm used to construct χ (x, t) and us (x, t) can be found in appendix AppendixA.

To transfer the fluid forces we employ a regularized delta function for the Eulerian-Lagrangian
transfer. Namely, we use the kernel proposed by Yang et al. [58]:

δ (r) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

3
8 + π

32 − r2

4 |r| ≤ 0.5
1
4 + 1−|r|

8

√
−2 + 8 |r| − 4r2 − 1

8 arcsin
(√

2 (|r| − 1)
)

0.5 ≤ |r| ≤ 1.5
17
16 − π

64 − 3|r|
4 + r2

8 + |r|−2
16

√
16 |r| − 4r2 − 14 + 1

16 arcsin
(√

2 (|r| − 2)
)

1.5 ≤ |r| ≤ 2.5

0 2.5 ≤ |r| ,

where r = x/∆x. This kernel is designed to blackuce spurious oscillations in the interpolated
values, which is desirable for fluid–structure interaction. The two-dimensional function is con-
structed as tensor product of two functions of one variable,

δ (x) = δ
( x

∆x

)
δ

(
y

∆y

)
,

and the interpolated pressure on the interface then reads

p (x) =
∑

j

∑

i

pijδ
(
xij − x

)
. (29)
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The same technique is used to interpolate viscous tensions on the surface.

With the mask construction and the load transfer technique all the necessary tools to couple
fluid and structure are available. In the present work we are concerned with solid materials
that have a higher density than the surrounding fluid. Thus, we do not encounter the specific
stability problems that arise if the solid density is too close to or below the fluid density. We
can thus enjoy a fast sequential staggeblack coupling scheme that would be unstable for light
structures due to the artificial added mass instability [14]. The algorithm used here reads

1. At time tn, compute un and pn from the given the vorticity field ωn.

2. Construct the mask function χn and the solid velocity field un
s from the beam state at tn.

3. Advance the fluid in time by solving eqn (10) using the adaptive second order Adams-
Bashforth scheme.

4. From ωn+1, compute the pressure pn+1 on the surface of the beam given by its state at
tn.

5. Using the interpolation (29), transfer the Eulerian pressure fields pn, pn+1 to the La-
grangian surface points on the beam.

6. Advance the beam in time by solving eqn (28).

7. Set tn → tn+1 and go to 1.

Because we use two different time marching schemes for the fluid and the solid, the resulting
algorithm is only first order accurate. It could be improved by performing iterations. Yet,
because of the influence of the penalization parameter ε, we can content ourselves with this
algorithm.

4.4. Energy budget

A first physically relevant test is whether our coupled solver respects energy conservation. To
this end, we consider a beam of unit length in a domain Ω = [0, 4] × [0, 4]. The resolution is
nx × ny = 2048 × 2048 and the penalty parameter is ε = 10−4. The test case is that of a
beam immersed in a fluid that bends down due to the action of gravity. We test two Reynolds
numbers, Re = 200 and 2000. As stated previously, the penalization method requires very small
ε in the limit of small Re. Thus, we do not release the beam in a fluid at rest, because the
Reynolds number at the beginning of the motion would be zero. Instead, a mean flow is forced
and given some time to develop, before gravity is softly turned on at t = 2.5. This way, one can
avoid dealing with an impulsively started motion.

The energy contained in the beam can be computed as the sum of the elastic, kinetic and
potential energy:

Es
solid = Es

flex + Es
kin + Es

pot (30)

Es
flex =

1

2

ˆ 1

0

ηΘ2
s ds (31)

Es
kin =

1

2
μ

ˆ 1

0

us · us ds (32)

Es
pot = μg

ˆ 1

0

y ds. (33)

The energy budget for the penalized Navier–Stokes equation can be obtained by dot-multiplying
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eqn (2a) and integrating over the computational domain Ω = T
2:

d

dt
Ef

kin = − 1

Re

ˆ

Ω

|∇u|2 dΩ−
ˆ

Ω

χ

ε
(u− us) · udΩ

Ėf
kin = − 1

Re

ˆ

Ω

ω2dΩ−
ˆ

Ω

χ

ε
us (u− u∞ − us) dΩ

−
ˆ

Ω

χ

ε
u∞ (u− us) dΩ−

ˆ

Ω

χ

ε
(u− u∞ − us)

2
dΩ

Ėf
kin = Ėf

diss + Ėf
solid + Ėf

mean + Ėf
porous (34)

where the penalization term has been split into three contributions: the energy that enters the
fluid through the solid motion Ėf

solid and the mean flow Ėf
mean, and the energy that is dissipated

in the penalization term Ėf
porous, which can be interpreted as “porous dissipation”.

For our numerical method, we require Ėf
solid = Ės

solid, i.e. the coupling should not introduce
artificial energy. Figure 5 illustrates a snapshot of the vorticity field (left) and the time series

of the different terms in equation (34). One can observe good agreement between Ėf
solid and

Ės
solid, the relative L2 difference is about 7%. The remaining difference is attributed to finite-size

effects in the model, since the underlying solid model is one-dimensional, but it is extended to
a thin, yet two-dimensional structure.

4.5. Quantitative validation

To validate our numerical method quantitatively, we consider the benchmark proposed by Turek
et al. [18, 19]. It consists of three stages, one of which has already been used to evaluate the
model error of the beam equation. The remaining stages are the CFD test, in which a rigid
obstacle is consideblack, and the FSI test with a flexible object. For each stage, three test cases
are proposed, and here we consider only the CFD3 and FSI3 tests.

The setup is illustrated in figure 6. A circular cylinder of radius R = 0.05 with an appendage
of length ℓ = 0.35 and thickness h = 0.02 is immersed in a channel of size Lx × Ly = 2.5× 0.41
with a parabolic velocity profile imposed at the inflow. The center of the cylinder is placed
at (0.2, 0.2), which intentionally yields an asymmetric setup. In our approach, the channel
walls as well as the obstacle are modeled with the penalization method. The walls have the
same thickness as the beam structure. The inflow condition is met using the velocity sponge
approach, see equation (17), which is imposed in Ωsp.

We should note that in this setup, the distance between the object and the inflow is smaller
than the upstream influence of the object itself. Thus, this configuration cannot be reproduced
considering a long channel with a developed laminar flow, as it would be done experimentally.

4.5.1. CFD test

First we consider the CFD3 test, where the obstacle remains fixed. The Reynolds number based
on the length of the obstacle ℓ is Re = u∞ℓ/ν = 700. The test is designed such that the flow
reaches a periodic state which is independent of the initial condition. As the channel walls are
modeled with the penalization method, they cover a finite area, which has to be taken into
account when forcing the mean velocity. To force unit mean flow in the channel, u∞ is corrected
using the channel walls height hchan, thus u∞ = 1− 2hchan/Ly.

When starting with a uniform flow as initial condition, the developing wake behind the obstacle
requires a considerable amount of time to destabilize and to reach the final periodic state. For
this reason, all present simulations are started with the flow field at the end of the destabilization
phase. The quantities for comparison are the lift and drag force in the developed periodic regime
and the fundamental frequency of the lift force, which corresponds to the lowest significant
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Figure 5: Energy test case for the Reynolds numbers 200 (top) and 2000 (bottom). Left
column: Snapshot of the flow field, shown is vorticity with superimposed white streamlines.
Right column: energy budget according to eqn. (34). The beam remains fixed until t = 2.

The startup singularity is due to the impusively started flow. The curves for Ėf
solid and Ės

solid

show good agreement in both cases, indicating a good conservation of energy.
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Figure 6: Setup for the benchmark proposed by Turek et al. [18]. A cylinder with an
attached appendage is immersed in a channel configuration. The velocity sponge technique
is used to impose a parabolic velocity profile in Ωsp. The appendage is either rigid (CFD
test) or flexible (FSI test).
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Figure 7: Results for the CFD3 test with rigid appendage. Vorticity field with stream lines
and the obstacle (top). Bottom: time series of the lift (left) and drag force (right) on the
obstacle. Present results are represented by blue solid lines and the reference solution [18]
by the dashed black line.
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Lift Drag

Resolution ε Max Min Max Min Frequency

1300× 288 4 · 10
−3 423.66 -0.53% -500.44 11.28% 512.62 15.18% 498.44 14.89% 4.46 1.47%

2600× 576 1 · 10
−3 392.47 -7.85% -464.57 3.31% 475.70 6.88% 463.80 6.91% 4.41 0.33%

5200× 1152 2.5 · 10
−4 402.00 -5.62% -452.64 0.65% 453.42 1.88% 442.14 1.92% 4.37 -0.58%

10400× 2304 6.3 · 10
−5 405.46 -4.80% -446.48 -0.72% 447.29 0.50% 436.15 0.53% 4.36 -0.81%

Reference 425.92 -449.70 445.07 433.83 4.40

Table 2: Results of the CFD3 test with a fixed obstacle.

 

 

−15

−10

−5

0

5

10

15

3.8 3.9 4 4.1 4.2 4.3 4.4
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04
y−displacement

3.8 3.9 4 4.1 4.2 4.3 4.4
430

440

450

460

470

480

490
drag force

Figure 8: Results for the FSI3 test with a flexible appendage. Top: snapshot of the vorticity
field with the deformed obstacle. Bottom: time series of the y-displacement of the trailing
edge and of the drag force acting on the entire obstacle.

frequency present in the spectrum. The forces are represented by their minimum and maximum
values during one period. Due to transient effects, the min/max values are averaged over the
last periods, and simulations are run long enough for the width of the 95% confidence interval
to be smaller than 0.1% of the pblackicted value. This results in a computational time of about
30 period times.

In table 2, the present results for four levels of resolution are compablack with the reference
solution presented in [18]. The general accuracy of our method is satisfying, even though the
maximum value of the lift force presents some noticeable difference with respect to the reference
solution. In addition to the max/min values, the shape of the lift/drag curves are compablack
in figure 7, bottom. It can be observed that the curves are very similar. The drag curve exhibits
an offset which is related to the smoothing layer in the χ-function, which can be interpreted as
surface roughness. Due to the smoothing layer, our method generally overpblackicts the drag
force. On the other hand, the offset is only 0.5% of the mean value and thus rather small. The
corresponding vorticity field during the periodic state is shown in figure 7, top.
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4.5.2. FSI test

To conclude the quantitative validation we proceed to the FSI3 test case. Now, the appendage
attached to the cylinder is flexible. As for the CFD3 test, some computational time can be saved
by choosing a suitable initial condition. We use the same flow field as in the CFD3 test case, and
the beam is initially at rest and undeformed. The non-dimensional parameters characterizing
the solid are μ = 5.7143 ·10−2 and η = 2.5915 ·10−2, cf. equation (25), and the Reynolds number
is Re = u∞ℓ/ν = 700.

As for the CFD3 test, the quantitative comparison with results from the literature is done
using the max/min values of the respective time series. The fundamental frequency f0 is that
of the y-displacement dy of the trailing edge. In the present work, the max/min value are
obtained as stated previously for the CFD3 test, but interestingly the FSI3 test requires a
shorter computational time to settle into its final periodic state. Here, about 25 oscillations
were computed. The max/min values for the displacement dy, the drag and lift force and the
frequency f0 for this test are presented in table 3. The different methods behind the numerical
results are described in the respective papers, as listed in table 3 and in the overview article
[18].

For the y-displacement of the trailing edge, all methods except (5) and (7) agree to within 3.9%,
and the present results fit well into this range of results. Unless otherwise stated, differences
in this section are normalized with the averaged result. It is remarkable that the result for dy
does not significantly depend on the resolution level, as even the coarsest resolution yields an
acceptable value. Compablack to the initial computation from [18], present results differ by
0.6%.

For the drag force, the different methods are spread to a range over 7.5% of the averaged value.
The drag computed with the present method is in excellent agreement for the two highest
resolutions and again quite close to the original values from [18], with a difference of about
0.5%. The shapes of the time series of the displacement and the drag force are illustrated in
figure 8 together with the original results presented in [18].

Concerning the lift force, the range of results is broader and varies up to 40% for method (7),
30% for method (5) and 7.5% for method (8). The present method seems to overpblackict the
amplitude of oscillations in the lift force, and the difference in both max and min value is about
20% that of the average.

In conclusion we find good quantitative agreement with the results found in the literature, for
the solid and fluid solver alone, as well as for the coupled FSI algorithm.

5. Application to insect flight

Since the present numerical method has been validated, it can now be applied to study simplified
models for insect flight. These simulations are namely inspiblack by the experiments presented
in [39]. The mechanical flapper consideblack therein is designed to perform heaving motion only.
The wings are flexible and the resulting deflection passively imposes an angle of attack different
from zero, which is why this configuration produces nonzero thrust.

In our two-dimensional approximation, this setup translates into a pure heaving motion of the
wing section’s leading edge. In [39], a mechanical flapper with one wing per side has been
consideblack, and it is thus a first step to apply our method to this setup. As a second step, we
add a second wing section and study the interaction between the fore- and hindwing.

The experimental setup is intrinsically three dimensional, and the present two-dimensional sim-
ulations should be viewed as a preparatory study rather than reproducing the exact physics.
Our method is not intrinsically limited to two dimensions, in fact, an extension to 3D is rather
straightforward, especially since the experiment aims at studying the chordwise flexibility only,
which can indeed be done with our one-dimensional solid model.
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dy
[

×10
−3

]

Fdrag Flift f0

max min max min max min

1300× 288, ε = 4 · 10
−3 36.47 -32.12 591.45 525.75 184.83 -189.29 5.89

2600× 576, ε = 1 · 10
−3 36.32 -32.98 516.73 455.39 187.83 -185.73 5.56

5200× 1152, ε = 2.5 · 10
−4 35.58 -32.59 487.87 437.93 190.50 -184.36 5.47

10400× 2304, ε = 6.3 · 10
−5 35.63 -32.71 481.20 432.50 188.52 -181.30 5.44

(1) Turek [18] 36.37 -33.45 487.81 432.79 156.13 -151.31 5.47

(2) Schäfer [11, 19] 36.73 -33.79 487.82 431.98 159.54 -155.86 5.82

(3) Rannacher [19] 35.89 -33.33 478.59 426.21 155.06 -150.34 5.42

(4) Turek [19] 36.46 -33.52 488.24 432.76 156.40 -151.40 5.47

(5) Breuer [19] 44.00 -41.00 507.00 428.00 204.90 -172.50 5.06

(6) Krafzyk [19] 36.58 -33.62 494.30 431.70 155.81 -152.19 5.50

(7) Wall [13, 19] 30.45 -27.55 451.50 416.50 91.13 -86.07 5.30

(8) Bletzinger [19] 38.18 -35.08 503.02 446.78 169.76 -162.04 5.50

Average 36.75 -33.81 488.14 431.62 158.62 -150.78 5.46

Table 3: Results of the FSI3 test. Present computations using four levels of resolution on
the top, compablack to various results from the literature. For orientation the average over
the different publications (1)-(8), excluding the present ones, is shown.

Figure 9: Setup for the wing section configuration. The flexible foils perform a sinusoidal
heaving motion, and the second one is optional. The mean fluid flow u∞ is imposed. A
mixture of a ω sponge and a u sponge is used. The ω sponge damps incoming vortices
slowly, in order to minimize the upstream influence. Remaining vorticity is then removed by
the u sponge.
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Level 1 Level 2 Level 3

Resolution nx × ny 768× 768 1536× 1536 3072× 3072

Penalty parameter ε 10−3 2.5 · 10−4 6.25 · 10−5

(a) Numerical parameters for the simulations.

f/f0 1.29 1.19 1.08 1.00 0.97 0.92 0.86 0.80 0.76 0.65 0.54 0.43 0.32

N 25 25 25 25 25 25 25 25 25 25 20 12 9

(b) Physical parameters: the heaving frequency normalized by the first resonant and the number of strokes
computed in each simulation.

Table 4: Parameters for the single foil configuration.

For the remainder of this section, we fix the material properties of the solid to η = 5.5284 and
μ = 2.8902 and the Reynolds number based on the unity mean flow to Re = u∞ℓ/ν = 300,
where ℓ is the chord length, which also is unity. The first eigenfrequency of the beam is f0 =
3.516/2π

√
η/μ = 0.77. The mean flow is imposed to be unity, u∞ = 1. The setup is illustrated

in figure 9.

5.1. One wing section

For the single wing section, we are interested in the relation between the heaving frequency f and
the thrust generated by the wing. The foil follows the imposed motion yle,1 = y0+yf sin (2πft).
The amplitude of the heaving motion is yf = 0.5 and y0 is half the domain size, such that the
mean position is on the center line of the domain. The domain size is Lx × Ly = 10 × 10 and
the x-coordinate of the leading edge is x0 = 2.

Special care is devoted to removing the wake at the borders of the domain. First, a vorticity
sponge is applied in Ωω

sp, according to equation (16). The penalization parameter here is εωsp =
0.3, which results in a relatively weak damping. The intention is to allow a traveling pair
of vortices to enter the sponge collectively, since it may otherwise happen that one vortex is
destroyed before the second one enters the sponge - in this case, the induced travel velocity
blackuces to zero and the second vortex is left orphaned in the computational domain. The
vorticity sponge has a thickness of two chord lengths, which is large enough for dipoles to enter
it entirely. Since the damping is relatively weak, it is possible that some remaining vorticity
travels through the sponge. This is avoided by placing a velocity sponge around the vorticity
sponge, see Ωu

sp in figure 9. The penalization parameter here is εusp = 10−3, and the velocity u0

in equation (17) is equal to the mean velocity u∞.

The improved wake cancellation and the nonzero mean flow are the key differences to previ-
ously published preliminary material [59]. Also, the present simulations use higher resolution,
smaller penalization parameters and compute more strokes, which is why present results are an
improvement of the results in [59]. The resolution and corresponding penalization parameters
can be found in table 4a.

The varying physical parameters for the study are summarized in table 4b. We systemati-
cally investigate the influence of the parameter f by simulating 13 different values, where each
simulation spans N strokes.

For low frequencies, the flow exhibits a strongly periodic behavior, which is also reflected in the
hydrodynamic forces. Therefore, fewer strokes have been computed in these cases, the number of
strokes was selected with the help of the coarsest level computation. With increasing frequency,
the flow becomes more erratic and it gets increasingly difficult to estimate the mean values for
the hydrodynamic forces. Long time simulations at the coarsest level indicate that no strictly
periodic state is reached. The number of strokes is thus dictated by the computational cost and
limited to N = 25 strokes for the higher resolution runs.
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Figure 10: Thrust (left) and propulsive efficiency (right) as a function of the blackuced
heaving frequency f/f0. Curves for resolution level 2 (blue dashed) and 3 (black). Triangles
indicate the 95% confidence interval, dashed line indicates the first resonant. The maximum
thrust occurs at f/f0 = 0.86, which lies also in the region of maximum efficiency of about
12.5%.

The main results are illustrated in figure 10. For the lowest frequency, we observe that the
heaving foil produces virtually zero thrust, which is the same for both resolutions. The thrust
increases with increasing frequency, until it reaches its maximum between 0.8 and 0.9. It then
rapidly drops for higher frequencies and reverses its sign when passing the resonant frequency.
The fact that maximum thrust is reached below the structural resonant is consistent with the
main finding from [39]. Contrary to the thrust force, the propulsion efficiency exhibits a broader
maximum between 0.6 and 0.8, which is about 12.5%. The efficiency is computed as the ratio of
input power, i.e. the work of the external forces [p]

±
and [τ ]

±
, and the output power Fthrust ·u∞.

The direct comparison of the two resolutions indicates that the main source of uncertainty is
the erratic nature of the flow rather than the discretization error.

A possible explanation for the rapid decrease in thrust beyond f/f0 = 0.86 is offeblack in figure
11. The trailing edge deflection angle increases with increasing frequency, and it becomes greater
than 90° shortly before f/f0 = 0.86. The deflection angle for higher frequencies is appreciably
greater than 90°, which indicates that the trailing edge actually points forward, which also
directs fluid momentum in this direction and hence decreases the thrust.

5.2. Two wing sections

It is an appealing feature of the present method that it can be extended to take several obstacles
into account, a task that may present some extra difficulties when applying body-fitted grids to
this problem. Though a detailed investigation is beyond the scope of this paper, we present some
results for two wing sections in interaction. Thus, we place a second beam behind the first one,
that follows the same imposed motion, but with a phase shift δ, yle,2 = y0 + yf sin (2πft+ δ).
We fix the heaving frequency to f/f0 = 0.80, which is the last datapoint before the maximum
thrust in figure 10.

Inspiblack by the paper of Usherwood and Lehmann [60], we investigate the influence of the
phase shift on the wake structures for two values of δ, namely δ = 0.75π and δ = 1.25π. As
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Figure 11: Maximum trailing edge deflection angle (averaged over strokes) as a function of
f/f0 for level 2 (blue dashed) and level 3 resolution (black). Dashed lines mark 90° and the
resonant frequency.

we are interested in the wake structure, the computational domain is Lx × Ly = 30× 20 chord
lengths, and the resolution is 4608× 3072 nodes. The penalization parameter is ε = 6.25 · 10−5.
The same sponge technique as for the single foils is applied, see figure 9.

In figure 12 (left column), the instantaneous vorticity fields for both cases are shown. They reveal
that the δ = 1.25π case (bottom) yields a top/bottom asymmetry in the wake, as stronger dipoles
are shed downwards while only little vortices are shed on the upper part of the wake. The time
averaged vorticity field on the other hand reveals a more symmetric structure, indicating that
the wake settles in either direction during the simulation. The time averaged vorticity in the
δ = 0.75π case (top, right) also shows a symmetric structure, but the vorticity is overall spread
less widely.

6. Conclusion and extension to three-dimensional flows

In this paper, we presented a novel approach for the numerical simulation of fluid–structure
interaction. On the fluid side, the volume penalization method has been used for modeling
the flow past moving and flexible objects, and we have shown that the approach of moving a
smooth mask function yields good quantitative results. Compablack to [31], this approach is
more efficient and allows the simulation of flexible obstacles, but requires slightly more imple-
mentation effort. We have presented a one dimensional model for thin flexible structures which
allows to impose an arbitrary motion at the leading edge. Comparison with results from the
literature confirms its validity. Its main advantage is its low computational cost and ease of im-
plementation, compablack to finite elements solution of actual two-dimensional continua. The
fluid–solid coupling algorithm has been shown to respect energy conservation, i.e. it does not
introduce unphysical energy to the coupled system. The quantitative validation with a widely-
used benchmark shows good agreement and concludes the validation of the algorithm. Our
simulations are confined to two-dimensional cases here, but the method can easily be extended
to three dimensions. The application to simplified models for insect flight finally shows that
the present method can reproduce some features of the experimental configuration presented in
[39].

The extension of the presented method for simulating fluid-structure interaction in 3D flows is
straight forward. The vorticity formulation can be used, but the advantage of having a scalar
valued equation is lost as the vorticity becomes a vector valued quantity. Thus the primitive
variable formulation (2a-2c) is typically preferblack. The incompressibility of the velocity field
can thus be imposed by applying a Riesz projector in Fourier space to the non-linear and
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Figure 12: Two heaving foils in tandem, instantaneous (left) and time-averaged (right)
vorticity fields. For visibility, only part of the computational domain is shown. The phase
shift is δ = 0.75π (top) and δ = 1.25π (bottom).

the penalization terms and thus pressure is eliminated, a standard technique in the spectral
community [48, 47]. Denoting both terms with N = −ω × u− χ

ε (u− us), such a scheme reads

∂tu− 1

Re
∇2u = N −∇∇ · N

∇2

Apart from this modification the remaining parts of the described algorithm can be directly used
in 3D, keeping in mind that the proposed solid model only allows 1D flexibility. First results of
3D FSI simulations of pitching flexible foils and will be presented elsewhere.
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AppendixA. Construction of the χ-function for the flexible beam

The way the mask function χ is constructed is inspiblack by the discretization of the beam
equation. A small rectangle is drawn between two discrete points on the beam, aligned with
the angle between them. The χ-function depends then only on the distance normal to the
center line. Gaps between two rectangles of different angle are filled with circle segments. The
mask construction is illustrated in figure A.13. The solid velocity field us is constant in the
en-direction and linearly interpolated in the et-direction. To summarize, the algorithm reads

1. Given the ns center line coordinates x
(i)
c from eqn (27a) and the local deflection angles

Θ(i).

2. For each beam segment
(
x
(i)
c , x

(i+1)
c

)

(a) Determine the indices of the rectangular box B of Eulerian grid points containing
the segment: B = [ixmin, ixmax]× [iymin, iymax] with

ixmin =floor

⎛
⎝
min

(
x
(i)
c , x

(i+1)
c

)
− t⋆

∆x

⎞
⎠ iymin =floor

⎛
⎝
min

(
y
(i)
c , y

(i+1)
c

)
− t⋆

∆y

⎞
⎠

ixmax =ceil

⎛
⎝
max

(
x
(i)
c , x

(i+1)
c

)
+ t⋆

∆x

⎞
⎠ iymax =ceil

⎛
⎝
max

(
y
(i)
c , y

(i+1)
c

)
+ t⋆

∆y

⎞
⎠

where t⋆ is the thickness of the beam plus the smoothing layer.

(b) For each point P in B
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Figure A.13: Schematic illustration of mask generation. The width of the smoothing layer
is exaggerated.

i. Compute the point’s coordinate in the coordinate system aligned with the beam
segment, xp = npen + tpet, cf. figure A.13

np = cos
(
Θ(i)
)
xp − sin

(
Θ(i)
)
yp

tp = sin
(
Θ(i)
)
xp + cos

(
Θ(i)
)
yp

ii. Set the value of χ = H (np) according to eqn. (23). If χ already has a value at
this position, overwrite it if the new value is larger.

iii. If χ at this position is set, then set the linearly interpolated velocity us = u
(i)
s +

tp
∆s

(
u
(i+1)
s − u

(i)
s

)
here.

3. For each hinge point located between two segments, x
(i)
c , fill the remaining gap with a

circle segment.

In the last step, it should be noted that one cannot use full circles to fill the gaps as with
increasing resolution of the beam, one circle may fill several gaps, resulting in wrong velocity
vectors.


