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Abstract

We present an adaptive multiresolution method for the numerical simulation
of ideal magnetohydrodynamics in two space dimensions. The discretiza-
tion uses a finite volume scheme based on a Cartesian mesh and an explicit
compact Runge–Kutta scheme for time integration. Harten’s cell average
multiresolution allows to introduce a locally refined spatial mesh while con-
trolling the error. The incompressibility of the magnetic field is controlled
by using a Generalized Lagrangian Multiplier (GLM) approach with a mixed
hyperbolic–parabolic correction. Different applications to two-dimensional
problems illustrate the properties of the method. For each application CPU
time and memory savings are reported and numerical aspects of the method
are discussed. The accuracy of the adaptive computations is assessed by

Email addresses: annakfg@gmail.com (Anna Karina Fontes Gomes),
margarete@lac.inpe.br, margarete.oliveira.domingues@gmail.com (Margarete
Oliveira Domingues), kschneid@cmi.univ-mrs.fr (
Kai Schneider), odim@dge.inpe.br,o-mendes@hotmail.com (Odim Mendes),
ralf.deiterding@dlr.de (Ralf Deiterding)

1

http://arxiv.org/abs/1508.02600v1


comparison with reference solutions computed on a regular fine mesh.

Keywords: Magnetohydrodynamics, Multiresolution Analysis, Finite
Volume, Divergence Cleaning

1. Introduction

The magnetohydrodynamic (MHD) equations, which consist of the com-
pressible Euler equations of hydrodynamics coupled with the Maxwell equa-
tions of electrodynamics, are used for mathematical modeling of numerous
phenomena encountered in our daily life. Prominent examples can be found
in the physics of the Sun-Earth’s electrodynamical interaction chain, and in
the dynamo action caused by motion of liquid metal inside the mantle of
the Earth, which generates its magnetic field. The numerical challenge for
solving the ideal MHD equations, a coupled set of nonlinear Partial Differ-
ential Equations (PDEs), is the presence of multiple spatial and temporal
scales. The complex character of boundary conditions of the magnetic field,
in comparison to that one for the classical hydrodynamics, requires even more
sophisticated approaches. In a surrounding vacuum, for example, the mag-
netic field does not vanish, it only decays. Thus, at the boundary it has to be
matched with the field of the fluid region. A second difficulty is to maintain
the incompressibility of the magnetic field numerically, which is imposed by
Gauss’ law. Therefore, in the numerical simulations, special attention has to
be paid to this incompressibility, because, as shown in practice, uncontrolled
divergence errors can modify the underlying physics. For details we refer
the reader to, e.g., [2, 4, 26, 29]. Typically, projection methods based on
the Helmholtz decomposition are used. These methods are computationally
demanding, especially in three-dimension, because the solution of an elliptic
problem requires a Poisson equation solver. An alternative method is the
divergence cleaning one, which is based on Lagrangian multipliers. In the
finite element context, Assous et al. [1] introduced this approach for time-
dependent Maxwell equations. Several variants can be found in the literature
[2, 4, 25, 29].

In the current paper we apply the multiresolution approach to an ideal
MHD numerical model called the Generalized Lagrange Multiplier (GLM)
with a mixed hyperbolic-parabolic correction proposed by Dedner et al. [6]
to deal with the magnetic field incompressibility condition. The ideas of the
Lagrangian multiplier formulation in this context were introduced by Munz et
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al. [24] in the context of Maxwell equations. With the motivation to reduce
CPU time and memory requirements, we use an auto-adaptive discretiza-
tion which is based on the multiresolution representation. The underlying
time dependent conservation laws are discretized with finite volume schemes
and local grid refinement is triggered by multiresolution analysis of the cell
averages and thresholding of the resulting coefficients. The adaptive refine-
ment/mesh tracks steep gradients in the solution of the equation and allows
automatic error control. For reviews on multiresolution techniques for PDEs
we refer to [17, 18, 23, 13] and references therein.

Preliminary results for a quasi-one dimensional MHD Riemann problem
with exact solution have been presented in [10], which showed the feasibil-
ity of using adaptive discretizations and magnetic field divergence cleaning
for extended GLM–MHD with local and controlled time methods. In its
extended form, source terms similar to those in [25] are introduced. The
starting point is the adaptive multiresolution code originally developed by
Roussel et al. [27] in which the Maxwell equations governing the magnetic
field have been included [16]. In the present work, we have chosen the GLM–
MHD approach instead of its extended version, because the divergence errors
and the solution obtained for both cases are almost the same for the studied
problem. A similar choice is suggested in the conclusion in [6]. The resulting
new method has been applied to a two-dimensional Riemann test problem,
for which a reference solution on a fine grid has been computed. The ac-
curacy of the adaptive computations has been assessed and their efficiency
in terms of memory compression compared to a finite volume scheme on a
regular grid has been analyzed.

The paper is organized as follows: After a presentation of the governing
ideal MHD equations in Section 2, we recall the divergence cleaning tech-
nique based on the GLM formulation in Section 3. In Section 4 space and
time discretizations are briefly described together with the GLM discretiza-
tion. In Section 5, numerical results are presented. In the last section, some
conclusions are drawn and perspectives for future work are presented.

2. Governing equations

The ideal magnetohydrodynamics equations describe the dynamics of a
compressible, inviscid and perfectly electrically conducting fluid interacting
with a magnetic field, see, e.g. [15]. The equations combine the Euler equa-
tions with the Maxwell equations. The latter yields an evolution equation for
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the magnetic field, also called induction equation, and an incompressibility
constraint using Gauss’ law. The system of MHD equations is given by

∂ρ

∂t
+∇ · (ρu) = 0, (Mass conservation) (1a)

∂E

∂t
+∇ ·

[(

E + p+
B ·B
2

)

u− (u ·B)B

]

= 0, (Energy conservation) (1b)

∂ρu

∂t
+∇ ·

[

ρut
u+

(

p+
B ·B
2

)

I−B
t
B

]

= 0, (Momentum conservation) (1c)

∂B

∂t
+∇ ·

(

u
t
B−B

t
u
)

= 0, (Induction equation) (1d)

where ρ represents density, p the pressure, u = (ux, uy, uz) the velocity vec-
tor, B = (Bx, By, Bz) the magnetic field vector, and t denotes the transposi-
tion. The identity tensor of order 2 is denoted by I (the unit dyadid, that here
corresponds to the unit matrix 3× 3), and γ the adiabatic constant (γ > 1).
The pressure is given by the constitutive law p = (γ − 1)

(

E − ρu·u

2
− B·B

2

)

.
The above system is completed by suitable initial and boundary conditions.
In this paper this system is considered in its two-dimensional form, i.e., the
quantities depend on two variables only (x and y).

In this classical MHD model, the magnetic field has to satisfy the diver-
gence constraint

∇ ·B = 0. (2)

which implies the non-existence of magnetic monopoles. By rewriting the

induction equation, we have
∂B

∂t
+∇ × (B× u) = 0. Therefore, the appli-

cation of the divergence operator yields
∂

∂t
(∇ ·B) = 0, as ∇ · (∇× ) ≡ 0.

This formulation shows that if the initial condition of the magnetic field is
divergence-free, the system will remain divergence-free along the evolution.
However, numerically the incompressibility of the magnetic field is not nec-
essarily preserved, and thus, non-physical results could be obtained or the
computations may even become unstable [4]. Since the 1980ies typical nu-
merical MHD methodologies consider the enforcement of the divergence-free
constraint. There are many techniques to perform the divergence cleaning
in the MHD numerical models [30]. In the context of this study, we have in
mind the application of the multiresolution method based on a finite volume
discretization with explicit time integration. Thus, the technique developed
in Dedner et al.[6] called GLM–MHD with the mixed parabolic-hyperbolic
correction, is well suited. Details are given in the next section.
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3. Generalized Lagrangian multipliers for divergence cleaning

Dedner et al. [6] proposed the GLM formulation with the hyperbolic-
parabolic correction. Its implementation into a pre-existing MHD model is
straightforward. An additional scalar field ψ is introduced, which couples the
divergence constraint equation (Eq. 2) to Faraday’s law, modifying the in-
duction equation (Eq. 1d). Moreover, some source terms are added similarly
to what was proposed in [25]. The model contains one parameter related
to the hyperbolic correction, namely ch, responsible for the propagation of
the divergence errors, and another one related to the parabolic correction cp,
responsible for the damping of the monopoles. The remaining terms in the
equations remain unchanged. The conservative characteristic of this system
is not lost for the GLM approach.

The resulting GLM–MHD equations written in two-dimensional form read

∂ρ

∂t
+
∂ρux
∂x

+
∂ρuy
∂y

= 0, (3a)

∂E

∂t
+

∂

∂x

[(

E + p+
B ·B
2

)

ux − (u ·B)Bx

]

+

∂ρ

∂y

[(

E + p+
B ·B
2

)

uy − (u ·B)By

]

= 0, (3b)

∂ (ρux)

∂t
+

∂

∂x

[

ρu2x + p

(

p+
B ·B
2

)

−B2
x

]

+
∂

∂y
(ρuxuy −BxBy) = 0,(3c)

∂ (ρuy)

∂t
+

∂

∂x
(ρuxuy−BxBy) +

∂

∂y

[

ρu2y + p

(

p+
B ·B
2

)

−B2
y

]

= 0,(3d)

∂ (ρuz)

∂t
+

∂

∂x
(ρuzux −BzBx) +

∂

∂y
(ρuzuy −BzBy) = 0, (3e)

∂Bx

∂t
+
∂ψ

∂x
+

∂

∂y
(uyBx −Byux) = 0, (3f)

∂By

∂t
+

∂

∂x
(uxBy −Bxuy) +

∂ψ

∂y
= 0, (3g)

∂Bz

∂t
+

∂

∂x
(uxBz −Bzux) +

∂

∂y
(uyBz −Byuz) = 0, (3h)

∂ψ

∂t
+ c2h

(

∂Bx

∂x
+
∂By

∂y

)

= −c
2
h

c2p
ψ, (3i)

where B ·B = B2
x + B2

y + B2
z , u ·B = uxBx + uyBy + uzBz, cp and ch are

5



the parabolic-hyperbolic parameters, with ch > 0. In [6] it is defined as

ch = ch(t) := cCFL

min{∆x,∆y}
∆t

,

where cCFL ∈ (0, 1), ∆x and ∆y are the space step in x− and y−direction,
respectively, ∆t is the time step. If the parameter ch is defined, as for instance
in Eq. 3, then cp is a free parameter in Eq. 3i. We follow a choice proposed
in [6] to avoid that cp is strongly dependent on the mesh size and the scheme
used. Their numerical experiments showed that choosing c2p/ch = 0.18, mir-
rors properly the ratio between hyperbolic and parabolic effects. With this
choice in the one-dimensional case the damping of the divergence errors oc-
curs on the time scale cp

√
t and the transport of the divergence errors to the

boundary takes place on the time scale cht (as discussed in [6], Appendix
A.16 and A.19). However, other possible choices of these parameters can be
found in [31, 7] and for the CTU–GLM approach in [21].

Considering the vector of conservative quantities Q = (ρ, E, ρu,B, ψ),
the GLM–MHD system could be written compactly as

∂Q

∂t
+∇ · F(Q) = S(Q),

where F(Q) is the physical flux, and S(Q) contains all source terms.

4. Adaptive space and time discretization

A finite volume discretization of the GLM–MHD system is applied, which
results in a system of ordinary differential equations. Approximate solutions
at a sequence of time instants tn are obtained by using an explicit ordinary
differential equation solver. Here, an explicit Runge-Kutta scheme of second
order is used.

In the GLM–MHD Finite Volume (FV) reference scheme, we consider
the initial value of the variable ψ as zero. The parameter ch has a strong
influence in the correction. In each time step, we compute the parameter
ch, then the GLM–MHD system is solved. First, a dimensional splitting is
performed in x-direction, where the fluxes in the interface are treated and
the solution updated. This procedure follows the steps:

1. The component of the magnetic field Bx in the x-direction flux (Eq. 3f),
and the divergence constraint equation (Eq. 3i), are decoupled from the
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other variables. These two equations form the system

∂Bx

∂t
+
∂ψ

∂x
= 0, (4)

∂ψ

∂t
+ c2h

∂Bx

∂x
= −c

2
h

c2p
ψ, (5)

such that the local Riemann problem can be solved analytically, where
the numerical flux in the interface is (ψm, c

2
hBx,m) for Bx and ψ. Simi-

larly as what is described in [6], we have

(

Bx,m

ψm

)

=

(

Bx,L

ψL

)

+

(

1
2
(Bx,R − Bx,L)− 1

2ch
(ψR − ψL)

1
2
(ψR − ψL)− ch

2
(Bx,R − Bx,L)

)

(6)

where the sub-index L,R are related to the left or right-hand state.

2. Therefore, the numerical flux is evaluated in two steps. First we com-
pute the numerical flux not considering the Bx and ψ equations as
described above, then we add the numerical flux in the interface. In
this work, we use the Harten-Lax-van Leer-Discontinuities numerical
flux (HLLD) with four intermediary states Q⋆

L, Q
⋆⋆
L , Q⋆⋆

R and Q⋆
R, di-

vided by the waves with speed SL, S
⋆
L, SM , S⋆

R e SR, as discussed in
the Appendix A. The states Q⋆ and Q⋆⋆ are defined as

Q⋆
α = (ρ⋆α, E

⋆
α, ρ

⋆
αu

⋆
α,B

⋆
α, ψ

⋆
α) and Q⋆⋆

α = (ρ⋆⋆α , E
⋆⋆
α , ρ

⋆⋆
α u⋆⋆

α ,B
⋆⋆
α , ψ

⋆⋆
α ),

with α denoting left (L) or right (R) states.

3. The same procedure is done for By in the y-direction.

4. The computed values of ψ are used to update the mixed correction

source term for ψn+1, computing ψn+1 = exp
(

−∆tn
c2
h

cp2

)

ψ.

The adaptive Multiresolution (MR) method of the present paper has been
designed to speed up finite volume schemes for conservation laws. In the fol-
lowing, a brief summary of this technique is given. For a detailed description
of these strategies, we refer to [27, 14, 12, 11, 13].
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The key ingredient of MR schemes is the decay properties of the wavelet
coefficients of the numerical solution. The decay rate indicates the local
regularity of the solution. In regions where the solution is smooth the coeffi-
cients are of small magnitude and thus coarser meshes can be used. In regions
where the coefficients are significant the numerical solution is less smooth and
strong gradients or even jumps are present and a fine mesh must be used [5].
Stopping the refinement in a cell at a certain scale level, where the wavelet
coefficients are non-significant leads to an adaptive MR representation.

For a finite volume scheme the uniform cell-average representation is re-
placed by cell-averages on an adaptive locally refined mesh, which is formed
by the cells whose wavelet coefficients are significant and above a given
threshold. An example of an adaptive Cartesian mesh is presented in Fig. 1.
In MHD solutions localized structures are present, such as discontinuities or

Figure 1: Example of a zoom in a dyadic adaptive Cartesian mesh. Regions where the
mesh is refined are associated with detected structures in the solution, i.e., where the
wavelet coefficients are significant.

shocks. They could appear in different space positions in different variables.
Thus, the adaptive mesh of the MHD system is a union of the individual
adaptive meshes of each quantity.

Tree structures are the natural way to store the reduced MR data. Mesh
adaptivity is then related to an incomplete tree and the refinement can be
interrupted at intermediate scale levels. In other words, using the tree ter-
minology, a MR mesh is formed by leaves, which are nodes without children.
These leaves correspond to the cell which is being evolved in time. In sum-
mary, there are three steps in the application of a MR scheme: refinement,
evolution, and coarsening. The refinement operator accounts for possible
translations of the solution or the creation of finer scales in the solution be-
tween two subsequent time steps. Since the localized structures and thus the
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local regularity of the solution may change with time, the MR mesh at time
tn may not be sufficient any more at the next time step tn+1. Hence, before
evolving the solution in time, the representation of the solution should be
interpolated onto an extended mesh that is expected to be a refinement of
the adaptive mesh at tn, and to contain the adaptive mesh at tn+1. After
that, the time evolution operator is applied to the leaves of the extended
mesh. The numerical fluxes between cells of different levels are computed by
adding extra cells, called virtual leaves, which will however not be used in
the time evolution. Conservation is ensured by the fact that the fluxes are
always computed on a higher level, the value being projected onto the leaves
of a lower level. Then, wavelet thresholding is applied in order to unrefine the
cells in the extended grid (coarsening) that are not necessary for an accurate
representation of the solution at tn+1. This data compression is based on
the definition of deletable cells, where the wavelet coefficients which are not
significant, i.e., their magnitudes are below a threshold parameter ǫℓ, where
ℓ denotes the cell scale level, are called deletable cells. The data compression
is the given by

Dc =

100
N
∑

i=1

Cn(i)

2LN
,

where N is the total number of iterations and Cn(i) is the number of cells
in the adaptive mesh at iteration i ∈ {1, · · · , N}. The number of cells on
the finest mesh is defined as 2L, where L the finest scale level. However, to
compute the flux in a conservative form, additional neighbor cells at the same
level are also necessary. These neighbor cells are not necessarily present on
the adaptive mesh. Thus, if this is the case, we add these neighbor cells to
the adaptive mesh, nevertheless they are not evolved in time. Therefore, the
memory ised is the sum of the cells of the adaptive mesh plus these neighbor
cells. More details in [28, 27].

In order to control the L1-norm, Harten’s thresholding strategy is used,
where

ǫℓ =
ǫ0

|Ω|2
d(ℓ−L+1), 0 ≤ ℓ ≤ L− 1, (7)

and d = 2 is the space dimension and, in this two-dimensional case |Ω| is the
area of the domain. Therefore, in the Harten’s strategy, we use a smaller value
of the parameter ǫ in the coarser scales than in fines scales. For comparison,
we shall also consider level independent threshold parameters: ǫℓ = ǫ, for all
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ℓ. Herein, the multiresolution analysis corresponds to a prediction operator
based on a third order polynomial interpolation on the cell-averages [27].
We recall that time integration is performed by a second order Runge–Kutta
scheme.

5. Numerical experiments

We present here a 2D Riemann numerical experiment to illustrate the
efficacy of our method compared to the traditional FV scheme. For the 2D
Riemann initial condition we have used the values of the MHD variables
presented in Table 1. The computational domain is [−1, 1] × [−1, 1] and
Neumann boundary conditions have been applied. This example is proposed
in [6], except for the boundary condition.

We have also chosen γ = 5/3, the final time of computations t = 0.1 and
t = 0.25, the CFL parameter CCFL = 0.3 and c2p/ch = 0.18. We have tested
ǫℓ = ǫ = 0.010, 0.008, 0.005 and Equation 7 with ǫ0 = 0.05, 0.03, 0.01.

The reference GLM–MHD FV code used in this work has been developed
in C++ language, inspired by the Fortran code developed by [9], including
an upgrade and new features for the implementation of the numerical flux
HLLD. The GLM–MHD MR code developed in [16] is based on the hydrody-
namics MR Carmen code developed in [27, 28].The implementation has been
optimized improving the momory allocation and unrolling the for-loops for
the allocation of the variables. The CPU is improved about a factor 4for the
test case studied here with L = 8 adaptive scales and ǫ0 = 0.01.

For the numerical error analysis we have used a reference solution com-
puted with a GLM–MHD FV scheme with L = 11 scales using the same
numerical scheme in space, implemented in the AMROC code [8] which is
parallelized. We computed the L1-error for the density solution (Le

1(ρ)). The
CPU time for the MHD-FV reference is obtained with another code that is
not parallel.

The reference solution and numerical MR solutions for ǫ0 = 0.01 and
L = 10 at t = 0.1 are presented in Figs. 2 and 3, respectively. For a later
time t = 0.25, the numerical MR solution with L = 9 is presented in Fig. 7. In
the solutions, we can observe that the structures are not always aligned, e.g.,
we can see a structure that appears in the density but not in the y-component
of magnetic field in the right part of the domain. In this region, the latter
variable is almost constant. This is expected because in plasma processes
the discontinuities may not necessarily occur at the same position for all
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Table 1: Initial condition of the 2D Riemann problem. The domain is [−1, 1] × [−1, 1]

with Neumann boundary conditions and γ =
5

3
.

x > 0

y < 0 y > 0

ρ ρ ux ρ uy ρ uz ρ ρ ux ρ uy ρ uz
1.0304 1.5774 -1.0455 -0.1016 0.9308 1.4557 -0.4633 0.0575
E Bx By Bz E Bx By Bz

5.7813 0.3501 0.5078 0.1576 5.0838 0.3501 0.9830 0.3050

x < 0

y < 0 y > 0

ρ ρ ux ρ uy ρ uz ρ ρ ux ρ uy ρ uz
1.0000 1.7500 -1.0000 0.0000 1.8887 0.2334 -1.7422 0.0733
E Bx By Bz E Bx By Bz

6.0000 0.5642 0.5078 0.2539 12.999 0.5642 0.9830 0.4915

quantities. TheBx component and p (not shown here) have a similar behavior
as ρ, and the uz component has a similar behavior as Bz. These observations
are expected and they increase the number of cells in the adaptive mesh in
the MHD case compared to hydrodynamic case. Fig. 4 presents an example
of the adaptive mesh with ǫ0 = 0.01 for the initial, intermediate and final
computational time. We can observe that the adaptive meshes represent all
the structures present in the solutions.

Using the GLM–MHD with the mixed correction, the divergence of the
magnetic field is not necessarily zero. However, this correction improves the
convergence of the numerical solution of the MHD system to the expected
physical solution, as discussed in [6]. Fig. 5 presents∇·B for the FV reference
for L = 11 and two MR solutions for L = 10 with ǫ0 = 0.01 at time t = 0.1
and ǫ0 = 0.05 at time t = 0.25. We observe that the maximum values of
divergence are in the front transition regions, near the central part of the
domain.

To check the time evolution of the divergence of the magnetic field, we
consider the quantity

Bdiv(t) := max{|∇ ·B| : (x, y) ∈ [−1, 1]2},

where ∇ ·B is again evaluated using centered finite differences. Fig. 6 shows
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the time evolution of Bdiv(t) up to t = 0.1 for the FV reference solution
with L = 11 (d) and three series of MR computations with L = 8, 9, 10 (a,
b, c) considering the following threshold, values ǫ = 0, 0.010, 0.008, 0.005
and ǫ0 = 0.050, 0.030, 0.010. For the reference solution we observe a rapid
decay of the initial value, around 37, during the first iterations, followed by
a relaxation towards the value 3 which is reached at about 0.04. Afterwards,
this value remains almost constant. For the MR computations we find that
not only the initial but also the relaxation values of Bdiv(t) depend on the
finest level L, and hence on the mesh size. For larger values of L the di-
vergence becomes larger but in all cases we find that after a certain time
Bdiv(t) becomes constant or oscillates around a mean value. Using Harten’s
strategy with ǫ0 these oscillations almost disappear. In Fig. 8 we consider
the evolution of Bdiv(t) for longer times, up to t = 0.25, in MR cases with
L = 9 for ǫ = 0 and 0.005, and ǫ0 = 0.05. After t = 0.1 no oscillations can
be observed for ǫ = 0, while for both ǫ0 = 0.05 and ǫ = 0.005 again some
oscillations appear.

One main conclusion in analyzing Bdiv(t) for the different cases is that
no growth in time can be observed, thus the divergence error seems to be
controlled by the divergence cleaning, as discussed in [20].

Considering the conservative quantities [32], we compute the energy,

E =

∫ ∫

(

|u|2 + |B|2
)

dxdy,

and find the value 3.69 at the initial time. At time t = 0.1 we find for all
FV solutions with L = 8, 9 and 10 the value 3.48. For the MR computations
we obtain 3.46, 3.47 and 3.48 for L = 8, 9 and 10, respectively. These results
are independent of the actual value of the threshold (ranging from 0.01 down
to 0) and there is no significant influence if a fixed or level dependent value
is used. This means that in all computations about 94% of the energy is
conserved. At a later time, t = 0.25, we observe some decay, but still about
86% of the energy is conserved.

The total magnetic helicity is also a conservative quantity of the ideal
MHD equations [3] and we consider its time rate of change, defined as,

∂H

∂t
= a

∫ ∫

B · (u×B)dxdy.

As shown in Fig. 8, right, the reference solution conserves perfectly the
total magnetic helicity and ∂H ∂t yields values close to the machine precision.
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For the three MR solutions there is an initial peak at about 4 · 10−12 which
immediately decays to near zero machine precision, and remains zero for
ǫ = 0. For the two others threshold values some intermittent spikes with
amplitude below 2 · 10−13 are observed.

ρ By

uy uz

Figure 2: FV reference solution for the 2D Riemann problem using GLM–MHD with
mixed correction. Shown are variables ρ, By, uy and uz obtained at time t = 0.1 and
L = 11.

Table 2 presents a summary of the CPU time, memory compression,
Dc and Le

1(ρ) for all experiments at time t = 0.1. For ǫℓ = ǫ = 0.005
and ǫ0 = 0.05 the results are close, independent of the maximum level L.
However, the case ǫ = 0.005 has slightly better CPU time and memory
compression with respect to Le

1(ρ). In these cases, for L = 10, the CPU time
are 7 − 14% and the errors are approximately 10−2. As expected, the error
increases for a scale-independent threshold ǫℓ = ǫ with ǫ being large, because
it does not control well the error. However, as we decrease the value of ǫ,
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ρ By

uy uz

Figure 3: MR solutions with ǫ0 = 0.01 for the 2D Riemann problem using GLM–MHD
with mixed correction. Shown are variables ρ, By, uy and uz obtained at time t = 0.1 and
L = 10.

the error becomes smaller. Thus, the choice of ǫ is an important ingredient.
We can observe that if we choose a sufficiently small ǫ, both strategies will
have similar behavior. However, we can optimize this process using Harten’s
strategy, which corresponds to a level dependent ǫ.

In Table 3 we show the CPU time, memory compression, Dc, and L
e
1(ρ)

for all experiments done at time t = 0.25. We present the simulations for
ǫℓ = ǫ = 0.005 and ǫ0 = 0.05. The results at t = 0.25 show that the
MR approach does not introduce growing instabilities and it is possible to
compute the solution for larger values of t.
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Figure 4: Cell midpoints of the adaptive mesh L = 10 of the MR computation for the 2D
Riemann problem using GLM–MHD with mixed correction at time t = 0 with 2.30% of
the cells, at t = 0.1 with 26.65% and ǫ0 = 0.01; and at time t = 0.25 with 18.37% of cell
and ǫ0 = 0.05.

(a) (b) (c)

Figure 5: Values of ∇ · B for the 2D Riemann problem obtained with: (a) FV reference
scheme using GLM–MHD with mixed correction for L = 11; and (b) MR scheme with
ǫ0 = 0.01 using GLM–MHD with mixed correction for L = 10 at time t = 0.1; and (c)
MR scheme with ǫ0 = 0.05 using GLM-MHD with mixed correction for L = 10 at time
t = 0.25. Note that the values of this quantity are mesh-dependent.
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Figure 6: The quantity Bdiv(t) over time for the 2D Riemann problem, with: (a, b, c)
GLM–MHD with mixed correction using the MR scheme with ǫℓ = ǫ = 0.010, 0.008, 0.005
and ǫ0 = 0, 0.05, 0.03, 0.01 for L = 8, 9, 10; (d) GLM–MHD with mixed correction using
the FV scheme for the reference solution with L = 11.
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Table 2: CPU time, memory, Dc, and density error Le
1(ρ) for the 2D Riemann prob-

lem computed with MR scheme using GLM–MHD with mixed correction and either with
constant or level dependent threshold for t = 0.1.

L = 8
MR FV

ǫℓ = ǫ ǫ0

0.01 0.008 0.005 0.05 0.03 0.01
CPU Time (%) 22.74 23.47 24.55 26.71 27.80 30.33 100

CPU Memory (%) 44.18 45.38 47.70 51.03 53.12 56.47 100

Dc (%) 29.74 30.67 32.50 34.94 36.60 39.28 100

Le
1(ρ) · 10−2 3.680 3.669 3.657 3.657 3.652 3.651 3.640

L = 9
MR FV

ǫℓ = ǫ ǫ0

0.01 0.008 0.005 0.05 0.03 0.01
CPU Time (%) 13.63 14.66 15.91 17.67 19.00 20.46 100

CPU Memory (%) 27.03 28.79 31.24 34.34 36.01 39.20 100

Dc (%) 17.70 18.97 21.01 23.51 24.92 27.42 100

Le
1(ρ) · 10−2 2086 2.039 1.981 1.974 1.958 1.953 1.9409

L = 10
MR FV

ǫℓ = ǫ ǫ0

0.01 0.008 0.005 0.05 0.03 0.01
CPU Time (%) 7.73 8.71 9.85 12.00 13.03 14.67 100
CPU Memory 14.66 16.02 18.82 22.40 24.46 27.48 100

Dc (%) 9.25 10.07 12.01 14.66 1649 19.25 100

Le
1(ρ) · 10−2 1.090 1.031 0.932 0.905 0.895 0.851 0.841

NOTE: The results are computed with second order Runge-Kutta for the MR scheme.

The CPU time for the GLM–MHD FV method is 277 sec., 2326 sec. and 314 min., for

L = 8, 9 and 10, at a Intel(R) Xeon(R) CPU E5620 2.40GHz, CPU 1596 MHz, cache size

12288 KB and 4 cores. CPU time, memory and Dc performances are computed with the

corresponding non-adaptive FV solution using L = 8, 9 and 10 scales on a uniform level.

For the error, in all cases, we use a reference solution computed with a GLM–MHD FV

scheme with L = 11 for the same numerical scheme, implemented in the AMROC code

[8].
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Figure 7: MR solution for the 2D Riemann problem using GLM–MHD with mixed cor-
rection for ǫ0 = 0.05. Shown are variables ρ, By, uy and uz obtained at time t = 0.25 and
L = 9.
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the 2D Riemann problem, obtained with GLM–MHD with mixed correction MR scheme
using ǫℓ = ǫ = 0, 0.005 and ǫ0 = 0.05 for L = 9 and for reference solution.

Table 3: CPU time, memory, Dc, and density error Le
1(ρ) for the 2D Riemann problem

simulated with the MR scheme using GLM–MHD with mixed correction and with constant
or level dependent threshold for t = 0.25

L = 9
MR FV

ǫℓ = 0.005 ǫ0 = 0.05
CPU Time (%) 18.79 22.61 100
Memory (%) 38.12 45.25 100

Dc (%) 23.80 29.03 100

Le
1(ρ) · 10−2 3.887 3.826 3.694
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6. Conclusions and perspectives

Starting from the ideal MHD equations completed with generalized La-
grangian multipliers to control the incompressibility of the magnetic field, we
have developed an adaptive multiresolution method in two space dimensions
on a Cartesian mesh with local refinement. The space discretization is based
on finite volumes with an HLLD numerical flux. For time integration an ex-
plicit Runge–Kutta scheme has been applied. To introduce a locally refined
spatial mesh and also for local interpolation of the flux values Harten’s cell
average multiresolution analysis has been used.

To assess the efficiency and quality of this new adaptive scheme, we have
considered a two-dimensional Riemann problem. We compared this numeri-
cal solution with adaptive MR results for different threshold values and two
strategies of varying resolution levels. The numerical results show that the
divergence cleaning can indeed work successfully with adaptive space dis-
cretizations. The MR method with constant thresholding exhibits better
CPU time performance but worse precision when compared to the level de-
pendent threshold. The only drawback with respect to the level dependent
threshold computations is that the number of cells on the adaptive mesh is
increased. We also observed that energy and time rate of change of mag-
netic helicity, both conserved quantities in the ideal MHD equations, remain
indeed approximately conserved in our adaptive MR computations.

In future work we plan to complete the adaptive method with time adap-
tivity using local and controlled time stepping and to perform thus fully
adaptive simulations in three space dimensions. A second interesting direc-
tion is to move to non-ideal MHD, taking into account resistive effects and
finite values of the fluid viscosity to study the physics of reconnection of
current sheets, especially in space physics applications.
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Appendix HLLD Riemann Solver

In the following solver, we consider the one-dimensional GLM-MHD equa-
tions in their primitive form

∂ρ

∂t
+
∂ρux
∂x

= 0, (8a)

∂E

∂t
+

∂

∂x

[(

E + p+
B

2

2

)

ux − (uxBx + uyBy + uzBz)Bx

]

= 0, (8b)

∂ (ρux)

∂t
+

∂

∂x

[

ρu2x + p+

(

B
2

2

)

−B2
x

]

= 0, (8c)

∂ (ρuy)

∂t
+

∂

∂x
(ρuxuy −BxBy) = 0, (8d)

∂ (ρuz)

∂t
+

∂

∂x
(ρuxuz −BxBz) = 0, (8e)

∂Bx

∂t
+
∂ψ

∂x
= 0, (8f)

∂By

∂t
+

∂

∂x
(uxBy −Bxuy) = 0, (8g)

∂Bz

∂t
+

∂

∂x
(uxBz −Bxuz) = 0, (8h)

∂ψ

∂t
+ c2h

∂Bx

∂x
= −c

2
h

c2p
ψ, (8i)

Considering the MHD system described above, we can obtain the Jacobian
matrix. From the structure of this matrix one can verify that the equations
of Bx and ψ can be decoupled from the remaining system and we can obtain
the Jacobian matrix for the 1D MHD system [6, p. 651-653]. The eigenvalues
of this matrix are ux, ux ± cs, ux ± ca and ux ± cf , where cs, cf are the slow
and fast magneto-acoustic waves and ca is the Alfvén wave.

The Harten-Lax-van Leer-Discontinuities (HLLD) solver for MHD was
firstly developed by Miyoshi and Kusano [22] and it can be considered as an
extension of the Harten-Lax-van Leer (HLL) solver presented in [19]. The
HLLD solver is based on four intermediary states Q⋆

L, Q
⋆⋆
L , Q⋆⋆

R and Q⋆
R,

divided by five waves SL, S
⋆
L, SM , S⋆

R and SR, as illustrated in Fig. 9. These
waves are related to the entropy, fast and Alfvén waves. The HLLD nu-
merical flux can resolve isolated discontinuities in the MHD system solution.
This solver preserves positivity and it is more robust and efficient than the
linearized solver, with an equally good resolution.
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The states Q⋆ and Q⋆⋆ for the GLM–MHD system are defined as

Q⋆
α = (ρ⋆α, E

⋆
α, ρ

⋆
αu

⋆
α,B

⋆
α, ψ

⋆
α) and Q⋆⋆

α = (ρ⋆⋆α , E
⋆⋆
α , ρ

⋆⋆
α u⋆⋆

α ,B
⋆⋆
α , ψ

⋆⋆
α ),

with α denoting left (L) or right (R) states. In this approach, we compute
the numerical flux for ψ directly, then we consider ψ⋆ = ψ⋆⋆ = ψ here in the
intermediary vector states, recalling that the HLLD is originally designed for
MHD system, where the vector state Q has not the variable ψ .

The numerical flux function is given by

FHLLD =







































FL, if SL > 0,

F⋆
L, if SL ≤ 0 ≤ S⋆

L,

F⋆⋆
L , if S⋆

L ≤ 0 ≤ SM ,

F⋆⋆
R , if SM ≤ 0 ≤ S⋆

R,

F⋆
R, if S⋆

R ≤ 0 ≤ SR,

FR, if SR < 0.

. (9)

The flux vectors FL = F(QL), FR = F(QR) are exact, while F⋆
L, F⋆

R

are approximate fluxes at intermediary states Q⋆
L, Q⋆

R, and F⋆⋆
L , F⋆⋆

R are
approximate fluxes at intermediary states Q⋆⋆

L , Q⋆⋆
R .

By the following process, we present the variables of the states Q⋆
α and

Q⋆⋆
α , allowing us to compute the HLLD flux in the intermediary states

F⋆
α = Fα + Sα (Q

⋆
α −Qα),

F⋆⋆
α = Fα + S⋆

αQ
⋆⋆
α − (S⋆

α − Sα)Q
⋆
α − SαQα,

(10)

where α = R and L denote right and left, respectively.
The following description of the HLLD flux is related to the x direction,

considering B⋆
x = B⋆⋆

x = Bx. In two-dimension, a similar expression can be
obtained in the y direction, considering B⋆

y = B⋆⋆
y = By.

There are different possibilities to approximate the propagation speeds
Sα; for instance, we use

SL = min(uL, uR)−max(cfL, cfR), SR = max(uL, uR)+max(cfL, cfR), (11)

where uα are the plasma velocities, cfα are the magnetic acoustic waves [25].
The choice of SM is made to estimate the average normal velocity and it is
given by

SM =
(SR − uxR

)ρR uxR
− (SL − uxL

)ρL uxL
− pTR

+ pTL

(SR − uxR
)ρR − (SL − uxL

)ρL
. (12)
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Figure 9: Schematic of the Riemann fan structure with four intermediate states used in
the HLLD flux. Adapted from [22].

The velocity is assumed to be constant over the Riemann fan, i.e.,

u⋆xL
= u⋆⋆xL

= u⋆⋆xR
= u⋆xR

= SM . (13)

The total pressure pT = p+ B·B
2

is kept constant,

p⋆TL
= p⋆⋆TL

= p⋆⋆TR
= p⋆TR

= p⋆T . (14)

Under these conditions tangential and rotational discontinuities can be formed
in the Riemann fan.

From the choice of SM , the pressure p⋆T can be written as

p⋆T =
(SR − uxR

)ρR pTL
− (SL − uxL

)ρL pTR

(SR − uxR
)ρR − (SL − uxL

)ρL

+
ρL ρR(SR − uxR

)(SL − uxL
)(uxR

− uxL
)

(SR − uxR
)ρR − (SL − uxL

)ρL
.

(15)

Given SM and p⋆T , the states Q⋆
α = (ρ⋆α, p

⋆
α, u

⋆
xα
, u⋆yα, u

⋆
zα
, B⋆

xα
, B⋆

yα
, B⋆

zα
)

are bordered by the states Qα and they can be obtained from the jumps
along Sα, where α = L or R represents the left or right state. Therefore, one
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can derive the variables of the states Q⋆
α as

ρ⋆α = ρα
Sα − uxα

Sα − SM

, (16a)

u⋆yα = uyα − BxByα

SM − uxα

ρα(Sα − uxα
)(Sα − SM)−B2

x

, (16b)

u⋆zα = uzα − BxBzα

SM − uxα

ρα(Sα − uxα
)(Sα − SM)−B2

x

, (16c)

B⋆
yα

= Byα

ρα(Sα − uxα
)2 −B2

x

ρα(Sα − uxα
)(Sα − SM)− B2

x

, (16d)

B⋆
zα

= Bzα

ρα(Sα − uxα
)2 −B2

x

ρα(Sα − uxα
)(Sα − SM)− B2

x

. (16e)

Consequently, we can compute E⋆
α

E⋆
α =

(Sα − uxα
)Eα − pTα

uxα
+ p⋆TSM +Bx(uα ·Bα − u⋆

α ·B⋆
α)

Sα − SM

. (17)

During the computations some operations as 0/0 can appear when SM =
uxα

, Sα = uxα
± cfα, Byα = Bzα = 0 and B2

x ≥ γpα. In these cases, we have
to replace u⋆yα = uyα, u

⋆
zα

= uzα, and B
⋆
yα

= B⋆
zα

= 0.
Similarly, it is possible to obtain the equations related to the states

Q⋆⋆
α = (ρ⋆⋆α , p

⋆⋆
α , u

⋆⋆
xα
, u⋆⋆yα, u

⋆⋆
zα
, B⋆⋆

xα
, B⋆⋆

yα
, B⋆⋆

zα
).

Due to the relation described by Eq. 13, starting with the jump condition
of the continuity equation over an arbitrary value S, where SL < S < SM or
SM < S < SR, we have

ρ⋆⋆α = ρ⋆α. (18)

The propagation velocities of the Alfvén waves in the intermediary states are
estimated by

S⋆
L = SM − |Bx|

√

ρ⋆L
, S⋆

R = SM − |Bx|
√

ρ⋆R
. (19)

Considering the jump conditions to the tangential components of the velocity
and magnetic field over SM , and if Bx 6= 0, we can obtain the following
relations

u⋆⋆yL = u⋆⋆yR ≡ u⋆⋆y , u⋆⋆zL = u⋆⋆zR ≡ u⋆⋆z , (20a)

B⋆⋆
yL

= B⋆⋆
yR

≡ B⋆⋆
y , B⋆⋆

zL
= B⋆⋆

zR
≡ B⋆⋆

z . (20b)
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If Bx = 0, it is impossible to calculate the remaining variables of the states
Q⋆⋆

α . Replacing Eqs. 18 – 20 into the integral conservation laws over the
Riemann fan, we can derive the variables

u⋆⋆y =
u⋆yL +

√

ρ⋆Ru
⋆
yR

+ (B⋆
yR

−B⋆
yL
)sign(Bx)

√

ρ⋆L +
√

ρ⋆R
, (21a)

u⋆⋆z =

√

ρ⋆Lu
⋆
zL

+
√

ρ⋆Ru
⋆
zR

+ (B⋆
zR

− B⋆
zL
)sign(Bx)

√

ρ⋆L +
√

ρ⋆R
, (21b)

B⋆⋆
y =

√

ρ⋆LB
⋆
yR

+
√

ρ⋆RB
⋆
yL

+
√

ρ⋆Lρ
⋆
R(u

⋆
yR

− u⋆yL)sign(Bx)
√

ρ⋆L +
√

ρ⋆R
, (21c)

B⋆⋆
z =

√

ρ⋆LB
⋆
zR

+
√

ρ⋆RB
⋆
zL

+
√

ρ⋆Lρ
⋆
R(u

⋆
zR

− u⋆zL)sign(Bx)
√

ρ⋆L +
√

ρ⋆R
, (21d)

where sign(Bx) is 1 for Bx > 0, and −1 for Bx < 0. Consequently, the
equation of the energy in Q⋆⋆ is given by

E⋆⋆
α = E⋆

α ∓
√

ρ⋆α (u
⋆
α ·B⋆

α − u⋆⋆
α ·B⋆⋆

α ) sign(Bx). (22)

The same procedure is done for the y direction.
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