Bruno Courcelle
email: courcell@labri.fr

ALGEBRAIC AND LOGICAL DESCRIPTIONS OF GENERALIZED TREES

Keywords: 2012 ACM CCS: [Theory of computation]: Logic, Decision problems, [Mathematics of computing]: Trees, Model theory, 2010 Mathematics Subject Classification: 05C05, 68R10 Rank-width, quasi-tree, join-tree, ordered tree, algebra, regular term, monadic second-order logic

Quasi-trees generalize trees in that the unique "path" between two nodes may be infinite and have any countable order type. They are used to define the rank-width of a countable graph in such a way that it is equal to the least upper-bound of the rank-widths of its finite induced subgraphs. Join-trees are the corresponding directed trees. They are useful to define the modular decomposition of a countable graph. We also consider ordered join-trees, that generalize rooted trees equipped with a linear order on the set of sons of each node. We define algebras with finitely many operations that generate (via infinite terms) these generalized trees. We prove that the associated regular objects (those defined by regular terms) are exactly the ones that are the unique models of monadic second-order sentences. These results use and generalize a similar result by W. Thomas for countable linear orders.

Introduction

We define and study countable generalized trees, called quasi-trees, such that the unique "path" between two nodes may be infinite and have any order type, in particular that of rational numbers. Our motivation comes from the notion of rank-width, a complexity measure of finite graphs investigated first in [START_REF] Oum | Rank-width and vertex-minors[END_REF] and [START_REF] Oum | Approximating clique-width and branch-width[END_REF]. Rank-width is based on graph decompositions formalized with finite subcubic trees. In order to extend rank-width to countable graphs in such a way that the compactness property holds, i.e., that the rank-width of a countable graph is the least upper-bound of those of its finite induced subgraphs, we base decompositions on subcubic quasi-trees [START_REF] Courcelle | Several notions of rank-width for countable graphs[END_REF]. (For a comparison, the natural extension of tree-width to countable graphs has the compactness property [START_REF] Kriz | Clique-sums, tree-decompositions and compactness[END_REF] without needing quasitrees.) Join-trees can be seen as directed quasi-trees. A join-tree is a partial order (N, ≤) such that every two elements have a least upper-bound (called their join) and each set {y | y ≥ x} is linearly ordered. The modular decomposition of a countable graph is based on an ordered join-tree [START_REF] Courcelle | The modular decomposition of countable graphs. Definition and construction in monadic second-order logic[END_REF].

Our objective is to obtain finitary descriptions (usable in algorithms) for the following generalized trees : join-trees, ordered join-trees and quasi-trees. For this purpose we will define algebras of such generalized trees that use finitely many operations and such that the finite and infinite terms over these operations define all countable relevant generalized trees. The regular objects are those defined by regular terms, i.e. that have finitely many different subterms, equivalently, that are the unique solutions of certain finite equation systems. We will prove that a generalized tree is regular if and only if it is monadic second-order definable, i.e., is the unique model (up to isomorphism) of a monadic second-order sentence.

As a special case, we have linear orders. A countable linear order whose elements are labelled by letters from a finite alphabet is called an arrangement. The linear order of a regular arrangement is the left-right order of the leaves of the tree representing a regular term, equivalently, the lexicographic ordering of the words of a regular language. Regular arrangements were first defined and studied in [START_REF] Courcelle | Frontiers of infinite trees[END_REF] and [START_REF] Heilbrunner | An algorithm for the solution of fixed-point equations for infinite words[END_REF], and their monadic second-order definability was proved in [START_REF] Thomas | On Frontiers of Regular Trees[END_REF]. We will use the latter result for proving its extension to our generalized trees. The study of regular linear orders has been continued by Bloom and Ésik in [START_REF] Bloom | Deciding whether the frontier of a regular tree is scattered[END_REF][START_REF] Bloom | The equational theory of regular words[END_REF]. These authors have defined and studied the algebraic linear orders, defined similarly in terms of algebraic trees (infinite terms defined as solutions of certain first-order equation systems, [START_REF] Courcelle | Fundamental properties of infinite trees[END_REF]) or equivalently, as lexicographic orderings of the words of deterministic context-free languages [START_REF] Bloom | Algebraic ordinals[END_REF][START_REF] Bloom | Algebraic linear orderings[END_REF].

In Sections 1 and 2, we review definitions. In Section 3 we first study binary join-trees and then, we extend the definitions and results concerning them to all join-trees. In Section 4, we study ordered join-trees, and in Section 5, we study quasi-trees. An appendix reviews definitions and facts about monadic second-order logic and the application of quasi-trees to the rank-width of countable graphs. An introductory article on these results is [START_REF] Courcelle | Regularity equals monadic second-order definability for quasi-trees[END_REF].

Orders, trees and terms

All sets, trees and logical structures are finite or countably infinite. We denote by X Y the union of X and Y if they are disjoint. Isomorphism of ordered sets, trees and other logical structures is denoted by .

For partial orders ≤, , , ... we denote respectively by <, ≺, , ... the corresponding strict orders and X < Y means that x < y for every x ∈ X and y ∈ Y .

Let (V, ≤) be a partial order. The least upper bound of x and y is denoted by x y if it exists and is called their join. The notation x⊥y means that x and y are incomparable. A line1 is a subset Y of V that is linearly ordered and satisfies the following convexity property: if x, z ∈ Y , y ∈ V and x ≤ y ≤ z, then y ∈ Y . Particular notations for convex sets (not necessarly linearly ordered) are [x, y] denoting {z | x ≤ z ≤ y},]x, y] denoting {z | x < z ≤ y},] -∞, x] denoting {y | y ≤ x} (even if V is finite),]x, +∞[denoting {y | x < y} etc. If X ⊆ V , then ↓ (X) is the union of the sets] -∞, x] for x in X.

The first infinite ordinal and the linear order (N, ≤) are denoted by ω.

The restriction of a relation R or a function f defined on a set V to a subset W is denoted by R W or f W respectively.

Monadic second-order logic (MS logic in short) logic is reviewed in the appendix. MS-definable and MS-expressible mean respectively definable and expressible in monadic second-order logic. A sentence is a formula without free variables. [START_REF] Bloom | Deciding whether the frontier of a regular tree is scattered[END_REF]. 1. Trees. A tree is a possibly empty, finite or countable, undirected graph that is connected and has no cycles. Hence, it has neither loops nor parallel edges. The set of nodes of a tree T is N T .

A rooted tree is a nonempty tree equipped with a distinguished node called its root. The level of a node x is the number of edges of the path between it and the root and Sons(x) denotes the set of its sons. We define on N T the partial order ≤ T such that x ≤ T y if and only if y is on the unique path between x and the root. The least upper bound of x and y, denoted by x T y is their least common ancestor. We will specify a rooted tree T by (N T , ≤ T) and we will omit the index T when the considered tree is clear. For a node x of T , the subtree issued from x, denoted by T /x, is defined as (N T /x , ≤ T N T /x) where N T /x :=] -∞, x].

A partial order (N, ≤) is (N T , ≤ T) for some rooted tree T if and only if it has a largest element max and for each x ∈ N , the set [x, max] is finite and linearly ordered. These conditions imply that any two nodes have a join.

An ordered tree is a rooted tree such that each set Sons(x) is linearly ordered by an order x . [START_REF] Bloom | Deciding whether the frontier of a regular tree is scattered[END_REF]. [START_REF] Bloom | The equational theory of regular words[END_REF]. Finite and infinite terms. Let F be a finite set of operations f , each given with an arity ρ(f). We call such a set a signature. The maximal arity of a symbol is denoted by ρ(F). A term over F is finite or infinite. We denote by T ∞ (F) the set of all terms over F and by T (F) the set of finite ones. A typical example of an infinite term, easily describable linearly, is, with f binary and a and b nullary, the term t ∞ := f (a, f (b, f (a, f (b, f (.........)))))) that is the unique solution in T ∞ (F) of the equation t = f (a, f (b, t)).

Positions in terms are designated by Dewey words. The set P os(t) of positions of a term t is ordered by ≤ t , the reversal of the prefix order. A term t can be seen as a labelled, ordered and rooted tree whose set of nodes is P os(t). We have P os(t ∞) = 2 * 2 * 1, where 2 * is the set of occurrences of f , (22) * 1 is the set of occurrences of a and (22) * 21 is that of b.

There is a canonical structure of F -algebra on

T ∞ (F), of which T (F) is a subalgebra. If M = M, (f M) f ∈F is an F -algebra, a value mapping is a homomorphism h : T ∞ (F) → M.
Its restriction to finite terms is uniquely defined.

In some cases, we will use algebras with two sorts. The corresponding modifications of the definitions are straightforward.

The partial order on terms. Let F contain a special nullary symbol Ω intended to be the least term. We define on T (F) a partial order as follows: Ω t for any t ∈ T (F), f (t 1 , . t i for i = 1, .., k. For terms in T ∞ (F), the definition (subsuming the previous one) is : t t if and only if P os(t) ⊆ P os(t) and every occurrence in t of a symbol in F -{Ω} is an occurrence in t of the same symbol (and an occurrence in t of Ω is an occurrence in t of any symbol). Every increasing sequence of terms has a least upper bound. More details on terms can be found in [START_REF] Courcelle | Fundamental properties of infinite trees[END_REF].

Regular terms

A term t ∈ T ∞ (F) as regular if there is a mapping h from P os(t) into a finite set Q and a mapping τ :

Q → F × Seq(Q) (where Seq(Q) denotes the set of finite sequences of elements of Q) such that: if u is an occurrence of a symbol f of arity k, then τ (h(u)) = (f, (h(u 1), ..., h(u k)))
where (u 1 , ..., u k) is the sequence of sons of u. Intuitively, τ is the transition function of a top-down deterministic automaton with set of states Q; h(ε) is its initial (root) state and h defines its unique run. This is equivalent to requiring that t has finitely many different subterms, or is a component of a finite system of equations that has a unique solution in T ∞ (F). (The set Q can be taken as the set of unknowns of such a system, see [START_REF] Courcelle | Fundamental properties of infinite trees[END_REF].)

The above term t ∞ is regular with

Q := {1, 2, 3, 4}, τ (1) = (f, (2, 3)), τ (2) = (a, ()), τ (3) = (f, (4, 1)), τ (4) = (b, ()).
With a term t we associate the relational structure t := (P os(t), ≤ t , (br i) 1≤i≤ρ(F) , (lab f) f ∈F) where br i (u) is true if and only if u is the i-th son of his father and lab f (u) is true if and only if f occurs at position u. A term t can be reconstructed in a unique way from any relational structure isomorphic to t .

A term t is regular if and only if t is MS-definable, i.e., is, up to isomorphism, the unique model of a monadic second-order sentence (see Thomas,[START_REF] Thomas | Automata on Infinite Objects[END_REF]).

Arrangements and labelled sets

We review a notion introduced in [START_REF] Courcelle | Frontiers of infinite trees[END_REF] and further studied in [START_REF] Heilbrunner | An algorithm for the solution of fixed-point equations for infinite words[END_REF][START_REF] Thomas | On Frontiers of Regular Trees[END_REF]. Let X be a set. A linear order (V, ≤) equipped with a labelling mapping lab : V → X is called an arrangement over X. It is simple if lab is injective. We denote by A(X) the set of arrangements over X.

An arrangement over a finite set X can be considered as a generalized word. A linear order (V, ≤) is identified with the simple arrangement (V, ≤, Id V) such that Id V (v) := v for each v ∈ V . In the sequel, Id will denote the identity function on any set.

An isomorphism of arrangements i :

(V, ≤, lab) → (V , ≤ , lab) is an order preserving bijection i : V → V such that lab • i = lab. Isomorphism is denoted by . If w = (V, ≤, lab) ∈ A(X) and r : X → Y , then, r(w) := (V, ≤, r • lab) is an arrangement over Y . If r maps V into Y , then r((V, ≤)) is the arrangement (V, ≤, r) over Y since we identify (V, ≤) to the simple arrangement (V, ≤, Id).
The concatenation of linear orders yield a concatenation of arrangements denoted by •. We denote by Ω the empty arrangement and by a the one reduced to a single occurrence of a ∈ X. Clearly, w • Ω = Ω • w = w for every w ∈ A(X). The infinite word w = a ω is the arrangement over {a} with underlying order ω; it is described by the equation w = a • w. Similarly, the arrangement w = a η over {a} with underlying linear order (Q, ≤) (that of rational numbers) is described by the equation w = w • (a • w). We will generalize arrangements to tree structures.

Let X be a set of first-order variables (they are nullary symbols) and t ∈ T ∞ ({•, Ω}∪X). Hence, P os(t) ⊆ {1, 2} * . The value of t is the arrangement val(t) := (Occ(t, X), ≤ lex , lab) where Occ(t, X) is the set of positions of the elements of X and lab(u) is the symbol of X occurring at position u. We say that t denotes w if w is isomorphic to val(t).

For an example, t

∞ ({•, Ω, a}) of the equations t 1 = a • t 1 and t 2 = t 2 • (a • t 2).
An arrangement is regular if it is denoted by a regular term. The term t • is regular. The arrangements a ω and a η are regular.

An arrangement is regular if and only if it is a component of the initial solution of a regular system of equations over F [START_REF] Courcelle | Frontiers of infinite trees[END_REF] or the value of a regular expression in the sense of [START_REF] Heilbrunner | An algorithm for the solution of fixed-point equations for infinite words[END_REF]. We will use the result of [START_REF] Thomas | On Frontiers of Regular Trees[END_REF] that an arrangement over a finite alphabet is regular if and only if is MS-definable. For this result, we represent an arrangement w = (V, ≤, lab) over X by the relational structure w := (V, ≤, (lab a) a∈X) where lab a (u) is true if and only if lab(u) = a.

An X-labelled set is a pair m = (V, lab) where lab : V → X, equivalently, a relational structure (V, (lab a) a∈X) where each element of V belongs to a unique set lab a . We denote by set(w) the X-labelled set obtained by forgetting the linear order of an arrangement w over X. Up to isomorphism, an X-labelled set m is defined by the cardinalities in N ∪ {ω} of the sets lab a , hence is a finite or countable multiset of elements of X : a number in N ∪ {ω} associated with each a ∈ X and represents its number of occurrences in m.

If X is finite, each X-labelled set is MS fin -definable, i.e., is the unique, finite or countably infinite model up to isomorphism of a sentence of monadic second-order logic extended with a set predicate F in(U) expressing that the set U is finite. (See the appendix for details). It is also regular, hence, is set(val(t)) for some regular term in T ∞ ({•, Ω} ∪ X). The notion of regularity is thus trivial for X-labelled sets when X is finite.

Join-trees

Join-trees have been used in [START_REF] Courcelle | The modular decomposition of countable graphs. Definition and construction in monadic second-order logic[END_REF] for defining the modular decomposition of countable graphs.

3.1.

Join-trees, join-forests and their structurings. Join-trees are defined as particular partial-orders. Finite nonempty join-trees correspond to finite rooted trees.

Definition 3.1. : Join-tree.

(a) A join-tree is a pair J = (N, ≤) such that: 1) N is a possibly empty, finite or countable set called the set of nodes, 2) ≤ is a partial order on N such that, for every node x, the set [x, +∞[(the set of nodes y ≥ x) is linearly ordered, 3) every two nodes x and y have a join x y.

A minimal node is a leaf. If N has a largest element, we call it the root of J. The set of strict upper-bounds of a nonempty set X ⊆ N is a line L. If L has a smallest element, we denote it by X and we say that X is the top of X. Note that X / ∈ X.

(b) A join-forest is a pair J = (N, ≤) that satisfies conditions 1), 2) and the following weakening of 3):

3') if two nodes have an upper bound, they have a join. The relation that two nodes have a join is an equivalence. Let N s for s ∈ S be its equivalence classes and J s := (N s , ≤ N s), more simply denoted by (N s , ≤) by leaving implicit the restriction to N s . Then each J s is a join-tree, and J is the union of these pairwise disjoint join-trees, called its components.

(c) A join-forest J = (N, ≤) is included in a join-forest J = (N , ≤), denoted by J ⊆ J , if N ⊆ N , ≤ is ≤ N and is N .
Definition 3.2. : Direction and degree.

Let J = (N, ≤) be a join-forest, and x be one of its nodes. Let ∼ be the equivalence relation on] -∞, x[such that z ∼ y if and only if z y < x. Each equivalence class C is called a direction of J relative to x and C = x. The set of directions relative to x is denoted by Dir(x) and the degree of x is the number of its directions. The leaves are the nodes of degree 0.

A join-tree is binary if its nodes have degree at most 2. We call it a BJ-tree for short. (a) Let J = (N, ≤) be a join-tree. A structuring of J is a set U of nonempty lines forming a partition of N that satisfies some conditions, stated with the following notation : if x ∈ N , then U (x) denotes the line of U containing x, U -(x) := U (x)∩] -∞, x[and

U + (x) := U (x) ∩ [x,
[= U + (y i) for each i < k, [y k , +∞[= U + (y k) ⊆ A and the depth of y i is k -i.
We call such a triple (N, ≤, U) a structured join-tree, an SJ-tree for short. Every linear order is an SJ-tree whose elements are all of depth 0.

Remark : If x < A for some x, then A has a smallest element, which is the node y k of Condition 2) (because if z ∈ A is smaller than y k , then x < z, which contradicts the observation that [y k-1 , y k [⊆ U (y k-1) and U (y k-1) ∩ A = ∅). (b) Let J = (N, ≤) be a join-forest whose components are J s , s ∈ S. A structuring of J is a set U of nonempty lines forming a partition of N such that, if U s is the set of lines of U included in N s (every line of U is included in some N s), then each triple (N s , ≤, U s) is a structuring of J s .

Example 3.4. : Figure 1 shows a structuring {U 0 , ..., U 5 } of a binary join-tree. The axis is U 0 . The directions relative to x 2 are U -(x 2) ∪ U 1 and U 2 ∪ U 3 . The maximal depth of a node is 2.

Proposition 3.5. : Every join-tree and, more generally, every join-forest has a structuring.

Proof : Let J = (N, ≤) be a join-tree. Let us choose an enumeration of N and a maximal line B 0 ; it is upwards closed. For each i > 0, we choose a maximal line B i containing the first node not in B i-1 ∪ ... ∪ B 0 . We define U 0 := B 0 and, for i > 0,

U i := B i -(U i-1 ... U 0) = B i -(B i-1 ∪ ... ∪ B 0). We define U as the set of lines U i . It is a structuring of J. The axis is U 0 .
If J is a join-forest, it has a structuring that is the union of structurings of its components.

Remark : Since each line B i is maximal, if U i has smallest element, this element is a node of degree 0 in J.

In view of our use of monadic second-order logic, we give a description of SJ-trees by relational structures. Definition 3.6. : SJ-trees as relational structures. (a) If J = (N, ≤, U) is an SJ-tree, we define S(J) as the relational structure (N, ≤, N 0 , N 1) such that N 0 is the set of nodes at even depth and N 1 := N -N 0 is the set of those at odd depth. (N 0 and N 1 are sets but we consider them also as unary relations).

(b) Let J = (N, ≤) be a join-tree and X ⊆ N . We say that X is laminar if, for all x, y, z ∈ X, if [x, z] ∪ [y, z] ⊆ X (where x < z and y < z), then [x, z] ⊆ [y, z] or [y, z] ⊆ [x, z] (the intervals [x, z] and [y, z] are relative to J). This condition implies that the lines of J that are included in X and are maximal with this condition form a partition of X whose parts will be called its components.

Proposition 3.7. : For J and S(J) as above, the following properties hold:

1) the sets N 0 and N 1 are laminar, U is the set of their components and the axis A is a component of N 0 , 2) there is an MS formula ϕ(N 0 , N 1) expressing that a relational structure (N, ≤, N 0 , N 1) is S(J) for some SJ-tree J = (N, ≤, U), 3) there exist MS formulas θ Ax (X, N 0 , N 1) and θ(u, U, N 0 , N 1) expressing, respectively, in a structure (N, ≤, N 0 , N 1) = S(N, ≤, U), that X is the axis and that U ∈ U ∧ u = U .

Proof : 1) is clear from the definitions.

2) That a partial order (N, ≤) is a join-tree is first-order expressible. The formula ϕ(N 0 , N 1) will include this condition. Let J = (N, ≤) be a join-tree; let N be the union of two disjoint laminar sets N 0 and N 1 and U be the set of their components. Then, J = (N, ≤, U) is an SJ-tree and S(J) = (N, ≤, N 0 , N 1) if and only if: i) every component of N 1 has a top in N 0 and every component of N 0 except one has a top in N 1 , ii) for each U in U, the sequence U 0 , U 1 , ... of lines of U such that U 0 = U , U 0 ∈ U 1 , ..., U i ∈ U i+1 terminates at some U k that has no top, hence is included in N 0 .

These conditions are necessary. As they rephrase Definition (3.3), they are also sufficient. The integer k in Condition ii) is the common depth of all nodes in U .

That a set X is laminar is MS-expressible, and one can build an MS-formula ψ(U, X) expressing that U is a component of X assumed to be laminar. This formula can be used to express that N is the union of two disjoint laminar sets N 0 and N 1 that satisfy Conditions i) and ii). For expressing Condition ii), we define for each U in U a set of nodes W as follows : it is the least set such that U ∈ W, and, for each w ∈ W , the top of U (w) belongs to W if it is defined (where U (w) is the unique set in U that contains w). The set W is linearly ordered (it consists of U 0 < ... < U i ...) and Condition ii) says that it must be finite. To write the formula, we use the fact that the finiteness of a linearly ordered set is MS-expressible (see the Appendix).

3) The construction of ϕ actually uses the MS formulas θ Ax (X, N 0 , N 1) and θ(u, U, N 0 , N 1).

3.2.

Description schemes of structured binary join-trees. In order to introduce technicalities step by step, we first consider binary join-trees. They are actually sufficient for defining the rank-width of a countable graph. See Section 5 and the appendix.

Definition 3.8. : Structured binary join-trees.

Let J = (N, ≤) be a binary join-tree. A structuring of J is a set U of lines satisfying the conditions of Definition (3.3) and, furthermore: i) if the axis A has a smallest element, then its degree is 0 or 1, ii) each x ∈ N is the top of at most one set U ∈ U, denoted by U x , and

U x := ∅ if x is the top of no U ∈ U.
We call (N, ≤, U) a structured binary join-tree, an SBJ-tree in short. Proposition 3.9. : 1) Every BJ-tree J has a structuring.

2) The class of stuctures S(J) for SBJ-trees J is monadic second-order definable.

Proof: 1) We use the construction of Proposition (3.5) for J = (N, ≤). The remark following it implies that, if the axis A = U 0 has a smallest element, this element has degree 0. It implies also that, if U i = x, then x cannot have degree 0 in the BJ-tree J i-1 induced by U i-1 ... U 0 because each line B i is chosen maximal, and it cannot have degree 2 or more in J i-1 because J is binary. Hence it has degree 1 in J i-1 . It follows that x is the top of no line U j for j < i. Hence ii) holds and the construction yields an SBJ-tree (N, ≤, U).

2) The formula ϕ of Proposition (3.7) can easily be modified so as to express that (N, ≤, N 0 , N 1) is S(J) for some SBJ-tree J. Definition 3.10. : Description schemes for SBJ-trees. (a) A description scheme for an SBJ-tree, in short an SBJ-scheme, is a triple ∆

= (Q, w Ax , (w q) q∈Q) such that Q is a set, w Ax ∈ A(Q) (is an arrangement over Q) and w q ∈ A(Q) for each q.
It is regular if Q is finite and the arrangements w Ax and w q are regular.

(b) We recall that a linear order (V, ≤) is identified with the arrangement (V, ≤, Id). If W ⊆ V and r : V → Q, then r((W, ≤)) is the arrangement (W, ≤ W, r W) ∈ A(Q) that we will denote more simply by (W, ≤, r) leaving implicit the restrictions of ≤ and r to W .

An SBJ-scheme ∆ describes an SBJ-tree J = (N, ≤, U) whose axis is A if there exists a mapping r : N → Q such that: r((A, ≤)) w Ax and r((U x , ≤)) w r(x) for every x ∈ N. We will also say that ∆ describes the BJ-tree fgs(J) := (N, ≤). The mapping r need not be surjective, this means that some elements of Q and the corresponding arrangements may be useless, and thus can be removed from ∆.

(c) Each SBJ-tree J = (N, ≤, U) has a standard description scheme ∆(J) := (N, (A, ≤), ((U x , ≤)) x∈N). The identity mapping r : N → N shows that ∆(J) describes J.

Intuitively, one obtains from ∆(J) an SBJ-scheme ∆ := (Q, w Ax , (w q) q∈Q) that describes J by a kind of quotient construction :

(i) one chooses a partition Q of N satisfying conditions (ii) and (iii) below, where for each x ∈ N , r(x) denotes the part q of the partition Q that contains x, (ii) for all nodes x in a part q of Q, the arrangements (U x , ≤, r) are isomorphic to w q , (iii We denote this SBJ-tree by Unf (∆), called the unfolding of ∆ (see the remark following the proof about terminology).

) (A, ≤, r) w Ax . (d) An example: Let ∆ = (Q, w Ax , (w q) q∈Q) be the SBJ-scheme such that Q = {a, b, c}, w Ax is (Z, ≤,) where (i) = a if i is even and (i) = b if i is odd, w a = {c}, w b = cc
Proof : Let ∆ = (Q, w Ax , (w q) q∈Q) be an SBJ-scheme, defined with arrangements w Ax = (V Ax , , lab Ax) and w q = (V q , , lab q) such that, without loss of generality, the sets V Ax and V q are pairwise disjoint and the same symbol denotes their orders.

We construct (N, ≤, U) = Unf (∆) as follows. a) N is the set of finite nonempty sequences (v 0 , v 1 , ..., v k) such that:

v 0 ∈ V Ax , v i ∈ V q i for 1 ≤ i ≤ k, where q 1 = lab Ax (v 0), q 2 = lab q 1 (v 1), ..., q k = lab q k-1 (v k-1). b) (v 0 , v 1 , ..., v k) ≤ (v 0 , v 1 , ..., v j) if and only if k ≥ j, (v 0 , v 1 , ..., v j-1) = (v 0 , v 1 , ..., v j-1) and v j v j . c) The axis A is the set of one-element sequences (v) for v ∈ V Ax ; for x = (v 0 , v 1 , ..., v k), we define U (x) as the set of sequences (v 0 , v 1 , ..., v k-1 , v) such that v ∈ V q k , hence, we have U (x) = (v 0 , v 1 , ..., v k-1). Note that (v 0 , ..., v k) < (v 0 , ..., v j) if j < k and that (v 0 , ..., v k-1 , v k) ≤ (v 0 , ..., v k-1 , v) if and only if v k v. Claim : ∆ describes (N, ≤, U). We define r : N → Q as follows: if x ∈ A, then x = (v) for some v ∈ V Ax and r(x) := lab Ax (v); if x ∈ N has depth k ≥ 1, then x = (v 0 , v 1 , ..., v k) for some v 0 , v 1 , ..., v k as in a) and r(x) := lab q k (v k). It follows that r((A, ≤)) w Ax and that, for x = (v 0 , v 1 , ..., v k) (of depth k), we have r((U x , ≤)) w q k = w r(x)
, which proves the claim.

We now prove unicity. Assume that ∆ describes J = (N, ≤, U) with axis A and also J = (N , ≤ , U) with axis A , by means of mappings r : N → Q and r : N → Q. We construct an isomorphism h : J → J as the common extension of bijections h k : N k → N k , where N k (resp. N k) is the set of nodes of J (resp. of J) of depth at most k, and such that they map ≤ to ≤ , and the lines of U to those of U of same depth, and finally, r

•h k = r N k .
Case k = 0. We have: r((A, ≤)) = (A, ≤, r) w Ax r ((A , ≤)) = (A , ≤ , r) which gives the order preserving bijection h 0 :

N 0 = A → N 0 = A such that r • h 0 = r N 0 .
Case k > 0. We assume inductively that h k-1 has been constructed.

Let U ∈ U be such that x = U has depth k -1; hence, U ∩ N k-1 = ∅. Then (U, ≤, r) w r(x) . Let x = h k-1 (x); we have r (x) = r(x). Hence there is U ∈ U such that x = U , U ∩ N k-1 = ∅ and (U , ≤ , r) w r (x) = w r(x)
. Hence, there is an order preserving bijection

h U : U → U such that r • h U = r U.
We define h k as the extension of the injective mappings h k-1 and h U for all U ∈ U such that the depth of U is k -1. These mappings have pairwise disjoint domains whose union is N k .

The extension to N of all these mappings h k is the desired isomorphism h.

Remark : We call unfolding the transformation of ∆ into Unf (∆) because it generalizes the unfolding of a directed graph G into a finite or countable rooted tree. The unfolding is done from a particular vertex s of G, and the nodes of the tree are the sequences of the form (x 0 , ..., x k) such that s = x 0 and there is a directed edge in G from x i to x i+1 , for each i < k. If ∆ is such that the arrangements w Ax and w q are reduced to a single element, the corresponding directed graph has all its vertices of outdegree one and the tree resulting from the unfolding consists of one infinite path: the SBJ-tree Unf (∆) is the order type ω -of negative integers and the sets in U are singletons. Proposition 3.12. : A BJ-tree is monadic second-order definable if it is described by a regular BJ-scheme.

Proof : That J = (N, ≤) is a BJ-tree is first-order expressible. Assume that J = fgs(J) where J = (N, ≤, U) Unf (∆) for some regular SBJ-scheme ∆ = (Q, w Ax , (w q) q∈Q) such that Q = {1, ..., m}. Let r be the corresponding mapping: N → Q (cf. Definition (3.10.b)). For each q ∈ Q, let ψ q be an MS sentence that characterizes w q , up to isomorphism, by the main result of [START_REF] Thomas | On Frontiers of Regular Trees[END_REF]. Similarly, ψ Ax characterizes w Ax . We claim that a relational structure (X, ≤) is isomorphic to J if and only if there exist subsets N 0 , N 1 , M 1 , ..., M m of X such that:

(i) (X, ≤) is a BJ-tree and (X, ≤, N 0 , N 1) = S(J) for some SBJ-tree J = (X, ≤, U), (ii) (M 1 , ..., M m) is a partition of X; we let r maps each x ∈ X to the unique q ∈ Q such that x ∈ M q , (iii) for every q and node x in M q , the arrangement r ((U x , ≤)) over Q is isomorphic to w q (where U x ∈ U), (iv) the arrangement r ((A , ≤)) over Q where A is the axis of J is isomorphic to w Ax . Conditions (ii)-(iv) express that ∆ describes J , hence that J is isomorphic to J , and so, that (X, ≤) fgs(J) = J.

By Proposition (3.9), Condition (i) is expressed by an MS-formula ϕ(N 0 , N 1), and the property U ∈ U ∧ x = U is expressed in terms of N 0 , N 1 by an MS-formula θ(x, U, N 0 , N 1). Conditions (iii) and (iv) are expressed by means of the MS-sentences ψ Ax and ψ q suitably adapted to take N 0 , N 1 , M 1 , ..., M m as arguments. Hence, J is (up to isomorphism) the unique model of an MS sentence of the form:

∃N 0 , N 1 .[ϕ(N 0 , N 1) ∧ ∃M 1 , ..., M m .ϕ (N 0 , N 1 , M 1 , ..., M m))
] where ϕ expresses conditions (ii)-(iv). Theorem (3.21) will establish a converse. [START_REF] Bloom | Algebraic ordinals[END_REF]. [START_REF] Bloom | Algebraic ordinals[END_REF]. The algebra of binary join-trees. We define three operations on structured binary join-trees (SBJ-trees). The (finite and infinite) terms over these operations define all SBJtrees. Definition 3. [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]. : Operations on SBJ-trees.

Concatenation along axes.

Let J = (N, ≤, U) and J = (N , ≤ , U) be disjoint SBJ-trees, with respective axes A and A . We define:

J • J := (N N , ≤ , U) where : x ≤ y :⇐⇒ x ≤ y ∨ x ≤ y ∨ (x ∈ N ∧ y ∈ A), U := {A A } (U-{A}) (U -{A }). J • J is an SBJ-tree with axis A A ; the depth of a node in J • J is the same as in J or J .
This operation generalizes the concatenation of linear orders: if (N, ≤) and (N , ≤) are disjoint linear orders, then the SBJ-tree (N, ≤, {N }) • (N , ≤ , {N }) corresponds to the concatenation of (N, ≤) and (N , ≤) usually denoted by (N, ≤) + (N , ≤).

If K = (M, ≤, V) is an SBJ-tree with axis B, and B = A A such that A < A , then K = J • J where:

N :=↓ (A), N := M -N, U is the set of lines of V included in N -A together with A,
U is the set of lines of V included in N -A together with A and the orders of J and J are the restrictions of ≤ to N and N .

The empty SBJ-tree:

The nullary symbol Ω denotes the empty SBJ-tree.

Extension:

Let J = (N, ≤, U) be an SBJ-tree, and u / ∈ N . Then: ext u (J) := (N {u}, ≤ , {{u}} U) where : x ≤ y :⇐⇒ x ≤ y ∨ y = u, the axis is {u}. Clearly, ext u (J) is an SBJ-tree. The depth of v ∈ N is its depth in J plus 1. The axis of J is turned into an "ordinary line" of the structuring of ext u (J) with top equal to u.

When handling SBJ-trees up to isomorphism, we use the notation ext(J) instead of ext u (J).

Forgetting structuring:

If J is an SBJ-tree as above, fgs(J) := (N, ≤) is the underlying BJ-tree (binary join-tree).

Anticipating the sequel, we observe that a linear order a 1 < ... < a n , identified with the SBJ-tree ({a 1 , ..., a n }, ≤, {{a 1 , ..., a n }}) is defined by the term t := ext a 1 (Ω) • ext a 2 (Ω) • ... • ext an (Ω). The binary (it is even "unary") join-tree ({a 1 , ..., a n }, ≤) is defined by the term fgs(t) and also, in a different way, by the term fgs(ext an (ext a n-1 (...(ext a 1 (Ω)))..))). (a) In order to define the value of a term t in T ∞ (F), we compare its positions as follows:

u ≈ v if and only if every position w such that u < t w ≤ t u t v or v < t w ≤ t u t v is an occurrence of •. This relation is an equivalence. We will also use the lexicographic order ≤ lex (positions are Dewey words). If w is an occurrence of a binary symbol, then s 1 (w) is its first (left) son and s 2 (w) its second (right) one.

(b) We define the value val(t) := (N, ≤, U) of t in T ∞ (F) as follows:

N := Occ(t, ext), the set of occurences in t of ext, u ≤ v :⇐⇒ u ≤ t w ≤ lex v for some w ∈ N such that w ≈ v, U is the set of equivalence classes of ≈ .
Equivalently, we have :

u ≤ v :⇐⇒ u ≤ t v or u ≤ t s 1 (u t v), v ≤ t s 2 (u t v
) and v ≈ u t v (the position u t v is an occurrence of •), and so (we recall that ⊥ denotes incomparability) :

u⊥v :⇐⇒ u ≤ t s 1 (u t v), v ≤ t s 2 (u t v) and there is an occurrence of ext between v and u t v or vice-versa by exchanging u and v.

(c) We now consider terms t written with the operations ext a (such that a is the node created by applying this operation). For each a, the operation ext a must have at most one occurrence in t. Assuming this condition satisfied, then val(t) := (N, ≤, U) where :

N is the set of nodes a such that ext a has an occurence in t that we will denote by u a , a ≈ b :⇐⇒ u a ≈ u b , with ≈ as in (a), a ≤ b :⇐⇒ u a ≤ u b , with ≤ as in (b), U is the set of equivalence classes of ≈ . We say that t denotes an SBJ-tree J if J is isomorphic to val(t), and, in this case, we also say that fgs(t) denotes the BJ-tree fgs(J).

Examples 3. [START_REF] Kriz | Clique-sums, tree-decompositions and compactness[END_REF].

(1) The term t 0 that is the unique solution in T ∞ (F) of the equation t 0 = t 0 • t 0 denotes the empty SBJ-tree Ω. (2) Figure 3 shows a finite SBJ-tree J whose structuring consists of U 0 , ..., U 5 , and U 0 is the axis. The linear order on U 0 can be described by the word f edca (with f < e < d < . The case where u < v holds because u < t v is illustrated, to take a few cases, by i < g, g < e, m < j and j < d.

The case where u < v holds because u⊥ t v, u ≤ t s 1 (u t v), v ≤ t s 2 (u t v) and v ≈ u t v is illustrated by f < e, e < d, d < c and i < d. We have i < d because i t d = 12, i < t s 1 [START_REF] Courcelle | The modular decomposition of countable graphs. Definition and construction in monadic second-order logic[END_REF], d ≤ t s 2 (12) and d ≈ 12. We do not have i < j because j is not ≈-equivalent to 12, whereas Figure 5: The SBJ-tree val(t 1).

i t j = 12, i < t s 1 (12) and j ≤ t s 2 (12). This case illustrates the characterization of ⊥ in Definition 3.15(c).

(Definition 3.17. : The description scheme associated with a term. (a) Let t ∈ T ∞ (F) and u ∈ P os(t). We denote by Max(t, ext, u) the set of maximal occurrences of ext in t that are below u or equal to it. Positions are denoted by Dewey words, hence, these sets are linearly ordered by ≤ lex . We denote by W (t, u) the simple arrangement (Max(t, ext, u), ≤ lex).

) 3
Let J = (N, ≤, U) be the value of t (cf. Definition (3.15)) and x be an occurrence of ext with son u. We have (U x , ≤) = (Max(t, ext, u), ≤ lex).

For the term t in Example 3. [START_REF] Kriz | Clique-sums, tree-decompositions and compactness[END_REF](2) we have W (t, ε) = f edca, W (t, 1) = f ed, W (t, e) = hg. Proof : Let J = (N, ≤, U) be an SBJ-tree. For each k, we let J k be the SBJ-tree (N k , ≤, U k) where N k is the set of nodes of depth at most k and U k is the set lines U ∈ U of depth at most k. By induction on k, we define for each k a term t k that defines J k such that t k t k if k < k , and then, the least upper bound of the terms t k is the desired term t whose value is J.

We define terms using the symbols ext a where a names the node created by the corresponding occurrence of the extension operation.

If k = 0, then J 0 = (A, ≤, {A}). There exists a term t ∈ T ∞ ({•}, Ext A) whose value is J 0 , where Ext A is the set of terms ext a (Ω) for a ∈ A (we use Ext A as a set of nullary symbols).

Let k ≥ 1, where t k-1 defines J k-1 . Then J k is obtained from J k-1 by adding below some nodes x at depth k -1 the line U x (if U x = ∅, there is nothing to add below x). Let

t x ∈ T ∞ ({•}, Ext U x) whose value is (U x , ≤). We obtain t k by replacing in t k-1 each subterm ext x (Ω) by ext x (t x), for x at depth k -1 such that U x = ∅.
It is clear that t k-1 t k and that the least upperbound of the terms t k defines J.

For an example, we apply this construction to the SBJ-tree J of Figure 3. For defining J 0 , we can take:

t 0 = ((ext f (Ω) • ext e (Ω)) • ext d (Ω)) • (ext c (Ω) • ext a (Ω)). To obtain t 1 , we replace ext e (Ω) by ext e (ext h (Ω) • ext g (Ω)), ext d (Ω) by ext d (ext k (Ω) • ext j (Ω)) and ext c (Ω) by ext c (ext b (Ω)), which gives: t 1 = ((ext f (Ω) • ext e (ext h (Ω) • ext g (Ω))) • ext d (ext k (Ω) • ext j (Ω)) • (ext c (Ω) • ext a (Ω))
. Then, we obtain t 2 that defines J by replacing ext g (Ω) by ext g (ext i (Ω)) and ext j (Ω) by ext j (ext m (Ω)). [START_REF] Bloom | Algebraic ordinals[END_REF]. [START_REF] Bloom | Algebraic linear orderings[END_REF]. Regular binary join-trees. As said in the introduction, regular objects are defined by regular terms. We apply this meta-definition to binary join-trees and their structurings.

Definition 3.20. : Regular BJ-and SBJ-trees.

A BJ-tree (resp. an SBJ-tree) T is regular if it is denoted by fgs(t) (resp. by t) where t is a regular term in T ∞ (F).

Theorem 3.21. : The following properties of a BJ-tree J are equivalent:

(1) J is regular, (2) J is described by a regular scheme, (3) J is MS-definable.

Proof : (1)=⇒(2) Let J = fgs(J) with J denoted by a regular term t in T ∞ (F). Let h : P os(t) → Q and τ be as in the definition of a regular term in Section 1. Without loss of generality, we can assume that h(P os(t)) = Q. If this is not the case, we replace Q by h(P os(t)) and τ by its restriction to this set.

Claim: (1) For each u ∈ P os(t), the arrangement h(W (t, u)) = (Max(t, ext, u), ≤ lex , h) over Q is regular.

(2) If u is another position in t and h(u) = h(u), then t/u = t/u and furthermore 2 h(W (t, u)) h(W (t, u)).

Leaving its routine proof, we define ∆ := (Q, w Ax , (w q) q∈Q) as follows: (i) w Ax := h(W (t, ε)), (ii) if q ∈ Q, then w q := h(W (t, s(u))) where s(u) is the unique son of an occurrence u of ext such that h(u) = q; if v is another occurrence of ext such that h(v) = q, then h(s(v)) = h(s(u)) and so by the claim, h(W (t, s(v))) h(W (t, s(u))). Hence, w q is welldefined up to isomorphism.

Informally, ∆ is obtained from ∆(t) by replacing the labelling mapping Id of the arrangements W (t, u) by h, so that these arrangements are turned into arrangements h(W (t, u)) over Q. Clearly, ∆ is a regular scheme. As mapping r showing that it describes J (cf. Definition (3.10)), hence also J, we take the resriction of h to Occ(t, ext) that is the set of nodes of J = val(t).

(2)=⇒(3) is proved in Proposition (3.12).

(3)=⇒(1) By Definition (3.2), the mapping α that transforms the relational structure t for t in T ∞ (F) into the BJ-tree J = (N, ≤) = fgs(val(t)) is an MS-transduction 3 because an MS formula can identify the nodes of J among the positions of t and another one can define ≤.

Let J = (N, ≤) be an MS-definable BJ-tree. It is, up to isomorphism, the unique model of an MS sentence β. It follows by a standard argument 4 that the set of terms t in T ∞ (F) such that α(t) |= β is MS-definable and thus, contains a regular term (a result by Rabin, see [START_REF] Thomas | Automata on Infinite Objects[END_REF]). This term denotes J, hence J is regular.

Corollary 3.22. :

The isomorphism problem for regular BJ-trees is decidable.

Proof : A regular BJ-tree can be given, either by a regular term, a regular scheme or an MS sentence. The proof of Theorem (3.21) is effective: algorithms can convert any of these specifications into another one. Hence, two regular BJ-trees can be given, one by an MS sentence β, the other by a regular term t. They are isomorphic if and only if α(t) |= β (cf. the proof of (3)=⇒(1) of Theorem (3.21)) if and only if t ∈ L(β), which is decidable (see [START_REF] Thomas | Automata on Infinite Objects[END_REF]). [START_REF] Bloom | Algebraic ordinals[END_REF]. [START_REF] Blumensath | Logical theories and compatible operations[END_REF]. Logical and algebraic descriptions of join-trees. We now extend to join-trees the definitions and results of the previous sections. Structured join-trees are defined in Section 3.1 (Definition 3.3). We extend to them the definitions and results of Sections 3.2-3. [START_REF] Bloom | Algebraic linear orderings[END_REF]. A first novelty will be that the argument of the extension operation ext will be an SJ-forest, equivalently a set of SJ-trees, instead of a single SBJ-tree. We will need an algebra with two sorts, the sort of SJ-trees and that of SJ-forests. A second one will be the use in monadic second-order formulas of a finiteness predicate (cf. Section 2 and the appendix).

2 Unless u = u , the sets Max(t, ext, u) and Max(t, ext, u) are not equal, so that the arrangements h(W (t, u)) and h(W (t, u)) are isomorphic but not equal.

3 MS logic, MS-transductions and related definitions and results are reviewed in the appendix. 4 If α is an MS-transduction and β is an MS-sentence, then the set of structures S such that α(S) |= β is MS-definable. See Theorem (7.1) in the appendix. (a) A description scheme for an SJ-tree, in short an SJ-scheme, is a 5-tuple ∆ = (Q, D, w Ax , (m q) q∈Q , (w d) d∈D) such that Q, D are sets, w Ax ∈ A(Q), w d ∈ A(Q) for each d ∈ D and m q = (M q , lab q) is a D-labelled set (cf. Section 2) for each q ∈ Q. Without loss of generality, we will assume that the domains V Ax and V d of the arrangements w Ax , w d and the sets M q are pairwise disjoint, because these arrangements and labelled sets will be used up to isomorphism. Informally, M q encodes the different lines U such that U = x where x is labelled by q, and each of these lines is defined, up to isomorphism, by the arrangement w d where d is its label in D, defined by lab q .

We say that ∆ is regular if Q ∪ D is finite and the arrangements w Ax and w d are regular. The finiteness of D implies that each D-labelled set m q is regular.

(b) Let J = (N, ≤, U) be an SJ-tree with axis A; for each x ∈ N , we denote by U x the set of lines U ∈ U such that U = x. An SBJ-scheme ∆ as in a) describes J if there exist mappings r : N → Q and r : U -{A} → D such that:

(b.1) the arrangement (A, ≤, r) over Q is isomorphic to w Ax , (b.2) for each x ∈ N , the D-labelled set (U x , r) is isomorphic to m r(x) , (b.3) for each U ∈ U -{A}, the arrangement (U, ≤, r) over Q is isomorphic to w r(U) . We will also say that ∆ describes the join-tree fgs(J) := (N, ≤).

(c) Each SBJ-tree J = (N, ≤, U) has a standard description scheme ∆(J) := (N, U -{A}, (A, ≤), ((U x , Id)) x∈N , ((U, ≤)) U ∈U -{A}). The identity mappings : N → N and : U -{A} → U -{A} show that ∆(J) describes J. Proposition 3.24. : Every SJ-scheme ∆ describes a unique SJ-tree Unf (∆) where unicity is up to isomorphism.

Proof : Let ∆ = (Q, D, w Ax , (m q) q∈Q , (w d) d∈D) be an SJ-scheme, defined with arrangements w Ax = (V Ax , , lab Ax) and w d = (V d , , lab d), and labelled sets m q = (M q , lab q) such that the sets V Ax , V d and M q are pairwise disjoint and the same symbol denotes the orders of the arrangements w Ax and w d .

We construct Unf (∆) := (N, ≤, U) as follows. a) N is the set of finite nonempty sequences (v 0 , s 1 , v 1 , s 2 , ..., s k , v k) such that:

v 0 ∈ V Ax , v i ∈ V d i and s i ∈ M q i-1 for 1 ≤ i ≤ k, where q 0 = lab Ax (v 0), d 1 = lab q 0 (s 1), q 1 = lab d 1 (v 1), d 2 = lab q 1 (s 2), ..., q i = lab d i (v i), d i+1 = lab q i (s i+1) for 1 ≤ i ≤ k -1. b) (v 0 , s 1 , v 1 , ..., s k , v k) ≤ (v 0 , s 1 , v 1 , ..., s j , v j) if and only if : k ≥ j, (v 0 , s 1 , v 1 , ..., s j) = (v 0 , s 1 , v 1 , ..., s j) and v j v j (v j , v j ∈ V d j). c) the axis A is the set of one-element sequences (v) for v ∈ V Ax and, for x = (v 0 , s 1 , v 1 , ..., s k , v k), U (x) is the set of sequences in N of the form (v 0 , s 1 , v 1 , s 2 , ..., s k , v) for v ∈ V d k , so that U (x) = (v 0 , s 1 , v 1 , ..., s k-1 , v k-1). Note that (v 0 , s 1 , v 1 , ..., v k) < (v 0 , s 1 , v 1 , ..., v j) if j < k and that (v 0 , s 1 , v 1 , ..., s k , v k) ≤ (v 0 , s 1 , v 1 , ..., s k , v) if and only if v k v.
In order to prove that ∆ describes J, we define r : N → Q and r : U -{A} → D as follows:

if x ∈ A, then x = (v) for some v ∈ V Ax and r(x

) := lab Ax (v); if x ∈ N has depth k ≥ 1, then x = (v 0 , s 1 , v 1 , ..., s k , v k) for some v 0 , s 1 , ..., s k , v k and r(x) := lab d k (v k); if U ∈ U -{A}, then U = U (x) for some x = (v 0 , s 1 , v 1 , ..., s k , v k), k ≥ 1,
and r(U) := d k .

We check the three conditions of Definition (3.23.b). We have (A, ≤, r) w Ax , hence (b.1) holds. For checking (b.2), we consider Unicity is proved as in Proposition (3.11).

x = (v 0 , s 1 , v 1 , ..., s k , v k) ∈ N, k ≥ 1. The sets U in U x are those of the form {(v 0 , s 1 , v 1 , ..., s k , v k , s, v) | v ∈ V d k+1 } for all s ∈ M q k where q k = lab d k (v k) = r(x), hence (b.2) holds. For checking (b.3), we let U = U (x) for some x = (v 0 , s 1 , v 1 , ..., s k , v k), k ≥ 1; it is the set of sequences (v 0 , s 1 , v 1 , s 2 , ..., s k , v) for v ∈ V
The following proposition extends Proposition (3.12). Proposition 3.25 : A join-tree is MS fin -definable if it is described by a regular SJscheme.

Proof : Let (N, ≤) be a join-tree J (this property is first-order expressible). Assume that J = fgs(J) where J = (N, ≤, U)

Unf (∆) for some regular SJ-scheme ∆ = (Q, D, w Ax , (m q) q∈Q , (w d) d∈D) such that Q = {1, ..., m} and D = {1, ..., p}. Let r, r be the corresponding mappings (cf. Definition 3.23.b). For each d ∈ D, let ψ d be an MS sentence that characterizes w d up to isomorphism, by the main result of [START_REF] Thomas | On Frontiers of Regular Trees[END_REF]. Similarly, ψ Ax characterizes w Ax .

A D-labelled set m is described up to isomorphism by a p-tuple (m 1 , ..., m p) where m i is the number (possibly ω) of elements having label i.

By Proposition (3.7), there is a bipartition (N 0 , N 1) of N that describes the structuring U; from this bipartition, we can MS-define the axis A, the lines forming U and the node U for each U ∈ U -{A}.

There is a partition (Y 1 , ..., Y m) of N that describes r by Y i := r -1 (i). There is a partition (Z 1 , ..., Z p) where Z j is the union of the lines U ∈ U -{A} such that r(U) = j.

Consider a relational structure (X, ≤, N 0 , N 1 , Y 1 , ..., Y m , Z 1 , ..., Z p). By MS formulas, one can express the following properties:

(i) (X, ≤, N 0 , N 1) is S(J) for some SJ-tree J = (X, ≤, U); its axis is denoted by A , (ii) (Y 1 , ..., Y m) is a partition of X ; we let r(x)

:= i if and only if x ∈ Y i , (iii) (Z 1 , ..., Z p) is a partition of X such that each Z j is a union of sets U ∈ U -{A } such that (U, ≤, r) w j , (iv) (A , ≤, r) w Ax , (v) for each i ∈ Q and x ∈ Y i , the number of lines U ∈ U x that are contained in Z j is m j i .
These formulas are constructed as follows: ϕ(N 0 , N 1) for (i) is from Proposition (3.7). The formula for (ii) is standard. All other formulas are constructed so as to express the desired properties when (i) and (ii) do hold. For (iii), we use a suitable adaptation of ψ i and the fact from Proposition (3.7) that, if (i) holds, we can MS-define from (N 0 , N 1) the axis A , the lines forming U and the node U for each U ∈ U . The mapping r is given by (Y 1 , ..., Y m). For (iv), we do as for (iii) with ψ Ax .

For (v), we do as follows. We write an MS formula γ(x, N 0 , N 1 , Z, W) expressing that W consists of one node of each set U ∈ U -{A } that is contained in Z and is such that U = x. For any x and Z, all sets W satisfying γ(x, N 0 , N 1 , Z, W) have same cardinality. Then, Property (v) holds if and only if, for all i = 1, ..., m, x ∈ Y i and j = 1, ..., p, if γ(x, N 0 , N 1 , Z j , W) holds, then W has cardinality m j i . If some number m j i is ω, we need the finiteness predicate F in(W) to express this condition 5 .

Let

β(N 0 , N 1 , Y 1 , ..., Y m , Z 1 , ..., Z p) express conditions (ii)-(v) in (X, ≤). If a join-tree (X, ≤) satisfies ϕ(N 0 , N 1) ∧ β(N 0 , N 1 , Y 1 , ..., Y m , Z 1 , ..., Z p)
, it has a structuring U described by N 0 , N 1 : we let J := (X, ≤, U). The sets Y 1 , ..., Y m , Z 1 , ..., Z p yield a scheme ∆ that describes J (by Conditions (iii)-(v)), hence J is isomorphic to J by the unicity property of Proposition (3.24), and so, we have (X, ≤) fgs(J) = J.

Hence, J is (up to isomorphism) the unique model of the MS fin sentence :

∃N 0 , N 1 (ϕ(N 0 , N 1) ∧ ∃Y 1 , ..., Y m , Z 1 , ..., Z p .β(N 0 , N 1 , Y 1 , ..., Y m , Z 1 , ..., Z p))).
Theorem (3.30) will establish a converse.

Definition 3.26. : Operations on SJ-trees and SJ-forests.

We recall from Definition (3.1) that a join-forest is the union of disjoint join-trees. A structured join-forest (an SJ-forest, cf. Definition (3.4)) is the union of disjoint SJ-trees. It has no axis (each of its components has an axis, but we do not single out any of them). We will use objects of three types : join-trees, SJ-trees and SJ-forests, but a 2-sorted algebra will suffice (similarly as above for SBJT, we have not introduced a separate sort for BJ-trees). The two sorts are t for SJ-trees and f for SJ-forests.

Concatenation of SJ-trees along axes.

The concatenation J • J disjoint SJ-trees J and J is defined exactly as in Definition (3.13) for SBJ-trees.

The empty SJ-tree is denoted by the nullary symbol Ω t .

Extension of an SJ-forest into an SJ-tree. Let J = (N, ≤, U) be an SJ-forest and u / ∈ N . Then ext u (J) is an SJ-tree defined as in Definition (3.13). When handling SJ-trees up to isomorphism, we will use the notation ext(J) instead of ext u (J).

The empty SJ-forest is denoted by the nullary symbol Ω f .

Making an SJ-tree into an SJ-forest. This is done by the unary operation mkf that is actually the identity on the triples that define SJ-trees and SJ-forests.

The union of two disjoint SJ-forests is denoted by .

The types of these operations are thus:

• : t × t → t, Ω t : t, : f × f → f , Ω f : f , ext : f → t, mkf : t → f .
In addition, we have, as in Definition (3.13):

Forgetting structuring: If J is an SJ-tree, fgs(J) is the underlying join-tree. Definition 3.27. : The algebra SJT We let F be the 2-sorted signature {•, , ext, mkf , Ω t , Ω f } where the types of these six operations are as above. We obtain an F -algebra SJT whose domains are the sets of isomorphism classes of SJ-trees and of SJ-forests. Concatenation is associative with neutral element Ω t and disjoint union is associative and commutative with neutral element Ω f . Definition 3.28. : The value of a term.

The definition is actually identical to that for SBJ-trees (Definition (3.15)). We recall it for the reader's convenience. The equivalence relation ≈ is as in this definition. The value val(t) = (N, ≤, U) of t ∈ T ∞ (F) is defined as follows:

N := Occ(t, ext), the set of occurences in t of ext, u ≤ v :⇐⇒ u ≤ t w ≤ lex v for some w ∈ N such that w ≈ v, U is the set of equivalence classes of ≈ . If t has sort t (resp. f) then val(t) is an SJ-tree (resp. an SJ-forest). It is clear that we have a value mapping : T ∞ (F) → SJT.

For terms written with the operations ext a , then val(t) := (N, ≤, U) where :

N is the set of nodes a such that ext a has an occurence in t, actually a unique one, that we will denote by u a , a ≤ b :⇐⇒ u a ≤ u b , a ≈ b :⇐⇒ u a ≈ u b , and U is the set of equivalence classes of ≈ .

Definition 3.29. : Regular join-trees.

A join-tree (resp. an SJ-tree) T is regular if it is denoted by fgs(t) (resp. by t) where t is a regular term in T ∞ (F) of sort t. Theorem 3.30. : The following properties of a join-tree J are equivalent:

(1) J is regular, (2) J is described by a regular scheme, (3) J is MS fin -definable.

Proof : (1)=⇒(2). Similar to that of Theorem (3.21).

(2)=⇒ (3) By Proposition (3.25).

(3)=⇒(1) As in the proof of Theorem (3.21), the mapping α that transforms the relational structure t for t in T ∞ (F) t (the set of terms in T ∞ (F) of sort t) into the jointree J = (N, ≤) = fgs(val(t)) is an MS-transduction. Let J = (N, ≤) be an MS fin -definable join-tree. It is, up to isomorphism, the unique model of an MS fin sentence β. The set L of terms t in T ∞ (F) t such that α(t) |= β is thus MS fin -definable. However, since the relational structures t have MS-definable linear orderings, L is also MS-definable (see the Appendix), hence, it contains a regular term. This term denotes J, hence J is regular.

The same proof as for Corollary (3.22) yields: Corollary 3.31. : The isomorphism problem for regular join-trees is decidable.

The rooted trees of unbounded degree, without order on the sets of sons of their nodes are the join-trees defined by the terms in T ∞ (F -{•}) t . Theorem (3.30) and Corollary (3.31) hold for them. [START_REF] Bloom | Algebraic linear orderings[END_REF]. Ordered join-trees Definition 4.1. : Ordered join-trees and join-hedges.

The set of directions of a node x of a join-forest (N, ≤) is denoted by Dir(x), cf. Definition (3.2). We recall that x ⊥ y means that x and y are incomparable with respect to ≤, so that x < x y and y < x y if x y is defined.

(a) We say that a join-tree J = (N, ≤) is ordered (is an OJ-tree) if each set Dir(x) is equipped with a linear order x . (In this way, we generalize the notion of an ordered tree, cf. Section 1.) From these orders, we define a single linear order on N as follows:

x y if and only if x ≤ y or, x ⊥ y and δ x y δ where δ, δ ∈ Dir(x y), x ∈ δ and y ∈ δ . (b) The linear order satisfies the following properties, for all x, y, x , y :

(i) x ≤ y implies x y, (ii) if x ≤ y, x ≤ y and y ⊥ y , then x x if and only if y y .

(4. 1.1) Claim : If J = (N, ≤) is a join-tree and is a linear order on N satisfying conditions (i) and (ii), then J is ordered by the family of orders (x) x∈N such that, for all δ, δ in Dir(x), we have δ x δ if and only if δ = δ or y y for some y ∈ δ and y ∈ δ (if and only if δ = δ or y y for all y ∈ δ and y ∈ δ).

Proof sketch: Consider different directions δ, δ ∈ Dir(x) such that y y for some y ∈ δ and y ∈ δ . We have also y 1 y 1 for any y 1 ∈ δ and y 1 ∈ δ because (y y 1) < x, (y y 1) < x and (y y 1) ⊥ (y y 1), hence, Condition (ii) implies that y y 1 y y 1 and y 1 y 1 .

Hence, each relation x is a linear order on Dir(x). It is clear that is derived from the relations x by (a).

It follows that an ordered join-tree can be equivalently defined as a triple (N, ≤,) such that (N, ≤) is a join-tree and is a linear order that satisfies Conditions (i) and (ii). These conditions are first-order expressible.

(c) We define a join-hedge as a triple H = (N, ≤,) such that (N, ≤) is a join-forest and is a linear order that satisfies Conditions (i) and (ii). Let J s , for s ∈ S, be the join-trees composing (N, ≤). Each of them is ordered by according to Claim (4. 1.1), and the index set S is linearly ordered by S such that s S s if and only if s = s and x y for all nodes x of J s and y of J s . Hence H is also a simple arrangement of pairwise disjoint join-trees. (a) A structured join-hedge, an SJ-hedge in short, is a 4-tuple J = (N, ≤, , U) such that (N, ≤,) is a join-hedge and U is a structuring of the join-forest (N, ≤). A structured ordered join-tree could be defined in the same way, as an OJ-tree (N, ≤,) equipped with a structuring U. However, we need a refinement in order to define the operations that construct ordered join-trees and hedges (cf. Definition (4.8)).

(b) Let J be an OJ-tree (N, ≤,) and U be a structuring of (N, ≤). For each node x, the set Dir(x) of its directions consists of the following sets: the sets ↓ (U) for each line

U ∈ U x (we recall that ↓ (U) := {y | y ≤ z ∈ U for some z}), the set ↓ (U -(x)) (cf. Section 1) if U -(x)
is not empty; in this case we call it the central direction of x. If x is the the smallest element of U (x), it has no central direction but U x may be nonempty.

It is clear that

↓ (U)∩ ↓ (U) = ∅ if U and U are distinct lines in U x .
We get a linear order on U x based on that on directions, that we also denote by x : we have U x U if and only if y y for all y ∈ U and y ∈ U .

(c) A structured ordered join-trees (an SOJ-tree) is a tuple (N, ≤, , A, U -, U +) such that (N, ≤,) is an OJ-tree and U := {A} U -U + is a structuring of (N, ≤) with axis A such that, for each node x : if U ∈ U x ∩ U -and U ∈ U x ∩ U + , then U x U and furthermore, if x has a central direction δ, then U x δ x U . We define then Dir -(x) as the set of directions ↓ (U) for U ∈ U x ∩ U -and, similarly,

Dir + (x) with U ∈ U x ∩ U + .
Let x be such that [x, +∞[∩U = ∅ for some U in U not containing x. By Condition 2) of Definition (3.3.a), there is a node y i in U , with the notation of that definition. We say that x is to the left (resp. to the right) of U if, for some direction δ relative to y i , we have

x ∈ δ ∈ Dir -(y i) (resp. x ∈ δ ∈ Dir + (y i)).
As in Propositions (3.5) and (3.9), we have : Proposition 4.3. : Every join-hedge and every ordered join-tree has a structuring.

Proof: For a join-hedge (N, ≤,), we take any structuring U of the join-forest (N, ≤). Let (N, ≤,) be an OJ-tree and U be any structuring of the join-tree (N, ≤). Let A be its axis. We need only partition each set U x into two sets U x ∩ U -and U x ∩ U + .

If x has a central direction δ, we let U x ∩ U -consist of the lines U in U x such that ↓ (U) x δ, and U x ∩ U + consist of those such that δ x ↓ (U). Otherwise, we let U + contain 6 U x so that U x ∩ U -= ∅. Proposition 4.7. : An SOJ-tree is MS-definable if it is described by a regular SOJscheme.

Proof : Similar to the proofs of Propositions (3.12) and (3.25).

Note that, we need not the finiteness predicate as in Proposition (3.25) because we deal with arrangements that are linearly ordered structures, and not with labelled sets.

Next we define an algebra SOJT with two sorts: t for SOJ-trees and h for SJ-hedges. Concatenation of SOJ-trees along axes.

Let J 1 = (N 1 , ≤ 1 , 1 , A 1 , U - 1 , U + 1) and J 2 = (N 2 , ≤ 2 , 2 , A 2 , U - 2 , U +
2) be disjoint SOJtrees. We define their concatenation as follows:

J 1 • J 2 := (N 1 N 2 , ≤, , A 1 A 2 , U - 1 U - 2 , U + 1 U + 2) where : x ≤ y :⇐⇒ x ≤ 1 y ∨ x ≤ 2 y ∨ (x ∈ N 1 ∧ y ∈ A 2), x y :⇐⇒ x ≤ y ∨ x 1 y ∨ x 2 y, ∨(x⊥y ∧ x ∈ N 1 ∧ y ∈ N 2 ∧ y ∈ U ∈ U + 2 ∩ U x y 2) ∨(x⊥y ∧ x ∈ N 2 ∧ y ∈ N 1 ∧ x ∈ U ∈ U - 2 ∩ U x y 2
), for some U. The relations x⊥y and x y are relative to ≤.

It is clear that J 1 •J 2 is an SOJ-tree. Its axis is A 1 A 2 , U + = U + 1 U + 2 and U -= U - 1 U - 2 .
The empty SOJ-tree is denoted by the nullary symbol Ω t .

Extension of two SJ-hedges into a single SOJ-tree:

Let H 1 = (N 1 , ≤ 1 , 1 , U 1
) and H 2 = (N 2 , ≤ 2 , 2 , U 2) be disjoint SJ-hedges and u / ∈ N 1 N 2 . Then:

ext u (H 1 , H 2) := (N 1 N 2 {u}, ≤, , {u}, U 1 , U 2) where : x ≤ y :⇐⇒ x ≤ 1 y ∨ x ≤ 2 y ∨ y = u, x y :⇐⇒ x ≤ y ∨ x 1 y ∨ x 2 y ∨ (x ∈ N 1 ∧ y ∈ N 2).
Clearly, ext u (J) is an SOJ-tree. When handling SOJ-trees and SJ-hedges up to isomorphism, we replace the notation ext u (H 1 , H 2) by ext(H 1 , H 2).

The empty SJ-hedge is denoted by the nullary symbol Ω h .

Making an SOJ-tree into an SJ-hedge. This is done by the unary operation mkh such that, if J = (N, ≤, , A, U -, U +) is an SOJ-tree, then mkh(J) := (N, ≤, , {A} U -U +).

Note that in mkh(J), we distinguish neither U -from U + nor the axis A from the other lines.

The concatenation of two disjoint SJ-hedges.

Let H 1 = (N 1 , ≤ 1 , 1 , U 1) and H 2 = (N 2 , ≤ 2 , 2 , U 2) be disjoint SJ-hedges. Their "horizontal" concatenation is:

H 1 ⊗ H 2 := (N 1 N 2 , ≤ 1 ≤ 2 , , U 1 U 2) where : x y :⇐⇒ x 1 y ∨ x 2 y ∨ (x ∈ N 1 ∧ y ∈ N 2).
We let F be the 2-sorted signature {•, ⊗, ext, mkh, Ω t , Ω h } whose operation types are :

• : t × t → t, Ω t : t, ⊗ : h × h → h, Ω h : h, ext : h × h → t, mkh : t → h.
In addition, we have, as in Definitions (3.13) and (3.26) :

Forgetting the structuring:

If J = (N, ≤, , A, U -, U +
) is an SOJ-tree, then fgs(J) := (N, ≤,) is the underlying OJ-tree. Definition 4.9. : The value of a term.

If u is an occurrence of a binary symbol in a term t, we denote by s 1 (u) its first son and by s 2 (u) the second one (cf. Definition (3.15)).

The value val(t) := (N, ≤, , A, U -, U +) of a term t ∈ T ∞ (F) t is an SOJ-tree defined in a similar way as for t ∈ T ∞ (F) t , cf. Definitions (3.15) and (3.28):

N := Occ(t, ext), x ≤ y :⇐⇒ x ≤ t w ≤ lex y for some w ∈ N such that w ≈ y, A := Max(t, ext, ε), where ≈ is the equivalence relation on N defined as in Definition (3. [START_REF] Heilbrunner | An algorithm for the solution of fixed-point equations for infinite words[END_REF].a):

U -is the set of equivalence classes of ≈ of nodes in Max(t, ext, s 1 (u)) for some occurrence u of ext, U + is the set of equivalence classes of ≈ of nodes in Max(t, ext, s 2 (u)) for some occurrence u of ext.

Hence, U (x) ∈ U -if x ≤ t s 1 (U (x)) and U (x) ∈ U + if x ≤ t s 2 (U (x)).
Next we define .

x y :⇐⇒ x ≤ y or x⊥y (⊥ is relative to ≤, not to ≤ t) and we have one of the following cases: (i) x t y is an occurrence of ⊗ or ext, x ≤ t s 1 (x t y) and y ≤ t s 2 (x t y), (ii) x t y is an occurrence of •, x ≤ t s 1 (x t y) and y ≤ t s 2 (z) where z is the unique maximal occurrence of ext such that y < t z ≤ t s 2 (x t y), (iii) x t y is an occurrence of •, y ≤ t s 1 (x t y) and x ≤ t s 1 (z) where z is the unique maximal occurrence of ext such that x < t z ≤ t s 2 (x t y).

If t ∈ T ∞ (F) h its value val(t) is (N, ≤, , U) with (N, ≤,) defined as above and U as in Definition (3.28). The OJ-tree val(T) is shown on Figure 7, where we designate by A, B, ..., G the trees and hedges defined by the terms A, B, ..., G.

We have the following comparisons for < : {z, z , u} < v, because {z, z } < T v, u < lex v and u ≈ v, {y, y , w} < u, because {y, y , w} < T u, x ≤ {u, v} because x ≤ T a < lex {u, v} and a ≈ u ≈ v where a is the root position of A, v < x if and only if x is on X, the axis of B, because in this case, v ≈ x and otherwise v and x are incomparable with respect to ≤; in all cases we have v < lex x . For we have: z y y x w u z v and x z if x is to the left of X ; otherwise v x . All inequalities for < yield the corresponding inequalities for . We now compare z, y, y , x, w, z that pairwise incomparable for <.

By Case (i) of Definition (4.9), we get {y, y } w, y y and z z .

By Case (ii), we get x w, {x, w} ≺ z and {y, y } ≺ w.

By Case(iii) we get {z, y, y } ≺ x and z ≺ {y, y }.

Finally, if x is to the left of X, then Case (iii) gives x z, and if it to its right, then Case (ii) gives z x .

Theorem 4.11. : The following properties of an OJ-tree J are equivalent:

(1) J is regular, (2) J is described by a regular SOJ-scheme, (3) J is MS-definable.

Proof : (1)=⇒(2): Similar to that of Theorem (3.21).

(2)=⇒ (3): By Proposition (4.7).

(3)=⇒(1) As observed in Claim (4.9.2), the mapping α that transforms the relational structure t for t in T ∞ (F) t into the OJ-tree (N, ≤,) = fgs(val(t)) is an MS-transduction. Let J = (N, ≤,) be an MS-definable OJ-tree. It is, up to isomorphism, the unique model of an MS-sentence β. The set of terms t in T ∞ (F) t such that α(t) |= β is thus MS-definable, hence, it contains a regular term. This term denotes J, hence J is regular.

As in Corollaries (3.22) and (3.31) we deduce that the isomorphism problem for regular OJ-trees is decidable.

Quasi-trees

Quasi-trees can be viewed intuitively as "undirected join-trees". As in [START_REF] Courcelle | Several notions of rank-width for countable graphs[END_REF], we define them in terms of a ternary betweenness relation. (b) If T is a tree, its betweenness relation is the ternary relation on N T , such that B T (x, y, z) holds if and only if x, y, z are pairwise distinct and y is on the unique path between x and z. If R is a rooted tree and T = Und (R) is the tree obtained from T by forgetting its root and edge directions, then : B T (x, y, z) ⇐⇒ x, y, z are pairwise distinct and Proposition 5.3. : Let B be a ternary relation on a set X that satisfies properties A1-A7' for all x, y, z, u in X. Let a and b be distinct elements of X. There is a unique linear order L = (X, ≤) such that a < b and B L = B. It is first-order definable in the logical structure (X, B, a, b).

x < R y ≤ R x R z or z < R y ≤ R x R z.
Proof : Let X, B be as in the statement. Let Y consist of n elements of X, n > 2. It can be enumerated as x 1 , ..., x n in such a way that B(x i , x j , x k) holds for all 1 ≤ i < j < k ≤ n; furthermore, the only other possible enumeration satisfying this property is its reversal, x n , . If a and b are distinct elements of X, there is a unique linear order L = (X, ≤) such that a < b and B L = B. This is clear from the above observation if X is finite. Otherwise, we let X be the union of an increasing sequence of finite subsets that contain all a and b. On each of them, say Y , we have a unique linear order < such a < b, whose betweeness relation is B ∩ (Y × Y × Y). There union gives the desired linear order, that we denote by ≤ a,b .

We now define it by a first-order formula. For the converse, assume that Z(x, y) holds and x < a,b y does not. Then, we have y < a,b x. By looking at the different relative positions of x, y, a and b, we get a contradiction. Hence x ≤ a,b y if and only if x = y ∨ Z(x, y), which is expressed by a first-order formula ξ(a, b, x, y). (a) A quasi-tree is a structure S = (N, B) such that B is a ternary relation on N , the set of nodes, that satisfies conditions A1-A7. To avoid uninteresting special cases, we also require that N has at least 3 nodes. In a quasi-tree, the four cases of the conclusion of A7 are exclusive and in the fourth case, there is a unique node w satisfying B(x, w, y) ∧ B(y, w, z) ∧ B(x, w, z) (by Lemma 11 of [START_REF] Courcelle | Several notions of rank-width for countable graphs[END_REF]), that is denoted by M S (x, y, z).

A leaf (of S) is a node z such that B(x, z, y) holds for no x, y. A line is set of nodes L such that [x, y] B ⊆ L if x, y ∈ L and an end of L is a node z not in [x, y] B for any x, y ∈ L.

We say that S is discrete if each set [x, y] B is finite.

We say that a quasi-tree S = (N, B) is a subquasi-tree of a quasi-tree S = (N , B), which we denote by S ⊆ S , if N ⊆ N and B = B N . This condition implies that M S = M S N .

(b) From a join-tree J = (N, ≤), we define a ternary relation B J on N by: B J (x, y, z) :⇐⇒ x = y = z = x and (x < y ≤ x z) ∨ (z < y ≤ x z).

Proposition 5. [START_REF] Blumensath | Logical theories and compatible operations[END_REF]. : (1) The structure qt(J) := (N, B J) associated with a join-tree J = (N, ≤) with at least 3 nodes is a quasi-tree. Every line of J is a line of qt(J). If J is a subjoin-tree of J , then qt(J) is a subquasi-tree of qt(J).

(2) Every quasi-tree S is qt(J) for some join-tree J.

(3) A quasi-tree is discrete if and only if it is qt(J) for some tree J.

(4) Let S = (N, B) be a quasi-tree, L a line of S and a, b distinct nodes of L. In each of the following two cases:

(i) b is the largest node of L with respect to its linear order8 ≤ a,b , (ii) L has no largest node and there is no w in N -L such that B(u, v, w) holds for all u, v ∈ L such that u < a,b v, there is a unique join-tree J = (N, ≤) such that S = qt(J), a < b and L is an upwards closed9 line of J. Its order ≤ is first-order definable in the structure (N, B, L, a, b).

Proof : (1) Let J = (N, ≤) be a join-tree with at least 3 nodes. If it is finite, then it is (N T , ≤ T) for a finite tree T , and thus qt(J) is a quasi-tree by Proposition (5.2.b).

Otherwise consider distinct elements x, y, z, u of N . We want to prove that they satisfy A1-A7. There is a set N ⊆ N of cardinality at most 7 that contains x, y, z, u and is closed under . Then J = (N , ≤ N) is a finite join-tree, J ⊆ J and qt(J) = (N , B J N) is a quasi-tree by the initial observation, so that x, y, z, u satisfy A1-A7 for B = B J hence for B J . (The node w that may be necessary to satisfy A7 may have to be chosen in the set {x y, x z, x u, ...}). As x, y, z, u are arbitrary, A1-A7 hold for B J and all x, y, z, u ∈ N. Hence, (N, B J) is a quasi-tree.

That every line of J is a line of qt(J) follows from the definitions. (The converse does not hold. However, see Assertion (4).) The assertion about subjoin-trees is also easy to prove.

(2) Let S = (N, B) be a quasi-tree and b be any element of N . We define (cf. Proposition (5.3)) :

x (3) is proved in Proposition 17 of [START_REF] Courcelle | Several notions of rank-width for countable graphs[END_REF].

(4) Let us first motivate the technical condition on L. Let J = (N, ≤) be a join-tree and S = qt(J). If L is an upwards closed line in J, then there are two cases: either L has a maximal element m, and m is the root of J or not; in the latter case, for every x ∈ N , there is w ∈ L such that x < w: to prove this, take w such that x u < w where u is any element of L; if x ∈ N -L, we cannot have B J (u, v, x) for all u, v ∈ L such that u < v, because, otherwise, letting w, w ∈ L with x < w < w , we would have B J (w, w , x) and B J (x, w, w) contradicting A2 ∧ A3. The technical conditions on a line L of S in the statement are thus necessary for making it into an upwards closed line of a join-tree J as desired. We now start the proof.

Let S = (N, B) be a quasi-tree with line L and distinct elements a, b of L. Let ≤ a,b be the linear order on L from Proposition (5. Case (ii) : L has no largest element and there is no w in N -L such that B(u, v, w) holds for all u, v ∈ L such that u < a,b v. It follows that for every u ∈ L, there is v ∈ L such that u < a,b v. We now define, for x, y ∈ N : R(x, y) :⇐⇒ x = y ∧ ∃u, v ∈ L[u < a,b v ∧ B(x, y, u) ∧ B(y, u, v)], and we will prove that this relation is the desired strict order on N .

For all u, v ∈ L such that u < a,b v, we define N u,v := {x ∈ N | x = u ∨ B(x, u, v)}. Then S u,v := (N u,v , B N u,v) is a subquasi-tree of S and u is the largest element of L ∩ N u,v with respect to ≤ a,b . We define ≤ u on N u,v by:

x ≤ u y :⇐⇒ y ∈ [x, u] B . We obtain by Case 1 a join-tree J u,v := (N u,v , ≤ u) with root u such that S u,v = qt(J u,v). Since u < a,b v, if v < a,b u < a,b < v , then N u,v ⊆ N u ,v and ≤ u and ≤ u coincide on N u,v ; the associated join operations coincide also on N u,v . Hence J u,v is a subjoin-tree of J u ,v .

By the assumption on L, every x ∈ N belongs to some set N u,v : assume the opposite, then x / ∈ L; assume now that x / ∈ N u,v , hence by A7, we have B(x, u, v) or B(u, x, v) or B(u, v, x) or, for some w, B(u, w, v) ∧ B(x, w, u) ∧ B(x, w, v).

The first case implies x ∈ N u,v , the second one x ∈ L, and the last one w ∈ L, u < a,b w < a,b v and x ∈ N w,v . All these cases contradict our assumptions on x. It follows that B(u, v, x) holds for all u, v such that u < a,b v. But this contradicts the assumption on L.

Hence, N is the union of the sets N u,v and S is the union of the quasi-trees S u,v . We define J = (N, ≤) as the union of the join-trees J u,v . Its order is defined by x = y ∨ R(x, y). It is a join-tree and qt(J) = S because qt(J u,v) = S u,v for all u, v. It is the unique one satisfying the desired conditions because these conditions determine its restrictions to the sets N u,v in a unique way.

The property x = y ∨ R(x, y) is defined by a first-order formula θ(L, a, b, x, y).

Proposition 5.6. : A quasi-tree is MS fin -definable if it is described by a regular SJ-scheme.

Proof : We first explain the idea. From a given quasi-tree S, we specify by MS-formulas all SJ-trees J such that S = qt(fgs(J)) and we select one, if there exists any, that is described by the considered regular SJ-scheme. The construction of the necessary formulas will use Proposition (5.5) and the proof of Proposition (3.25).

Let S = (N, B) be a quasi-tree (this property is first-order expressible). Assume that S = qt(fgs(J)) where J = (N, ≤, U)

Unf (∆) for some regular SJ-scheme ∆ = (Q, D, w Ax , (m q) q∈Q , (w d) d∈D) such that Q = {1, . In this case, there is no w in N -A such that B J (u, v, w) holds for all u, v ∈ A such that u ≤ a,b v. In both cases, by Proposition (5.5) the partial order ≤ on N is defined by a first-order formula ν(A, a, b, x, y) written in such a way that b is the maximal element of A if a = b. We will denote ≤ by ≤ A,a,b to stress that it is defined from A, a, b.

By Proposition (3.7), there is a bipartition (N 0 , N 1) of N that describes the structuring U, and such that A ⊆ N 0 . From this bipartition, we can MS-define the lines forming U and the node U for each U ∈ U -{A}.

There is a partition (Y 1 , ..., Y m) of N that describes r by Y i := r -1 (i). There is a partition (Z 1 , ..., Z p) of N -A such that Z j is the union of the lines U ∈ U -{A} such that r(U) = j.

Consider relational structures R = (X, B, A, N 0 , N 1 , Y 1 , ..., Y m , Z 1 , ..., Z p , a, b) with domain X such that B is a ternary relation, the other relations are unary (are subsets of X) and a, b ∈ X. By MS formulas, one can express in any such R the following properties:

(i) (X, B) is a quasi-tree S , A is a nonempty line, a, b ∈ A and a = b if and only if a is an end of A, (ii) if ≤ is the partial order on N defined by ν(A, a, b, x, y), then (X, ≤, N 0 , N 1) is S(J) for some SJ-tree J = (X, ≤, U) with axis A.

(iii) (Y 1 , ..., Y m) is a partition of X ; we let r(x) := i if and only if x ∈ Y i .

(iv) (Z 1 , ..., Z p) is a partition of X -A such that each Z j is a union of sets U ∈ U -{A} such that (U, ≤, r) w j .

(v) (A, ≤, r) w Ax ,

Definition 3 . 3 .:

 33 Structured join-trees and join-forests.

Figure 1 :

 1 Figure 1: A structured binary join-tree.

 (two nodes labelled by c) and w c = Ω. It describes the BJ-tree of Figure 2.

Figure 2 :

 2 Figure 2: A binary join-tree.

Definition 3 .

 3 14. : The algebra SBJT We let F be the signature {•, ext, Ω}. We obtain an algebra SBJT whose domain is the set of isomorphism classes of SBJ-trees. Concatenation is associative with neutral element Ω.Definition 3.[START_REF] Heilbrunner | An algorithm for the solution of fixed-point equations for infinite words[END_REF]. : The value of a term.

(3 . 15 . 1)

 3151 Claim: The mapping val in (b) is a value mapping T ∞ (F) → SBJT.

Figure 3 :

 3 Figure 3: A finite SBJ-tree J.

Figure 4 :

 4 Figure 4: A term t denoting J.

 ..). Similarly, U 1 = b, U 2 = hg, U 3 = i , U 4 = kj and U 5 = m. Let us examine the term t of Figure 4 that denotes J. A function symbol ext u specifies the node u of J, and we also denote by u its occurrence (a position of t). The occurrences of • and Ω are denoted by Dewey words. For example, the occurrences of • above the symbols ext are the words ε, 1, 2, 12. The set {ε, 1, 2, 12, f, e, d, c, a} is an equivalence class of ≈. Another one is {1221, k, j}. Each line U i is the set of positions of the ext symbols in some equivalence class of ≈. Let us now examine how each line is ordered.

 Let t 1 be the solution in T ∞ (F) of the equation t 1 = ext(ext(Ω)) • t 1 . We write it by naming a, b, c, d, e, f, ... the nodes created by the operations ext, hence, t 1 = ext a (ext b (Ω)) • (ext c (ext d (Ω)) • (ext e (ext f (Ω)) • ...))). Its value is shown in Figure 5. The bold edges link nodes in the axis. The nodes b and f are incomparable because the corresponding occurrences of ext, that are 111 and 2211, have least common ancestor ε and 221 is an occurrence of ext between 2211 and ε.

For t 1

 1 in Example 3.16(3), we have W (t 1 , ε) = ace..., W (t 1 , 1) = a, W (t 1 , 11) = b and W (t 1 , 111) = Ω. (b) We define ∆(t) as the SBJ-scheme (Occ(t, ext), W (t, ε), (W (t, s(x))) x∈Occ(t,ext)) where s(x) is the unique son of an occurrence x of ext. We obtain ∆(t 1) = (2 * 2 * 1, ace..., (w x) x∈Occ(t 1 ,ext)) with w a = b, w c = d,...,w b = Ω, w d = Ω, ... for the term t 1 of Example 3.16(3).

Lemma 3 . 18 .

 318 : If t ∈ T ∞ (F), then val(t) is described by ∆(t).

Proof:

 Let val(t) = (N, ≤, U). The conditions of Definition (3.10.b) hold with the identity on Occ(t, ext) as mapping r because (U x , ≤) = (Max(t, ext, s(x)), ≤ lex) as observed in Definition (3.

17

 17

 .a). Proposition 3.19. : Every SBJ-tree is the value of a term.

Definition 3 .

 3 23. : Description schemes for SJ-trees.

 d k ordered by on the last components. Hence, (U, ≤, lab d k) is isomorphic to w d k , which proves the property since r(U) := d k .

Definition 4 . 2 .:

 42 Structured join-hedges and structured ordered join-trees.

Definition 4 . 8 .

 48 : Operations on SOJ-trees and SJ-hedges.

(4 . 9 . 1)

 491 Claim :[START_REF] Bloom | Deciding whether the frontier of a regular tree is scattered[END_REF] The mapping val is a value mapping T ∞ (F) :→ SOJT.(2) The transformation α of t into (N, ≤,) is an MS-transduction.Proof : (1) is clear from the definitions.(2) holds because the conditions of Definition (4.9) are expressible in t by MS formulas.

Figure 6 :

 6 Figure 6: Term T of Example (4.10).

Figure 7 :

 7 Figure 7: The OJ-tree val(T) of Example (4.10).

Example 4 .

 4 10. : We now illustrate this definition.

 Figure 6 shows a term T where A, B, C and D are subterms of type t and E, F and G are subterms of type h. They contain occurrences of ext that define nodes x, x , y, y , w, z and z of val(T).

Definition 5 . 1 .

 51 : Betweenness. (a) Let L = (X, ≤) be a linear order. Its betweenness relation is the ternary relation on X such that B L (x, y, z) holds if and only if x < y < z or z < y < x. It is empty if X has less than 3 elements.

 (c) If B is a ternary relation on a set X, and x, y ∈ X, then [x, y] B := {x, y} ∪ {z ∈ X | B(x, z, y)}. Proposition 5.2.[START_REF] Courcelle | Several notions of rank-width for countable graphs[END_REF] : (a) The betweenness relation B of a linear order (X, ≤) satisfies the following properties for all x, y, z, u ∈ X.A1 : B(x, y, z)⇒ x = y = z = x. A2 : B(x, y, z) ⇒ B(z, y, x). A3 : B(x, y, z) ⇒ ¬B(x, z, y). A4 : B(x, y, z) ∧ B(y, z, u) ⇒ B(x, y, u) ∧ B(x, z, u). A5 : B(x, y, z) ∧ B(x, u, y) ⇒ B(x, u, z) ∧ B(u, y, z). A6 : B(x, y, z) ∧ B(x, u, z) ⇒ y = u ∨ [B(x, u, y) ∧ B(u, y, z)] ∨ [B(x, y, u) ∧ B(y, u, z)]. A7' : x = y = z = x ⇒ B(x, y, z) ∨ B(x, z, y) ∨ B(y, x, z).(b) The betweenness relation B of a tree T satisfies the properties A1-A6 for all x, y, z, u in N T together with the following weakening of A7': A7 : x = y = z = x ⇒ B(x, y, z) ∨ B(x, z, y) ∨ B(y, x, z)∨ ∃w.(B(x, w, y) ∧ B(y, w, z) ∧ B(x, w, z)).

Case 1 :

 1 There are no u, v such that B(u, b, v) holds. Then, we have 7 : x ≤ a,b y :⇐⇒ y ∈ [x, b] B (i.e., x = y ∨ y = b ∨ B(x, y, b)). Otherwise and similarly, if there are no u, v such that B(u, a, v) holds, we have x ≤ a,b y :⇐⇒ x ∈ [a, y] B . Case 2 : Otherwise, we define the following binary relation : Z(x, y) :⇐⇒ x = y ∧ [(B(x, a, b) ∧ ¬B(y, x, a)) ∨ (x = a ∧ ¬B(y, a, b))∨ (B(a, x, b) ∧ ¬B(y, x, b)) ∨ (x = b ∧ B(a, b, y))∨ (B(a, b, x) ∧ B(b, x, y))]. It is easy to see that x < a,b y implies Z(x, y). (In particular, that Z(a, b) holds follows from the clause x = a ∧ ¬B(y, a, b) with y = b).

Definition 5 . 4 .

 54 [START_REF] Courcelle | Several notions of rank-width for countable graphs[END_REF] : Quasi-trees.

 ≤ b y :⇐⇒ y ∈ [x, r] B (⇐⇒ x = y ∨ y = b ∨ B(x, y, b)).Then (N, ≤ b) is a join-tree J with root b and S = qt(J) by Lemma 14 of[START_REF] Courcelle | Several notions of rank-width for countable graphs[END_REF].

 3). Case (i) : b is the largest element of (L, ≤ a,b). Then (N, ≤ b) (cf. (2) for ≤ b) is a quasi-tree satisfying the required conditions. If J = (N, ≤) is another one, then [x, +∞[J = [x, b] J for all x and thus, x ≤ y if and only if x = y ∨ y = b ∨ B(x, y, b). Hence, ≤=≤ b .

 .., m} and D = {1, ..., p} as in the proof of Proposition (3.25). Let r, r be the corresponding mappings. For each d ∈ D, let ψ d be an MS sentence that characterizes w d up to isomorphism, and similarly ψ Ax for w Ax . The axis A of J is upwards closed. If it has a maximal element b (w.r.t. ≤), then ≤ = ≤ b by Proposition (5.5.2). Otherwise, ≤ = ≤ a,b where a, b are any two elements of A such that a < b.

 Its value is defined from Occ(t • , {a, b}) = 2 * 1, lexicographically ordered (i.e., 1 < 21 < 221 < ...) by taking lab(2 i 1) := a if i is even and lab(2 i 1) := b if i is odd. The arrangements a ω and a η are denoted respectively by t 1 and t 2 that are the unique solutions in T

• := •(a, •(b, •(a, •(b, •(.........)))))) denotes the infinite word abab... .

 , the sequence y 0 , y 1 , y 2 , ... such that y 0 = x, y i+1 = U (y i) is finite; its last element is y k ∈ A (y k+1 is undefined) and we call k the depth of x. The nodes on the axis are those at depth 0. The lines [y i , y i+1 [for i ∈ [0, k -1] and [y k , +∞[are convex subsets of pairwise distinct lines of U. We have [x, +∞[= [y 0 , y 1 [[y 1 , y 2 [... [y k , +∞[, where [y i , y i+1

	+∞[. (The set [x, +∞[has no top but it can have a greatest element).
	The conditions are:
	1) exactly one line A of U is upwards closed (i.e., [x, +∞[⊆ A if x ∈ A),
	hence, has no strict upper-bound and no top; we call it the axis; each other
	line U has a top U ,
	2) for each x in N

 .., x 1 . This is clear if n = 3. Otherwise, we use induction. Consider x, y, z ∈ Y such that B(x, y, z) holds. Let Y 1 := {u ∈ Y | B(u, y, z)} and Y 2 := {u ∈ Y | B(x, y, u)}. These sets have less than n elements as z / ∈ Y 1 and x / ∈ Y 2 . Furthermore, Y 1 ∩ Y 2 = {y}. The induction hypothesis gives enumerations x 1 , ..., y of Y 1 and y, ..., x n of Y 2 with the desired properties.The desired enumeration of Y is x 1 , ..., y, ..., x n . We omit a detailed proof.

In[START_REF] Courcelle | Several notions of rank-width for countable graphs[END_REF] we call line a linearly ordered subset, without imposing the convexity property.

If the nodes of J have degree at most a ∈ N, then m j i ≤ a for all i, j and the finiteness predicate is not needed, hence, J is MS-definable.

We might also partition U x into any two sets U x ∩ U -and U x ∩ U + such that U x ∩ U - x U x ∩ U + .

We recall the notation [x, y]B := {x, y} ∪ {z | B(x, z, y)}.

Proposition (5.3) is applicable to (L, B L) that satisfies Conditions A1-A7'.

Upwards closed means that y ∈ L if x < y and x ∈ L.

) within the IdEx Bordeaux program "Investments for the future", CPU, ANR-10-IDEX-03-02.

We now establish the MS-definability of these structurings. If J = (N, ≤, , A, U -, U +) is an SOJ-tree, we define S(J) as the structure (N, ≤, , A, N - 0 , N + 0 , N - 1 , N + 1) such that A is the axis, N - 0 (resp. N + 0) is the union of the lines U ∈ U -(resp. U ∈ U +) of even depth and N - 1 (resp. N + 1) is the union of the lines U ∈ U -(resp. U ∈ U +) of odd depth.

Proposition 4. [START_REF] Bloom | Algebraic linear orderings[END_REF]. : Let J = (N, ≤,) be an OJ-tree. 1) There is an MS formula ϕ(A, N - 0 , N + 0 , N - 1 , N + 1) expressing that a structure (N, ≤, , A, N - 0 , N + 0 , N - 1 , N + 1) is S(J) for some SOJ-tree J = (N, ≤, , A, U -, U +).

2) There exists an MS formula θ -(u, U, N - 0 , N + 0 , N - 1 , N + 1) expressing in a structure (N, ≤, , A, N - 0 , N + 0 , N - 1 , N + 1) = S(N, ≤, , A, U -, U +) that U ∈ U -∧u = U ; similarly, there exists an MS formula θ + (u, U, N - 0 , N + 0 , N - 1 , N + 1) expressing that U ∈ U + ∧ u = U .

Proof : Easy modification of the proof of Proposition (3.7). (a) A description scheme for an SOJ-tree, in short an SOJ-scheme, is a 6-tuple ∆ = (Q, D, w Ax , (w - q) q∈Q , (w + q) q∈Q , (w d) d∈D) such that Q, D are sets, w Ax ∈ A(Q), (w d) d∈D is a family of arrangements over Q and (w - q) q∈Q and (w + q) q∈Q are families of arrangements over D. Without loss of generality, we will assume that the domains of these arrangements are pairwise disjoint, and the same symbol denotes their orders. Informally, (w - q) q∈Q and (w + q) q∈Q encodes the sets of lines, ordered by x of the two sets Dir -(x) and Dir + (x) where x is labelled by q.

We say that ∆ is regular if Q ∪ D is finite and the arrangements w Ax , w d , w - q and w + q are regular.

(b) Let J = (N, ≤, , A, U -, U +) be an SOJ-tree. An SOJ-scheme ∆ as in (a) describes J if there exist mappings r : N → Q and r :

We will also say that ∆ describes the join-tree fgs(J) := (N, ≤). Proposition 4.6. : Every SOJ-scheme describes an SOJ-tree that is unique up to isomorphism.

Proof : Let ∆ = (Q, D, w Ax , (w - q) q∈Q , (w + q) q∈Q , (w d) d∈D) be an SOJ-scheme, defined with arrangements w Ax = (V Ax , , lab Ax), w d = (V d , , lab d), w - q = (W - q , , lab q) and w + q = (W + q , , lab q) such that the sets V Ax , V d , W - q and W + q are pairwise disjoint. Furthermore, we extend ≺ by letting s ≺ s for all s ∈ W - q , s ∈ W + q and q ∈ Q. We construct J = Unf (∆) = (N, ≤, , A, U -, U +) as follows. Clauses a) to d) are essentially as in Proposition (3.24). a) N is the set of finite nonempty sequences (v 0 , s 1 , v 1 , s 2 , ..., s k , v k) such that:

In Case e.1), x and y are in different directions of z := (v 0 , s 1 , v 1 , ..., v) that are not its central direction; in Case e.2), x is to the left of the central direction δ of z and y ≤ u where u := (v 0 , s 1 , v 1 , ..., v) is here below z on δ; in Case e.3), y is to the right of the central direction δ of u and x ≤ z where z is below u on δ .

In order to prove that ∆ describes J, we define r : N → Q and r :

We check the four conditions of Definition (4.5.b). We have (A, ≤, r) w Ax , hence (b.1) holds. For (b.2) and (b.3), we consider

For checking (b.4), we let

Unicity is proved as in Proposition (3.11).

(vi) for each i ∈ Q and x ∈ Y i , the number of lines U ∈ U x that are contained in Z j is m j i . (A D-labelled set m is described by a p-tuple (m 1 , ..., m p) where m j is the number of elements having label j.)

These formulas are constructed as in the proof of Proposition (3.25). The main difference is that ≤ is not in the given structure S but is defined in it by ν(A, a, b, x, y); this formula uses auxiliary arguments A, a, b. As in Proposition (3.25), we need the finiteness predicate if some number

), the corresponding join-tree (X, ≤ A,a,b) has a structuring U with axis A described by N 0 , N 1 . We let J := (X, ≤, U). The sets Y 1 , ..., Y m , Z 1 , ..., Z p yield a scheme ∆ that describes J (by Conditions (iii)-(vi)), hence J is isomorphic to J by the unicity property of Proposition (3.24), and so, we have (X, ≤) = fgs(J) fgs(J) and qt(fgs(J)) qt(fgs(J)) = S.

Hence, S is (up to isomorphism) the unique model (X, B) of the MS sentence:

The next theorem establishes a converse. As algebra for quasi-trees, we take the algebra SJT of join-trees together with the (external) forgetting operation qt (similar to fgs). We say that a quasi-tree S is described by an SJ-scheme if this scheme describes a join-tree J such that qt(J) = S. It is regular if it is qt(J) for some regular join-tree J.

Theorem 5. 7. : The following properties of a quasi-tree S are equivalent:

(1) S is regular, (2) S is described by a regular SJ-scheme, (3) S is MS fin -definable. The isomorphism of regular quasi-trees is decidable.

Proof : (1)=⇒(2): Similar to that of Theorem (3.21).

(2)=⇒ (3): By Proposition (5.6).

(3)=⇒(1): The mapping α that transforms the relational structure t for t in T ∞ (F) t into the quasi-tree S = qt(fgs(val(t))) is an MS-transduction by Claim (4.9.2). The proof continues as in Theorem (3.21).

The decidability of the isomorphism problem is as in Corollary (3.22).

We make these results more precise for subcubic quasi-trees, that are useful for defining the rank-width of countable graphs, see the appendix. (a) We say that y, z ∈ N -{x} are the same direction relative to x (or of x) if, either y = z or B(y, z, x) or B(z, y, x) or B(y, u, x) ∧ B(z, u, x) for some node u. Equivalently, y x z < x x (< x is as in Proposition (5.5)). Hence, if B(y, x, z) holds, y and z are in different directions relative to x. This relation is an equivalence, denoted by y ∼ x z, and its classes are the directions of x.

(b) The degree of x is the number of classes of ∼ x . A node has degree 1 if and only if it is a leaf. We say that S is subcubic if its nodes have degree at most 3. If S = Q(T) for a tree T , then a direction of x is associated with each neighbour y of x and is the set of nodes of the connected component of T -{x} that contains y.

(c) If S = qt(J) for a join tree J = (N, ≤), then, the directions of x in S are those of x in J together with]x, +∞[if this set is not empty. It follows that S is subcubic if J is a BJ-tree. Lemma 5.9. : Every subcubic quasi-tree is qt(fgs(J)) for some SBJ-tree J.

Proof: We choose a maximal line A of the given subcubic quasi-tree S and distinct element a, b of A. By proposition (5. 5.4), the partial order ≤ A,a,b gives a binary join-tree K. By using the method of Proposition (3.5) with U 0 := A, we obtain a structuring J of K, making it into an SBJ-tree as defined in Definition (3.8).

Theorem 5. 10. : The following properties of a subcubic quasi-tree S are equivalent:

(1) S is regular, (2) S is described by a regular SBJ-scheme, (3) S is MS-definable.

Proof : By Lemma (5.9) and Proposition (3.19), every subcubic quasi-tree S is qt(fgs(val(t))) for some term t ∈ T ∞ (F).

Property (1) means that S = qt(fgs(val(t))) for some regular term in T ∞ (F) t . Let (1') mean that S = qt(fgs(val(t))) for some regular term in T ∞ (F). Then (1')=⇒(2) by the similar implication in Theorem (3.21).

(2)=⇒(3) by the similar implication in Theorem (3.21) and the observation that, in a quasi-tree S, the SBJ-trees J such that S = qt(fgs(J)) can be specified by MS formulas in terms of a 5-tuple (A, N 0 , N 1 , a, b) satisfying the formula ϕ (A, N 0 , N 1 , a, b) of the proof of Proposition (5.6).

(3)=⇒(1') by the observation that the mapping α that transforms the relational structure t for t in T ∞ (F) into the subcubic quasi-tree qt(fgs(val(t))) is an MS-transduction. The proof goes then as in Theorem (3.21).

The implication (1')=⇒(1) is trivial and (1) implies that S is MS fin definable by Theorem (5.6). But a term t ∈ T ∞ (F) that defines S is MS-definable, and the relational structure representing a term has an MS-definable linear order. It follows that S has an MS-definable linear order, hence that S is MS-definable (cf. the appendix).

Conclusion

We have defined quasi-trees and join-trees of different kinds from regular terms. These terms have finitary descriptions. There are other infinite terms that haveg finitary descriptions: the algebraic ones [START_REF] Courcelle | Fundamental properties of infinite trees[END_REF] and more generally, those of Caucal's hierarchy [START_REF] Blumensath | Logical theories and compatible operations[END_REF]. Such terms also yield effective (algorithmically usable) notions of join-trees and quasi-trees. It is unclear whether the corresponding isomorphism problems are decidable 10 .

10 Z. Ésik proved in [START_REF] Ésik | An undecidable property of context-free linear orders[END_REF] that the isomorphism of the lexicographic orderings of two context-free languages is undecidable. As algebraic linear orders are defined from deterministic context-free languages [START_REF] Bloom | Algebraic linear orderings[END_REF], deciding their isomorphism might be possible.

For example, a graph G is identified with the {edg}-structure (V G , edg G) where V G is its vertex set and edg G (x, y) means that there is an edge from x to y, or between x and y if G is undirected. To take an example, 3-colorability is expressed by the MS-sentence :

Many properties of partial orders can also be expressed by MS sentences. We take examples that are useful in our proofs.

(a) The formula Lin(X) defined as ∀x, y.[(x ∈ X ∧y ∈ X) =⇒ (x ≤ y ∨y ≤ x)] expresses that a subset X of N , partially ordered by ≤, is linearly ordered.

(b) The formula Lin(

] expresses that X is linearly ordered and finite, where M in(X, a) and M ax(X, b) are first-order formulas expressing respectively that X has a least element a and a largest one b, and θ(X, a, b) is an MS formula expressing that :

(i) each element x of X except b has a successor c in X (i.e., c is the least element of {y ∈ X | y > x}), and (ii) (a, b) ∈ Suc * , where Suc is the above defined successor relation (depending on X) and Suc * is its reflexive and transitive closure. Assertion (ii) is expressed by the MS formula:

The reader will easily build first-order formulas expressing U ⊆ X, (x, y) ∈ Suc and Property (i). Without a linear order, the finiteness of a set X is not MS-expressible. It is thus useful, in some cases, to enrich MS logic with a finiteness predicate F in(X) expressing that X is finite. We denote by MS fin the corresponding extension of MS logic.

If S is a relational structure (N, ≤ t , (br i) 1≤i≤ρ(F) , (lab f) f ∈F) isomorphic to t that represents a term t ∈ T ∞ (F), then a linear order on N is MS-definable as follows: x y :⇐⇒ x ≤ t y ∨ (x⊥ t y and x is below the i-th son of x t y and y is below the j-th son of x t y where i < j). The definability of linear orders by MS-formulas is studied in [?].

Monadic second-order transductions (MS transductions) are transformations of logical structures specified by MS or MS fin formulas. We use them in the proofs of Theorems (3.21), (3.30), (4.11), (5.6) and (5.10). For these proofs, we only need very simple MS transductions, said to be noncopying and parameterless in [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]. We simply call them MS transductions.

Let R and R be two relational signatures. A definition scheme of type R → R is a tuple of formulas of the form D = χ, δ, (θ R) R∈R such that χ ∈ M S(R), δ ∈ M S(R, {x}) and θ R ∈ M S(R, {x 1 , . . The mapping that associates the join-tree (N, ≤) with t for t ∈ T ∞ (F) (cf. Definition (3.15)) is an MS-transduction defined by D = χ, δ, θ ≤ such that χ expresses that the considered input structure S is isomorphic to t for some t ∈ T ∞ (F), δ(x) is lab ext (x) (expressing that x is in N) and θ ≤ (x, y) expresses that x ≤ y, cf. Definition (3.15.b).

Our main tool is the following (well-known) result: Theorem 7.1. : Let D be a definition scheme as above and ϕ ∈ M S fin (R , X). There exists a formula ϕ D ∈ M S fin (R, X) such that, for every R-structure S, for every X -assignment ν in D S , we have (S, ν) |= ϕ D if and only if:

Proof : The proof is given in [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF] (Backwards Translation Theorem, Theorem 7.10) for finite structures, so that the finiteness predicate Fin(X) is of no use. However, it works for infinite structures as well and the predicate Fin(X), that translates back to itself (under the assumption that ν(X) ⊆ D S).

The formula ϕ D is the conjunction of χ, a formula expressing (ii) and a formula ϕ obtained from ϕ by replacing each atomic formula R(x 1 , ..., x r) by θ R (x 1 , . . . , x ρ(R)), i.e., by its definition given by D.

It follows that, if the monadic theory of a class of structures S is decidable and S = D(S) for some definition scheme D, then the monadic theory of S is decidable, because S |= ϕ holds for all S in S if and only if S |= ϕ D holds for all S in S.

7.2.

Rank-width of countable graphs. Rank-width and modular decomposition (cf. [START_REF] Courcelle | Several notions of rank-width for countable graphs[END_REF][START_REF] Courcelle | The modular decomposition of countable graphs. Definition and construction in monadic second-order logic[END_REF]) motivate the study of quasi-trees and join-trees respectively. We now review rankwidth for countable graphs. Rank-width is a width measure on finite graphs investigated first in [START_REF] Oum | Rank-width and vertex-minors[END_REF] and [START_REF] Oum | Approximating clique-width and branch-width[END_REF]. Here is its generalization to countable graphs.

We consider finite or countable, loop-free, undirected graphs without parallel edges. Let G be such a graph. Its adjacency matrix is In [START_REF] Courcelle | Several notions of rank-width for countable graphs[END_REF] we define a layout of G as a subcubic quasi-tree T whose set of leaves is V G . Its rank is the least upper-bound of the ranks rk(M G [X ∩ V G , X c ∩ V G]) such that X and X c := N T -X are two convex subsets of N T . (X is convex if x, z ∈ X ∧B(x, y, z) =⇒ y ∈ X.)

The rank-width of G, denoted by rwd(G), is the smallest rank of a layout. Its discrete rank-width, denoted by rwd dis (G), is similar except that layouts are subcubic trees. Hence,