
HAL Id: hal-01299077
https://hal.science/hal-01299077v3

Submitted on 2 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic and logical descriptions of generalized trees
Bruno Courcelle

To cite this version:
Bruno Courcelle. Algebraic and logical descriptions of generalized trees. Logical Methods in Computer
Science, 2017, 13 (3), pp.Article 7. �hal-01299077v3�

https://hal.science/hal-01299077v3
https://hal.archives-ouvertes.fr


ALGEBRAIC AND LOGICAL DESCRIPTIONS

OF GENERALIZED TREES

BRUNO COURCELLE

LaBRI, CNRS, 351 Cours de la Libération, 33405 Talence, France
e-mail address: courcell@labri.fr

Abstract. Quasi-trees generalize trees in that the unique ”path” between two nodes may
be infinite and have any countable order type. They are used to define the rank-width of a
countable graph in such a way that it is equal to the least upper-bound of the rank-widths
of its finite induced subgraphs. Join-trees are the corresponding directed trees. They are
useful to define the modular decomposition of a countable graph. We also consider ordered
join-trees, that generalize rooted trees equipped with a linear order on the set of sons of
each node. We define algebras with finitely many operations that generate (via infinite
terms) these generalized trees. We prove that the associated regular objects (those defined
by regular terms) are exactly the ones that are the unique models of monadic second-order
sentences. These results use and generalize a similar result by W. Thomas for countable
linear orders.

Introduction

We define and study countable generalized trees, called quasi-trees, such that the unique
”path” between two nodes may be infinite and have any order type, in particular that
of rational numbers. Our motivation comes from the notion of rank-width, a complexity
measure of finite graphs investigated first in [17] and [18]. Rank-width is based on graph
decompositions formalized with finite subcubic trees. In order to extend rank-width to
countable graphs in such a way that the compactness property holds, i.e., that the rank-width
of a countable graph is the least upper-bound of those of its finite induced subgraphs, we
base decompositions on subcubic quasi-trees [10]. (For a comparison, the natural extension
of tree-width to countable graphs has the compactness property [16] without needing quasi-
trees.) Join-trees can be seen as directed quasi-trees. A join-tree is a partial order (N,≤)
such that every two elements have a least upper-bound (called their join) and each set
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2 B. COURCELLE

{y | y ≥ x} is linearly ordered. The modular decomposition of a countable graph is based
on an ordered join-tree [12].

Our objective is to obtain finitary descriptions (usable in algorithms) for the following
generalized trees : join-trees, ordered join-trees and quasi-trees. For this purpose we will
define algebras of such generalized trees that use finitely many operations and such that the
finite and infinite terms over these operations define all countable relevant generalized trees.
The regular objects are those defined by regular terms, i.e. that have finitely many different
subterms, equivalently, that are the unique solutions of certain finite equation systems. We
will prove that a generalized tree is regular if and only if it is monadic second-order definable,
i.e., is the unique model (up to isomorphism) of a monadic second-order sentence.

As a special case, we have linear orders. A countable linear order whose elements are
labelled by letters from a finite alphabet is called an arrangement. The linear order of a
regular arrangement is the left-right order of the leaves of the tree representing a regular
term, equivalently, the lexicographic ordering of the words of a regular language. Regular
arrangements were first defined and studied in [7] and [15], and their monadic second-order
definability was proved in [19]. We will use the latter result for proving its extension to
our generalized trees. The study of regular linear orders has been continued by Bloom and
Ésik in [1, 2]. These authors have defined and studied the algebraic linear orders, defined
similarly in terms of algebraic trees (infinite terms defined as solutions of certain first-order
equation systems, [8]) or equivalently, as lexicographic orderings of the words of deterministic
context-free languages [3, 4].

In Sections 1 and 2, we review definitions. In Section 3 we first study binary join-trees
and then, we extend the definitions and results concerning them to all join-trees. In Section
4, we study ordered join-trees, and in Section 5, we study quasi-trees. An appendix reviews
definitions and facts about monadic second-order logic and the application of quasi-trees to
the rank-width of countable graphs. An introductory article on these results is [11].

1. Orders, trees and terms

All sets, trees and logical structures are finite or countably infinite. We denote by X ] Y the
union of X and Y if they are disjoint. Isomorphism of ordered sets, trees and other logical
structures is denoted by '.

For partial orders ≤,�,v, ... we denote respectively by <,≺,@, ... the corresponding
strict orders and X < Y means that x < y for every x ∈ X and y ∈ Y .

Let (V,≤) be a partial order. The least upper bound of x and y is denoted by x t y if
it exists and is called their join. The notation x⊥y means that x and y are incomparable.
A line1 is a subset Y of V that is linearly ordered and satisfies the following convexity
property : if x, z ∈ Y , y ∈ V and x ≤ y ≤ z, then y ∈ Y . Particular notations for convex
sets (not necessarly linearly ordered) are [x, y] denoting {z | x ≤ z ≤ y}, ]x, y] denoting
{z | x < z ≤ y}, ] − ∞, x] denoting {y | y ≤ x} (even if V is finite), ]x,+∞[ denoting
{y | x < y} etc. If X ⊆ V , then ↓ (X) is the union of the sets ]−∞, x] for x in X.

The first infinite ordinal and the linear order (N,≤) are denoted by ω.
The restriction of a relation R or a function f defined on a set V to a subset W is

denoted by R �W or f �W respectively.

1In [10] we call line a linearly ordered subset, without imposing the convexity property.
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Monadic second-order logic (MS logic in short) logic is reviewed in the appendix.
MS-definable and MS-expressible mean respectively definable and expressible in monadic
second-order logic. A sentence is a formula without free variables.

1.1. Trees. A tree is a possibly empty, finite or countable, undirected graph that is connected
and has no cycles. Hence, it has neither loops nor parallel edges. The set of nodes of a tree
T is NT .

A rooted tree is a nonempty tree equipped with a distinguished node called its root. The
level of a node x is the number of edges of the path between it and the root and Sons(x)
denotes the set of its sons. We define on NT the partial order ≤T such that x ≤T y if
and only if y is on the unique path between x and the root. The least upper bound of x
and y, denoted by x tT y is their least common ancestor. We will specify a rooted tree T
by (NT ,≤T ) and we will omit the index T when the considered tree is clear. For a node
x of T , the subtree issued from x, denoted by T/x, is defined as (NT/x,≤T � NT/x) where
NT/x :=]−∞, x].

A partial order (N,≤) is (NT ,≤T ) for some rooted tree T if and only if it has a largest
element max and for each x ∈ N , the set [x,max] is finite and linearly ordered. These
conditions imply that any two nodes have a join.

An ordered tree is a rooted tree such that each set Sons(x) is linearly ordered by an
order vx.

1.2. Finite and infinite terms. Let F be a finite set of operations f , each given with an
arity ρ(f). We call such a set a signature. The maximal arity of a symbol is denoted by ρ(F ).
A term over F is finite or infinite. We denote by T∞(F ) the set of all terms over F and by
T (F ) the set of finite ones. A typical example of an infinite term, easily describable linearly,
is, with f binary and a and b nullary, the term t∞ := f(a, f(b, f(a, f(b, f(.........)))))) that is
the unique solution in T∞(F ) of the equation t = f(a, f(b, t)).

Positions in terms are designated by Dewey words. The set Pos(t) of positions of a
term t is ordered by ≤t, the reversal of the prefix order. A term t can be seen as a labelled,
ordered and rooted tree whose set of nodes is Pos(t). We have Pos(t∞) = 2∗ ] 2∗1, where
2∗ is the set of occurrences of f , (22)∗1 is the set of occurrences of a and (22)∗21 is that of b.

There is a canonical structure of F -algebra on T∞(F ), of which T (F ) is a subalgebra. If
M = 〈M, (fM)f∈F 〉 is an F -algebra, a value mapping is a homomorphism h : T∞(F )→M.
Its restriction to finite terms is uniquely defined.

In some cases, we will use algebras with two sorts. The corresponding modifications of
the definitions are straightforward.

The partial order on terms.
Let F contain a special nullary symbol Ω intended to be the least term. We define on

T (F ) a partial order � as follows:

Ω � t for any t ∈ T (F ),
f(t1, ..., tk) � g(t′1, ..., t

′
k′) if and only if k = k′, f = g and

ti � t′i for i = 1, .., k.

For terms in T∞(F ), the definition (subsuming the previous one) is :
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t � t′ if and only if Pos(t) ⊆ Pos(t′) and every occurrence in t of a symbol
in F −{Ω} is an occurrence in t′ of the same symbol (and an occurrence in t
of Ω is an occurrence in t′ of any symbol).

Every increasing sequence of terms has a least upper bound. More details on terms can
be found in [8].

Regular terms
A term t ∈ T∞(F ) as regular if there is a mapping h from Pos(t) into a finite set Q

and a mapping τ : Q→ F × Seq(Q) (where Seq(Q) denotes the set of finite sequences of
elements of Q) such that:

if u is an occurrence of a symbol f of arity k, then τ(h(u)) = (f, (h(u1), ..., h(uk)))
where (u1, ..., uk) is the sequence of sons of u.

Intuitively, τ is the transition function of a top-down deterministic automaton with set
of states Q; h(ε) is its initial (root) state and h defines its unique run. This is equivalent to
requiring that t has finitely many different subterms, or is a component of a finite system
of equations that has a unique solution in T∞(F ). (The set Q can be taken as the set of
unknowns of such a system, see [8].)

The above term t∞ is regular with Q := {1, 2, 3, 4}, τ(1) = (f, (2, 3)), τ(2) = (a, ()), τ(3)
= (f, (4, 1)), τ(4) = (b, ()).

With a term t we associate the relational structure btc := (Pos(t),≤t, (bri)1≤i≤ρ(F ),
(labf )f∈F ) where bri(u) is true if and only if u is the i-th son of his father and labf (u) is
true if and only if f occurs at position u. A term t can be reconstructed in a unique way
from any relational structure isomorphic to btc .

A term t is regular if and only if btc is MS-definable, i.e., is, up to isomorphism, the
unique model of a monadic second-order sentence (see Thomas, [20]).

2. Arrangements and labelled sets

We review a notion introduced in [7] and further studied in [15, 19]. Let X be a set. A linear
order (V,≤) equipped with a labelling mapping lab : V → X is called an arrangement over
X. It is simple if lab is injective. We denote by A(X) the set of arrangements over X.

An arrangement over a finite set X can be considered as a generalized word. A linear
order (V,≤) is identified with the simple arrangement (V,≤, IdV ) such that IdV (v) := v for
each v ∈ V . In the sequel, Id will denote the identity function on any set.

An isomorphism of arrangements i : (V,≤, lab)→ (V ′,≤′, lab′) is an order preserving
bijection i : V → V ′ such that lab′ ◦ i = lab. Isomorphism is denoted by '.

If w = (V,≤, lab) ∈ A(X) and r : X → Y , then, r(w) := (V,≤, r◦ lab) is an arrangement
over Y . If r maps V into Y , then r((V,≤)) is the arrangement (V,≤, r) over Y since we
identify (V,≤) to the simple arrangement (V,≤, Id).

The concatenation of linear orders yield a concatenation of arrangements denoted by •.
We denote by Ω the empty arrangement and by a the one reduced to a single occurrence of
a ∈ X. Clearly, w • Ω = Ω • w = w for every w ∈ A(X). The infinite word w = aω is the
arrangement over {a} with underlying order ω; it is described by the equation w = a • w.
Similarly, the arrangement w = aη over {a} with underlying linear order (Q,≤) (that
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of rational numbers) is described by the equation w = w • (a • w). We will generalize
arrangements to tree structures.

Let X be a set of first-order variables (they are nullary symbols) and t ∈ T∞({•,Ω}∪X).
Hence, Pos(t) ⊆ {1, 2}∗. The value of t is the arrangement val(t) := (Occ(t,X),≤lex, lab)
where Occ(t,X) is the set of positions of the elements of X and lab(u) is the symbol of X
occurring at position u. We say that t denotes w if w is isomorphic to val(t).

For an example, t• := •(a, •(b, •(a, •(b, •(.........)))))) denotes the infinite word abab... . Its
value is defined from Occ(t•, {a, b}) = 2∗1, lexicographically ordered (i.e., 1 < 21 < 221 < ...)
by taking lab(2i1) := a if i is even and lab(2i1) := b if i is odd. The arrangements aω and aη

are denoted respectively by t1 and t2 that are the unique solutions in T∞({•,Ω, a}) of the
equations t1 = a • t1 and t2 = t2 • (a • t2).

An arrangement is regular if it is denoted by a regular term. The term t• is regular. The
arrangements aω and aη are regular.

An arrangement is regular if and only if it is a component of the initial solution of a
regular system of equations over F [7] or the value of a regular expression in the sense of
[15]. We will use the result of [19] that an arrangement over a finite alphabet is regular if
and only if is MS-definable. For this result, we represent an arrangement w = (V,≤, lab)
over X by the relational structure bwc := (V,≤, (laba)a∈X) where laba(u) is true if and only
if lab(u) = a.

An X-labelled set is a pair m = (V, lab) where lab : V → X, equivalently, a relational
structure (V, (laba)a∈X) where each element of V belongs to a unique set laba. We denote by
set(w) the X-labelled set obtained by forgetting the linear order of an arrangement w over
X. Up to isomorphism, an X-labelled set m is defined by the cardinalities in N ∪ {ω} of the
sets laba, hence is a finite or countable multiset of elements of X : a number in N ∪ {ω}
associated with each a ∈ X and represents its number of occurrences in m.

If X is finite, each X-labelled set is MSfin -definable, i.e., is the unique, finite or countably
infinite model up to isomorphism of a sentence of monadic second-order logic extended with
a set predicate Fin(U) expressing that the set U is finite. (See the appendix for details). It
is also regular, hence, is set(val(t)) for some regular term in T∞({•,Ω} ∪X). The notion of
regularity is thus trivial for X-labelled sets when X is finite.

3. Join-trees

Join-trees have been used in [12] for defining the modular decomposition of countable graphs.

3.1. Join-trees, join-forests and their structurings. Join-trees are defined as particular
partial-orders. Finite nonempty join-trees correspond to finite rooted trees.

Definition 3.1. : Join-tree.
(a) A join-tree is a pair J = (N,≤) such that:

1) N is a possibly empty, finite or countable set called the set of nodes,
2) ≤ is a partial order on N such that, for every node x, the set [x,+∞[ (the
set of nodes y ≥ x) is linearly ordered,
3) every two nodes x and y have a join x t y.
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A minimal node is a leaf. If N has a largest element, we call it the root of J . The set of
strict upper-bounds of a nonempty set X ⊆ N is a line L. If L has a smallest element, we

denote it by X̂ and we say that X̂ is the top of X. Note that X̂ /∈ X.

(b) A join-forest is a pair J = (N,≤) that satisfies conditions 1), 2) and the following
weakening of 3):

3’) if two nodes have an upper bound, they have a join.

The relation that two nodes have a join is an equivalence. Let Ns for s ∈ S be its
equivalence classes and Js := (Ns,≤� Ns), more simply denoted by (Ns,≤) by leaving
implicit the restriction to Ns. Then each Js is a join-tree, and J is the union of these
pairwise disjoint join-trees, called its components.

(c) A join-forest J = (N,≤) is included in a join-forest J ′ = (N ′,≤′), denoted by J ⊆ J ′,
if N ⊆ N ′, ≤ is ≤′� N and t is t′ � N .

Definition 3.2. : Direction and degree.
Let J = (N,≤) be a join-forest, and x be one of its nodes. Let ∼ be the equivalence

relation on ]−∞, x[ such that z ∼ y if and only if z t y < x. Each equivalence class C is

called a direction of J relative to x and Ĉ = x. The set of directions relative to x is denoted
by Dir(x) and the degree of x is the number of its directions. The leaves are the nodes of
degree 0.

A join-tree is binary if its nodes have degree at most 2. We call it a BJ-tree for short.

Definition 3.3. : Structured join-trees and join-forests.
(a) Let J = (N,≤) be a join-tree. A structuring of J is a set U of nonempty lines

forming a partition of N that satisfies some conditions, stated with the following notation
: if x ∈ N , then U(x) denotes the line of U containing x, U−(x) := U(x)∩] −∞, x[ and
U+(x) := U(x) ∩ [x,+∞[. (The set [x,+∞[ has no top but it can have a greatest element).
The conditions are:

1) exactly one line A of U is upwards closed (i.e., [x,+∞[⊆ A if x ∈ A),
hence, has no strict upper-bound and no top; we call it the axis; each other

line U has a top Û ,

2) for each x in N , the sequence y0, y1, y2, ... such that y0 = x, yi+1 = Û(yi)
is finite; its last element is yk ∈ A (yk+1 is undefined) and we call k the depth
of x.

The nodes on the axis are those at depth 0. The lines [yi, yi+1[ for i ∈ [0, k − 1]
and [yk,+∞[ are convex subsets of pairwise distinct lines of U . We have [x,+∞[ =
[y0, y1[][y1, y2[]... ] [yk,+∞[, where [yi, yi+1[= U+(yi) for each i < k, [yk,+∞[= U+(yk)
⊆ A and the depth of yi is k − i.

We call such a triple (N,≤,U) a structured join-tree, an SJ-tree for short.
Every linear order is an SJ-tree whose elements are all of depth 0.

Remark : If x < A for some x, then A has a smallest element, which is the node yk
of Condition 2) (because if z ∈ A is smaller than yk, then x < z, which contradicts the
observation that [yk−1, yk[⊆ U(yk−1) and U(yk−1) ∩A = ∅).
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Figure 1: A structured binary join-tree.

(b) Let J = (N,≤) be a join-forest whose components are Js, s ∈ S. A structuring of J
is a set U of nonempty lines forming a partition of N such that, if Us is the set of lines of
U included in Ns (every line of U is included in some Ns), then each triple (Ns,≤,Us) is a
structuring of Js.

Example 3.4. : Figure 1 shows a structuring {U0, ..., U5} of a binary join-tree. The
axis is U0. The directions relative to x2 are U−(x2) ∪ U1 and U2 ∪ U3. The maximal depth
of a node is 2.

Proposition 3.5. : Every join-tree and, more generally, every join-forest has a struc-
turing.

Proof : Let J = (N,≤) be a join-tree. Let us choose an enumeration of N and a
maximal line B0 ; it is upwards closed. For each i > 0, we choose a maximal line Bi
containing the first node not in Bi−1 ∪ ... ∪ B0. We define U0 := B0 and, for i > 0,
Ui := Bi − (Ui−1 ] ... ]U0) = Bi − (Bi−1 ∪ ... ∪B0). We define U as the set of lines Ui. It is
a structuring of J . The axis is U0.

If J is a join-forest, it has a structuring that is the union of structurings of its components.
�

Remark : Since each line Bi is maximal, if Ui has smallest element, this element is a
node of degree 0 in J .

In view of our use of monadic second-order logic, we give a description of SJ-trees by
relational structures.

Definition 3.6. : SJ-trees as relational structures.
(a) If J = (N,≤,U) is an SJ-tree, we define S(J) as the relational structure (N,≤, N0, N1)

such that N0 is the set of nodes at even depth and N1 := N −N0 is the set of those at odd
depth. (N0 and N1 are sets but we consider them also as unary relations).
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(b) Let J = (N,≤) be a join-tree and X ⊆ N . We say that X is laminar if, for all
x, y, z ∈ X, if [x, z]∪ [y, z] ⊆ X (where x < z and y < z), then [x, z] ⊆ [y, z] or [y, z] ⊆ [x, z]
(the intervals [x, z] and [y, z] are relative to J). This condition implies that the lines of J
that are included in X and are maximal with this condition form a partition of X whose
parts will be called its components.

Proposition 3.7. : For J and S(J) as above, the following properties hold:

1) the sets N0 and N1 are laminar, U is the set of their components and the
axis A is a component of N0,
2) there is an MS formula ϕ(N0, N1) expressing that a relational structure
(N,≤, N0, N1) is S(J) for some SJ-tree J = (N,≤,U),
3) there exist MS formulas θAx(X,N0, N1) and θ(u, U,N0, N1) expressing,
respectively, in a structure (N,≤, N0, N1) = S(N,≤,U), that X is the axis

and that U ∈ U ∧ u = Û .

Proof : 1) is clear from the definitions.
2) That a partial order (N,≤) is a join-tree is first-order expressible. The formula

ϕ(N0, N1) will include this condition. Let J = (N,≤) be a join-tree; let N be the union
of two disjoint laminar sets N0 and N1 and U be the set of their components. Then,
J = (N,≤,U) is an SJ-tree and S(J) = (N,≤, N0, N1) if and only if:

i) every component of N1 has a top in N0 and every component of N0 except one has a
top in N1,

ii) for each U in U , the sequence U0, U1, ... of lines of U such that U0 = U , Û0 ∈
U1, ..., Ûi ∈ Ui+1 terminates at some Uk that has no top, hence is included in N0.

These conditions are necessary. As they rephrase Definition (3.3), they are also sufficient.
The integer k in Condition ii) is the common depth of all nodes in U .

That a set X is laminar is MS-expressible, and one can build an MS-formula ψ(U,X)
expressing that U is a component of X assumed to be laminar. This formula can be used to
express that N is the union of two disjoint laminar sets N0 and N1 that satisfy Conditions i)
and ii). For expressing Condition ii), we define for each U in U a set of nodes W as follows :

it is the least set such that Û ∈ W, and, for each w ∈ W , the top of U(w) belongs to W
if it is defined (where U(w) is the unique set in U that contains w). The set W is linearly

ordered (it consists of Û0 < ... < Ûi...) and Condition ii) says that it must be finite. To write
the formula, we use the fact that the finiteness of a linearly ordered set is MS-expressible
(see the Appendix).

3) The construction of ϕ actually uses the MS formulas θAx(X,N0, N1) and θ(u, U,N0, N1).
�

3.2. Description schemes of structured binary join-trees. In order to introduce tech-
nicalities step by step, we first consider binary join-trees. They are actually sufficient for
defining the rank-width of a countable graph. See Section 5 and the appendix.

Definition 3.8. : Structured binary join-trees.

Let J = (N,≤) be a binary join-tree. A structuring of J is a set U of lines satisfying
the conditions of Definition (3.3) and, furthermore:
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i) if the axis A has a smallest element, then its degree is 0 or 1,
ii) each x ∈ N is the top of at most one set U ∈ U , denoted by Ux, and
Ux := ∅ if x is the top of no U ∈ U .

We call (N,≤,U) a structured binary join-tree, an SBJ-tree in short.

Proposition 3.9. : 1) Every BJ-tree J has a structuring.
2) The class of stuctures S(J) for SBJ-trees J is monadic second-order definable.

Proof: 1) We use the construction of Proposition (3.5) for J = (N,≤). The remark
following it implies that, if the axis A = U0 has a smallest element, this element has degree

0. It implies also that, if Ûi = x, then x cannot have degree 0 in the BJ-tree Ji−1 induced
by Ui−1 ] ... ] U0 because each line Bi is chosen maximal, and it cannot have degree 2 or
more in Ji−1 because J is binary. Hence it has degree 1 in Ji−1. It follows that x is the top
of no line Uj for j < i. Hence ii) holds and the construction yields an SBJ-tree (N,≤,U).

2) The formula ϕ of Proposition (3.7) can easily be modified so as to express that
(N,≤, N0, N1) is S(J) for some SBJ-tree J. �

Definition 3.10. : Description schemes for SBJ-trees.
(a) A description scheme for an SBJ-tree, in short an SBJ-scheme, is a triple ∆ =

(Q,wAx, (wq)q∈Q) such that Q is a set, wAx ∈ A(Q) (is an arrangement over Q) and
wq ∈ A(Q) for each q.

It is regular if Q is finite and the arrangements wAx and wq are regular.

(b) We recall that a linear order (V,≤) is identified with the arrangement (V,≤, Id). If
W ⊆ V and r : V → Q, then r((W,≤)) is the arrangement (W,≤� W, r � W ) ∈ A(Q) that
we will denote more simply by (W,≤, r) leaving implicit the restrictions of ≤ and r to W .

An SBJ-scheme ∆ describes an SBJ-tree J = (N,≤,U) whose axis is A if there exists a
mapping r : N → Q such that:

r((A,≤)) ' wAx and r((Ux,≤)) ' wr(x) for every x ∈ N.
We will also say that ∆ describes the BJ-tree fgs(J) := (N,≤).
The mapping r need not be surjective, this means that some elements of Q and the

corresponding arrangements may be useless, and thus can be removed from ∆.

(c) Each SBJ-tree J = (N,≤,U) has a standard description scheme ∆(J) := (N,
(A,≤), ((Ux,≤))x∈N ). The identity mapping r : N → N shows that ∆(J) describes J .

Intuitively, one obtains from ∆(J) an SBJ-scheme ∆ := (Q,wAx, (wq)q∈Q) that describes
J by a kind of quotient construction :

(i) one chooses a partition Q of N satisfying conditions (ii) and (iii) below,
where for each x ∈ N , r(x) denotes the part q of the partition Q that contains
x,
(ii) for all nodes x in a part q of Q, the arrangements (Ux, ≤, r) are isomorphic
to wq,
(iii) (A,≤, r) ' wAx.

(d) An example: Let ∆ = (Q,wAx, (wq)q∈Q) be the SBJ-scheme such that Q = {a, b, c},
wAx is (Z,≤, `) where `(i) = a if i is even and `(i) = b if i is odd, wa = {c}, wb = cc (two
nodes labelled by c) and wc = Ω. It describes the BJ-tree of Figure 2.�
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Figure 2: A binary join-tree.

Proposition 3.11. : Every SBJ-scheme ∆ describes a unique SBJ-tree where unicity
is up to isomorphism.

We denote this SBJ-tree by Unf (∆), called the unfolding of ∆ (see the remark following
the proof about terminology).

Proof : Let ∆ = (Q,wAx, (wq)q∈Q) be an SBJ-scheme, defined with arrangements
wAx = (VAx,�, labAx) and wq = (Vq,�, labq) such that, without loss of generality, the sets
VAx and Vq are pairwise disjoint and the same symbol � denotes their orders.

We construct (N,≤,U) = Unf (∆) as follows.
a) N is the set of finite nonempty sequences (v0, v1, ..., vk) such that:

v0 ∈ VAx, vi ∈ Vqi for 1 ≤ i ≤ k, where
q1 = labAx(v0), q2 = labq1(v1), ..., qk = labqk−1

(vk−1).

b) (v0, v1, ..., vk) ≤ (v′0, v
′
1, ..., v

′
j) if and only if k ≥ j, (v0, v1, ..., vj−1) = (v′0, v

′
1, ..., v

′
j−1)

and vj � v′j .
c) The axis A is the set of one-element sequences (v) for v ∈ VAx; for x = (v0, v1, ..., vk),

we define U(x) as the set of sequences (v0, v1, ..., vk−1, v) such that v ∈ Vqk , hence, we have

Û(x) = (v0, v1, ..., vk−1).

Note that (v0, ..., vk) < (v0, ..., vj) if j < k and that (v0, ..., vk−1, vk) ≤ (v0, ..., vk−1, v)
if and only if vk � v.

Claim : ∆ describes (N,≤,U).
We define r : N → Q as follows:

if x ∈ A, then x = (v) for some v ∈ VAx and r(x) := labAx(v);
if x ∈ N has depth k ≥ 1, then x = (v0, v1, ..., vk) for some v0, v1, ..., vk as in
a) and r(x) := labqk(vk).

It follows that r((A,≤)) ' wAx and that, for x = (v0, v1, ..., vk) (of depth k), we have
r((Ux,≤)) ' wqk = wr(x), which proves the claim. �

We now prove unicity. Assume that ∆ describes J = (N,≤,U) with axis A and also
J ′ = (N ′,≤′,U ′) with axis A′, by means of mappings r : N → Q and r′ : N ′ → Q. We
construct an isomorphism h : J → J ′ as the common extension of bijections hk : Nk → N ′k,
where Nk (resp. N ′k) is the set of nodes of J (resp. of J ′) of depth at most k, and such that
they map ≤ to ≤′, and the lines of U to those of U ′ of same depth, and finally, r′◦hk = r � Nk.



GENERALIZED TREES 11

Case k = 0. We have:

r((A,≤)) = (A,≤, r) ' wAx ' r′((A′,≤)) = (A′, ≤′, r′)
which gives the order preserving bijection h0 : N0 = A→ N ′0 = A′ such that r′ ◦ h0 =

r � N0.
Case k > 0. We assume inductively that hk−1 has been constructed.

Let U ∈ U be such that x = Û has depth k − 1; hence, U ∩Nk−1 = ∅. Then (U,≤, r) '
wr(x). Let x′ = hk−1(x); we have r′(x′) = r(x). Hence there is U ′ ∈ U ′ such that x′ = Û ′,
U ′∩N ′k−1 = ∅ and (U ′,≤′, r′) ' wr′(x′) = wr(x). Hence, there is an order preserving bijection
hU : U → U ′ such that r′ ◦ hU = r � U.

We define hk as the extension of the injective mappings hk−1 and hU for all U ∈ U such

that the depth of Û is k− 1. These mappings have pairwise disjoint domains whose union is
Nk.

The extension to N of all these mappings hk is the desired isomorphism h. �

Remark : We call unfolding the transformation of ∆ into Unf (∆) because it generalizes
the unfolding of a directed graph G into a finite or countable rooted tree. The unfolding
is done from a particular vertex s of G, and the nodes of the tree are the sequences of the
form (x0, ..., xk) such that s = x0 and there is a directed edge in G from xi to xi+1, for each
i < k. If ∆ is such that the arrangements wAx and wq are reduced to a single element, the
corresponding directed graph has all its vertices of outdegree one and the tree resulting from
the unfolding consists of one infinite path: the SBJ-tree Unf (∆) is the order type ω− of
negative integers and the sets in U are singletons.

Proposition 3.12. : A BJ-tree is monadic second-order definable if it is described by
a regular BJ-scheme.

Proof : That J = (N,≤) is a BJ-tree is first-order expressible. Assume that J = fgs(J ′)
where J ′ = (N,≤,U) ' Unf (∆) for some regular SBJ-scheme ∆ = (Q,wAx, (wq)q∈Q) such
that Q = {1, ...,m}. Let r be the corresponding mapping: N → Q (cf. Definition (3.10.b)).
For each q ∈ Q, let ψq be an MS sentence that characterizes wq, up to isomorphism, by the
main result of [19]. Similarly, ψAx characterizes wAx. We claim that a relational structure
(X,≤) is isomorphic to J if and only if there exist subsets N0, N1,M1, ...,Mm of X such
that:

(i) (X,≤) is a BJ-tree and (X,≤, N0, N1) = S(J ′′) for some SBJ-tree J ′′ =
(X,≤,U ′),
(ii) (M1, ...,Mm) is a partition of X; we let r′ maps each x ∈ X to the unique
q ∈ Q such that x ∈Mq,

(iii) for every q and node x in Mq, the arrangement r′((Ux,≤)) over Q is
isomorphic to wq (where Ux ∈ U ′),
(iv) the arrangement r′((A′,≤)) over Q where A′ is the axis of J ′′ is isomorphic
to wAx.

Conditions (ii)-(iv) express that ∆ describes J ′′, hence that J ′′ is isomorphic to J ′, and
so, that (X,≤) ' fgs(J ′) = J .

By Proposition (3.9), Condition (i) is expressed by an MS-formula ϕ(N0, N1), and the

property U ∈ U ∧ x = Û is expressed in terms of N0, N1 by an MS-formula θ(x, U,N0, N1).
Conditions (iii) and (iv) are expressed by means of the MS-sentences ψAx and ψq suitably
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adapted to take N0, N1,M1, ...,Mm as arguments. Hence, J is (up to isomorphism) the
unique model of an MS sentence of the form:

∃N0, N1.[ϕ(N0, N1) ∧ ∃M1, ...,Mm.ϕ
′(N0, N1,M1, ...,Mm))]

where ϕ′ expresses conditions (ii)-(iv). �

Theorem (3.21) will establish a converse.

3.3. The algebra of binary join-trees. We define three operations on structured binary
join-trees (SBJ-trees). The (finite and infinite) terms over these operations define all SBJ-
trees.

Definition 3.13. : Operations on SBJ-trees.

Concatenation along axes.
Let J = (N,≤,U) and J ′ = (N ′,≤′,U ′) be disjoint SBJ-trees, with respective axes A

and A′. We define:

J • J ′ := (N ]N ′,≤′′,U ′′) where :
x ≤′′ y :⇐⇒ x ≤ y ∨ x ≤′ y ∨ (x ∈ N ∧ y ∈ A′),
U ′′ := {A ]A′} ] (U−{A}) ] (U ′−{A′}).

J • J ′ is an SBJ-tree with axis A]A′; the depth of a node in J • J ′ is the same as in J
or J ′.

This operation generalizes the concatenation of linear orders: if (N,≤) and (N ′,≤′)
are disjoint linear orders, then the SBJ-tree (N,≤, {N}) • (N ′,≤′, {N ′}) corresponds to the
concatenation of (N,≤) and (N ′,≤′) usually denoted by (N,≤) + (N ′,≤′).

If K = (M,≤,V) is an SBJ-tree with axis B, and B = A ]A′ such that A < A′, then
K = J • J ′ where:

N :=↓ (A), N ′ := M −N,
U is the set of lines of V included in N −A together with A,
U ′ is the set of lines of V included in N ′ −A′ together with A′ and
the orders of J and J ′ are the restrictions of ≤ to N and N ′.

The empty SBJ-tree:
The nullary symbol Ω denotes the empty SBJ-tree.

Extension:
Let J = (N,≤,U) be an SBJ-tree, and u /∈ N . Then:

extu(J) := (N ] {u},≤′, {{u}} ] U) where :
x ≤′ y :⇐⇒ x ≤ y ∨ y = u,
the axis is {u}.

Clearly, extu(J) is an SBJ-tree. The depth of v ∈ N is its depth in J plus 1. The axis
of J is turned into an ”ordinary line” of the structuring of extu(J) with top equal to u.

When handling SBJ-trees up to isomorphism, we use the notation ext(J) instead of
extu(J).

Forgetting structuring:
If J is an SBJ-tree as above, fgs(J) := (N,≤) is the underlying BJ-tree (binary join-tree).
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Anticipating the sequel, we observe that a linear order a1 < ... < an, identified with the
SBJ-tree ({a1, ..., an},≤, {{a1, ..., an}}) is defined by the term t := exta1(Ω) • exta2(Ω) • ... •
extan(Ω). The binary (it is even ”unary”) join-tree ({a1, ..., an},≤) is defined by the term
fgs(t) and also, in a different way, by the term fgs(extan(extan−1(...(exta1(Ω)))..))).

Definition 3.14. : The algebra SBJT
We let F be the signature {•, ext,Ω}. We obtain an algebra SBJT whose domain is the

set of isomorphism classes of SBJ-trees. Concatenation is associative with neutral element
Ω.

Definition 3.15. : The value of a term.
(a) In order to define the value of a term t in T∞(F ), we compare its positions as follows:

u ≈ v if and only if every position w such that u <t w ≤t u tt v or
v <t w ≤t u tt v is an occurrence of •.

This relation is an equivalence. We will also use the lexicographic order ≤lex (positions
are Dewey words). If w is an occurrence of a binary symbol, then s1(w) is its first (left) son
and s2(w) its second (right) one.

(b) We define the value val(t) := (N,≤,U) of t in T∞(F ) as follows:

N := Occ(t, ext), the set of occurences in t of ext,
u ≤ v :⇐⇒ u ≤t w ≤lex v for some w ∈ N such that w ≈ v,
U is the set of equivalence classes of ≈ .

Equivalently, we have :

u ≤ v :⇐⇒ u ≤t v or u ≤t s1(u tt v), v ≤t s2(u tt v) and v ≈ u tt v (the
position u tt v is an occurrence of •),

and so (we recall that ⊥ denotes incomparability) :

u⊥v :⇐⇒ u ≤t s1(u tt v), v ≤t s2(u tt v) and there is an occurrence of ext
between v and u tt v or vice-versa by exchanging u and v.

(c) We now consider terms t written with the operations exta (such that a is the node
created by applying this operation). For each a, the operation exta must have at most one
occurrence in t. Assuming this condition satisfied, then val(t) := (N,≤,U) where :

N is the set of nodes a such that exta has an occurence in t that we will
denote by ua,
a ≈ b :⇐⇒ ua ≈ ub, with ≈ as in (a),
a ≤ b :⇐⇒ ua ≤ ub, with ≤ as in (b),
U is the set of equivalence classes of ≈ .

(3.15.1) Claim: The mapping val in (b) is a value mapping T∞(F )→ SBJT.

We say that t denotes an SBJ-tree J if J is isomorphic to val(t), and, in this case, we
also say that fgs(t) denotes the BJ-tree fgs(J).

Examples 3.16.
(1) The term t0 that is the unique solution in T∞(F ) of the equation t0 = t0 • t0 denotes

the empty SBJ-tree Ω.
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Figure 3: A finite SBJ-tree J .

Figure 4: A term t denoting J .

(2) Figure 3 shows a finite SBJ-tree J whose structuring consists of U0, ..., U5, and U0 is
the axis. The linear order on U0 can be described by the word fedca (with f < e < d < ...).
Similarly, U1 = b, U2 = hg, U3 = i , U4 = kj and U5 = m.

Let us examine the term t of Figure 4 that denotes J . A function symbol extu specifies
the node u of J , and we also denote by u its occurrence (a position of t). The occurrences of
• and Ω are denoted by Dewey words. For example, the occurrences of • above the symbols
ext are the words ε, 1, 2, 12. The set {ε, 1, 2, 12, f, e, d, c, a} is an equivalence class of ≈.
Another one is {1221, k, j}. Each line Ui is the set of positions of the ext symbols in some
equivalence class of ≈. Let us now examine how each line is ordered.

The case where u < v holds because u <t v is illustrated, to take a few cases, by
i < g, g < e,m < j and j < d.

The case where u < v holds because u⊥tv, u ≤t s1(utt v), v ≤t s2(utt v) and v ≈ utt v
is illustrated by f < e, e < d, d < c and i < d. We have i < d because itt d = 12, i <t s1(12),
d ≤t s2(12) and d ≈ 12. We do not have i < j because j is not ≈-equivalent to 12, whereas
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Figure 5: The SBJ-tree val(t1).

i tt j = 12, i <t s1(12) and j ≤t s2(12). This case illustrates the characterization of ⊥ in
Definition 3.15(c).

(3) Let t1 be the solution in T∞(F ) of the equation t1 = ext(ext(Ω)) • t1. We write it by
naming a, b, c, d, e, f, ... the nodes created by the operations ext, hence, t1 = exta(extb(Ω)) •
(extc(extd(Ω)) • (exte(extf (Ω)) • ...))).

Its value is shown in Figure 5. The bold edges link nodes in the axis. The nodes b and
f are incomparable because the corresponding occurrences of ext, that are 111 and 2211,
have least common ancestor ε and 221 is an occurrence of ext between 2211 and ε.

Definition 3.17. : The description scheme associated with a term.
(a) Let t ∈ T∞(F ) and u ∈ Pos(t). We denote by Max(t, ext, u) the set of maximal

occurrences of ext in t that are below u or equal to it. Positions are denoted by Dewey
words, hence, these sets are linearly ordered by ≤lex. We denote by W (t, u) the simple
arrangement (Max(t, ext, u),≤lex).

Let J = (N,≤,U) be the value of t (cf. Definition (3.15)) and x be an occurrence of ext
with son u. We have (Ux,≤) = (Max(t, ext, u),≤lex).

For the term t in Example 3.16(2) we have W (t, ε) = fedca, W (t, 1) = fed, W (t, e) = hg.
For t1 in Example 3.16(3), we have W (t1, ε) = ace..., W (t1, 1) = a, W (t1, 11) = b and
W (t1, 111) = Ω.

(b) We define ∆(t) as the SBJ-scheme

(Occ(t, ext),W (t, ε), (W (t, s(x)))x∈Occ(t,ext))

where s(x) is the unique son of an occurrence x of ext.

We obtain ∆(t1) = (2∗ ] 2∗1, ace..., (wx)x∈Occ(t1,ext)) with wa = b, wc = d,...,wb = Ω,
wd = Ω, ... for the term t1 of Example 3.16(3).

Lemma 3.18. : If t ∈ T∞(F ), then val(t) is described by ∆(t).

Proof: Let val(t) = (N,≤,U). The conditions of Definition (3.10.b) hold with the
identity on Occ(t, ext) as mapping r because (Ux,≤) = (Max(t, ext, s(x)),≤lex) as observed
in Definition (3.17.a). �

Proposition 3.19. : Every SBJ-tree is the value of a term.
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Proof : Let J = (N,≤,U) be an SBJ-tree. For each k, we let Jk be the SBJ-tree
(Nk,≤,Uk) where Nk is the set of nodes of depth at most k and Uk is the set lines U ∈ U of
depth at most k. By induction on k, we define for each k a term tk that defines Jk such
that tk � tk′ if k < k′, and then, the least upper bound of the terms tk is the desired term t
whose value is J .

We define terms using the symbols exta where a names the node created by the
corresponding occurrence of the extension operation.

If k = 0, then J0 = (A,≤, {A}). There exists a term t ∈ T∞({•}, ExtA) whose value
is J0, where ExtA is the set of terms exta(Ω) for a ∈ A (we use ExtA as a set of nullary
symbols).

Let k ≥ 1, where tk−1 defines Jk−1. Then Jk is obtained from Jk−1 by adding below
some nodes x at depth k − 1 the line Ux (if Ux = ∅, there is nothing to add below x). Let
tx ∈ T∞({•}, ExtUx) whose value is (Ux,≤). We obtain tk by replacing in tk−1 each subterm
extx(Ω) by extx(tx), for x at depth k − 1 such that Ux 6= ∅.

It is clear that tk−1 � tk and that the least upperbound of the terms tk defines J . �

For an example, we apply this construction to the SBJ-tree J of Figure 3. For defining
J0, we can take:

t0 = ((extf (Ω) • exte(Ω)) • extd(Ω)) • (extc(Ω) • exta(Ω)).

To obtain t1, we replace exte(Ω) by exte(exth(Ω) • extg(Ω)), extd(Ω) by extd(extk(Ω) •
extj(Ω)) and extc(Ω) by extc(extb(Ω)), which gives:

t1 = ((extf (Ω)•exte(exth(Ω)•extg(Ω)))•extd(extk(Ω)•extj(Ω))•(extc(Ω)•
exta(Ω)).

Then, we obtain t2 that defines J by replacing extg(Ω) by extg(exti(Ω)) and extj(Ω) by
extj(extm(Ω)).

3.4. Regular binary join-trees. As said in the introduction, regular objects are defined
by regular terms. We apply this meta-definition to binary join-trees and their structurings.

Definition 3.20. : Regular BJ- and SBJ-trees.
A BJ-tree (resp. an SBJ-tree) T is regular if it is denoted by fgs(t) (resp. by t) where t

is a regular term in T∞(F ).

Theorem 3.21. : The following properties of a BJ-tree J are equivalent:

(1) J is regular,
(2) J is described by a regular scheme,
(3) J is MS-definable.

Proof : (1)=⇒(2) Let J = fgs(J ′) with J ′ denoted by a regular term t in T∞(F ). Let
h : Pos(t)→ Q and τ be as in the definition of a regular term in Section 1. Without loss
of generality, we can assume that h(Pos(t)) = Q. If this is not the case, we replace Q by
h(Pos(t)) and τ by its restriction to this set.

Claim: (1) For each u ∈ Pos(t), the arrangement h(W (t, u)) = (Max(t, ext, u), ≤lex, h)
over Q is regular.
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(2) If u′ is another position in t and h(u′) = h(u), then t/u′ = t/u and furthermore2

h(W (t, u′)) ' h(W (t, u)).

Leaving its routine proof, we define ∆ := (Q,wAx, (wq)q∈Q) as follows:

(i) wAx := h(W (t, ε)),
(ii) if q ∈ Q, then wq := h(W (t, s(u))) where s(u) is the unique son of an occurrence

u of ext such that h(u) = q; if v is another occurrence of ext such that h(v) = q, then
h(s(v)) = h(s(u)) and so by the claim, h(W (t, s(v))) ' h(W (t, s(u))). Hence, wq is well-
defined up to isomorphism.

Informally, ∆ is obtained from ∆(t) by replacing the labelling mapping Id of the
arrangements W (t, u) by h, so that these arrangements are turned into arrangements
h(W (t, u)) over Q. Clearly, ∆ is a regular scheme. As mapping r showing that it describes
J ′ (cf. Definition (3.10)), hence also J , we take the resriction of h to Occ(t, ext) that is the
set of nodes of J ′ = val(t).

(2)=⇒(3) is proved in Proposition (3.12).
(3)=⇒(1) By Definition (3.2), the mapping α that transforms the relational structure

btc for t in T∞(F ) into the BJ-tree J = (N,≤) = fgs(val(t)) is an MS-transduction3 because
an MS formula can identify the nodes of J among the positions of t and another one can
define ≤.

Let J = (N,≤) be an MS-definable BJ-tree. It is, up to isomorphism, the unique model
of an MS sentence β. It follows by a standard argument4 that the set of terms t in T∞(F )
such that α(btc) |= β is MS-definable and thus, contains a regular term (a result by Rabin,
see [20]). This term denotes J , hence J is regular.�

Corollary 3.22. : The isomorphism problem for regular BJ-trees is decidable.

Proof : A regular BJ-tree can be given, either by a regular term, a regular scheme or
an MS sentence. The proof of Theorem (3.21) is effective: algorithms can convert any of
these specifications into another one. Hence, two regular BJ-trees can be given, one by an
MS sentence β, the other by a regular term t. They are isomorphic if and only if α(btc) |= β
(cf. the proof of (3)=⇒(1) of Theorem (3.21)) if and only if t ∈ L(β), which is decidable (see
[20]). �

3.5. Logical and algebraic descriptions of join-trees. We now extend to join-trees the
definitions and results of the previous sections. Structured join-trees are defined in Section
3.1 (Definition 3.3). We extend to them the definitions and results of Sections 3.2-3.4. A
first novelty will be that the argument of the extension operation ext will be an SJ-forest,
equivalently a set of SJ-trees, instead of a single SBJ-tree. We will need an algebra with two
sorts, the sort of SJ-trees and that of SJ-forests. A second one will be the use in monadic
second-order formulas of a finiteness predicate (cf. Section 2 and the appendix).

2Unless u = u′, the sets Max(t, ext, u) and Max(t, ext, u′) are not equal, so that the arrangements

h(W (t, u)) and h(W (t, u′)) are isomorphic but not equal.
3MS logic, MS-transductions and related definitions and results are reviewed in the appendix.
4If α is an MS-transduction and β is an MS-sentence, then the set of structures S such that α(S) |= β is

MS-definable. See Theorem (7.1) in the appendix.
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Definition 3.23. : Description schemes for SJ-trees.
(a) A description scheme for an SJ-tree, in short an SJ-scheme, is a 5-tuple ∆ =

(Q,D,wAx, (mq)q∈Q, (wd)d∈D) such that Q,D are sets, wAx ∈ A(Q), wd ∈ A(Q) for each
d ∈ D and mq = (Mq, labq) is a D-labelled set (cf. Section 2) for each q ∈ Q. Without loss
of generality, we will assume that the domains VAx and Vd of the arrangements wAx, wd and
the sets Mq are pairwise disjoint, because these arrangements and labelled sets will be used

up to isomorphism. Informally, Mq encodes the different lines U such that Û = x where x is
labelled by q, and each of these lines is defined, up to isomorphism, by the arrangement wd
where d is its label in D, defined by labq.

We say that ∆ is regular if Q∪D is finite and the arrangements wAx and wd are regular.
The finiteness of D implies that each D-labelled set mq is regular.

(b) Let J = (N,≤,U) be an SJ-tree with axis A; for each x ∈ N , we denote by Ux the

set of lines U ∈ U such that Û = x. An SBJ-scheme ∆ as in a) describes J if there exist
mappings r : N → Q and r̃ : U − {A} → D such that:

(b.1) the arrangement (A,≤, r) over Q is isomorphic to wAx,
(b.2) for each x ∈ N , the D-labelled set (Ux, r̃) is isomorphic to mr(x),
(b.3) for each U ∈ U − {A}, the arrangement (U,≤, r) over Q is isomorphic
to wr̃(U).

We will also say that ∆ describes the join-tree fgs(J) := (N,≤).

(c) Each SBJ-tree J = (N,≤,U) has a standard description scheme ∆(J) := (N,U −
{A}, (A,≤), ((Ux, Id))x∈N , ((U,≤))U∈U−{A}). The identity mappings : N → N and : U −
{A} → U − {A} show that ∆(J) describes J .

Proposition 3.24. : Every SJ-scheme ∆ describes a unique SJ-tree Unf (∆) where
unicity is up to isomorphism.

Proof : Let ∆ = (Q,D,wAx, (mq)q∈Q, (wd)d∈D) be an SJ-scheme, defined with arrange-
ments wAx = (VAx,�, labAx) and wd = (Vd,�, labd), and labelled sets mq = (Mq, labq) such
that the sets VAx, Vd and Mq are pairwise disjoint and the same symbol � denotes the
orders of the arrangements wAx and wd.

We construct Unf (∆) := (N,≤,U) as follows.
a) N is the set of finite nonempty sequences (v0, s1, v1, s2, ..., sk, vk) such that:

v0 ∈ VAx, vi ∈ Vdi and si ∈Mqi−1 for 1 ≤ i ≤ k, where
q0 = labAx(v0), d1 = labq0(s1), q1 = labd1(v1), d2 = labq1(s2), ..., qi =
labdi(vi), di+1 = labqi(si+1) for 1 ≤ i ≤ k − 1.

b) (v0, s1, v1, ..., sk, vk) ≤ (v′0, s
′
1, v
′
1, ..., s

′
j , v
′
j) if and only if :

k ≥ j, (v0, s1, v1, ..., sj) = (v′0, s
′
1, v
′
1, ..., s

′
j) and vj � v′j (vj , v

′
j ∈ Vdj ).

c) the axis A is the set of one-element sequences (v) for v ∈ VAx and, for x =
(v0, s1, v1, ..., sk, vk), U(x) is the set of sequences in N of the form (v0, s1, v1, s2, ..., sk, v) for

v ∈ Vdk , so that Û(x) = (v0, s1, v1, ..., sk−1, vk−1).

Note that (v0, s1, v1, ..., vk) < (v0, s1, v1, ..., vj) if j < k and that (v0, s1, v1, ..., sk, vk) ≤
(v0, s1, v1, ..., sk, v) if and only if vk � v.
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In order to prove that ∆ describes J, we define r : N → Q and r̃ : U − {A} → D as
follows:

if x ∈ A, then x = (v) for some v ∈ VAx and r(x) := labAx(v);
if x ∈ N has depth k ≥ 1, then x = (v0, s1, v1, ..., sk, vk) for some v0, s1, ..., sk, vk
and r(x) := labdk(vk);
if U ∈ U − {A}, then U = U(x) for some x = (v0, s1, v1, ..., sk, vk), k ≥ 1,
and r̃(U) := dk.

We check the three conditions of Definition (3.23.b). We have (A,≤, r) ' wAx, hence
(b.1) holds. For checking (b.2), we consider x = (v0, s1, v1, ..., sk, vk) ∈ N, k ≥ 1. The sets
U in Ux are those of the form {(v0, s1, v1, ..., sk, vk, s, v) | v ∈ Vdk+1

} for all s ∈Mqk where
qk = labdk(vk) = r(x), hence (b.2) holds. For checking (b.3), we let U = U(x) for some
x = (v0, s1, v1, ..., sk, vk), k ≥ 1; it is the set of sequences (v0, s1, v1, s2, ..., sk, v) for v ∈ Vdk
ordered by � on the last components. Hence, (U,≤, labdk) is isomorphic to wdk , which proves
the property since r̃(U) := dk.

Unicity is proved as in Proposition (3.11). �

The following proposition extends Proposition (3.12).

Proposition 3.25 : A join-tree is MSfin -definable if it is described by a regular SJ-
scheme.

Proof : Let (N,≤) be a join-tree J (this property is first-order expressible). Assume
that J = fgs(J ′) where J ′ = (N,≤,U) ' Unf (∆) for some regular SJ-scheme ∆ =
(Q,D,wAx, (mq)q∈Q, (wd)d∈D) such that Q = {1, ...,m} and D = {1, ..., p}. Let r,r̃ be
the corresponding mappings (cf. Definition 3.23.b). For each d ∈ D, let ψd be an MS
sentence that characterizes wd up to isomorphism, by the main result of [19]. Similarly, ψAx
characterizes wAx.

A D-labelled set m is described up to isomorphism by a p-tuple (m1, ...,mp) where mi

is the number (possibly ω) of elements having label i.
By Proposition (3.7), there is a bipartition (N0, N1) of N that describes the structuring

U ; from this bipartition, we can MS-define the axis A, the lines forming U and the node Û
for each U ∈ U − {A}.

There is a partition (Y1, ..., Ym) of N that describes r by Yi := r−1(i). There is a
partition (Z1, ..., Zp) where Zj is the union of the lines U ∈ U − {A} such that r̃(U) = j.

Consider a relational structure (X,≤, N0, N1, Y1, ..., Ym, Z1, ..., Zp). By MS formulas,
one can express the following properties:

(i) (X,≤, N0, N1) is S(J ′′) for some SJ-tree J ′′ = (X,≤,U ′); its axis is denoted by A′,
(ii) (Y1, ..., Ym) is a partition of X ; we let r(x) := i if and only if x ∈ Yi,
(iii) (Z1, ..., Zp) is a partition of X such that each Zj is a union of sets U ∈ U ′ − {A′}

such that (U,≤, r) ' wj ,
(iv) (A′,≤, r) ' wAx,
(v) for each i ∈ Q and x ∈ Yi, the number of lines U ∈ U ′x that are contained in Zj is

mj
i .

These formulas are constructed as follows: ϕ(N0, N1) for (i) is from Proposition (3.7).
The formula for (ii) is standard. All other formulas are constructed so as to express the
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desired properties when (i) and (ii) do hold. For (iii), we use a suitable adaptation of ψi
and the fact from Proposition (3.7) that, if (i) holds, we can MS-define from (N0, N1) the

axis A′, the lines forming U ′ and the node Û for each U ∈ U ′. The mapping r is given by
(Y1, ..., Ym). For (iv), we do as for (iii) with ψAx.

For (v), we do as follows. We write an MS formula γ(x,N0, N1, Z,W ) expressing that
W consists of one node of each set U ∈ U ′ − {A′} that is contained in Z and is such that

Û = x. For any x and Z, all sets W satisfying γ(x,N0, N1, Z,W ) have same cardinality.
Then, Property (v) holds if and only if, for all i = 1, ...,m, x ∈ Yi and j = 1, ..., p, if

γ(x,N0, N1, Zj ,W ) holds, then W has cardinality mj
i . If some number mj

i is ω, we need
the finiteness predicate Fin(W ) to express this condition5.

Let β(N0, N1, Y1, ..., Ym, Z1, ..., Zp) express conditions (ii)-(v) in (X,≤). If a join-tree
(X,≤) satisfies ϕ(N0, N1)∧ β(N0, N1, Y1, ..., Ym, Z1, ..., Zp), it has a structuring U ′ described
by N0, N1: we let J ′′ := (X,≤,U ′). The sets Y1, ..., Ym, Z1, ..., Zp yield a scheme ∆ that
describes J ′′ (by Conditions (iii)-(v)), hence J ′′ is isomorphic to J ′ by the unicity property
of Proposition (3.24), and so, we have (X,≤) ' fgs(J ′) = J .

Hence, J is (up to isomorphism) the unique model of the MSfin sentence :

∃N0, N1(ϕ(N0, N1) ∧ ∃Y1, ..., Ym, Z1, ..., Zp.β(N0, N1, Y1, ..., Ym, Z1, ..., Zp))).

�

Theorem (3.30) will establish a converse.

Definition 3.26. : Operations on SJ-trees and SJ-forests.

We recall from Definition (3.1) that a join-forest is the union of disjoint join-trees. A
structured join-forest (an SJ-forest, cf. Definition (3.4)) is the union of disjoint SJ-trees. It
has no axis (each of its components has an axis, but we do not single out any of them). We
will use objects of three types : join-trees, SJ-trees and SJ-forests, but a 2-sorted algebra will
suffice (similarly as above for SBJT, we have not introduced a separate sort for BJ-trees).
The two sorts are t for SJ-trees and f for SJ-forests.

Concatenation of SJ-trees along axes.
The concatenation J • J ′ disjoint SJ-trees J and J ′ is defined exactly as in Definition

(3.13) for SBJ-trees.

The empty SJ-tree is denoted by the nullary symbol Ωt.

Extension of an SJ-forest into an SJ-tree.
Let J = (N,≤,U) be an SJ-forest and u /∈ N . Then extu(J) is an SJ-tree defined as

in Definition (3.13). When handling SJ-trees up to isomorphism, we will use the notation
ext(J) instead of extu(J).

The empty SJ-forest is denoted by the nullary symbol Ωf .

Making an SJ-tree into an SJ-forest.
This is done by the unary operation mkf that is actually the identity on the triples that

define SJ-trees and SJ-forests.

5If the nodes of J have degree at most a ∈ N, then mj
i ≤ a for all i, j and the finiteness predicate is not

needed, hence, J is MS-definable.
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The union of two disjoint SJ-forests is denoted by ].

The types of these operations are thus:

• : t× t→ t,
Ωt : t,
] : f × f → f ,
Ωf : f ,
ext : f → t,
mkf : t→ f .

In addition, we have, as in Definition (3.13):

Forgetting structuring: If J is an SJ-tree, fgs(J) is the underlying join-tree.

Definition 3.27. : The algebra SJT
We let F ′ be the 2-sorted signature {•,], ext,mkf ,Ωt,Ωf} where the types of these

six operations are as above. We obtain an F ′-algebra SJT whose domains are the sets of
isomorphism classes of SJ-trees and of SJ-forests. Concatenation is associative with neutral
element Ωt and disjoint union is associative and commutative with neutral element Ωf .

Definition 3.28. : The value of a term.

The definition is actually identical to that for SBJ-trees (Definition (3.15)). We recall it
for the reader’s convenience. The equivalence relation ≈ is as in this definition. The value
val(t) = (N,≤,U) of t ∈ T∞(F ′) is defined as follows:

N := Occ(t, ext), the set of occurences in t of ext,
u ≤ v :⇐⇒ u ≤t w ≤lex v for some w ∈ N such that w ≈ v,
U is the set of equivalence classes of ≈ .

If t has sort t (resp. f) then val(t) is an SJ-tree (resp. an SJ-forest). It is clear that we
have a value mapping : T∞(F ′)→ SJT.

For terms written with the operations exta, then val(t) := (N,≤,U) where :

N is the set of nodes a such that exta has an occurence in t, actually a
unique one, that we will denote by ua,
a ≤ b :⇐⇒ ua ≤ ub,
a ≈ b :⇐⇒ ua ≈ ub, and
U is the set of equivalence classes of ≈ .

Definition 3.29. : Regular join-trees.
A join-tree (resp. an SJ-tree) T is regular if it is denoted by fgs(t) (resp. by t) where t

is a regular term in T∞(F ′) of sort t.

Theorem 3.30. : The following properties of a join-tree J are equivalent:

(1) J is regular,
(2) J is described by a regular scheme,
(3) J is MSfin -definable.
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Proof : (1)=⇒(2). Similar to that of Theorem (3.21).
(2)=⇒ (3) By Proposition (3.25).
(3)=⇒(1) As in the proof of Theorem (3.21), the mapping α that transforms the

relational structure btc for t in T∞(F ′)t (the set of terms in T∞(F ′) of sort t) into the join-
tree J = (N,≤) = fgs(val(t)) is an MS-transduction. Let J = (N,≤) be an MSfin -definable
join-tree. It is, up to isomorphism, the unique model of an MSfin sentence β. The set L
of terms t in T∞(F ′)t such that α(btc) |= β is thus MSfin -definable. However, since the
relational structures btc have MS-definable linear orderings, L is also MS-definable (see the
Appendix), hence, it contains a regular term. This term denotes J , hence J is regular.�

The same proof as for Corollary (3.22) yields:

Corollary 3.31. : The isomorphism problem for regular join-trees is decidable.

The rooted trees of unbounded degree, without order on the sets of sons of their nodes
are the join-trees defined by the terms in T∞(F ′ − {•})t. Theorem (3.30) and Corollary
(3.31) hold for them.

4. Ordered join-trees

Definition 4.1. : Ordered join-trees and join-hedges.

The set of directions of a node x of a join-forest (N,≤) is denoted by Dir(x), cf.
Definition (3.2). We recall that x ⊥ y means that x and y are incomparable with respect to
≤, so that x < x t y and y < x t y if x t y is defined.

(a) We say that a join-tree J = (N,≤) is ordered (is an OJ-tree) if each set Dir(x) is
equipped with a linear order vx. (In this way, we generalize the notion of an ordered tree,
cf. Section 1.) From these orders, we define a single linear order v on N as follows:

x v y if and only if x ≤ y or, x ⊥ y and δ @xty δ′ where δ, δ′ ∈ Dir(x t y),
x ∈ δ and y ∈ δ′.

(b) The linear order v satisfies the following properties, for all x, y, x′, y′:

(i) x ≤ y implies x v y,
(ii) if x ≤ y, x′ ≤ y′ and y ⊥ y′, then x @ x′ if and only if y @ y′.

(4.1.1) Claim : If J = (N,≤) is a join-tree and v is a linear order on N satisfying
conditions (i) and (ii), then J is ordered by the family of orders (vx)x∈N such that, for all
δ, δ′ in Dir(x), we have δ vx δ′ if and only if δ = δ′ or y @ y′ for some y ∈ δ and y′ ∈ δ′ (if
and only if δ = δ′ or y @ y′ for all y ∈ δ and y′ ∈ δ′).

Proof sketch: Consider different directions δ, δ′ ∈ Dir(x) such that y @ y′ for some y ∈ δ
and y′ ∈ δ′. We have also y1 @ y′1 for any y1 ∈ δ and y′1 ∈ δ′ because (yty1) < x, (y′ty′1) < x
and (y t y1) ⊥ (y′ t y′1), hence, Condition (ii) implies that y t y1 @ y′ t y′1 and y1 @ y′1.

Hence, each relation vx is a linear order on Dir(x). It is clear that v is derived from
the relations vx by (a). �

It follows that an ordered join-tree can be equivalently defined as a triple (N,≤,v) such
that (N,≤) is a join-tree and v is a linear order that satisfies Conditions (i) and (ii). These
conditions are first-order expressible.
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(c) We define a join-hedge as a triple H = (N,≤,v) such that (N,≤) is a join-forest and
v is a linear order that satisfies Conditions (i) and (ii). Let Js, for s ∈ S, be the join-trees
composing (N,≤). Each of them is ordered by v according to Claim (4.1.1), and the index
set S is linearly ordered by vS such that s @S s′ if and only if s 6= s′ and x @ y for all nodes
x of Js and y of Js′ . Hence H is also a simple arrangement of pairwise disjoint join-trees.

Definition 4.2. : Structured join-hedges and structured ordered join-trees.
(a) A structured join-hedge, an SJ-hedge in short, is a 4-tuple J = (N,≤,v, U) such

that (N,≤,v) is a join-hedge and U is a structuring of the join-forest (N,≤). A structured
ordered join-tree could be defined in the same way, as an OJ-tree (N,≤,v) equipped with
a structuring U . However, we need a refinement in order to define the operations that
construct ordered join-trees and hedges (cf. Definition (4.8)).

(b) Let J be an OJ-tree (N,≤,v) and U be a structuring of (N,≤). For each node x,
the set Dir(x) of its directions consists of the following sets:

the sets ↓ (U) for each line U ∈ Ux (we recall that ↓ (U) := {y | y ≤ z ∈ U
for some z}),
the set ↓ (U−(x)) (cf. Section 1) if U−(x) is not empty; in this case we call it
the central direction of x.

If x is the the smallest element of U(x), it has no central direction but Ux may be
nonempty.

It is clear that ↓ (U)∩ ↓ (U ′) = ∅ if U and U ′ are distinct lines in Ux. We get a linear
order on Ux based on that on directions, that we also denote by vx: we have U @x U ′ if
and only if y @ y′ for all y ∈ U and y′ ∈ U ′.

(c) A structured ordered join-trees (an SOJ-tree) is a tuple (N,≤,v, A,U−, U+) such
that (N,≤,v) is an OJ-tree and U := {A} ] U− ] U+ is a structuring of (N,≤) with axis A
such that, for each node x :

if U ∈ Ux ∩ U− and U ′ ∈ Ux ∩ U+, then U @x U ′ and furthermore, if x has
a central direction δ, then U @x δ @x U ′.

We define then Dir−(x) as the set of directions ↓ (U) for U ∈ Ux ∩ U− and, similarly,
Dir+(x) with U ∈ Ux ∩ U+.

Let x be such that [x,+∞[∩U 6= ∅ for some U in U not containing x. By Condition 2)
of Definition (3.3.a), there is a node yi in U , with the notation of that definition. We say
that x is to the left (resp. to the right) of U if, for some direction δ relative to yi, we have
x ∈ δ ∈ Dir−(yi) (resp. x ∈ δ ∈ Dir+(yi)).

As in Propositions (3.5) and (3.9), we have :

Proposition 4.3. : Every join-hedge and every ordered join-tree has a structuring.

Proof: For a join-hedge (N,≤,v), we take any structuring U of the join-forest (N,≤).
Let (N,≤,v) be an OJ-tree and U be any structuring of the join-tree (N,≤). Let A be

its axis. We need only partition each set Ux into two sets Ux ∩ U− and Ux ∩ U+.
If x has a central direction δ, we let Ux ∩ U− consist of the lines U in Ux such that

↓ (U) @x δ, and Ux∩U+ consist of those such that δ @x↓ (U). Otherwise, we let U+ contain6

Ux so that Ux ∩ U− = ∅. �
6We might also partition Ux into any two sets Ux ∩ U− and Ux ∩ U+ such that Ux ∩ U− @x Ux ∩ U+.



24 B. COURCELLE

We now establish the MS-definability of these structurings. If J = (N,≤,v, A,U−,U+)
is an SOJ-tree, we define S(J) as the structure (N,≤,v, A,N−0 , N

+
0 , N

−
1 , N

+
1 ) such that A

is the axis, N−0 (resp. N+
0 ) is the union of the lines U ∈ U− (resp. U ∈ U+) of even depth

and N−1 (resp. N+
1 ) is the union of the lines U ∈ U− (resp. U ∈ U+) of odd depth.

Proposition 4.4. : Let J = (N,≤,v) be an OJ-tree.

1) There is an MS formula ϕ(A,N−0 , N
+
0 , N

−
1 , N

+
1 ) expressing that a struc-

ture (N,≤,v, A,N−0 , N
+
0 , N

−
1 , N

+
1 ) is S(J) for some SOJ-tree J = (N,≤,v,

A,U−,U+).
2) There exists an MS formula θ−(u, U,N−0 , N

+
0 , N

−
1 , N

+
1 ) expressing in a

structure (N,≤,v, A,N−0 , N
+
0 , N

−
1 , N

+
1 ) = S(N,≤,v, A,U−, U+) that U ∈

U−∧u = Û ; similarly, there exists an MS formula θ+(u, U,N−0 , N
+
0 , N

−
1 , N

+
1 )

expressing that U ∈ U+ ∧ u = Û .

Proof : Easy modification of the proof of Proposition (3.7).�

Definition 4.5. : Description schemes for SOJ-trees.

(a) A description scheme for an SOJ-tree, in short an SOJ-scheme, is a 6-tuple ∆ =
(Q,D,wAx, (w

−
q )q∈Q, (w

+
q )q∈Q, (wd)d∈D) such that Q,D are sets, wAx ∈ A(Q), (wd)d∈D is

a family of arrangements over Q and (w−q )q∈Q and (w+
q )q∈Q are families of arrangements

over D. Without loss of generality, we will assume that the domains of these arrangements
are pairwise disjoint, and the same symbol � denotes their orders. Informally, (w−q )q∈Q
and (w+

q )q∈Q encodes the sets of lines, ordered by vx of the two sets Dir−(x) and Dir+(x)
where x is labelled by q.

We say that ∆ is regular if Q ∪D is finite and the arrangements wAx, wd, w
−
q and w+

q

are regular.

(b) Let J = (N,≤,v, A,U−,U+) be an SOJ-tree. An SOJ-scheme ∆ as in (a) describes
J if there exist mappings r : N → Q and r̃ : U− ∪ U+ → D such that:

(b.1) (A,≤, r) ' wAx,
(b.2) for each x ∈ N , the arrangement (Ux ∩ U−,vx, r̃) over D is isomorphic
to w−r(x),

(b.3) for each x ∈ N , the arrangement (Ux ∩ U+,vx, r̃) over D is isomorphic
to w+

r(x),

(b.4) for each U ∈ U− ∪ U+, the arrangement (U,≤, r) over Q is isomorphic
to wr̃(U).

We will also say that ∆ describes the join-tree fgs(J) := (N,≤).

Proposition 4.6. : Every SOJ-scheme describes an SOJ-tree that is unique up to
isomorphism.

Proof : Let ∆ = (Q,D,wAx, (w
−
q )q∈Q, (w

+
q )q∈Q, (wd)d∈D) be an SOJ-scheme, defined

with arrangements wAx = (VAx,�, labAx), wd = (Vd,�, labd), w−q = (W−q ,�, labq) and w+
q =

(W+
q ,�, labq) such that the sets VAx, Vd,W

−
q and W+

q are pairwise disjoint. Furthermore,

we extend ≺ by letting s ≺ s′ for all s ∈ W−q , s
′ ∈ W+

q and q ∈ Q. We construct
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J = Unf (∆) = (N,≤,v, A,U−,U+) as follows. Clauses a) to d) are essentially as in
Proposition (3.24).

a) N is the set of finite nonempty sequences (v0, s1, v1, s2, ..., sk, vk) such that:

v0 ∈ VAx, vi ∈ Vdi and si ∈W−qi−1
∪W+

qi−1
for 1 ≤ i ≤ k, where

q0 = labAx(v0), d1 = labq0(s1), q1 = labd1(v1), d2 = labq1(s2), ..., qi =
labdi(vi), di+1 = labqi(si+1) for 1 ≤ i ≤ k − 1.

b) (v0, s1, v1, ..., sk, vk) ≤ (v′0, s
′
1, v
′
1, ..., s

′
j , v
′
j) if and only if :

k ≥ j, (v0, s1, v1, ..., sj) = (v′0, s
′
1, v
′
1, ..., s

′
j) and vj � v′j (vj , v

′
j ∈ Vdj ).

c) The axis A is the set of one-element sequences (v) for v ∈ VAx.

d) If x = (v0, s1, v1, ..., sk, vk), the line U(x) is the set of sequences (v0, s1, v1, s2, ..., sk, v)
for v ∈ Vdk ; it belongs to U− if sk ∈ W−qk−1

and to U+ if sk ∈ W+
qk−1

; in both cases,

Û(x) = (v0, s1, v1, ..., sk−1, vk−1).

e) x = (v0, s1, v1, ..., sk, vk) v y = (v′0, s
′
1, v
′
1, ..., s

′
j , v
′
j) if and only if ,

either x ≤ y or, for some ` < {j, k}, we have
e.1) (v0, s1, v1, ..., v`) = (v′0, s

′
1, v
′
1, ..., v

′
`) and s`+1 ≺ s′`+1,

e.2) or (v0, s1, v1, ..., s`) = (v′0, s
′
1, v
′
1, ..., s

′
`), s`+1 ∈W−q` and v′` ≺ v`,

e.3) or (v0, s1, v1, ..., s`) = (v′0, s
′
1, v
′
1, ..., s

′
`), s

′
`+1 ∈W+

q`
and v` ≺ v′`.

In Case e.1), x and y are in different directions of z := (v0, s1, v1, ..., v`) that are not
its central direction; in Case e.2), x is to the left of the central direction δ of z and y ≤ u
where u := (v0, s1, v1, ..., v

′
`) is here below z on δ; in Case e.3), y is to the right of the central

direction δ′ of u and x ≤ z where z is below u on δ′.

In order to prove that ∆ describes J, we define r : N → Q and r̃ : U− ∪ U+ → D as
follows:

if x ∈ A, then x = (v) for some v ∈ VAx and r(x) := labAx(v);
if x ∈ N has depth k ≥ 1, then x = (v0, s1, v1, ..., sk, vk) for some v0, s1, ..., sk, vk
and r(x) := labdk(vk);
if U ∈ U− ∪ U+, then U = U(x) for some x = (v0, s1, v1, ..., sk, vk), and
r̃(U) := dk.

In the last case, as dk = labqk−1
(sk), it depends only on sk and vk−1 (via qk−1). It

follows that r̃(U) is the same if we consider U as U(y) with y = (v0, s1, v1, ..., sk, v) hence,
is well-defined.

We check the four conditions of Definition (4.5.b). We have (A,≤, r) ' wAx, hence (b.1)
holds. For (b.2) and (b.3), we consider x = (v0, s1, v1, ..., sk, vk) ∈ N . The sets U in Ux
are those of the form {(v0, s1, v1, ..., sk, vk, s, v) | v ∈ Vdk+1

} for all s ∈ W−qk ∪W
+
qk

where
qk = labdk(vk) = r(x), hence (b.2) and (b.3) hold.

For checking (b.4), we let U = U(x) for some x = (v0, s1, v1, ..., sk, vk), k > 0; then U
is the set of sequences (v0, s1, v1, s2, ..., sk, v) such that v ∈ Vdk ordered by � on the last
components. Hence, (U,≤, labdk) is isomorphic to wdk , which proves the property since
r̃(U) := dk.

Unicity is proved as in Proposition (3.11). �
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Proposition 4.7. : An SOJ-tree is MS-definable if it is described by a regular SOJ-
scheme.

Proof : Similar to the proofs of Propositions (3.12) and (3.25).�

Note that, we need not the finiteness predicate as in Proposition (3.25) because we deal
with arrangements that are linearly ordered structures, and not with labelled sets.

Next we define an algebra SOJT with two sorts: t for SOJ-trees and h for SJ-hedges.

Definition 4.8. : Operations on SOJ-trees and SJ-hedges.

Concatenation of SOJ-trees along axes.
Let J1 = (N1,≤1,v1, A1,U−1 ,U

+
1 ) and J2 = (N2,≤2,v2, A2,U−2 ,U

+
2 ) be disjoint SOJ-

trees. We define their concatenation as follows:

J1 • J2 := (N1 ]N2,≤,v, A1 ]A2,U−1 ] U
−
2 ,U

+
1 ] U

+
2 ) where :

x ≤ y :⇐⇒ x ≤1 y ∨ x ≤2 y ∨ (x ∈ N1 ∧ y ∈ A2),
x v y :⇐⇒ x ≤ y ∨ x v1 y ∨ x v2 y,
∨(x⊥y ∧ x ∈ N1 ∧ y ∈ N2 ∧ y ∈ U ∈ U+

2 ∩ U
xty
2 )

∨(x⊥y ∧ x ∈ N2 ∧ y ∈ N1 ∧ x ∈ U ∈ U−2 ∩ U
xty
2 ), for some U.

The relations x⊥y and x t y are relative to ≤.
It is clear that J1•J2 is an SOJ-tree. Its axis is A1]A2, U+ = U+

1 ]U
+
2 and U− = U−1 ]U

−
2 .

The empty SOJ-tree is denoted by the nullary symbol Ωt.

Extension of two SJ-hedges into a single SOJ-tree:
Let H1 = (N1,≤1,v1,U1) and H2 = (N2,≤2,v2,U2) be disjoint SJ-hedges and u /∈

N1 ]N2. Then:

extu(H1, H2) := (N1 ]N2 ] {u},≤,v, {u},U1,U2) where :
x ≤ y :⇐⇒ x ≤1 y ∨ x ≤2 y ∨ y = u,
x v y :⇐⇒ x ≤ y ∨ x v1 y ∨ x v2 y ∨ (x ∈ N1 ∧ y ∈ N2).

Clearly, extu(J) is an SOJ-tree. When handling SOJ-trees and SJ-hedges up to isomor-
phism, we replace the notation extu(H1, H2) by ext(H1, H2).

The empty SJ-hedge is denoted by the nullary symbol Ωh.

Making an SOJ-tree into an SJ-hedge.
This is done by the unary operation mkh such that, if J = (N,≤,v, A,U−,U+) is an

SOJ-tree, then

mkh(J) := (N,≤,v, {A} ] U− ] U+).

Note that in mkh(J), we distinguish neither U− from U+ nor the axis A from the other
lines.

The concatenation of two disjoint SJ-hedges.
Let H1 = (N1,≤1,v1,U1) and H2 = (N2,≤2,v2,U2) be disjoint SJ-hedges. Their

”horizontal” concatenation is:

H1 ⊗H2 := (N1 ]N2,≤1 ] ≤2,v,U1 ] U2) where :
x v y :⇐⇒ x v1 y ∨ x v2 y ∨ (x ∈ N1 ∧ y ∈ N2).
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We let F ′′ be the 2-sorted signature {•,⊗, ext,mkh,Ωt,Ωh} whose operation types are :

• : t× t→ t,
Ωt : t,
⊗ : h× h→ h,
Ωh : h,
ext : h × h→ t,
mkh : t→ h.

In addition, we have, as in Definitions (3.13) and (3.26) :

Forgetting the structuring:
If J = (N,≤,v, A,U−,U+) is an SOJ-tree, then fgs(J) := (N,≤,v) is the underlying

OJ-tree.

Definition 4.9. : The value of a term.

If u is an occurrence of a binary symbol in a term t, we denote by s1(u) its first son and
by s2(u) the second one (cf. Definition (3.15)).

The value val(t) := (N,≤,v, A,U−,U+) of a term t ∈ T∞(F
′′
)t is an SOJ-tree defined

in a similar way as for t ∈ T∞(F ′)t, cf. Definitions (3.15) and (3.28):

N := Occ(t, ext),
x ≤ y :⇐⇒ x ≤t w ≤lex y for some w ∈ N such that w ≈ y,
A := Max(t, ext, ε),

where ≈ is the equivalence relation on N defined as in Definition (3.15.a):

U− is the set of equivalence classes of ≈ of nodes in Max(t, ext, s1(u)) for
some occurrence u of ext,
U+ is the set of equivalence classes of ≈ of nodes in Max(t, ext, s2(u)) for
some occurrence u of ext.

Hence, U(x) ∈ U− if x ≤t s1(Û(x)) and U(x) ∈ U+ if x ≤t s2(Û(x)).

Next we define v .
x v y :⇐⇒ x ≤ y or x⊥y (⊥ is relative to ≤, not to ≤t) and we have one of
the following cases:

(i) xtt y is an occurrence of ⊗ or ext, x ≤t s1(xtt y) and y ≤t s2(xtt y),
(ii) x tt y is an occurrence of •, x ≤t s1(x tt y) and y ≤t s2(z) where z is

the unique maximal occurrence of ext such that y <t z ≤t s2(x tt y),
(iii) x tt y is an occurrence of •, y ≤t s1(x tt y) and x ≤t s1(z) where z is

the unique maximal occurrence of ext such that x <t z ≤t s2(x tt y).

If t ∈ T∞(F ′′)h its value val(t) is (N,≤,v,U) with (N,≤,v) defined as above and U
as in Definition (3.28).

(4.9.1) Claim : (1) The mapping val is a value mapping T∞(F
′′
) :→ SOJT.

(2) The transformation α of btc into (N,≤,v) is an MS-transduction.

Proof : (1) is clear from the definitions.
(2) holds because the conditions of Definition (4.9) are expressible in btc by MS formulas.

�
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Figure 6: Term T of Example (4.10).

Figure 7: The OJ-tree val(T ) of Example (4.10).

Example 4.10. : We now illustrate this definition. Figure 6 shows a term T where
A,B,C and D are subterms of type t and E,F and G are subterms of type h. They contain
occurrences of ext that define nodes x, x′, y, y′, w, z and z′ of val(T ).

The OJ-tree val(T ) is shown on Figure 7, where we designate by A,B, ...,G the trees
and hedges defined by the terms A,B, ..., G.

We have the following comparisons for < :

{z, z′, u} < v, because {z, z′} <T v, u <lex v and u ≈ v,
{y, y′, w} < u, because {y, y′, w} <T u,
x ≤ {u, v} because x ≤T a <lex {u, v} and a ≈ u ≈ v where a is the root
position of A,
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v < x′ if and only if x′ is on X, the axis of B, because in this case, v ≈ x′

and otherwise v and x′ are incomparable with respect to ≤; in all cases we
have v <lex x

′.

For @ we have:

z @ y @ y′ @ x @ w @ u @ z′ @ v and
x′ @ z if x′ is to the left of X ; otherwise v @ x′.

All inequalities for < yield the corresponding inequalities for @. We now compare
z, y, y′, x, w, z′ that pairwise incomparable for <.

By Case (i) of Definition (4.9), we get {y, y′} @ w, y @ y′ and z @ z′.
By Case (ii), we get x @ w, {x,w} ≺ z′ and {y, y′} ≺ w.
By Case(iii) we get {z, y, y′} ≺ x and z ≺ {y, y′}.
Finally, if x′ is to the left of X, then Case (iii) gives x′ @ z, and if it to its right, then

Case (ii) gives z @ x′. �

Theorem 4.11. : The following properties of an OJ-tree J are equivalent:
(1) J is regular,
(2) J is described by a regular SOJ-scheme,
(3) J is MS-definable.

Proof : (1)=⇒(2): Similar to that of Theorem (3.21).
(2)=⇒ (3): By Proposition (4.7).
(3)=⇒(1) As observed in Claim (4.9.2), the mapping α that transforms the relational

structure btc for t in T∞(F
′′
)t into the OJ-tree (N,≤,v) = fgs(val(t)) is an MS-transduction.

Let J = (N,≤,v) be an MS-definable OJ-tree. It is, up to isomorphism, the unique model of
an MS-sentence β. The set of terms t in T∞(F ′′)t such that α(btc) |= β is thus MS-definable,
hence, it contains a regular term. This term denotes J , hence J is regular.�

As in Corollaries (3.22) and (3.31) we deduce that the isomorphism problem for regular
OJ-trees is decidable.

5. Quasi-trees

Quasi-trees can be viewed intuitively as ”undirected join-trees”. As in [10], we define them
in terms of a ternary betweenness relation.

Definition 5.1. : Betweenness.
(a) Let L = (X,≤) be a linear order. Its betweenness relation is the ternary relation on

X such that BL(x, y, z) holds if and only if x < y < z or z < y < x. It is empty if X has
less than 3 elements.

(b) If T is a tree, its betweenness relation is the ternary relation on NT , such that
BT (x, y, z) holds if and only if x, y, z are pairwise distinct and y is on the unique path
between x and z. If R is a rooted tree and T = Und(R) is the tree obtained from T by
forgetting its root and edge directions, then :

BT (x, y, z) ⇐⇒ x, y, z are pairwise distinct and x <R y ≤R x tR z or
z <R y ≤R x tR z.
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(c) If B is a ternary relation on a set X, and x, y ∈ X, then [x, y]B := {x, y} ∪ {z ∈ X |
B(x, z, y)}.

Proposition 5.2. [10] : (a) The betweenness relation B of a linear order (X,≤) satisfies
the following properties for all x, y, z, u ∈ X.

A1 : B(x, y, z)⇒ x 6= y 6= z 6= x.
A2 : B(x, y, z)⇒ B(z, y, x).
A3 : B(x, y, z)⇒ ¬B(x, z, y).
A4 : B(x, y, z) ∧B(y, z, u)⇒ B(x, y, u) ∧B(x, z, u).
A5 : B(x, y, z) ∧B(x, u, y)⇒ B(x, u, z) ∧B(u, y, z).
A6 : B(x, y, z) ∧B(x, u, z)⇒
y = u ∨ [B(x, u, y) ∧B(u, y, z)] ∨ [B(x, y, u) ∧B(y, u, z)].
A7’ : x 6= y 6= z 6= x⇒ B(x, y, z) ∨B(x, z, y) ∨B(y, x, z).

(b) The betweenness relation B of a tree T satisfies the properties A1-A6 for all x, y, z, u
in NT together with the following weakening of A7’:

A7 : x 6= y 6= z 6= x⇒ B(x, y, z) ∨B(x, z, y) ∨B(y, x, z)∨
∃w.(B(x,w, y) ∧B(y, w, z) ∧B(x,w, z)).

Proposition 5.3. : Let B be a ternary relation on a set X that satisfies properties
A1-A7’ for all x, y, z, u in X. Let a and b be distinct elements of X. There is a unique linear
order L = (X,≤) such that a < b and BL = B. It is first-order definable in the logical
structure (X,B, a, b).

Proof : Let X,B be as in the statement. Let Y consist of n elements of X, n > 2. It can
be enumerated as x1, ..., xn in such a way that B(xi, xj , xk) holds for all 1 ≤ i < j < k ≤ n;
furthermore, the only other possible enumeration satisfying this property is its reversal,
xn, ..., x1.

This is clear if n = 3. Otherwise, we use induction. Consider x, y, z ∈ Y such that
B(x, y, z) holds. Let Y1 := {u ∈ Y | B(u, y, z)} and Y2 := {u ∈ Y | B(x, y, u)}. These sets
have less than n elements as z /∈ Y1 and x /∈ Y2. Furthermore, Y1 ∩ Y2 = {y}. The induction
hypothesis gives enumerations x1, ..., y of Y1 and y, ..., xn of Y2 with the desired properties.
The desired enumeration of Y is x1, ..., y, ..., xn. We omit a detailed proof.

If a and b are distinct elements of X, there is a unique linear order L = (X,≤) such
that a < b and BL = B. This is clear from the above observation if X is finite. Otherwise,
we let X be the union of an increasing sequence of finite subsets that contain all a and b. On
each of them, say Y , we have a unique linear order < such a < b, whose betweeness relation
is B ∩ (Y × Y × Y ). There union gives the desired linear order, that we denote by ≤a,b .

We now define it by a first-order formula.
Case 1 : There are no u, v such that B(u, b, v) holds. Then, we have7 :

x ≤a,b y :⇐⇒ y ∈ [x, b]B (i.e., x = y ∨ y = b ∨B(x, y, b)).

Otherwise and similarly, if there are no u, v such that B(u, a, v) holds, we have

x ≤a,b y :⇐⇒ x ∈ [a, y]B.

Case 2 : Otherwise, we define the following binary relation :

7We recall the notation [x, y]B := {x, y} ∪ {z | B(x, z, y)}.
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Z(x, y) :⇐⇒ x 6= y ∧
[(B(x, a, b) ∧ ¬B(y, x, a)) ∨ (x = a ∧ ¬B(y, a, b))∨
(B(a, x, b) ∧ ¬B(y, x, b)) ∨ (x = b ∧B(a, b, y))∨
(B(a, b, x) ∧B(b, x, y))].

It is easy to see that x <a,b y implies Z(x, y). (In particular, that Z(a, b) holds follows
from the clause x = a ∧ ¬B(y, a, b) with y = b).

For the converse, assume that Z(x, y) holds and x <a,b y does not. Then, we have
y <a,b x. By looking at the different relative positions of x, y, a and b, we get a contradiction.
Hence x ≤a,b y if and only if x = y ∨ Z(x, y), which is expressed by a first-order formula
ξ(a, b, x, y). �

Definition 5.4. [10] : Quasi-trees.
(a) A quasi-tree is a structure S = (N,B) such that B is a ternary relation on N , the set

of nodes, that satisfies conditions A1-A7. To avoid uninteresting special cases, we also require
that N has at least 3 nodes. In a quasi-tree, the four cases of the conclusion of A7 are exclusive
and in the fourth case, there is a unique node w satisfying B(x,w, y)∧B(y, w, z)∧B(x,w, z)
(by Lemma 11 of [10]), that is denoted by MS(x, y, z).

A leaf (of S) is a node z such that B(x, z, y) holds for no x, y. A line is set of nodes L
such that [x, y]B ⊆ L if x, y ∈ L and an end of L is a node z not in [x, y]B for any x, y ∈ L.

We say that S is discrete if each set [x, y]B is finite.
We say that a quasi-tree S = (N,B) is a subquasi-tree of a quasi-tree S′ = (N ′, B′),

which we denote by S ⊆ S′, if N ⊆ N ′ and B = B′ � N . This condition implies that
MS = MS′ � N .

(b) From a join-tree J = (N,≤), we define a ternary relation BJ on N by:

BJ(x, y, z) :⇐⇒ x 6= y 6= z 6= x and (x < y ≤ x t z) ∨ (z < y ≤ x t z).

Proposition 5.5. : (1) The structure qt(J) := (N,BJ) associated with a join-tree
J = (N,≤) with at least 3 nodes is a quasi-tree. Every line of J is a line of qt(J). If J is a
subjoin-tree of J ′, then qt(J) is a subquasi-tree of qt(J ′).

(2) Every quasi-tree S is qt(J) for some join-tree J .
(3) A quasi-tree is discrete if and only if it is qt(J) for some tree J .
(4) Let S = (N,B) be a quasi-tree, L a line of S and a, b distinct nodes of L. In

each of the following two cases:

(i) b is the largest node of L with respect to its linear order8 ≤a,b,
(ii) L has no largest node and there is no w in N − L
such that B(u, v, w) holds for all u, v ∈ L such that u <a,b v,

there is a unique join-tree J = (N,≤) such that S = qt(J), a < b and L is an upwards
closed9 line of J . Its order ≤ is first-order definable in the structure (N,B,L, a, b).

Proof : (1) Let J = (N,≤) be a join-tree with at least 3 nodes.
If it is finite, then it is (NT ,≤T ) for a finite tree T , and thus qt(J) is a quasi-tree by

Proposition (5.2.b).
Otherwise consider distinct elements x, y, z, u of N . We want to prove that they satisfy

A1-A7. There is a set N ′ ⊆ N of cardinality at most 7 that contains x, y, z, u and is closed

8Proposition (5.3) is applicable to (L,B � L) that satisfies Conditions A1-A7’.
9Upwards closed means that y ∈ L if x < y and x ∈ L.
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under t. Then J ′ = (N ′,≤� N ′) is a finite join-tree, J ′ ⊆ J and qt(J ′) = (N ′, BJ � N ′) is
a quasi-tree by the initial observation, so that x, y, z, u satisfy A1-A7 for B = BJ ′ hence
for BJ . (The node w that may be necessary to satisfy A7 may have to be chosen in the set
{x t y, x t z, x t u, ...}). As x, y, z, u are arbitrary, A1-A7 hold for BJ and all x, y, z, u ∈ N.
Hence, (N,BJ) is a quasi-tree.

That every line of J is a line of qt(J) follows from the definitions. (The converse does
not hold. However, see Assertion (4).) The assertion about subjoin-trees is also easy to
prove.

(2) Let S = (N,B) be a quasi-tree and b be any element of N . We define (cf. Proposition
(5.3)) :

x ≤b y :⇐⇒ y ∈ [x, r]B (⇐⇒ x = y ∨ y = b ∨B(x, y, b)).

Then (N,≤b) is a join-tree J with root b and S = qt(J) by Lemma 14 of [10].

(3) is proved in Proposition 17 of [10].

(4) Let us first motivate the technical condition on L. Let J = (N,≤) be a join-tree
and S = qt(J). If L is an upwards closed line in J , then there are two cases: either L has a
maximal element m, and m is the root of J or not; in the latter case, for every x ∈ N , there
is w ∈ L such that x < w: to prove this, take w such that x t u < w where u is any element
of L; if x ∈ N − L, we cannot have BJ(u, v, x) for all u, v ∈ L such that u < v, because,
otherwise, letting w,w′ ∈ L with x < w < w′, we would have BJ(w,w′, x) and BJ(x,w,w′)
contradicting A2 ∧A3. The technical conditions on a line L of S in the statement are thus
necessary for making it into an upwards closed line of a join-tree J as desired. We now start
the proof.

Let S = (N,B) be a quasi-tree with line L and distinct elements a, b of L. Let ≤a,b be
the linear order on L from Proposition (5.3).

Case (i) : b is the largest element of (L,≤a,b). Then (N,≤b) (cf. (2) for ≤b) is a quasi-tree
satisfying the required conditions. If J = (N,≤) is another one, then [x,+∞[J= [x, b]J for
all x and thus, x ≤ y if and only if x = y ∨ y = b ∨B(x, y, b). Hence, ≤=≤b.

Case (ii) : L has no largest element and there is no w in N − L such that B(u, v, w)
holds for all u, v ∈ L such that u <a,b v. It follows that for every u ∈ L, there is v ∈ L such
that u <a,b v. We now define, for x, y ∈ N :

R(x, y) :⇐⇒ x 6= y ∧ ∃u, v ∈ L[u <a,b v ∧B(x, y, u) ∧B(y, u, v)],

and we will prove that this relation is the desired strict order on N .

For all u, v ∈ L such that u <a,b v, we define Nu,v := {x ∈ N | x = u∨B(x, u, v)}. Then
Su,v := (Nu,v, B � Nu,v) is a subquasi-tree of S and u is the largest element of L∩Nu,v with
respect to ≤a,b. We define ≤u on Nu,v by:

x ≤u y :⇐⇒ y ∈ [x, u]B.

We obtain by Case 1 a join-tree Ju,v := (Nu,v,≤u) with root u such that Su,v = qt(Ju,v).
Since u <a,b v, if v <a,b u

′ <a,b< v′, then Nu,v ⊆ Nu′,v′ and ≤u and ≤u′ coincide on Nu,v;
the associated join operations coincide also on Nu,v. Hence Ju,v is a subjoin-tree of Ju′,v′ .

By the assumption on L, every x ∈ N belongs to some set Nu,v: assume the opposite,
then x /∈ L; assume now that x /∈ Nu,v, hence by A7, we have B(x, u, v) or B(u, x, v) or
B(u, v, x) or, for some w, B(u,w, v) ∧B(x,w, u) ∧B(x,w, v).
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The first case implies x ∈ Nu,v, the second one x ∈ L, and the last one w ∈ L,
u <a,b w <a,b v and x ∈ Nw,v. All these cases contradict our assumptions on x. It follows
that B(u, v, x) holds for all u, v such that u <a,b v. But this contradicts the assumption on
L.

Hence, N is the union of the sets Nu,v and S is the union of the quasi-trees Su,v. We
define J = (N,≤) as the union of the join-trees Ju,v. Its order is defined by x = y ∨R(x, y).
It is a join-tree and qt(J) = S because qt(Ju,v) = Su,v for all u, v. It is the unique one
satisfying the desired conditions because these conditions determine its restrictions to the
sets Nu,v in a unique way.

The property x = y ∨R(x, y) is defined by a first-order formula θ(L, a, b, x, y). �

Proposition 5.6. : A quasi-tree is MSfin -definable if it is described by a regular
SJ-scheme.

Proof : We first explain the idea. From a given quasi-tree S, we specify by MS-formulas
all SJ-trees J such that S = qt(fgs(J)) and we select one, if there exists any, that is described
by the considered regular SJ-scheme. The construction of the necessary formulas will use
Proposition (5.5) and the proof of Proposition (3.25).

Let S = (N,B) be a quasi-tree (this property is first-order expressible). Assume
that S = qt(fgs(J)) where J = (N,≤,U) ' Unf (∆) for some regular SJ-scheme ∆ =
(Q,D,wAx, (mq)q∈Q, (wd)d∈D) such that Q = {1, ...,m} and D = {1, ..., p} as in the proof of
Proposition (3.25). Let r,r̃ be the corresponding mappings. For each d ∈ D, let ψd be an
MS sentence that characterizes wd up to isomorphism, and similarly ψAx for wAx.

The axis A of J is upwards closed. If it has a maximal element b (w.r.t. ≤), then ≤ =
≤bby Proposition (5.5.2). Otherwise, ≤ = ≤a,b where a, b are any two elements of A such
that a < b. In this case, there is no w in N −A such that BJ(u, v, w) holds for all u, v ∈ A
such that u ≤a,b v. In both cases, by Proposition (5.5) the partial order ≤ on N is defined
by a first-order formula ν(A, a, b, x, y) written in such a way that b is the maximal element
of A if a = b. We will denote ≤ by ≤A,a,b to stress that it is defined from A, a, b.

By Proposition (3.7), there is a bipartition (N0, N1) of N that describes the structuring
U , and such that A ⊆ N0. From this bipartition, we can MS-define the lines forming U and

the node Û for each U ∈ U − {A}.
There is a partition (Y1, ..., Ym) of N that describes r by Yi := r−1(i). There is a

partition (Z1, ..., Zp) of N −A such that Zj is the union of the lines U ∈ U − {A} such that
r̃(U) = j.

Consider relational structures R = (X,B,A,N0, N1, Y1, ..., Ym, Z1, ..., Zp, a, b) with
domain X such that B is a ternary relation, the other relations are unary (are subsets of X)
and a, b ∈ X. By MS formulas, one can express in any such R the following properties:

(i) (X,B) is a quasi-tree S′, A is a nonempty line, a, b ∈ A and a = b if and only if a is
an end of A,

(ii) if ≤ is the partial order on N defined by ν(A, a, b, x, y), then (X,≤, N0, N1) is
S(J ′) for some SJ-tree J ′ = (X,≤,U ′) with axis A.

(iii) (Y1, ..., Ym) is a partition of X ; we let r(x) := i if and only if x ∈ Yi.
(iv) (Z1, ..., Zp) is a partition of X−A such that each Zj is a union of sets U ∈ U ′−{A}

such that (U,≤, r) ' wj .
(v) (A,≤, r) ' wAx,
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(vi) for each i ∈ Q and x ∈ Yi, the number of lines U ∈ U ′x that are contained in Zj is

mj
i . (A D-labelled set m is described by a p-tuple (m1, ...,mp) where mj is the number of

elements having label j.)
These formulas are constructed as in the proof of Proposition (3.25). The main difference

is that ≤ is not in the given structure S but is defined in it by ν(A, a, b, x, y); this formula
uses auxiliary arguments A, a, b. As in Proposition (3.25), we need the finiteness predicate if

some number mj
i is ω.

Let ϕ′(A,N0, N1, a, b) express Conditions (i) and (ii) in (X,B). Let β(A,N0, N1, Y1, ...,
Ym, Z1, ..., Zp, a, b) express conditions (iii)-(vi). If a quasi-tree (X,B) satisfies :

ϕ′(A,N0, N1, a, b) ∧ β(A,N0, N1, Y1, ..., Ym, Z1, ..., Zp, a, b),

the corresponding join-tree (X,≤A,a,b) has a structuring U ′ with axis A described by
N0, N1. We let J ′ := (X,≤,U ′). The sets Y1, ..., Ym, Z1, ..., Zp yield a scheme ∆ that describes
J ′ (by Conditions (iii)-(vi)), hence J ′ is isomorphic to J by the unicity property of Proposition
(3.24), and so, we have (X,≤) = fgs(J ′) ' fgs(J) and qt(fgs(J ′)) ' qt(fgs(J)) = S.

Hence, S is (up to isomorphism) the unique model (X,B) of the MS sentence:

∃A,N0, N1, a, b.[ϕ
′(A,N0, N1, a, b)∧

∃Y1, ..., Ym, Z1, ..., Zp.β(A,N0, N1, Y1, ..., Ym, Z1, ..., Zp, a, b))].

�

The next theorem establishes a converse. As algebra for quasi-trees, we take the algebra
SJT of join-trees together with the (external) forgetting operation qt (similar to fgs). We say
that a quasi-tree S is described by an SJ-scheme if this scheme describes a join-tree J such
that qt(J) = S. It is regular if it is qt(J) for some regular join-tree J .

Theorem 5.7. : The following properties of a quasi-tree S are equivalent:

(1) S is regular,
(2) S is described by a regular SJ-scheme,
(3) S is MSfin -definable.

The isomorphism of regular quasi-trees is decidable.

Proof : (1)=⇒(2): Similar to that of Theorem (3.21).
(2)=⇒ (3): By Proposition (5.6).
(3)=⇒(1): The mapping α that transforms the relational structure btc for t in T∞(F ′)t

into the quasi-tree S = qt(fgs(val(t))) is an MS-transduction by Claim (4.9.2). The proof
continues as in Theorem (3.21).

The decidability of the isomorphism problem is as in Corollary (3.22). �

We make these results more precise for subcubic quasi-trees, that are useful for defining
the rank-width of countable graphs, see the appendix.

Definition 5.8. [10] : Directions.
Let S = (N,B) be a quasi-tree and x a node of S.
(a) We say that y, z ∈ N − {x} are the same direction relative to x (or of x) if, either

y = z or B(y, z, x) or B(z, y, x) or B(y, u, x) ∧ B(z, u, x) for some node u. Equivalently,
ytx z <x x (<x is as in Proposition (5.5)). Hence, if B(y, x, z) holds, y and z are in different
directions relative to x. This relation is an equivalence, denoted by y ∼x z, and its classes
are the directions of x.
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(b) The degree of x is the number of classes of ∼x. A node has degree 1 if and only if it
is a leaf. We say that S is subcubic if its nodes have degree at most 3. If S = Q(T ) for a
tree T , then a direction of x is associated with each neighbour y of x and is the set of nodes
of the connected component of T − {x} that contains y.

(c) If S = qt(J) for a join tree J = (N,≤), then, the directions of x in S are those of x
in J together with ]x,+∞[ if this set is not empty. It follows that S is subcubic if J is a
BJ-tree.

Lemma 5.9. : Every subcubic quasi-tree is qt(fgs(J)) for some SBJ-tree J .

Proof: We choose a maximal line A of the given subcubic quasi-tree S and distinct
element a, b of A. By proposition (5.5.4), the partial order ≤A,a,b gives a binary join-tree K.
By using the method of Proposition (3.5) with U0 := A, we obtain a structuring J of K,
making it into an SBJ-tree as defined in Definition (3.8). �

Theorem 5.10. : The following properties of a subcubic quasi-tree S are equivalent:

(1) S is regular,
(2) S is described by a regular SBJ-scheme,
(3) S is MS-definable.

Proof : By Lemma (5.9) and Proposition (3.19), every subcubic quasi-tree S is
qt(fgs(val(t))) for some term t ∈ T∞(F ).

Property (1) means that S = qt(fgs(val(t))) for some regular term in T∞(F ′)t. Let (1’)
mean that S = qt(fgs(val(t))) for some regular term in T∞(F ). Then (1’)=⇒(2) by the
similar implication in Theorem (3.21).

(2)=⇒(3) by the similar implication in Theorem (3.21) and the observation that, in a
quasi-tree S, the SBJ-trees J such that S = qt(fgs(J)) can be specified by MS formulas in
terms of a 5-tuple (A,N0, N1, a, b) satisfying the formula ϕ′(A,N0, N1, a, b) of the proof of
Proposition (5.6).

(3)=⇒(1’) by the observation that the mapping α that transforms the relational structure
btc for t in T∞(F ) into the subcubic quasi-tree qt(fgs(val(t))) is an MS-transduction. The
proof goes then as in Theorem (3.21).

The implication (1’)=⇒(1) is trivial and (1) implies that S is MSfin definable by Theorem
(5.6). But a term t ∈ T∞(F ) that defines S is MS-definable, and the relational structure
representing a term has an MS-definable linear order. It follows that S has an MS-definable
linear order, hence that S is MS-definable (cf. the appendix). �

6. Conclusion

We have defined quasi-trees and join-trees of different kinds from regular terms. These terms
have finitary descriptions. There are other infinite terms that haveg finitary descriptions:
the algebraic ones [8] and more generally, those of Caucal’s hierarchy [5]. Such terms also
yield effective (algorithmically usable) notions of join-trees and quasi-trees. It is unclear
whether the corresponding isomorphism problems are decidable10.

10Z. Ésik proved in [14] that the isomorphism of the lexicographic orderings of two context-free languages
is undecidable. As algebraic linear orders are defined from deterministic context-free languages [4], deciding
their isomorphism might be possible.
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7. Appendix

7.1. Monadic second-order logic and related notions. Monadic second-order logic
extends first-order logic by the use of set variables X,Y, Z ... denoting subsets of the domain
of the considered logical structure, and the atomic formulas x ∈ X expressing membership of
x in X. We call first-order a formula where set variables are not quantified. For example, a
first-order formula can express that X ⊆ Y . A sentence is a formula without free variables.

Logical structures, graphs, trees, partial orders are finite or countably infinite.
Let R be a finite set of relation symbols, each symbol R being given with an arity ρ(R).

We call it a relational signature. For every set of variables W, we denote by MS(R,W)
the set of MS formulas written with R and free variables in W. An R-structure is a tuple
S = (DS , (RS)R∈R) where DS is a finite or countable set, called its domain, and RS is
a relation on DS of arity ρ(R). A property P of R-structures is monadic second-order
definable (MS-definable) if it is equivalent to the validity, in every R-structure S, of a
monadic second-order sentence ϕ, which we denote by S |= ϕ.
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For example, a graph G is identified with the {edg}-structure (VG, edgG) where VG is
its vertex set and edgG(x, y) means that there is an edge from x to y, or between x and y if
G is undirected. To take an example, 3-colorability is expressed by the MS-sentence :

∃X,Y [X ∩ Y = ∅ ∧ ¬∃u, v(edg(u, v) ∧ [(u ∈ X ∧ v ∈ X)∨
(u ∈ Y ∧ v ∈ Y ) ∧ (u /∈ X ∪ Y ∧ v /∈ X ∪ Y )])].

Many properties of partial orders can also be expressed by MS sentences. We take
examples that are useful in our proofs.

(a) The formula Lin(X) defined as ∀x, y.[(x ∈ X∧y ∈ X) =⇒ (x ≤ y∨y ≤ x)] expresses
that a subset X of N , partially ordered by ≤, is linearly ordered.

(b) The formula Lin(X) ∧ ∃a, b.[Min(X, a) ∧Max(X, b) ∧ θ(X, a, b)] expresses that
X is linearly ordered and finite, where Min(X, a) and Max(X, b) are first-order formulas
expressing respectively that X has a least element a and a largest one b, and θ(X, a, b) is an
MS formula expressing that :

(i) each element x of X except b has a successor c in X (i.e., c is the least
element of {y ∈ X | y > x}), and
(ii) (a, b) ∈ Suc∗, where Suc is the above defined successor relation (depending
on X) and Suc∗ is its reflexive and transitive closure.

Assertion (ii) is expressed by the MS formula:

∀U [U ⊆ X ∧ a ∈ U ∧ ∀x, y((x ∈ U ∧ (x, y) ∈ Suc) =⇒ y ∈ U) =⇒ b ∈ U ].

The reader will easily build first-order formulas expressing U ⊆ X, (x, y) ∈ Suc and
Property (i). Without a linear order, the finiteness of a set X is not MS-expressible. It is
thus useful, in some cases, to enrich MS logic with a finiteness predicate Fin(X) expressing
that X is finite. We denote by MSfin the corresponding extension of MS logic.

If S is a relational structure (N,≤t, (bri)1≤i≤ρ(F ), (labf )f∈F ) isomorphic to btc that
represents a term t ∈ T∞(F ), then a linear order v on N is MS-definable as follows:

x v y :⇐⇒ x ≤t y ∨ (x⊥ty and x is below the i-th son of x tt y
and y is below the j-th son of x tt y where i < j).

The definability of linear orders by MS-formulas is studied in [?].

Monadic second-order transductions (MS transductions) are transformations of logical
structures specified by MS or MSfin formulas. We use them in the proofs of Theorems (3.21),
(3.30), (4.11), (5.6) and (5.10). For these proofs, we only need very simple MS transductions,
said to be noncopying and parameterless in [13]. We simply call them MS transductions.

Let R and R′ be two relational signatures. A definition scheme of typeR → R′ is a tuple
of formulas of the form D = 〈χ, δ, (θR)R∈R′〉 such that χ ∈ MS(R), δ ∈ MS(R, {x}) and

θR ∈ MS(R, {x1, . . . , xρ(R)}) for each R in R′. We define D̂(S) := S′ = (DS′ , (RS′)R∈R′)
as follows:

S′ is defined if and only if S |= χ,
DS′ is the set of elements d of DS such that S |= δ(d),
RS′ is the set of tuples (d1, . . . , dρ(R)) of elements of DS such that S |=
θR(d1, . . . , dρ(R)).

The mapping that associates the join-tree (N,≤) with btc for t ∈ T∞(F ) (cf. Definition
(3.15)) is an MS-transduction defined by D = 〈χ, δ, θ≤〉 such that χ expresses that the
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considered input structure S is isomorphic to btc for some t ∈ T∞(F ), δ(x) is labext(x)
(expressing that x is in N) and θ≤(x, y) expresses that x ≤ y, cf. Definition (3.15.b).

Our main tool is the following (well-known) result:

Theorem 7.1. : Let D be a definition scheme as above and ϕ ∈ MSfin(R′, X ).

There exists a formula ϕD ∈ MSfin(R,X ) such that, for every R-structure S, for every

X -assignment ν in DS , we have (S, ν) |= ϕD if and only if:

(i) S |= χ (so that D̂(S) = S′ is well-defined),
(ii) ν is an X -assignment in DS′ (that is ν(x) ∈ DS′ and ν(X) ⊆ DS′ for
x,X ∈ X ) and
(iii) (S′, ν) |= ϕ.

Proof : The proof is given in [13] (Backwards Translation Theorem, Theorem 7.10) for
finite structures, so that the finiteness predicate Fin(X) is of no use. However, it works for
infinite structures as well and the predicate Fin(X), that translates back to itself (under
the assumption that ν(X) ⊆ DS′).

The formula ϕD is the conjunction of χ, a formula expressing (ii) and a formula ϕ′

obtained from ϕ by replacing each atomic formula R(x1, ..., xr) by θR(x1, . . . , xρ(R)), i.e., by
its definition given by D. �

It follows that, if the monadic theory of a class of structures S is decidable and S ′ = D̂(S)
for some definition scheme D, then the monadic theory of S ′ is decidable, because S′ |= ϕ
holds for all S′ in S ′ if and only if S |= ϕD holds for all S in S.

7.2. Rank-width of countable graphs. Rank-width and modular decomposition (cf.
[10, 12]) motivate the study of quasi-trees and join-trees respectively. We now review rank-
width for countable graphs. Rank-width is a width measure on finite graphs investigated
first in [17] and [18]. Here is its generalization to countable graphs.

We consider finite or countable, loop-free, undirected graphs without parallel edges. Let
G be such a graph. Its adjacency matrix is MG : VG × VG → {0, 1} with MG[x, y] = 1 if and
only if x and y are adjacent. If U and W are disjoint sets of vertices, we denote by MG[U,W ]
the matrix that is the restriction of MG to U ×W . Ranks are over GF (2). The rank of
MG[U,W ] defined as the maximum cardinality of an independent set of rows (equivalently,
of columns) is denoted by rk(MG[U,W ]); it belongs to N ∪ {ω}. It is convenient to take
rk(MG[∅,W ]) = rk(MG[U, ∅]) := 0.

Fact : If X ] Y is infinite, then rk(MG[X,Y ]) = sup{rk(MG[U,W ]) |
U ⊆ X,W ⊆ Y and, U and W are finite}.

In [10] we define a layout of G as a subcubic quasi-tree T whose set of leaves is VG.
Its rank is the least upper-bound of the ranks rk(MG[X ∩ VG, Xc ∩ VG]) such that X and
Xc := NT−X are two convex subsets of NT . (X is convex if x, z ∈ X∧B(x, y, z) =⇒ y ∈ X.)
The rank-width of G, denoted by rwd(G), is the smallest rank of a layout. Its discrete
rank-width, denoted by rwddis(G), is similar except that layouts are subcubic trees. Hence,
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rwd(G) ≤ rwddis(G). For finite graphs, we get the rank-width of in [17]. The notation
G ⊆i H means that G is an induced subgraph of H.

Theorem 7.2. [10]: For every graph G:
(1) if H ⊆i G, then rwd(H) ≤ rwd(G) and rwddis(H) ≤ rwddis(G),
(2) Compactness : rwd(G) = Sup{rwd(H) | H ⊆i G and H is finite},
(3) Compactness with gap : rwddis(G) ≤ 2 · Sup{rwd(H) | H ⊆i G and H is finite}.

The gap function in (3) is n 7→ 2n, showing a weak form of compactness. A related gap
occurs in the clique-width of countable graphs [9].

Proof sketch: (1) is clear from the definitions.
(2) is proved by Koenig’s Lemma.
(3) is based on the representation of a countable linear order as the set of leaves of an

ordered binary tree; this construction is adapted from [12].�
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