
HAL Id: hal-01299077
https://hal.science/hal-01299077v2

Preprint submitted on 3 May 2016 (v2), last revised 2 Oct 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic and logical descriptions of generalized trees
Bruno Courcelle

To cite this version:

Bruno Courcelle. Algebraic and logical descriptions of generalized trees. 2016. �hal-01299077v2�

https://hal.science/hal-01299077v2
https://hal.archives-ouvertes.fr

Algebraic and logical descriptions

of generalized trees

Bruno COURCELLE
LaBRI, CNRS,

351 Cours de la Libération,
33405 Talence, France

courcell@labri.fr

May 3, 2016

Abstract1 : Quasi-trees generalize trees in that the unique "path" be-
tween two nodes may be infinite and have any countable order type.
They are used to define the rank-width of a countable graph in such
a way that it is equal to the least upper-bound of the rank-widths
of its finite induced subgraphs. Join-trees are the corresponding
directed trees. They are useful to define the modular decomposi-
tion of a countable graph. We also consider ordered join-trees, that
generalize rooted trees equipped with a linear order on the set of
sons of each node. We define algebras with finitely many operations
that generate (via infinite terms) these generalized trees. We prove
that the associated regular objects (those defined by regular terms)
are exactly the ones that are the unique models of monadic second-
order sentences. These results use and generalize a similar result by
W. Thomas for countable linear orders.

Keywords : Rank-width, quasi-tree, join-tree, ordered tree, algebra, regular
term, monadic second-order logic.

1 Introduction

We define and study countable generalized trees, called quasi-trees, such that
the unique "path" between two nodes may be infinite and have any order type,
in particular that of rational numbers. Our motivation comes from the notion

1This work has been supported by the French National Research Agency (ANR) within
the IdEx Bordeaux program "Investments for the future", CPU, ANR-10-IDEX-03-02.

1

of rank-width, a complexity measure of finite graphs investigated first in [Oum]
and [OumSey]. Rank-width is based on graph decompositions formalized with
finite subcubic trees. In order to extend rank-width to countable graphs in such
a way that the compactness property holds, i.e., that the rank-width of a count-
able graph is the least upper-bound of those of its finite induced subgraphs,
we base decompositions on subcubic quasi-trees [Cou14]. (For a comparison, the
natural extension of tree-width to countable graphs has the compactness prop-
erty [KriTho] without needing quasi-trees.) Join-trees can be seen as directed
quasi-trees. A join-tree is a partial order (N,≤) such that every two elements
have a least upper-bound (called their join) and each set {y | y ≥ x} is lin-
early ordered. The modular decomposition of a countable graph is based on an
ordered join-tree [CouDel].

Our objective is to obtain finitary descriptions (usable in algorithms) for the
following generalized trees : join-trees, ordered join-trees and quasi-trees. For
this purpose we will define algebras of such generalized trees that use finitely
many operations and such that the finite and infinite terms over these oper-
ations define all countable relevant generalized trees. The regular objects are
those defined by regular terms, i.e. that have finitely many different subterms,
equivalently, that are the unique solutions of certain finite equation systems. We
will prove that a generalized tree is regular if and only if it is monadic second-
order definable, i.e., is the unique model (up to isomorphism) of a monadic
second-order sentence.

A linear order whose elements are labelled by letters from an alphabet
is called an arrangement. Regular arrangements were defined and studied in
[Cou78] and [Hei], and their monadic second-order definability is proved in
[Tho86]. We use the latter result for proving its extension to generalized trees.

In Section 2 we review definitions. In Section 3 we first study binary join-
trees and then, we extend the definitions and results concerning them to all
join-trees. In Section 4, we study ordered join-trees, and in Section 5, we study
quasi-trees. An appendix reviews definitions and facts about monadic second-
order logic and the application of quasi-trees to the rank-width of countable
graphs. An introductory article on these results is [Cou15].

2 Definitions, notation and basic facts.

All sets, trees and logical structures are finite or countably infinite. We denote
by X ⊎ Y the union of X and Y if they are disjoint. Isomorphism of ordered
sets, trees and other logical structures is denoted by ≃.

For partial orders ≤,�,⊑, ... we denote respectively by <,≺,⊏, ... the
corresponding strict orders and X < Y means that x < y for every x ∈ X and
y ∈ Y .

Let (V,≤) be a partial order. The least upper bound of x and y is denoted
by x⊔y if it exists and is called their join. The notation x⊥y means that x and y

2

are incomparable. A line2 is a subset Y of V that is linearly ordered and satisfies
the following convexity property : if x, z ∈ Y , y ∈ V and x ≤ y ≤ z, then y ∈ Y .
Particular notations for convex sets (not necessarly linearly ordered) are [x, y]
denoting {z | x ≤ z ≤ y},]x, y] denoting {z | x < z ≤ y},] −∞, x] denoting
{y | y ≤ x} (even if V is finite),]x,+∞[denoting {y | x < y} etc. If X ⊆ V ,
then ↓ (X) is the union of the sets]−∞, x] for x in X.

The first infinite ordinal and the linear order (N,≤) are denoted by ω.
The restriction of a relation R or a function f defined on a set V to a subset

W is denoted by R ↾ W or f ↾ W respectively.

Monadic second-order logic (MS logic in short) logic is reviewed in the ap-
pendix. MS-definable and MS-expressible mean respectively definable and ex-
pressible in monadic second-order logic. A sentence is a formula without free
variables.

2.1 Trees

A tree is a possibly empty, finite or countable, undirected graph that is connected
and has no cycles. Hence, it has neither loops nor parallel edges. The set of
nodes of a tree T is NT .

A rooted tree is a nonempty tree equipped with a distinguished node called
its root. The level of a node x is the number of edges of the path between it and
the root and Sons(x) denotes the set of its sons. We define on NT the partial
order ≤T such that x ≤T y if and only if y is on the unique path between x
and the root. The least upper bound of x and y, denoted by x ⊔T y is their
least common ancestor. We will specify a rooted tree T by (NT ,≤T) and we
will omit the index T when the considered tree is clear. For a node x of T , the
subtree issued from x, denoted by T/x, is defined as (NT/x,≤T ↾ NT/x) where
NT/x :=]−∞, x].

A partial order (N,≤) is (NT ,≤T) for some rooted tree T if and only if it
has a largest element max and for each x ∈ N , the set [x,max] is finite and
linearly ordered. These conditions imply that any two nodes have a join.

An ordered tree is a rooted tree such that each set Sons(x) is linearly ordered
by an order ⊑x.

2.2 Finite and infinite terms

Let F be a finite set of operations f , each given with an arity ρ(f). We call
such a set a signature. The maximal arity of a symbol is denoted by ρ(F). A
term over F is finite or infinite. We denote by T∞(F) the set of all terms
over F and by T (F) the set of finite ones. A typical example of an infinite
term, easily describable linearly, is, with f binary and a and b nullary, the term
t∞ := f(a, f(b, f(a, f(b, f(.........)))))) that is the unique solution in T∞(F) of
the equation t = f(a, f(b, t)).

2 In [Cou14] we call line a linearly ordered subset, without imposing the convexity property.

3

Positions in terms are designated by Dewey words. The set Pos(t) of posi-
tions of a term t is ordered by ≤t, the reversal of the prefix order. A term t can
be seen as a labelled, ordered and rooted tree whose set of nodes is Pos(t). We
have Pos(t∞) = 2

∗ ⊎ 2∗1,where 2∗ is the set of occurrences of f , (22)∗1 is the
set of occurrences of a and (22)∗21 is that of b.

There is a canonical structure of F -algebra on T∞(F), of which T (F) is a
subalgebra. If M = �M, (fM)f∈F � is an F -algebra, a value mapping is a homo-
morphism h : T∞(F)→M. Its restriction to finite terms is uniquely defined.

In some cases, we will use algebras with two sorts. The corresponding mod-
ifications of the definitions are straightforward.

The partial order on terms.
Let F contain a special nullary symbol Ω intended to be the least term. We

define on T (F) a partial order ≪ as follows:

Ω ≪ t for any t ∈ T (F),

f(t1, ..., tk) ≪ g(t′1, ..., t
′
k′) if and only if k = k′, f = g and ti ≪ t′i

for i = 1, .., k.

For terms in T∞(F), the definition (subsuming the previous one) is :

t ≪ t′ if and only if Pos(t) ⊆ Pos(t′) and every occurrence in t of
a symbol in F −{Ω} is an occurrence in t′ of the same symbol (and
an occurrence in t of Ω is an occurrence in t′ of any symbol).

Every increasing sequence of terms has a least upper bound. More details
on terms can be found in [Cou83].

Regular terms
A term t ∈ T∞(F) as regular if there is a mapping h from Pos(t) into a

finite set Q and a mapping τ : Q → F ×Seq(Q) (where Seq(Q) denotes the set
of finite sequences of elements of Q) such that:

if u is an occurrence of a symbol f of arity k, then τ(h(u)) =
(f, (h(u1), ..., h(uk))) where (u1, ..., uk) is the sequence of sons of u.

Intuitively, τ is the transition function of a top-down deterministic automa-
ton with set of states Q; h(ε) is its initial (root) state and h defines its unique
run. This is equivalent to requiring that t has finitely many different subterms,
or is a component of a finite system of equations that has a unique solution in
T∞(F). (The set Q can be taken as the set of unknowns of such a system, see
[Cou83].)

The above term t∞ is regular with Q := {1, 2, 3, 4}, τ(1) = (f, (2, 3)), τ(2) =
(a, ()), τ(3) = (f, (4, 1)), τ(4) = (b, ()).

With a term t we associate the relational structure ⌊t⌋ := (Pos(t),≤t,
(bri)1≤i≤ρ(F), (labf)f∈F) where bri(u) is true if and only if u is the i-th son of
his father and labf (u) is true if and only if f occurs at position u. A term t can

4

be reconstructed in a unique way from any relational structure isomorphic to
⌊t⌋ .

A term t is regular if and only if ⌊t⌋ is MS-definable, i.e., is, up to iso-
morphism, the unique model of a monadic second-order sentence (see Thomas,
[Tho90]).

2.3 Arrangements and labelled sets

We review a notion introduced in [Cou78] and further studied in [Hei, Tho86].
Let X be a set. A linear order (V,≤) equipped with a labelling mapping lab :
V → X is called an arrangement over X. It is simple if lab is injective. We
denote by A(X) the set of arrangements over X.

An arrangement over a finite set X can be considered as a generalized word.
A linear order (V,≤) is identified with the simple arrangement (V,≤, IdV) such
that IdV (v) := v for each v ∈ V . In the sequel, Id will denote the identity
function on any set.

An isomorphism of arrangements i : (V,≤, lab) → (V ′,≤′, lab′) is an order
preserving bijection i : V → V ′ such that lab′ ◦ i = lab. Isomorphism is denoted
by ≃.

If w = (V,≤, lab) ∈ A(X) and r : X → Y , then, r(w) := (V,≤, r ◦ lab) is an
arrangement over Y . If r maps V into Y , then r((V,≤)) is the arrangement
(V,≤, r) over Y since we identify (V,≤) to the simple arrangement (V,≤, Id).

The concatenation of linear orders yield a concatenation of arrangements
denoted by •. We denote by Ω the empty arrangement and by a the one reduced
to a single occurrence of a ∈ X. Clearly, w•Ω = Ω•w = w for every w ∈ A(X).
The infinite word w = aω is the arrangement over {a} with underlying order ω;
it is described by the equation w = a•w. Similarly, the arrangement w = aη over
{a} with underlying linear order (Q,≤) (that of rational numbers) is described
by the equation w = w • (a • w). We will generalize arrangements to tree
structures.

Let X be a set of first-order variables (they are nullary symbols) and t ∈
T∞({•,Ω} ∪ X). Hence, Pos(t) ⊆ {1, 2}∗. The value of t is the arrangement
val(t) := (Occ(t,X),≤lex, lab) where Occ(t,X) is the set of positions of the
elements of X and lab(u) is the symbol of X occurring at position u. We say
that t denotes w if w is isomorphic to val(t).

For an example, t• := •(a, •(b, •(a, •(b, •(.........)))))) denotes the infinite
word abab... . Its value is defined from Occ(t•, {a, b}) = 2∗1, lexicographically
ordered (i.e., 1 < 21 < 221 < ...) by taking lab(2i1) := a if i is even and
lab(2i1) := b if i is odd. The arrangements aω and aη are denoted respectively
by t1 and t2 that are the unique solutions in T∞({•,Ω, a}) of the equations
t1 = a • t1 and t2 = t2 • (a • t2).

An arrangement is regular if it is denoted by a regular term. The term t• is
regular. The arrangements aω and aη are regular.

5

An arrangement is regular if and only if it is a component of the initial
solution of a regular system of equations over F [Cou78] or the value of a
regular expression in the sense of [Hei]. We will use the result of [Tho86] that
an arrangement over a finite alphabet is regular if and only if is MS-definable.
For this result, we represent an arrangement w = (V,≤, lab) over X by the
relational structure ⌊w⌋ := (V,≤, (laba)a∈X) where laba(u) is true if and only if
lab(u) = a.

An X-labelled set is a pair m = (V, lab) where lab : V → X, equivalently, a
relational structure (V, (laba)a∈X) where each element of V belongs to a unique
set laba. We denote by set(w) the X-labelled set obtained by forgetting the
linear order of an arrangement w over X. Up to isomorphism, an X-labelled set
m is defined by the cardinalities in N ∪ {ω} of the sets laba, hence is a finite
or countable multiset of elements of X : a number in N ∪ {ω} associated with
each a ∈ X and represents its number of occurrences in m.

If X is finite, each X-labelled set is MSfin-definable, i.e., is the unique, finite
or countably infinite model up to isomorphism of a sentence of monadic second-
order logic extended with a set predicate Fin(U) expressing that the set U is
finite. (See the appendix for details). It is also regular, hence, is set(val(t)) for
some regular term in T∞({•,Ω} ∪ X). The notion of regularity is thus trivial
for X-labelled sets when X is finite.

3 Join-trees

Join-trees have been used in [CouDel] for defining the modular decomposition
of countable graphs.

3.1 Join-trees, join-forests and their structurings

(3.1) Definition : Join-tree.
(a) A join-tree is a pair J = (N,≤) such that:

1) N is a possibly empty, finite or countable set called the set of
nodes,

2) ≤ is a partial order on N such that, for every node x, the set
[x,+∞[(the set of nodes y ≥ x) is linearly ordered,

3) every two nodes x and y have a join x ⊔ y.

A minimal node is a leaf. If N has a largest element, we call it the root of J .
The set of strict upper-bounds of a nonempty set X ⊆ N is a line L. If L has a
smallest element, we denote it by �X and we say that �X is the top of X. Note
that �X /∈ X.

6

(b) A join-forest is a pair J = (N,≤) that satisfies conditions 1), 2) and the
following weakening of 3):

3’) if two nodes have an upper bound, they have a join.

The relation that two nodes have a join is an equivalence. Let Ns for s ∈ S be
its equivalence classes and Js := (Ns,≤↾ Ns), more simply denoted by (Ns,≤)
by leaving implicit the restriction to Ns. Then each Js is a join-tree, and J is
the union of these pairwise disjoint join-trees, called its components.

(c) A join-forest J = (N,≤) is included in a join-forest J ′ = (N ′,≤′), denoted
by J ⊆ J ′, if N ⊆ N ′, ≤ is ≤′↾ N and ⊔ is ⊔′ ↾ N .

(3.2) Definitions : Direction and degree.
Let J = (N,≤) be a join-forest, and x be one of its nodes. Let ∼ be the

equivalence relation on]−∞, x[such that z ∼ y if and only if z ⊔ y < x. Each

equivalence class C is called a direction of J relative to x and �C = x. The set of
directions relative to x is denoted by Dir(x) and the degree of x is the number
of its directions. The leaves are the nodes of degree 0.

A join-tree is binary if its nodes have degree at most 2. We call it a BJ-tree
for short.

(3.3) Definition : Structured join-trees and join-forests.
(a) Let J = (N,≤) be a join-tree. A structuring of J is a set U of nonempty

lines forming a partition of N that satisfies some conditions, stated with the
following notation : if x ∈ N , then U(x) denotes the line of U containing x,
U−(x) := U(x)∩]−∞, x[and U+(x) := U(x) ∩ [x,+∞[. (The set [x,+∞[has
no top but it can have a greatest element). The conditions are:

1) exactly one line A of U is upwards closed (i.e., [x,+∞[⊆ A if
x ∈ A), hence, has no strict upper-bound and no top; we call it the

axis; each other line U has a top �U ,

2) for each x in N , the sequence y0, y1, y2, ... such that y0 = x,

yi+1 =�U(yi) is finite; its last element is yk ∈ A (yk+1 is undefined)
and we call k the depth of x.

The nodes on the axis are those at depth 0. The lines [yi, yi+1[for i =
0, ..., k − 1 and [yk,+∞[are convex subsets of pairwise distinct lines of U . We
have [x,+∞[= [y0, y1[⊎[y1, y2[⊎... ⊎ [yk,+∞[, where [yi, yi+1[= U+(yi) for each
i < k, [yk,+∞[= U+(yk) ⊆ A and the depth of yi is k − i.

We call such a triple (N,≤,U) a structured join-tree, an SJ-tree for short.
Every linear order is an SJ-tree whose elements are all of depth 0.

Remark : If x < A for some x, then A has a smallest element, which is the
node yk of Condition 2) (because if z ∈ A is smaller than yk, then x < z, which
contradicts the observation that [yk−1, yk[⊆ U(yk−1) and U(yk−1) ∩ A = ∅).

7

Figure 1: A structured binary join-tree.

(b) Let J = (N,≤) be a join-forest whose components are Js, s ∈ S. A
structuring of J is a set U of nonempty lines forming a partition of N such that,
if Us is the set of lines of U included in Ns (every line of U is included in some
Ns), then each triple (Ns,≤,Us) is a structuring of Js.

(3.4) Example : Figure 1 shows a structuring {U0, ..., U5} of a binary join-
tree. The axis is U0. The directions relative to x2 are U−(x2)∪U1 and U2∪U3.
The maximal depth of a node is 2.

(3.5) Proposition : Every join-tree and, more generally, every join-forest
has a structuring.

Proof : Let J = (N,≤) be a join-tree. Let us choose an enumeration of
N and a maximal line B0 ; it is upwards closed. For each i > 0, we choose
a maximal line Bi containing the first node not in Bi−1 ∪ ... ∪ B0. We define
U0 := B0 and, for i > 0, Ui := Bi − (Ui−1 ⊎ ... ⊎ U0) = Bi − (Bi−1 ∪ ... ∪ B0).
We define U as the set of lines Ui. It is a structuring of J . The axis is U0.

If J is a join-forest, it has a structuring that is the union of structurings of
its components. �

Remark : Since each line Bi is maximal, if Ui has smallest element, this
element is a node of degree 0 in J .

In view of our use of monadic second-order logic, we give a description of
SJ-trees by relational structures.

8

(3.6) Definition : SJ-trees as relational structures.
(a) If J = (N,≤,U) is an SJ-tree, we define S(J) as the relational structure

(N,≤, N0, N1) such that N0 is the set of nodes at even depth and N1 := N −N0

is the set of those at odd depth. (N0 and N1 are sets but we consider them also
as unary relations).

(b) Let J = (N,≤) be a join-tree and X ⊆ N . We say that X is laminar if, for
all x, y, z ∈ X, if [x, z]∪ [y, z] ⊆ X (where x < z and y < z), then [x, z] ⊆ [y, z]
or [y, z] ⊆ [x, z] (the intervals [x, z] and [y, z] are relative to J). This condition
implies that the lines of J that are included in X and are maximal with this
condition form a partition of X whose parts will be called its components.

(3.7) Proposition : For J and S(J) as above, the following properties hold:

1) the sets N0 and N1 are laminar, U is the set of their components
and the axis A is a component of N0,

2) there is an MS formula ϕ(N0, N1) expressing that a relational
structure (N,≤, N0, N1) is S(J) for some SJ-tree J = (N,≤,U),

3) there exist MS formulas θAx(X,N0, N1) and θ(u,U,N0, N1) ex-
pressing, respectively, in a structure (N,≤, N0, N1) = S(N,≤,U),

that X is the axis and that U ∈ U ∧ u = �U .

Proof : 1) is clear from the definitions.
2) That a partial order (N,≤) is a join-tree is first-order expressible. The

formula ϕ(N0, N1) will include this condition. Let J = (N,≤) be a join-tree; let
N be the union of two disjoint laminar sets N0 and N1 and U be the set of their
components. Then, J = (N,≤,U) is an SJ-tree and S(J) = (N,≤,N0, N1) if
and only if:

i) every component of N1 has a top in N0 and every component of N0 except
one has a top in N1,

ii) for each U in U , the sequence U0, U1, ... of lines of U such that U0 = U ,
�U0 ∈ U1, ...,�Ui ∈ Ui+1 terminates at some Uk that has no top, hence is included
in N0.

These conditions are necessary. As they rephrase Definition (3.3), they are
also sufficient. The integer k in Condition ii) is the common depth of all nodes
in U .

That a set X is laminar is MS-expressible, and one can build an MS-formula
ψ(U,X) expressing that U is a component of X assumed to be laminar. This
formula can be used to express that N is the union of two disjoint laminar sets
N0 and N1 that satisfy Conditions i) and ii). For expressing Condition ii), we
define for each U in U a set of nodes W as follows : it is the least set such that
�U ∈ W, and, for each w ∈ W , the top of U(w) belongs to W if it is defined
(where U(w) is the unique set in U that contains w). The set W is linearly

ordered (it consists of �U0 < ... < �Ui...) and Condition ii) says that it must be

9

finite. To write the formula, we use the fact that the finiteness of a linearly
ordered set is MS-expressible (see the Appendix).

3) The construction of ϕ actually uses the MS formulas θAx(X,N0, N1) and
θ(u,U,N0, N1). �

3.2 Description schemes of structured binary join-trees

In order to introduce technicalities step by step, we first consider binary join-
trees. They are actually sufficient for defining the rank-width of a countable
graph. See Section 5 and the appendix.

(3.8) Definition : Structured binary join-trees.

Let J = (N,≤) be a binary join-tree. A structuring of J is a set U of lines
satisfying the conditions of Definition (3.3) and, furthermore:

i) if the axis A has a smallest element, then its degree is 0 or 1,

ii) each x ∈ N is the top of at most one set U ∈ U , denoted by Ux,
and Ux := ∅ if x is the top of no U ∈ U .

We call (N,≤,U) a structured binary join-tree, an SBJ-tree in short.

(3.9) Proposition: 1) Every BJ-tree J has a structuring.
2) The class of stuctures S(J) for SBJ-trees J is monadic second-order de-

finable.

Proof: 1) We use the construction of Proposition (3.5) for J = (N,≤). The
remark following it implies that, if the axis A = U0 has a smallest element, this
element has degree 0. It implies also that, if �Ui = x, then x cannot have degree
0 in the BJ-tree Ji−1 induced by Ui−1 ⊎ ... ⊎ U0 because each line Bi is chosen
maximal, and it cannot have degree 2 or more in Ji−1 because J is binary. Hence
it has degree 1 in Ji−1. It follows that x is the top of no line Uj for j < i. Hence
ii) holds and the construction yields an SBJ-tree (N,≤,U).

2) The formula ϕ of Proposition (3.7) can easily be modified so as to express
that (N,≤, N0, N1) is S(J) for some SBJ-tree J. �

(3.10)Definition : Description schemes for SBJ-trees.
(a) A description scheme for an SBJ-tree, in short an SBJ-scheme, is a triple

∆ = (Q,wAx, (wq)q∈Q) such that Q is a set, wAx ∈ A(Q) (is an arrangement
over Q) and wq ∈ A(Q) for each q.

It is regular if Q is finite and the arrangements wAx and wq are regular.

(b) We recall that a linear order (V,≤) is identified with the arrangement
(V,≤, Id). If W ⊆ V and r : V → Q, then r((W,≤)) is the arrangement

10

Figure 2: A binary join-tree.

(W,≤↾W, r ↾ W) ∈ A(Q) that we will denote more simply by (W,≤, r) leaving
implicit the restrictions of ≤ and r to W .

An SBJ-scheme ∆ describes an SBJ-tree J = (N,≤,U) whose axis is A if
there exists a mapping r : N → Q such that:

r((A,≤)) ≃ wAx and r((Ux,≤)) ≃ wr(x) for every x ∈ N.

We will also say that ∆ describes the BJ-tree fgs(J) := (N,≤).
The mapping r need not be surjective, this means that some elements of Q

and the corresponding arrangements may be useless, and thus can be removed
from ∆.

(c) Each SBJ-tree J = (N,≤,U) has a standard description scheme ∆(J) :=
(N, (A,≤), ((Ux,≤))x∈N). The identity mapping r : N → N shows that ∆(J)
describes J .

Intuitively, one obtains from ∆(J) an SBJ-scheme ∆ := (Q,wAx, (wq)q∈Q)
that describes J by a kind of quotient construction :

(i) one chooses a partition Q of N satisfying conditions (ii) and (iii)
below, where for each x ∈ N , r(x) denotes the part q of the partition
Q that contains x,

(ii) for all nodes x in a part q of Q, the arrangements (Ux, ≤, r) are
isomorphic to wq,

(iii) (A,≤, r) ≃ wAx.

(d) An example: Let ∆ = (Q,wAx, (wq)q∈Q) be the SBJ-scheme such that
Q = {a, b, c}, wAx is (Z,≤, ℓ) where ℓ(i) = a if i is even and ℓ(i) = b if i is
odd, wa = {c}, wb = cc (two nodes labelled by c) and wc = Ω. It describes the
BJ-tree of Figure 2.�

(3.11) Proposition: Every SBJ-scheme ∆ describes a unique SBJ-tree
where unicity is up to isomorphism.

11

We denote this SBJ-tree by Unf (∆), called the unfolding of ∆ (see the
remark following the proof about terminology).

Proof : Let∆ = (Q,wAx, (wq)q∈Q) be an SBJ-scheme, defined with arrange-
ments wAx = (VAx,�, labAx) and wq = (Vq,�, labq) such that, without loss of
generality, the sets VAx and Vq are pairwise disjoint and the same symbol �
denotes their orders.

We construct (N,≤,U) = Unf (∆) as follows.
a) N is the set of finite nonempty sequences (v0, v1, ..., vk) such that:

v0 ∈ VAx, vi ∈ Vqi for 1 ≤ i ≤ k, where

q1 = labAx(v0), q2 = labq1(v1), ..., qk = labqk−1(vk−1).

b) (v0, v1, ..., vk) ≤ (v′0, v
′
1, ..., v

′
j) if and only if k ≥ j, (v0, v1, ..., vj−1) =

(v′0, v
′
1, ..., v

′
j−1) and vj � v′j .

c) The axis A is the set of one-element sequences (v) for v ∈ VAx; for
x = (v0, v1, ..., vk), we define U(x) as the set of sequences (v0, v1, ..., vk−1, v)

such that v ∈ Vqk , hence, we have �U(x) = (v0, v1, ..., vk−1).

Note that (v0, ..., vk) < (v0, ..., vj) if j < k and that (v0, ..., vk−1, vk) ≤
(v0, ..., vk−1, v) if and only if vk � v.

Claim : ∆ describes (N,≤,U).
We define r : N → Q as follows:

if x ∈ A, then x = (v) for some v ∈ VAx and r(x) := labAx(v);

if x ∈ N has depth k ≥ 1, then x = (v0, v1, ..., vk) for some v0, v1, ..., vk
as in a) and r(x) := labqk(vk).

It follows that r((A,≤)) ≃ wAx and that, for x = (v0, v1, ..., vk) (of depth
k), r((Ux,≤)) ≃ wqk = wr(x), which proves the claim. �

We now prove unicity. Assume that ∆ describes J = (N,≤,U) with axis
A and also J ′ = (N ′,≤′,U ′) with axis A′, by means of mappings r : N → Q
and r′ : N ′ → Q. We construct an isomorphism h : J → J ′ as the common
extension of bijections hk : Nk → N ′

k, where Nk (resp. N ′
k) is the set of nodes

of J (resp. of J ′) of depth at most k, and such that :

they map ≤ to ≤′,

they map the lines of U to those of U ′ of same depth,

r′ ◦ hk = r ↾ Nk.

Case k = 0. We have:

r((A,≤)) = (A,≤, r) ≃ wAx ≃ r′((A′,≤)) = (A′, ≤′, r′)

12

which gives the order preserving bijection h0 : N0 = A → N ′
0 = A′ such that

r′ ◦ h0 = r ↾ N0.
Case k > 0. We assume inductively that hk−1 has been constructed.

Let U ∈ U be such that x = �U has depth k − 1; hence, U ∩Nk−1 = ∅. Then
(U,≤, r) ≃ wr(x). Let x′ = hk−1(x); we have r′(x′) = r(x). Hence there is U ′ ∈

U ′ such that x′ = �U ′, U ′ ∩ N ′
k−1 = ∅ and (U ′,≤′, r′) ≃ wr′(x′) = wr(x). Hence,

there is an order preserving bijection hU : U → U ′ such that r′ ◦ hU = r ↾ U.
We define hk as the extension of the injective mappings hk−1 and hU for all

U ∈ U such that the depth of �U is k−1. These mappings have pairwise disjoint
domains whose union is Nk.

The extension to N of all these mappings hk is the desired isomorphism h.
�

Remark : We call unfolding the transformation of ∆ into Unf (∆) because it
generalizes the unfolding of a directed graph G into a finite or countable rooted
tree. The unfolding is done from a particular vertex s of G, and the nodes of
the tree are the sequences of the form (x0, ..., xk) such that s = x0 and there
is a directed edge in G from xi to xi+1, for each i < k. If ∆ is such that the
arrangements wAx and wq are reduced to a single element, the corresponding
directed graph has all its vertices of outdegree one and the tree resulting from
the unfolding consists of one infinite path: the SBJ-tree Unf (∆) is the order
type ω− of negative integers and the sets in U are singletons.

(3.12) Proposition: A BJ-tree is monadic second-order definable if it is
described by a regular BJ-scheme.

Proof : That J = (N,≤) is a BJ-tree is first-order expressible. Assume that
J = fgs(J ′) where J ′ = (N,≤,U) ≃ Unf (∆) for some regular SBJ-scheme
∆ = (Q,wAx, (wq)q∈Q) such that Q = {1, ...,m}. Let r be the corresponding
mapping: N → Q (cf. Definition (3.10.b)). For each q ∈ Q, let ψq be an
MS sentence that characterizes wq, up to isomorphism, by the main result of
[Tho86]. Similarly, ψAx characterizes wAx. We claim that a relational structure
(X,≤) is isomorphic to J if and only if there exist subsets N0, N1,M1, ...,Mm

of X such that:

(i) (X,≤) is a BJ-tree and (X,≤, N0, N1) = S(J ′′) for some SBJ-tree
J ′′ = (X,≤,U ′),

(ii) (M1, ...,Mm) is a partition of X; we let r′ maps each x ∈ X to
the unique q ∈ Q such that x ∈ Mq,

(iii) for every q and node x in Mq, the arrangement r′((Ux,≤)) over
Q is isomorphic to wq (where Ux ∈ U ′),

(iv) the arrangement r′((A′,≤)) over Q where A′ is the axis of J ′′

is isomorphic to wAx.

13

Conditions (ii)-(iv) express that ∆ describes J ′′, hence that J ′′ is isomorphic
to J ′, and so, that (X,≤) ≃ fgs(J ′) = J .

By Proposition (3.9), Condition (i) is expressed by an MS-formula ϕ(N0, N1),

and the property U ∈ U ∧ x = �U is expressed in terms of N0, N1 by an MS-
formula θ(x,U,N0, N1). Conditions (iii) and (iv) are expressed by means of
the MS-sentences ψAx and ψq suitably adapted to take N0, N1,M1, ...,Mm as
arguments. Hence, J is (up to isomorphism) the unique model of an MS sentence
of the form:

∃N0, N1.[ϕ(N0, N1) ∧ ∃M1, ...,Mm.ϕ′(N0, N1,M1, ...,Mm))]

where ϕ′ expresses conditions (ii)-(iv). �

Theorem (3.21) will establish a converse.

3.3 The algebra of binary join-trees

We define three operations on structured binary join-trees (SBJ-trees). The (fi-
nite and infinite) terms over these operations define all SBJ-trees.

(3.13) Definition : Operations on SBJ-trees.

Concatenation along axes.
Let J = (N,≤,U) and J ′ = (N ′,≤′,U ′) be disjoint SBJ-trees, with respec-

tive axes A and A′. We define:

J • J ′ := (N ⊎ N ′,≤′′,U ′′) where :

x ≤′′ y :⇐⇒ x ≤ y ∨ x ≤′ y ∨ (x ∈ N ∧ y ∈ A′),

U ′′ := {A ⊎ A′} ⊎ (U−{A}) ⊎ (U ′−{A′}).

J • J ′ is an SBJ-tree with axis A ⊎ A′; the depth of a node in J • J ′ is the
same as in J or J ′.

This operation generalizes the concatenation of linear orders: if (N,≤) and
(N ′,≤′) are disjoint linear orders, then the SBJ-tree (N,≤, {N})•(N ′,≤′, {N ′})
corresponds to the concatenation of (N,≤) and (N ′,≤′) usually denoted by
(N,≤) + (N ′,≤′).

If K = (M,≤,V) is an SBJ-tree with axis B, and B = A ⊎ A′ such that
A < A′, then K = J • J ′ where:

N :=↓ (A), N ′ :=M −N,

U is the set of lines of V included in N −A together with A,

U ′ is the set of lines of V included in N ′ −A′ together with A′ and

the orders of J and J ′ are the restrictions of ≤ to N and N ′.

14

The empty SBJ-tree:
The nullary symbol Ω denotes the empty SBJ-tree.

Extension:
Let J = (N,≤,U) be an SBJ-tree, and u /∈ N . Then:

extu(J) := (N ⊎ {u},≤′, {{u}} ⊎ U) where :

x ≤′ y :⇐⇒ x ≤ y ∨ y = u,

the axis is {u}.

Clearly, extu(J) is an SBJ-tree. The depth of v ∈ N is its depth in J plus
1. The axis of J is turned into an "ordinary line" of the structuring of extu(J)
with top equal to u.

When handling SBJ-trees up to isomorphism, we use the notation ext(J)
instead of extu(J).

Forgetting structuring:
If J is an SBJ-tree as above, fgs(J) := (N,≤) is the underlying BJ-tree

(binary join-tree).

Anticipating the sequel, we observe that a linear order a1 < ... < an, iden-
tified with the SBJ-tree ({a1, ..., an},≤, {{a1, ..., an}}) is defined by the term
t := exta1(Ω)•exta2(Ω)• ...•extan(Ω). The binary (it is even "unary") join-tree
({a1, ..., an},≤) is defined by the term fgs(t) and also, in a different way, by the
term fgs(extan(extan−1(...(exta1(Ω)))..))).

(3.14) Definition : The algebra SBJT
We let F be the signature {•, ext,Ω}. We obtain an algebra SBJT whose do-

main is the set of isomorphism classes of SBJ-trees. Concatenation is associative
with neutral element Ω.

(3.15) Definition : The value of a term.
(a) In order to define the value of a term t in T∞(F), we compare its positions

as follows:

u ≈ v if and only if every position w such that u <t w ≤t u ⊔t v or

v <t w ≤t u ⊔t v is an occurrence of •.

This relation is an equivalence. We will also use the lexicographic order ≤lex

(positions are Dewey words). If w is an occurrence of a binary symbol, then
s1(w) is its first (left) son and s2(w) its second (right) one.

(b) We define the value val(t) := (N,≤,U) of t in T∞(F) as follows:

N := Occ(t, ext), the set of occurences in t of ext,

u ≤ v :⇐⇒ u ≤t w ≤lex v for some w ∈ N such that w ≈ v,

U is the set of equivalence classes of ≈ .

15

Figure 3: A finite SBJ-tree J .

Equivalently, we have :

u ≤ v :⇐⇒ u ≤t v or u ≤t s1(u⊔t v), v ≤t s2(u⊔t v) and v ≈ u⊔t v
(the position u ⊔t v is an occurrence of •),

and so (we recall that ⊥ denotes incomparability) :

u⊥v :⇐⇒ u ≤t s1(u⊔t v), v ≤t s2(u⊔t v) and there is an occurrence
of ext between v and u ⊔t v or vice-versa by exchanging u and v.

(c) We now consider terms t written with the operations exta (such that a
is the node created by applying this operation). For each a, the operation exta
must have at most one occurrence in t. Assuming this condition satisfied, then
val(t) := (N,≤,U) where :

N is the set of nodes a such that exta has an occurence in t that we
will denote by ua,

a ≈ b :⇐⇒ ua ≈ ub, with ≈ as in (a),

a ≤ b :⇐⇒ ua ≤ ub, with ≤ as in (b),

U is the set of equivalence classes of ≈ .

(3.15.1) Claim: The mapping val in (b) is a value mapping T∞(F)→ SBJT.

We say that t denotes an SBJ-tree J if J is isomorphic to val(t), and, in this
case, we also say that fgs(t) denotes the BJ-tree fgs(J).

(3.16) Examples and remarks.

16

Figure 4: A term t denoting J .

(1) The term t0 that is the unique solution in T∞(F) of the equation t0 =
t0 • t0 denotes the empty SBJ-tree Ω.

(2) Figure 3 shows a finite SBJ-tree J whose structuring consists of U0, ..., U5,
and U0 is the axis. The linear order on U0 can be described by the word fedca
(with f < e < d < ...). Similarly, U1 = b, U2 = hg, U3 = i , U4 = kj and
U5 =m.

Let us examine the term t of Figure 4 that denotes J . A function symbol
extu specifies the node u of J , and we also denote by u its occurrence (a position
of t). The occurrences of • and Ω are denoted by Dewey words. For example,
the occurrences of • above the symbols ext are the words ε, 1, 2, 12. The set
{ε, 1, 2, 12, f, e, d, c, a} is an equivalence class of ≈. Another one is {1221, k, j}.
Each line Ui is the set of positions of the ext symbols in some equivalence class
of ≈. Let us now examine how each line is ordered.

The case where u < v holds because u <t v is illustrated, to take a few cases,
by i < g, g < e,m < j and j < d.

The case where u < v holds because u⊥tv, u ≤t s1(u ⊔t v), v ≤t s2(u ⊔t v)
and v ≈ u ⊔t v is illustrated by f < e, e < d, d < c and i < d. We have i < d
because i ⊔t d = 12, i <t s1(12), d ≤t s2(12) and d ≈ 12. We do not have
i < j because j is not ≈-equivalent to 12, whereas i ⊔t j = 12, i <t s1(12) and
j ≤t s2(12). This case illustrates the characterization of ⊥ in Definition 3.15(c).

(3) Let t1 be the solution in T∞(F) of the equation t1 = ext(ext(Ω)) • t1.
We write it by naming a, b, c, d, e, f, ... the nodes created by the operations ext,
hence, t1 = exta(extb(Ω)) • (extc(extd(Ω)) • (exte(extf (Ω)) • ...))).

17

Figure 5: The SBJ-tree val(t1).

Its value is shown in Figure 5. The bold edges link nodes in the axis. The
nodes b and f are incomparable because the corresponding occurrences of ext,
that are 111 and 2211, have least common ancestor ε and 221 is an occurrence
of ext between 2211 and ε.

(3.17) Definition : The description scheme associated with a term.
(a) Let t ∈ T∞(F) and u ∈ Pos(t). We denote by Max(t, ext, u) the set of

maximal occurrences of ext in t that are below u or equal to it. Positions are
denoted by Dewey words, hence, these sets are linearly ordered by ≤lex. We
denote by W (t, u) the simple arrangement (Max(t, ext, u),≤lex).

Let J = (N,≤,U) be the value of t (cf. Definition (3.15)) and x be an
occurrence of ext with son u. We have (Ux,≤) = (Max(t, ext, u),≤lex).

For the term t in Example 3.16(2) we have W(t, ε) = fedca, W (t, 1) = fed,
W (t, e) = hg. For t1 in Example 3.16(3), we have W (t1, ε) = ace..., W (t1, 1) = a,
W (t1, 11) = b and W (t1, 111) = Ω.

(b) We define ∆(t) as the SBJ-scheme

(Occ(t, ext),W (t, ε), (W (t, s(x)))x∈Occ(t,ext))

where s(x) is the unique son of an occurrence x of ext.

For the term t1 of Example 3.16(3), we obtain ∆(t1) = (2∗ ⊎ 2∗1, ace...,
(wx)x∈Occ(t1,ext)) with wa = b, wc = d,...,wb = Ω, wd = Ω, ...

(3.18) Lemma : If t ∈ T∞(F), then val(t) is described by ∆(t).

Proof: Let val(t) = (N,≤,U). The conditions of Definition (3.10.b) hold
with the identity on Occ(t, ext) as mapping r because

(Ux,≤) = (Max(t, ext, s(x)),≤lex)

18

as observed in Definition (3.17.a). �

(3.19) Proposition : Every SBJ-tree is the value of a term.

Proof : Let J = (N,≤,U) be an SBJ-tree. For each k, we let Jk be the
SBJ-tree (Nk,≤,Uk) where Nk is the set of nodes of depth at most k and Uk is
the set lines U ∈ U of depth at most k. By induction on k, we define for each k
a term tk that defines Jk such that tk ≪ tk′ if k < k′, and then, the least upper
bound of the terms tk is the desired term t whose value is J .

We define terms using the symbols exta where a names the node created by
the corresponding occurrence of the extension operation.

If k = 0, then J0 = (A,≤, {A}). There exists a term t ∈ T∞({•}, ExtA)
whose value is J0, where ExtA is the set of terms exta(Ω) for a ∈ A (we use
ExtA as a set of nullary symbols).

Let k ≥ 1, where tk−1 defines Jk−1. Then Jk is obtained from Jk−1 by adding
below some nodes x at depth k − 1 the line Ux (if Ux = ∅, there is nothing to
add below x). Let tx ∈ T∞({•}, ExtUx) whose value is (Ux,≤). We obtain tk
by replacing in tk−1 each subterm extx(Ω) by extx(tx), for x at depth k−1 such
that Ux (= ∅.

It is clear that tk−1 ≪ tk and that the least upperbound of the terms tk
defines J . �

For an example, we apply this construction to the SBJ-tree J of Figure 3.
For defining J0, we can take:

t0 = ((extf (Ω) • exte(Ω)) • extd(Ω)) • (extc(Ω) • exta(Ω)).

To obtain t1, we replace exte(Ω) by exte(exth(Ω) • extg(Ω)), extd(Ω) by
extd(extk(Ω) • extj(Ω)) and extc(Ω) by extc(extb(Ω)), which gives:

t1 = ((extf (Ω) • exte(exth(Ω) • extg(Ω))) • extd(extk(Ω) • extj(Ω)) •
(extc(Ω) • exta(Ω)).

Then, we obtain t2 that defines J by replacing extg(Ω) by extg(exti(Ω)) and
extj(Ω) by extj(extm(Ω)).

3.4 Regular binary join-trees

(3.20) Definition : Regular BJ- and SBJ-trees.
A BJ-tree (resp. an SBJ-tree) T is regular if it is denoted by fgs(t) (resp. by

t) where t is a regular term in T∞(F).

(3.21) Theorem: The following properties of a BJ-tree J are equivalent:

(1) J is regular,

(2) J is described by a regular scheme,

(3) J is MS-definable.

19

Proof : (1)=⇒(2) Let J = fgs(J ′) with J ′ denoted by a regular term t in
T∞(F). Let h : Pos(t) → Q and τ be as in the definition of a regular term in
Section 2.2. Without loss of generality, we can assume that h(Pos(t)) = Q. If
this is not the case, we replace Q by h(Pos(t)) and τ by its restriction to this
set.

Claim: (1) For each u ∈ Pos(t), the arrangement h(W (t, u)) = (Max(t, ext, u),
≤lex, h) over Q is regular.

(2) If u′ is another position in t and h(u′) = h(u), then t/u′ = t/u and
furthermore3 h(W (t, u′)) ≃ h(W (t, u)).

Leaving its routine proof, we define ∆ := (Q,wAx, (wq)q∈Q) as follows:
(i) wAx := h(W (t, ε)),
(ii) if q ∈ Q, then wq := h(W (t, s(u))) where s(u) is the unique son of an

occurrence u of ext such that h(u) = q; if v is another occurrence of ext such
that h(v) = q, then h(s(v)) = h(s(u)) and so by the claim, h(W (t, s(v))) ≃
h(W (t, s(u))). Hence, wq is well-defined up to isomorphism.

Informally, ∆ is obtained from ∆(t) by replacing the labelling mapping Id
of the arrangements W (t, u) by h, so that these arrangements are turned into
arrangements h(W (t, u)) over Q. Clearly, ∆ is a regular scheme. As mapping
r showing that it describes J ′ (cf. Definition (3.10)), hence also J , we take the
resriction of h to Occ(t, ext) that is the set of nodes of J ′ = val(t).

(2)=⇒(3) is proved in Proposition (3.12).
(3)=⇒(1) By Definition (3.2), the mapping α that transforms the relational

structure ⌊t⌋ for t in T∞(F) into the BJ-tree J = (N,≤) = fgs(val(t)) is an
MS-transduction4 because an MS formula can identify the nodes of J among
the positions of t and another one can define ≤.

Let J = (N,≤) be an MS-definable BJ-tree. It is, up to isomorphism, the
unique model of an MS sentence β. It follows by a standard argument5 that the
set of terms t in T∞(F) such that α(⌊t⌋) |= β is MS-definable and thus, contains
a regular term (a result by Rabin, see [Tho90]). This term denotes J , hence J
is regular.�

(3.22) Corollary : The isomorphism problem for regular BJ-trees is decid-
able.

Proof : A regular BJ-tree can be given, either by a regular term, a regular
scheme or an MS sentence. The proof of Theorem (3.21) is effective: algorithms
can convert any of these specifications into another one. Hence, two regular
BJ-trees can be given, one by an MS sentence β, the other by a regular term

3Unless u = u′, the sets Max(t, ext, u) and Max(t, ext, u′) are not equal, so that the
arrangements h(W (t, u)) and h(W (t, u′)) are isomorphic but not equal.

4MS logic, MS-transductions and related definitions and results are reviewed in the appen-
dix.

5 If α is an MS-transduction and β is an MS-sentence, then the set of structures S such
that α(S) |= β is MS-definable. See Theorem (A.1) in the appendix.

20

t. They are isomorphic if and only if α(⌊t⌋) |= β (cf. the proof of (3)=⇒(1) of
Theorem (3.21)) if and only if t ∈ L(β), which is decidable (see [Tho90]). �

3.5 Logical and algebraic descriptions of join-trees

We now extend to join-trees the definitions and results of the previous sections.
Structured join-trees are defined in Section 3.1 (Definition (3.3)). We extend to
them the definitions and results of Sections 3.2-3.4. A first novelty will be that
the argument of the extension operation ext will be an SJ-forest, equivalently a
set of SJ-trees, instead of a single SBJ-tree. We will need an algebra with two
sorts, the sort of SJ-trees and that of SJ-forests. A second one will be the use
in monadic second-order formulas of a finiteness predicate (cf. Section 2.3 and
the appendix).

(3.23) Definition : Description schemes for SJ-trees.
(a) A description scheme for an SJ-tree, in short an SJ-scheme, is a 5-

tuple ∆ = (Q,D,wAx, (mq)q∈Q, (wd)d∈D) such that Q,D are sets, wAx ∈ A(Q),
wd ∈ A(Q) for each d ∈ D and mq = (Mq, labq) is a D-labelled set (cf. Section
2.3) for each q ∈ Q. Without loss of generality, we will assume that the domains
VAx and Vd of the arrangements wAx, wd and the sets Mq are pairwise disjoint,
because these arrangements and labelled sets will be used up to isomorphism.
Informally, Mq encodes the different lines U such that �U = x where x is labelled
by q, and each of these lines is defined, up to isomorphism, by the arrangement
wd where d is its label in D, defined by labq.

We say that ∆ is regular if Q∪D is finite and the arrangements wAx and wd

are regular. The finiteness of D implies that each D-labelled set mq is regular.

(b) Let J = (N,≤,U) be an SJ-tree with axis A; for each x ∈ N , we denote

by Ux the set of lines U ∈ U such that �U = x. An SBJ-scheme ∆ as in a)
describes J if there exist mappings r : N → Q and �r : U −{A} → D such that:

(b.1) the arrangement (A,≤, r) over Q is isomorphic to wAx,

(b.2) for each x ∈ N , the D-labelled set (Ux, �r) is isomorphic to
mr(x),

(b.3) for each U ∈ U − {A}, the arrangement (U,≤, r) over Q is
isomorphic to w�r(U).

We will also say that ∆ describes the join-tree fgs(J) := (N,≤).

(c) Each SBJ-tree J = (N,≤,U) has a standard description scheme ∆(J) :=
(N,U − {A}, (A,≤), ((Ux, Id))x∈N , ((U,≤))U∈U−{A}). The identity mappings
: N → N and : U − {A} → U − {A} show that ∆(J) describes J .

(3.24) Proposition: Every SJ-scheme ∆ describes a unique SJ-tree Unf (∆)
where unicity is up to isomorphism.

21

Proof : Let ∆ = (Q,D,wAx, (mq)q∈Q, (wd)d∈D) be an SJ-scheme, defined
with arrangements wAx = (VAx,�, labAx) and wd = (Vd,�, labd), and labelled
sets mq = (Mq, labq) such that the sets VAx, Vd and Mq are pairwise disjoint
and the same symbol � denotes the orders of the arrangements wAx and wd.

We construct Unf (∆) := (N,≤,U) as follows.
a) N is the set of finite nonempty sequences (v0, s1, v1, s2, ..., sk, vk) such

that:

v0 ∈ VAx, vi ∈ Vdi and si ∈ Mqi−1 for 1 ≤ i ≤ k, where

q0 = labAx(v0), d1 = labq0(s1), q1 = labd1(v1), d2 = labq1(s2), ...,
qi = labdi(vi), di+1 = labqi(si+1) for 1 ≤ i ≤ k − 1.

b) (v0, s1, v1, ..., sk, vk) ≤ (v′0, s
′
1, v

′
1, ..., s

′
j , v

′
j) if and only if :

k ≥ j, (v0, s1, v1, ..., sj) = (v′0, s
′
1, v

′
1, ..., s

′
j) and vj � v′j (vj , v

′
j ∈

Vdj).

c) the axis A is the set of one-element sequences (v) for v ∈ VAx and,
for x = (v0, s1, v1, ..., sk, vk), U(x) is the set of sequences in N of the form

(v0, s1, v1, s2, ..., sk, v) for v ∈ Vdk , so that �U(x) = (v0, s1, v1, ..., sk−1, vk−1).

Note that (v0, s1, v1, ..., vk) < (v0, s1, v1, ..., vj) if j < k and that (v0, s1, v1,
..., sk, vk) ≤ (v0, s1, v1, ..., sk, v) if and only if vk � v.

In order to prove that ∆ describes J, we define r : N → Q and �r : U−{A} →
D as follows:

if x ∈ A, then x = (v) for some v ∈ VAx and r(x) := labAx(v);

if x ∈ N has depth k ≥ 1, then x = (v0, s1, v1, ..., sk, vk) for some
v0, s1, ..., sk, vk and r(x) := labdk(vk);

if U ∈ U − {A}, then U = U(x) for some x = (v0, s1, v1, ..., sk, vk),
k ≥ 1, and �r(U) := dk.

We check the three conditions of Definition (3.23.b). We have (A,≤, r) ≃
wAx, hence (b.1) holds. For checking (b.2), we consider x = (v0, s1, v1, ..., sk, vk)
∈ N, k ≥ 1. The sets U in Ux are those of the form {(v0, s1, v1, ..., sk, vk, s, v) |
v ∈ Vdk+1} for all s ∈ Mqk where qk = labdk(vk) = r(x), hence (b.2) holds. For
checking (b.3), we let U = U(x) for some x = (v0, s1, v1, ..., sk, vk), k ≥ 1; it
is the set of sequences (v0, s1, v1, s2, ..., sk, v) for v ∈ Vdk ordered by � on the
last components. Hence, (U,≤, labdk) is isomorphic to wdk , which proves the
property since �r(U) := dk.

Unicity is proved as in Proposition (3.11). �

The following proposition extends Proposition (3.12).

22

(3.25) Proposition: A join-tree is MSfin -definable if it is described by a
regular SJ-scheme.

Proof : Let (N,≤) be a join-tree J (this property is first-order expressible).
Assume that J = fgs(J ′) where J ′ = (N,≤,U) ≃ Unf (∆) for some regular SJ-
scheme ∆ = (Q,D,wAx, (mq)q∈Q, (wd)d∈D) such that Q = {1, ...,m} and D =
{1, ..., p}. Let r,�r be the corresponding mappings (cf. Definition 3.23.b). For
each d ∈ D, let ψd be an MS sentence that characterizes wd up to isomorphism,
by the main result of [Tho86]. Similarly, ψAx characterizes wAx.

A D-labelled set m is described up to isomorphism by a p-tuple (m1, ...,mp)
where mi is the number (possibly ω) of elements having label i.

By Proposition (3.7), there is a bipartition (N0, N1) of N that describes the
structuring U ; from this bipartition, we can MS-define the axis A, the lines
forming U and the node �U for each U ∈ U − {A}.

There is a partition (Y1, ..., Ym) of N that describes r by Yi := r−1(i). There
is a partition (Z1, ..., Zp) where Zj is the union of the lines U ∈ U − {A} such
that �r(U) = j.

Consider a relational structure (X,≤, N0, N1, Y1, ..., Ym, Z1, ..., Zp). By MS
formulas, one can express the following properties:

(i) (X,≤, N0, N1) is S(J ′′) for some SJ-tree J ′′ = (X,≤,U ′); its axis is
denoted by A′,

(ii) (Y1, ..., Ym) is a partition of X ; we let r(x) := i if and only if x ∈ Yi,
(iii) (Z1, ..., Zp) is a partition of X such that each Zj is a union of sets

U ∈ U ′ − {A′} such that (U,≤, r) ≃ wj ,
(iv) (A′,≤, r) ≃ wAx,
(v) for each i ∈ Q and x ∈ Yi, the number of lines U ∈ U ′x that are contained

in Zj is mj
i .

These formulas are constructed as follows: ϕ(N0, N1) for (i) is from Propo-
sition (3.7). The formula for (ii) is standard. All other formulas are constructed
so as to express the desired properties when (i) and (ii) do hold. For (iii), we
use a suitable adaptation of ψi and the fact from Proposition (3.7) that, if (i)
holds, we can MS-define from (N0, N1) the axis A′, the lines forming U ′ and the

node �U for each U ∈ U ′. The mapping r is given by (Y1, ..., Ym). For (iv), we do
as for (iii) with ψAx.

For (v), we do as follows. We write an MS formula γ(x,N0, N1, Z,W) ex-
pressing that W consists of one node of each set U ∈ U ′ − {A′} that is con-

tained in Z and is such that �U = x. For any x and Z, all sets W satisfying
γ(x,N0, N1, Z,W) have same cardinality. Then, Property (v) holds if and only
if, for all i = 1, ...,m, x ∈ Yi and j = 1, ..., p, if γ(x,N0, N1, Zj ,W) holds, then

W has cardinality mj
i . If some number mj

i is ω, we need the finiteness predicate
Fin(W) to express this condition6 .

6 If the nodes of J have degree at most a ∈ N, then mj
i ≤ a for all i, j and the finiteness

predicate is not needed, hence, J is MS-definable.

23

Let β(N0, N1, Y1, ..., Ym, Z1, ..., Zp) express conditions (ii)-(v) in (X,≤). If
a join-tree (X,≤) satisfies ϕ(N0, N1) ∧ β(N0, N1, Y1, ..., Ym, Z1, ..., Zp), it has
a structuring U ′ described by N0, N1: we let J ′′ := (X,≤,U ′). The sets
Y1, ..., Ym, Z1, ..., Zp yield a scheme ∆ that describes J ′′ (by Conditions (iii)-
(v)), hence J ′′ is isomorphic to J ′ by the unicity property of Proposition (3.24),
and so, we have (X,≤) ≃ fgs(J ′) = J .

Hence, J is (up to isomorphism) the unique model of the MSfin sentence :

∃N0, N1(ϕ(N0, N1) ∧ ∃Y1, ..., Ym, Z1, ..., Zp.β(N0, N1, Y1, ..., Ym, Z1, ..., Zp))).

�

Theorem (3.30) will establish a converse.

(3.26) Definition : Operations on SJ-trees and SJ-forests.

We recall from Definition (3.1) that a join-forest is the union of disjoint join-
trees. A structured join-forest (an SJ-forest, cf. Definition (3.4)) is the union
of disjoint SJ-trees. It has no axis (each of its components has an axis, but we
do not single out any of them). We will use objects of three types : join-trees,
SJ-trees and SJ-forests, but a 2-sorted algebra will suffice (similarly as above
for SBJT, we have not introduced a separate sort for BJ-trees). The two sorts
are t for SJ-trees and f for SJ-forests.

Concatenation of SJ-trees along axes.
The concatenation J • J ′ disjoint SJ-trees J and J ′ is defined exactly as in

Definition (3.13) for SBJ-trees.

The empty SJ-tree is denoted by the nullary symbol Ωt.

Extension of an SJ-forest into an SJ-tree.
Let J = (N,≤,U) be an SJ-forest and u /∈ N . Then extu(J) is an SJ-tree

defined as in Definition (3.13). When handling SJ-trees up to isomorphism, we
will use the notation ext(J) instead of extu(J).

The empty SJ-forest is denoted by the nullary symbol Ωf .

Making an SJ-tree into an SJ-forest.
This is done by the unary operation mkf that is actually the identity on the

triples that define SJ-trees and SJ-forests.

The union of two disjoint SJ-forests is denoted by ⊎.

The types of these operations are thus:

24

• : t× t→ t,

Ωt : t,

⊎ : f × f → f ,

Ωf : f ,

ext : f → t,

mkf : t→ f .

In addition, we have, as in Definition (3.13):

Forgetting structuring: If J is an SJ-tree, fgs(J) is the underlying join-tree.

(3.27) Definition : The algebra SJT
We let F ′ be the 2-sorted signature {•,⊎, ext,mkf ,Ωt,Ωf}where the types of

these six operations are as above. We obtain an F ′-algebra SJT whose domains
are the sets of isomorphism classes of SJ-trees and of SJ-forests. Concatenation
is associative with neutral element Ωt and disjoint union is associative and
commutative with neutral element Ωf .

(3.28) Definition : The value of a term.

The definition is actually identical to that for SBJ-trees (Definition (3.15)).
We recall it for the reader’s convenience. The equivalence relation ≈ is as in this
definition. The value val(t) = (N,≤,U) of t ∈ T∞(F ′) is defined as follows:

N := Occ(t, ext), the set of occurences in t of ext,

u ≤ v :⇐⇒ u ≤t w ≤lex v for some w ∈ N such that w ≈ v,

U is the set of equivalence classes of ≈ .

If t has sort t (resp. f) then val(t) is an SJ-tree (resp. an SJ-forest). It is
clear that we have a value mapping : T∞(F ′)→ SJT.

For terms written with the operations exta, then val(t) := (N,≤,U) where :

N is the set of nodes a such that exta has an occurence in t, actually
a unique one, that we will denote by ua,

a ≤ b :⇐⇒ ua ≤ ub,

a ≈ b :⇐⇒ ua ≈ ub, and

U is the set of equivalence classes of ≈ .

(3.29) Definition : Regular join-trees.
A join-tree (resp. an SJ-tree) T is regular if it is denoted by fgs(t) (resp. by

t) where t is a regular term in T∞(F ′) of sort t.

(3.30) Theorem: The following properties of a join-tree J are equivalent:

25

(1) J is regular,

(2) J is described by a regular scheme,

(3) J is MSfin-definable.

Proof : (1)=⇒(2). Similar to that of Theorem (3.21).
(2)=⇒ (3) By Proposition (3.25).
(3)=⇒(1) As in the proof of Theorem (3.21), the mapping α that transforms

the relational structure ⌊t⌋ for t in T∞(F ′)t (the set of terms in T∞(F ′) of
sort t) into the join-tree J = (N,≤) = fgs(val(t)) is an MS-transduction. Let
J = (N,≤) be an MSfin -definable join-tree. It is, up to isomorphism, the unique
model of an MSfin sentence β. The set L of terms t in T∞(F ′)t such that
α(⌊t⌋) |= β is thus MSfin -definable. However, since the relational structures ⌊t⌋
have MS-definable linear orderings, L is also MS-definable (see the Appendix),
hence, it contains a regular term. This term denotes J , hence J is regular.�

The same proof as for Corollary (3.22) yields:

(3.31) Corollary : The isomorphism problem for regular join-trees is de-
cidable.

The rooted trees of unbounded degree, without order on the sets of sons of
their nodes are the join-trees defined by the terms in T∞(F ′ − {•})t. Theorem
(3.30) and Corollary (3.31) hold for them.

4 Ordered join-trees

(4.1) Definition : Ordered join-trees and join-hedges.

The set of directions of a node x of a join-forest (N,≤) is denoted by Dir(x),
cf. Definition (3.2). We recall that x ⊥ y means that x and y are incomparable
with respect to ≤, so that x < x ⊔ y and y < x ⊔ y if x ⊔ y is defined.

(a) We say that a join-tree J = (N,≤) is ordered (is an OJ-tree) if each
set Dir(x) is equipped with a linear order ⊑x. (In this way, we generalize the
notion of an ordered tree, cf. Section 2.1.) From these orders, we define a single
linear order ⊑ on N as follows:

x ⊑ y if and only if x ≤ y or, x ⊥ y and δ ⊏x⊔y δ′ where δ, δ′ ∈
Dir(x ⊔ y), x ∈ δ and y ∈ δ′.

(b) The linear order ⊑ satisfies the following properties, for all x, y, x′, y′:

(i) x ≤ y implies x ⊑ y,

(ii) if x ≤ y, x′ ≤ y′ and y ⊥ y′, then x ⊏ x′ if and only if y ⊏ y′.

26

(4.1.1) Claim : If J = (N,≤) is a join-tree and ⊑ is a linear order on
N satisfying conditions (i) and (ii), then J is ordered by the family of orders
(⊑x)x∈N such that, for all δ, δ′ in Dir(x), we have δ ⊑x δ′ if and only if δ = δ′

or y ⊏ y′ for some y ∈ δ and y′ ∈ δ′ (if and only if δ = δ′ or y ⊏ y′ for all y ∈ δ
and y′ ∈ δ′).

Proof sketch: Consider different directions δ, δ′ ∈ Dir(x) such that y ⊏ y′

for some y ∈ δ and y′ ∈ δ′. We have also y1 ⊏ y′1 for any y1 ∈ δ and y′1 ∈ δ′

because (y ⊔ y1) < x, (y′ ⊔ y′1) < x and (y ⊔ y1) ⊥ (y′ ⊔ y′1), hence, Condition
(ii) implies that y ⊔ y1 ⊏ y′ ⊔ y′1 and y1 ⊏ y′1.

Hence, each relation ⊑x is a linear order on Dir(x). It is clear that ⊑ is
derived from the relations ⊑x by (a). �

It follows that an ordered join-tree can be equivalently defined as a triple
(N,≤,⊑) such that (N,≤) is a join-tree and ⊑ is a linear order that satisfies
Conditions (i) and (ii). These conditions are first-order expressible.

(c) We define a join-hedge as a triple H = (N,≤,⊑) such that (N,≤) is a
join-forest and ⊑ is a linear order that satisfies Conditions (i) and (ii). Let Js,
for s ∈ S, be the join-trees composing (N,≤). Each of them is ordered by ⊑
according to Claim (4.1.1), and the index set S is linearly ordered by ⊑S such
that s ⊏S s′ if and only if s (= s′ and x ⊏ y for all nodes x of Js and y of Js′ .
Hence H is also a simple arrangement of pairwise disjoint join-trees.

(4.2) Definition : Structured join-hedges and structured ordered join-trees.
(a) A structured join-hedge, an SJ-hedge in short, is a 4-tuple J = (N,≤,⊑,

U) such that (N,≤,⊑) is a join-hedge and U is a structuring of the join-forest
(N,≤). A structured ordered join-tree could be defined in the same way, as an
OJ-tree (N,≤,⊑) equipped with a structuring U . However, we need a refinement
in order to define the operations that construct ordered join-trees and hedges
(cf. Definition (4.8)).

(b) Let J be an OJ-tree (N,≤,⊑) and U be a structuring of (N,≤). For each
node x, the set Dir(x) of its directions consists of the following sets:

the sets ↓ (U) for each line U ∈ Ux (we recall that ↓ (U) := {y | y ≤
z ∈ U for some z}),

the set ↓ (U−(x)) (cf. Section 2) if U−(x) is not empty; in this case
we call it the central direction of x.

If x is the the smallest element of U(x), it has no central direction but Ux

may be nonempty.
It is clear that ↓ (U)∩ ↓ (U ′) = ∅ if U and U ′ are distinct lines in Ux. We

get a linear order on Ux based on that on directions, that we also denote by ⊑x:
we have U ⊏x U ′ if and only if y ⊏ y′ for all y ∈ U and y′ ∈ U ′.

(c) A structured ordered join-trees (an SOJ-tree) is a tuple (N,≤,⊑, A,U−,
U+) such that (N,≤,⊑) is an OJ-tree and U := {A}⊎U− ⊎U+ is a structuring
of (N,≤) with axis A such that, for each node x :

27

if U ∈ Ux ∩ U− and U ′ ∈ Ux ∩ U+, then U ⊏x U ′ and furthermore,
if x has a central direction δ, then U ⊏x δ ⊏x U ′.

We define then Dir−(x) as the set of directions ↓ (U) for U ∈ Ux ∩U− and,
similarly, Dir+(x) with U ∈ Ux ∩ U+.

Let x be such that [x,+∞[∩U (= ∅ for some U in U not containing x. By
Condition 2) of Definition (3.3.a), there is a node yi in U , with the notation of
that definition. We say that x is to the left (resp. to the right) of U if, for some
direction δ relative to yi, we have x ∈ δ ∈ Dir−(yi) (resp. x ∈ δ ∈ Dir+(yi)).

As in Propositions (3.5) and (3.9), we have :

(4.3) Proposition : Every join-hedge and every ordered join-tree has a
structuring.

Proof: For a join-hedge (N,≤,⊑), we take any structuring U of the join-
forest (N,≤).

Let (N,≤,⊑) be an OJ-tree and U be any structuring of the join-tree (N,≤).
Let A be its axis. We need only partition each set Ux into two sets Ux∩U− and
Ux ∩ U+.

If x has a central direction δ, we let Ux∩U− consist of the lines U in Ux such
that ↓ (U) ⊏x δ, and Ux ∩ U+ consist of those such that δ ⊏x↓ (U). Otherwise,
we let U+ contain7 Ux so that Ux ∩ U− = ∅. �

We now establish the MS-definability of these structurings. If J = (N,≤,⊑,
A,U−,U+) is an SOJ-tree, we define S(J) as the structure (N,≤,⊑, A,N−

0 , N+
0 ,

N−
1 ,N+

1) such that A is the axis, N−
0 (resp. N+

0) is the union of the lines U ∈ U−

(resp. U ∈ U+) of even depth and N−
1 (resp. N+

1) is the union of the lines
U ∈ U− (resp. U ∈ U+) of odd depth.

(4.4) Proposition : Let J = (N,≤,⊑) be an OJ-tree.

1) There is an MS formula ϕ(A,N−
0 , N+

0 , N−
1 ,N+

1) expressing that a
structure (N,≤,⊑, A,N−

0 , N+
0 , N−

1 , N+
1) is S(J) for some SOJ-tree

J = (N,≤,⊑, A,U−,U+).

2) There exists an MS formula θ−(u,U,N−
0 , N+

0 , N−
1 , N+

1) express-
ing in a structure (N,≤,⊑, A,N−

0 , N+
0 , N−

1 , N+
1) = S(N,≤,⊑, A,U−,

U+) that U ∈ U− ∧ u = �U ; similarly, there exists an MS formula

θ+(u,U,N−
0 , N+

0 , N−
1 ,N+

1) expressing that U ∈ U+ ∧ u = �U .

Proof : Easy modification of the proof of Proposition (3.7).�

(4.5) Definition : Description schemes for SOJ-trees.

7We might also partition Ux into any two sets Ux ∩U− and Ux ∩U+ such that Ux ∩U−

⊏x Ux ∩ U+.

28

(a) A description scheme for an SOJ-tree, in short an SOJ-scheme, is a
6-tuple ∆ = (Q,D,wAx, (w

−
q)q∈Q, (w+q)q∈Q, (wd)d∈D) such that Q,D are sets,

wAx ∈ A(Q), (wd)d∈D is a family of arrangements over Q and (w−q)q∈Q and
(w+q)q∈Q are families of arrangements over D. Without loss of generality, we
will assume that the domains of these arrangements are pairwise disjoint, and
the same symbol � denotes their orders. Informally, (w−q)q∈Q and (w+q)q∈Q
encodes the sets of lines, ordered by ⊑x of the two sets Dir−(x) and Dir+(x)
where x is labelled by q.

We say that ∆ is regular if Q ∪ D is finite and the arrangements wAx, wd,
w−q and w+q are regular.

(b) Let J = (N,≤,⊑, A,U−,U+) be an SOJ-tree. An SOJ-scheme ∆ as in
(a) describes J if there exist mappings r : N → Q and �r : U− ∪ U+ → D such
that:

(b.1) (A,≤, r) ≃ wAx,

(b.2) for each x ∈ N , the arrangement (Ux ∩ U−,⊑x, �r) over D is
isomorphic to w−r(x),

(b.3) for each x ∈ N , the arrangement (Ux ∩ U+,⊑x, �r) over D is
isomorphic to w+r(x),

(b.4) for each U ∈ U− ∪ U+, the arrangement (U,≤, r) over Q is
isomorphic to w�r(U).

We will also say that ∆ describes the join-tree fgs(J) := (N,≤).

(4.6) Proposition : Every SOJ-scheme describes an SOJ-tree that is unique
up to isomorphism.

Proof : Let∆ = (Q,D,wAx, (w
−
q)q∈Q, (w+q)q∈Q, (wd)d∈D) be an SOJ-scheme,

defined with arrangements wAx = (VAx,�, labAx), wd = (Vd,�, labd), w−q =
(W−

q ,�, labq) and w+q = (W+
q ,�, labq) such that the sets VAx, Vd,W−

q and
W+
q are pairwise disjoint. Furthermore, we extend ≺ by letting s ≺ s′ for all

s ∈ W−
q , s′ ∈ W+

q and q ∈ Q. We construct J = Unf (∆) = (N,≤,⊑, A,U−,U+)
as follows. Clauses a) to d) are essentially as in Proposition (3.24).

a) N is the set of finite nonempty sequences (v0, s1, v1, s2, ..., sk, vk) such
that:

v0 ∈ VAx, vi ∈ Vdi and si ∈ W−
qi−1 ∪ W+

qi−1 for 1 ≤ i ≤ k, where

q0 = labAx(v0), d1 = labq0(s1), q1 = labd1(v1), d2 = labq1(s2), ...,
qi = labdi(vi), di+1 = labqi(si+1) for 1 ≤ i ≤ k − 1.

b) (v0, s1, v1, ..., sk, vk) ≤ (v
′
0, s

′
1, v

′
1, ..., s

′
j , v

′
j) if and only if :

k ≥ j, (v0, s1, v1, ..., sj) = (v
′
0, s

′
1, v

′
1, ..., s

′
j) and vj � v′j (vj , v

′
j ∈ Vdj).

c) The axis A is the set of one-element sequences (v) for v ∈ VAx.

29

d) If x = (v0, s1, v1, ..., sk, vk), the line U(x) is the set of sequences (v0, s1,
v1, s2, ..., sk, v) for v ∈ Vdk ; it belongs to U− if sk ∈ W−

qk−1 and to U+ if

sk ∈ W+
qk−1 ; in both cases, �U(x) = (v0, s1, v1, ..., sk−1, vk−1).

e) x = (v0, s1, v1, ..., sk, vk) ⊑ y = (v′0, s
′
1, v

′
1, ..., s

′
j , v

′
j) if and only if ,

either x ≤ y or, for some ℓ < {j, k}, we have

e.1) (v0, s1, v1, ..., vℓ) = (v
′
0, s

′
1, v

′
1, ..., v

′
ℓ) and sℓ+1 ≺ s′ℓ+1,

e.2) or (v0, s1, v1, ..., sℓ) = (v′0, s
′
1, v

′
1, ..., s

′
ℓ), sℓ+1 ∈ W−

qℓ and
v′ℓ ≺ vℓ,

e.3) or (v0, s1, v1, ..., sℓ) = (v′0, s
′
1, v

′
1, ..., s

′
ℓ), s′ℓ+1 ∈ W+

qℓ and
vℓ ≺ v′ℓ.

In Case e.1), x and y are in different directions of z := (v0, s1, v1, ..., vℓ) that
are not its central direction; in Case e.2), x is to the left of the central direction
δ of z and y ≤ u where u := (v0, s1, v1, ..., v′ℓ) is here below z on δ; in Case e.3),
y is to the right of the central direction δ′ of u and x ≤ z where z is below u on
δ′.

In order to prove that∆ describes J, we define r : N → Q and �r : U−∪U+ →
D as follows:

if x ∈ A, then x = (v) for some v ∈ VAx and r(x) := labAx(v);

if x ∈ N has depth k ≥ 1, then x = (v0, s1, v1, ..., sk, vk) for some
v0, s1, ..., sk, vk and r(x) := labdk(vk);

if U ∈ U− ∪ U+, then U = U(x) for some x = (v0, s1, v1, ..., sk, vk),
and �r(U) := dk.

In the last case, as dk = labqk−1(sk), it depends only on sk and vk−1 (via
qk−1). It follows that �r(U) is the same if we consider U as U(y) with y =
(v0, s1, v1, ..., sk, v) hence, is well-defined.

We check the four conditions of Definition (4.5.b). We have (A,≤, r) ≃ wAx,
hence (b.1) holds. For (b.2) and (b.3), we consider x = (v0, s1, v1, ..., sk, vk) ∈ N .
The sets U in Ux are those of the form {(v0, s1, v1, ..., sk, vk, s, v) | v ∈ Vdk+1}
for all s ∈ W−

qk
∪ W+

qk
where qk = labdk(vk) = r(x), hence (b.2) and (b.3) hold.

For checking (b.4), we let U = U(x) for some x = (v0, s1, v1, ..., sk, vk), k > 0;
then U is the set of sequences (v0, s1, v1, s2, ..., sk, v) such that v ∈ Vdk ordered
by � on the last components. Hence, (U,≤, labdk) is isomorphic to wdk , which
proves the property since �r(U) := dk.

Unicity is proved as in Proposition (3.11). �

(4.7) Proposition: An SOJ-tree is MS-definable if it is described by a
regular SOJ-scheme.
Proof : Similar to the proofs of Propositions (3.12) and (3.25).�

30

Note that, we need not the finiteness predicate as in Proposition (3.25)
because we deal with arrangements that are linearly ordered structures, and
not with labelled sets.

Next we define an algebra SOJT with two sorts: t for SOJ-trees and h for
SJ-hedges.

(4.8) Definition : Operations on SOJ-trees and SJ-hedges.

Concatenation of SOJ-trees along axes.
Let J1 = (N1,≤1,⊑1, A1,U

−
1 ,U+1) and J2 = (N2,≤2,⊑2, A2,U

−
2 ,U+2) be

disjoint SOJ-trees. We define their concatenation as follows:

J1 • J2 := (N1 ⊎ N2,≤,⊑, A1 ⊎ A2,U
−
1 ⊎ U−2 ,U+1 ⊎ U+2) where :

x ≤ y :⇐⇒ x ≤1 y ∨ x ≤2 y ∨ (x ∈ N1 ∧ y ∈ A2),

x ⊑ y :⇐⇒ x ≤ y ∨ x ⊑1 y ∨ x ⊑2 y,

∨(x⊥y ∧ x ∈ N1 ∧ y ∈ N2 ∧ y ∈ U ∈ U+2 ∩ Ux⊔y
2)

∨(x⊥y ∧ x ∈ N2 ∧ y ∈ N1 ∧ x ∈ U ∈ U−2 ∩ Ux⊔y
2), for some U.

The relations x⊥y and x ⊔ y are relative to ≤.
It is clear that J1 • J2 is an SOJ-tree. Its axis is A1 ⊎ A2, U+ = U+1 ⊎ U+2

and U− = U−1 ⊎ U−2 .

The empty SOJ-tree is denoted by the nullary symbol Ωt.

Extension of two SJ-hedges into a single SOJ-tree:
Let H1 = (N1,≤1,⊑1,U1) and H2 = (N2,≤2,⊑2,U2) be disjoint SJ-hedges

and u /∈ N1 ⊎N2. Then:

extu(H1,H2) := (N1 ⊎ N2 ⊎ {u},≤,⊑, {u},U1,U2) where :

x ≤ y :⇐⇒ x ≤1 y ∨ x ≤2 y ∨ y = u,

x ⊑ y :⇐⇒ x ≤ y ∨ x ⊑1 y ∨ x ⊑2 y ∨ (x ∈ N1 ∧ y ∈ N2).

Clearly, extu(J) is an SOJ-tree. When handling SOJ-trees and SJ-hedges up
to isomorphism, we replace the notation extu(H1,H2) by ext(H1,H2).

The empty SJ-hedge is denoted by the nullary symbol Ωh.

Making an SOJ-tree into an SJ-hedge.
This is done by the unary operationmkh such that, if J = (N,≤,⊑, A,U−,U+)

is an SOJ-tree, then

mkh(J) := (N,≤,⊑, {A} ⊎ U− ⊎ U+).

31

Note that in mkh(J), we distinguish neither U− from U+ nor the axis A
from the other lines.

The concatenation of two disjoint SJ-hedges.
Let H1 = (N1,≤1,⊑1,U1) and H2 = (N2,≤2,⊑2,U2) be disjoint SJ-hedges.

Their "horizontal" concatenation is:

H1 ⊗H2 := (N1 ⊎ N2,≤1 ⊎ ≤2,⊑,U1 ⊎ U2) where :

x ⊑ y :⇐⇒ x ⊑1 y ∨ x ⊑2 y ∨ (x ∈ N1 ∧ y ∈ N2).

We let F ′′ be the 2-sorted signature {•,⊗, ext,mkh,Ωt,Ωh} whose operation
types are :

• : t× t→ t,

Ωt : t,

⊗ : h× h→ h,

Ωh : h,

ext : h× h→ t,

mkh : t→ h.

In addition, we have, as in Definitions (3.13) and (3.26) :

Forgetting the structuring:
If J = (N,≤,⊑, A,U−,U+) is an SOJ-tree, then fgs(J) := (N,≤,⊑) is the

underlying OJ-tree.

(4.9) Definition : The value of a term.

If u is an occurrence of a binary symbol in a term t, we denote by s1(u) its
first son and by s2(u) the second one (cf. Definition (3.15)).

The value val(t) := (N,≤,⊑, A,U−,U+) of a term t ∈ T∞(F
′′

)t is an SOJ-
tree defined in a similar way as for t ∈ T∞(F ′)t, cf. Definitions (3.15) and
(3.28):

N := Occ(t, ext),

x ≤ y :⇐⇒ x ≤t w ≤lex y for some w ∈ N such that w ≈ y,

A := Max(t, ext, ε),

with ≈ the equivalence relation on N defined as in Definition (3.15.a):

U− is the set of equivalence classes of≈ of nodes inMax(t, ext, s1(u))
for some occurrence u of ext,

U+ is the set of equivalence classes of≈ of nodes inMax(t, ext, s2(u))
for some occurrence u of ext.

32

Figure 6: Term T of Example (4.10).

Hence, U(x) ∈ U− if x ≤t s1(�U(x)) and U(x) ∈ U+ if x ≤t s2(�U(x)).

Next we define ⊑ .

x ⊑ y :⇐⇒ x ≤ y or x⊥y (⊥ is relative to ≤, not to ≤t) and we
have one of the following cases:

(i) x ⊔t y is an occurrence of ⊗ or ext, x ≤t s1(x ⊔t y) and y ≤t

s2(x ⊔t y),

(ii) x ⊔t y is an occurrence of •, x ≤t s1(x ⊔t y) and y ≤t s2(z)
where z is the unique maximal occurrence of ext such that y <t

z ≤t s2(x ⊔t y),

(iii) x ⊔t y is an occurrence of •, y ≤t s1(x ⊔t y) and x ≤t s1(z)
where z is the unique maximal occurrence of ext such that x <t

z ≤t s2(x ⊔t y).

If t ∈ T∞(F ′′)h its value val(t) is (N,≤,⊑,U) with (N,≤,⊑) defined as
above and U as in Definition (3.28).

(4.9.1) Claim : (1) The mapping val is a value mapping T∞(F
′′

) :→ SOJT.
(2) The transformation α of ⌊t⌋ into (N,≤,⊑) is an MS-transduction.

Proof : (1) is clear from the definitions.
(2) holds because the conditions of Definition (4.9) are expressible in ⌊t⌋ by

MS formulas. �

33

Figure 7: The OJ-tree val(T) of Example (4.10).

(4.10) Example: We now illustrate this definition. Figure 6 shows a term T
where A,B,C and D are subterms of type t and E,F and G are subterms of
type h. They contain occurrences of ext that define nodes x, x′, y, y′, w, z and
z′ of val(T).

The OJ-tree val(T) is shown on Figure 7, where we designate by A,B, ...,G
the trees and hedges defined by the terms A,B, ..., G.

We have the following comparisons for < :

{z, z′, u} < v, because {z, z′} <T v, u <lex v and u ≈ v,

{y, y′, w} < u, because {y, y′, w} <T u,

x ≤ {u, v} because x ≤T a <lex {u, v} and a ≈ u ≈ v where a is the
root position of A,

v < x′ if and only if x′ is on X, the axis of B, because in this case,
v ≈ x′ and otherwise v and x′ are incomparable with respect to ≤;
in all cases we have v <lex x′.

For ⊏ we have:

z ⊏ y ⊏ y′ ⊏ x ⊏ w ⊏ u ⊏ z′ ⊏ v

and x′ ⊏ z if x′ is to the left of X ; otherwise v ⊏ x′.

All inequalities for < yield the corresponding inequalities for ⊏. We now
compare z, y, y′, x, w, z′ that pairwise incomparable for <.

By Case (i) of Definition (4.9), we get {y, y′} ⊏ w, y ⊏ y′ and z ⊏ z′.
By Case (ii), we get x ⊏ w, {x,w} ≺ z′ and {y, y′} ≺ w.
By Case(iii) we get {z, y, y′} ≺ x and z ≺ {y, y′}.

34

Finally, if x′ is to the left of X, then Case (iii) gives x′ ⊏ z, and if it to its
right, then Case (ii) gives z ⊏ x′. �

(4.11) Theorem: The following properties of an OJ-tree J are equivalent:
(1) J is regular,
(2) J is described by a regular SOJ-scheme,
(3) J is MS-definable.

Proof : (1)=⇒(2): Similar to that of Theorem (3.21).
(2)=⇒ (3): By Proposition (4.7).
(3)=⇒(1) As observed in Claim (4.9.2), the mapping α that transforms the

relational structure ⌊t⌋ for t in T∞(F
′′

)t into the OJ-tree (N,≤,⊑) = fgs(val(t))
is an MS-transduction. Let J = (N,≤,⊑) be an MS-definable OJ-tree. It is,
up to isomorphism, the unique model of an MS-sentence β. The set of terms
t in T∞(F ′′)t such that α(⌊t⌋) |= β is thus MS-definable, hence, it contains a
regular term. This term denotes J , hence J is regular.�

As in Corollaries (3.22) and (3.31) we deduce that the isomorphism problem
for regular OJ-trees is decidable.

5 Quasi-trees

Quasi-trees can be viewed intuitively as "undirected join-trees". As in [Cou14],
we define them in terms of a ternary betweenness relation.

(5.1) Definition : Betweenness.
(a) Let L = (X,≤) be a linear order. Its betweenness relation is the ternary

relation on X such that BL(x, y, z) holds if and only if x < y < z or z < y < x.
It is empty if X has less than 3 elements.

(b) If T is a tree, its betweenness relation is the ternary relation on NT , such
that BT (x, y, z) holds if and only if x, y, z are pairwise distinct and y is on the
unique path between x and z. If R is a rooted tree and T = Und(R) is the tree
obtained from T by forgetting its root and edge directions, then :

BT (x, y, z) ⇐⇒ x, y, z are pairwise distinct and x <R y ≤R x ⊔R z
or z <R y ≤R x ⊔R z.

(c) If B is a ternary relation on a set X, and x, y ∈ X, then [x, y]B :=
{x, y} ∪ {z ∈ X | B(x, z, y)}.

(5.2) Proposition [Cou14] : (a) The betweenness relation B of a linear
order (X,≤) satisfies the following properties for all x, y, z, u ∈ X.

35

A1 : B(x, y, z)⇒ x (= y (= z (= x.

A2 : B(x, y, z)⇒ B(z, y, x).

A3 : B(x, y, z)⇒ ¬B(x, z, y).

A4 : B(x, y, z) ∧ B(y, z, u)⇒ B(x, y, u) ∧B(x, z, u).

A5 : B(x, y, z) ∧ B(x, u, y)⇒ B(x, u, z) ∧ B(u, y, z).

A6 : B(x, y, z) ∧ B(x, u, z)⇒

y = u ∨ [B(x, u, y) ∧ B(u, y, z)] ∨ [B(x, y, u) ∧ B(y, u, z)].

A7’ : x (= y (= z (= x ⇒ B(x, y, z) ∨ B(x, z, y) ∨ B(y, x, z).

(b) The betweenness relation B of a tree T satisfies the properties A1-A6
for all x, y, z, u in NT together with the following weakening of A7’:

A7 : x (= y (= z (= x ⇒ B(x, y, z) ∨ B(x, z, y) ∨ B(y, x, z)∨
∃w.(B(x,w, y) ∧ B(y,w, z) ∧B(x,w, z)).

(5.3) Proposition : Let B be a ternary relation on a set X that satisfies
properties A1-A7’ for all x, y, z, u in X. Let a and b be distinct elements of X.
There is a unique linear order L = (X,≤) such that a < b and BL = B. It is
first-order definable in the logical structure (X,B, a, b).

Proof : Let X,B be as in the statement. Let Y consist of n elements of X,
n > 2. It can be enumerated as x1, ..., xn in such a way that B(xi, xj , xk) holds
for all 1 ≤ i < j < k ≤ n; furthermore, the only other possible enumeration
satisfying this property is its reversal, xn, ..., x1.

This is clear if n = 3. Otherwise, we use induction. Consider x, y, z ∈ Y
such that B(x, y, z) holds. Let Y1 := {u ∈ Y | B(u, y, z)} and Y2 := {u ∈ Y |
B(x, y, u)}. These sets have less than n elements as z /∈ Y1 and x /∈ Y2. Fur-
thermore, Y1 ∩ Y2 = {y}. The induction hypothesis gives enumerations x1, ..., y
of Y1 and y, ..., xn of Y2 with the desired properties. The desired enumeration
of Y is x1, ..., y, ..., xn. We omit a detailed proof.

If a and b are distinct elements of X, there is a unique linear order L = (X,≤)
such that a < b and BL = B. This is clear from the above observation if X is
finite. Otherwise, we let X be the union of an increasing sequence of finite
subsets that contain all a and b. On each of them, say Y , we have a unique
linear order < such a < b, whose betweeness relation is B∩ (Y ×Y ×Y). There
union gives the desired linear order, that we denote by ≤a,b .

We now define it by a first-order formula.
Case 1 : There are no u, v such that B(u, b, v) holds. Then, we have8 :

x ≤a,b y :⇐⇒ y ∈ [x, b]B (i.e., x = y ∨ y = b ∨ B(x, y, b)).

Otherwise and similarly, if there are no u, v such that B(u, a, v) holds, we
have

8We recall the notation [x, y]B := {x, y} ∪ {z | B(x, z, y)}.

36

x ≤a,b y :⇐⇒ x ∈ [a, y]B.

Case 2 : Otherwise, we define the following binary relation :

Z(x, y) :⇐⇒ x (= y ∧

[(B(x, a, b) ∧ ¬B(y, x, a)) ∨ (x = a ∧ ¬B(y, a, b))∨

(B(a, x, b) ∧ ¬B(y, x, b)) ∨ (x = b ∧ B(a, b, y))∨

(B(a, b, x) ∧B(b, x, y))].

It is easy to see that x <a,b y implies Z(x, y). (In particular, that Z(a, b)
holds follows from the clause x = a ∧ ¬B(y, a, b) with y = b).

For the converse, assume that Z(x, y) holds and x <a,b y does not. Then,
we have y <a,b x. By looking at the different relative positions of x, y, a and b,
we get a contradiction. Hence x ≤a,b y if and only if x = y ∨ Z(x, y), which is
expressed by a first-order formula ξ(a, b, x, y). �

(5.4) Definition [Cou14] : Quasi-trees.
(a) A quasi-tree is a structure S = (N,B) such that B is a ternary relation

on N , the set of nodes, that satisfies conditions A1-A7. To avoid uninteresting
special cases, we also require that N has at least 3 nodes. In a quasi-tree, the
four cases of the conclusion of A7 are exclusive and in the fourth case, there is
a unique node w satisfying B(x,w, y)∧B(y,w, z)∧B(x,w, z) (by Lemma 11 of
[Cou14]), that is denoted by MS(x, y, z).

A leaf (of S) is a node z such that B(x, z, y) holds for no x, y. A line is set
of nodes L such that [x, y]B ⊆ L if x, y ∈ L and an end of L is a node z not in
[x, y]B for any x, y ∈ L.

We say that S is discrete if each set [x, y]B is finite.
We say that a quasi-tree S = (N,B) is a subquasi-tree of a quasi-tree S′ =

(N ′, B′), which we denote by S ⊆ S′, if N ⊆ N ′ and B = B′ ↾ N . This
condition implies that MS =MS′ ↾ N .

(b) From a join-tree J = (N,≤), we define a ternary relation BJ on N by:

BJ(x, y, z) :⇐⇒ x (= y (= z (= x and (x < y ≤ x⊔z)∨(z < y ≤ x⊔z).

(5.5) Proposition : (1) The structure qt(J) := (N,BJ) associated with a
join-tree J = (N,≤) with at least 3 nodes is a quasi-tree. Every line of J is a
line of qt(J). If J is a subjoin-tree of J ′, then qt(J) is a subquasi-tree of qt(J ′).

(2) Every quasi-tree S is qt(J) for some join-tree J .
(3) A quasi-tree is discrete if and only if it is qt(J) for some tree J .
(4) Let S = (N,B) be a quasi-tree, L a line of S and a, b distinct nodes

of L. In each of the following two cases:

37

(i) b is the largest node of L with respect to its linear order9

≤a,b,

(ii) L has no largest node and there is no w in N − L

such that B(u, v, w) holds for all u, v ∈ L such that u <a,b

v,

there is a unique join-tree J = (N,≤) such that S = qt(J), a < b and L is an
upwards closed10 line of J . Its order ≤ is first-order definable in the structure
(N,B,L, a, b).

Proof : (1) Let J = (N,≤) be a join-tree with at least 3 nodes.
If it is finite, then it is (NT ,≤T) for a finite tree T , and thus qt(J) is a

quasi-tree by Proposition (5.2.b).
Otherwise consider distinct elements x, y, z, u of N . We want to prove that

they satisfy A1-A7. There is a set N ′ ⊆ N of cardinality at most 7 that contains
x, y, z, u and is closed under ⊔. Then J ′ = (N ′,≤↾ N ′) is a finite join-tree,
J ′ ⊆ J and qt(J ′) = (N ′, BJ ↾ N ′) is a quasi-tree by the initial observation, so
that x, y, z, u satisfy A1-A7 for B = BJ ′ hence for BJ . (The node w that may be
necessary to satisfy A7 may have to be chosen in the set {x⊔y, x⊔z, x⊔u, ...}).
As x, y, z, u are arbitrary, A1-A7 hold for BJ and all x, y, z, u ∈ N. Hence,
(N,BJ) is a quasi-tree.

That every line of J is a line of qt(J) follows from the definitions. (The
converse does not hold. However, see Assertion (4).) The assertion about
subjoin-trees is also easy to prove.

(2) Let S = (N,B) be a quasi-tree and b be any element of N . We define
(cf. Proposition (5.3)) :

x ≤b y :⇐⇒ y ∈ [x, r]B (⇐⇒ x = y ∨ y = b ∨ B(x, y, b)).

Then (N,≤b) is a join-tree J with root b and S = qt(J) by Lemma 14 of
[Cou14].

(3) is proved in Proposition 17 of [Cou14].

(4) Let us first motivate the technical condition on L. Let J = (N,≤) be a
join-tree and S = qt(J). If L is an upwards closed line in J , then there are two
cases: either L has a maximal element m, and m is the root of J or not; in the
latter case, for every x ∈ N , there is w ∈ L such that x < w: to prove this, take
w such that x⊔u < w where u is any element of L; if x ∈ N−L, we cannot have
BJ(u, v, x) for all u, v ∈ L such that u < v, because, otherwise, letting w,w′ ∈ L
with x < w < w′, we would have BJ(w,w′, x) and BJ(x,w,w′) contradicting
A2 ∧ A3. The technical conditions on a line L of S in the statement are thus

9Proposition (5.3) is applicable to (L,B ↾ L) that satisfies Conditions A1-A7’.
10Upwards closed means that y ∈ L if x < y and x ∈ L.

38

necessary for making it into an upwards closed line of a join-tree J as desired.
We now start the proof.

Let S = (N,B) be a quasi-tree with line L and distinct elements a, b of L.
Let ≤a,b be the linear order on L from Proposition (5.3).

Case (i) : b is the largest element of (L,≤a,b). Then (N,≤b) (cf. (2) for ≤b) is
a quasi-tree satisfying the required conditions. If J = (N,≤) is another one, then
[x,+∞[J= [x, b]J for all x and thus, x ≤ y if and only if x = y∨y = b∨B(x, y, b).
Hence, ≤=≤b.

Case (ii) : L has no largest element and there is no w in N − L such that
B(u, v, w) holds for all u, v ∈ L such that u <a,b v. It follows that for every
u ∈ L, there is v ∈ L such that u <a,b v.

We now define, for x, y ∈ N :

R(x, y) :⇐⇒ x (= y ∧ ∃u, v ∈ L[u <a,b v ∧ B(x, y, u) ∧ B(y, u, v)],

and we will prove that this relation is the desired strict order on N .

For all u, v ∈ L such that u <a,b v, we define Nu,v := {x ∈ N | x =
u ∨ B(x, u, v)}. Then Su,v := (Nu,v, B ↾ Nu,v) is a subquasi-tree of S and u is
the largest element of L∩Nu,v with respect to ≤a,b. We define ≤u on Nu,v by:

x ≤u y :⇐⇒ y ∈ [x, u]B.

We obtain by Case 1 a join-tree Ju,v := (Nu,v,≤u) with root u such that
Su,v = qt(Ju,v). Since u <a,b v, if v <a,b u′ <a,b< v′, then Nu,v ⊆ Nu′,v′ and ≤u

and ≤u′ coincide on Nu,v; the associated join operations coincide also on Nu,v.
Hence Ju,v is a subjoin-tree of Ju′,v′ .

By the assumption on L, every x ∈ N belongs to some set Nu,v: assume the
opposite, then x /∈ L; assume now that x /∈ Nu,v, hence by A7, we have B(x, u, v)
or B(u, x, v) or B(u, v, x) or, for some w, B(u,w, v) ∧ B(x,w, u) ∧ B(x,w, v).

The first case implies x ∈ Nu,v, the second one x ∈ L, and the last one w ∈ L,
u <a,b w <a,b v and x ∈ Nw,v. All these cases contradict our assumptions on x.
It follows that B(u, v, x) holds for all u, v such that u <a,b v. But this contradicts
the assumption on L.

Hence, N is the union of the sets Nu,v and S is the union of the quasi-
trees Su,v. We define J = (N,≤) as the union of the join-trees Ju,v. Its order is
defined by x = y∨R(x, y). It is a join-tree and qt(J) = S because qt(Ju,v) = Su,v
for all u, v. It is the unique one satisfying the desired conditions because these
conditions determine its restrictions to the sets Nu,v in a unique way.

The property x = y∨R(x, y) is defined by a first-order formula θ(L, a, b, x, y).
�

(5.6) Proposition: A quasi-tree is MSfin -definable if it is described by a
regular SJ-scheme.

Proof : We first explain the idea. From a given quasi-tree S, we specify
by MS-formulas all SJ-trees J such that S = qt(fgs(J)) and we select one, if

39

there exists any, that is described by the considered regular SJ-scheme. The
construction of the necessary formulas will use Proposition (5.5) and the proof
of Proposition (3.25).

Let S = (N,B) be a quasi-tree (this property is first-order expressible).
Assume that S = qt(fgs(J)) where J = (N,≤,U) ≃ Unf (∆) for some regular
SJ-scheme ∆ = (Q,D,wAx, (mq)q∈Q, (wd)d∈D) such that Q = {1, ...,m} and
D = {1, ..., p} as in the proof of Proposition (3.25). Let r,�r be the corresponding
mappings. For each d ∈ D, let ψd be an MS sentence that characterizes wd up
to isomorphism, and similarly ψAx for wAx.

The axis A of J is upwards closed. If it has a maximal element b (w.r.t. ≤),
then ≤ = ≤bby Proposition (5.5.2). Otherwise, ≤ = ≤a,b where a, b are any
two elements of A such that a < b. In this case, there is no w in N − A such
that BJ(u, v, w) holds for all u, v ∈ A such that u ≤a,b v. In both cases, by
Proposition (5.5) the partial order ≤ on N is defined by a first-order formula
ν(A,a, b, x, y) written in such a way that b is the maximal element of A if a = b.
We will denote ≤ by ≤A,a,b to stress that it is defined from A, a, b.

By Proposition (3.7), there is a bipartition (N0, N1) of N that describes the
structuring U , and such that A ⊆ N0. From this bipartition, we can MS-define
the lines forming U and the node �U for each U ∈ U − {A}.

There is a partition (Y1, ..., Ym) of N that describes r by Yi := r−1(i). There
is a partition (Z1, ..., Zp) of N − A such that Zj is the union of the lines U ∈
U − {A} such that �r(U) = j.

Consider relational structures R = (X,B,A,N0, N1, Y1, ..., Ym, Z1, ..., Zp, a,
b) with domain X such that B is a ternary relation, the other relations are
unary (are subsets of X) and a, b ∈ X. By MS formulas, one can express in any
such R the following properties:

(i) (X,B) is a quasi-tree S′, A is a nonempty line, a, b ∈ A and a = b if and
only if a is an end of A,

(ii) if ≤ is the partial order on N defined by ν(A, a, b, x, y), then (X,≤,
N0, N1) is S(J ′) for some SJ-tree J ′ = (X,≤,U ′) with axis A.

(iii) (Y1, ..., Ym) is a partition of X ; we let r(x) := i if and only if x ∈ Yi.
(iv) (Z1, ..., Zp) is a partition of X −A such that each Zj is a union of sets

U ∈ U ′ − {A} such that (U,≤, r) ≃ wj .
(v) (A,≤, r) ≃ wAx,
(vi) for each i ∈ Q and x ∈ Yi, the number of lines U ∈ U ′x that are contained

in Zj is mj
i . (A D-labelled set m is described by a p-tuple (m1, ...,mp) where

mj is the number of elements having label j.)
These formulas are constructed as in the proof of Proposition (3.25). The

main difference is that ≤ is not in the given structure S but is defined in it by
ν(A,a, b, x, y); this formula uses auxiliary arguments A, a, b. As in Proposition
(3.25), we need the finiteness predicate if some number mj

i is ω.
Let ϕ′(A,N0, N1, a, b) express Conditions (i) and (ii) in (X,B). Let β(A,N0,

N1, Y1, ..., Ym, Z1, ..., Zp, a, b) express conditions (iii)-(vi). If a quasi-tree (X,B)
satisfies :

40

ϕ′(A,N0, N1, a, b) ∧ β(A,N0, N1, Y1, ..., Ym, Z1, ..., Zp, a, b),

the corresponding join-tree (X,≤A,a,b) has a structuring U ′ with axis A
described by N0, N1. We let J ′ := (X,≤,U ′). The sets Y1, ..., Ym, Z1, ..., Zp yield
a scheme ∆ that describes J ′ (by Conditions (iii)-(vi)), hence J ′ is isomorphic
to J by the unicity property of Proposition (3.24), and so, we have (X,≤) =
fgs(J ′) ≃ fgs(J) and qt(fgs(J ′)) ≃ qt(fgs(J)) = S.

Hence, S is (up to isomorphism) the unique model (X,B) of the MS sentence:

∃A,N0,N1, a, b.[ϕ′(A,N0, N1, a, b)∧

∃Y1, ..., Ym, Z1, ..., Zp.β(A,N0, N1, Y1, ..., Ym, Z1, ..., Zp, a, b))].

�

The next theorem establishes a converse. As algebra for quasi-trees, we take
the algebra SJT of join-trees together with the (external) forgetting operation qt
(similar to fgs). We say that a quasi-tree S is described by an SJ-scheme if this
scheme describes a join-tree J such that qt(J) = S. It is regular if it is qt(J) for
some regular join-tree J .

(5.7) Theorem: The following properties of a quasi-tree S are equivalent:

(1) S is regular,

(2) S is described by a regular SJ-scheme,

(3) S is MSfin -definable.

The isomorphism of regular quasi-trees is decidable.

Proof : (1)=⇒(2): Similar to that of Theorem (3.21).
(2)=⇒ (3): By Proposition (5.6).
(3)=⇒(1): The mapping α that transforms the relational structure ⌊t⌋ for

t in T∞(F ′)t into the quasi-tree S = qt(fgs(val(t))) is an MS-transduction by
Claim (4.9.2). The proof continues as in Theorem (3.21).

The decidability of the isomorphism problem is as in Corollary (3.22). �

We make these results more precise for subcubic quasi-trees, that are useful
for defining the rank-width of countable graphs, see the appendix.

(5.8) Definition : Directions ([Cou14])
Let S = (N,B) be a quasi-tree and x a node of S.
(a) We say that y, z ∈ N − {x} are the same direction relative to x (or of

x) if, either y = z or B(y, z, x) or B(z, y, x) or B(y, u, x) ∧ B(z, u, x) for some
node u. Equivalently, y ⊔x z <x x (<x is as in Proposition (5.5)). Hence, if
B(y, x, z) holds, y and z are in different directions relative to x. This relation is
an equivalence, denoted by y ∼x z, and its classes are the directions of x.

41

(b) The degree of x is the number of classes of ∼x. A node has degree 1 if
and only if it is a leaf. We say that S is subcubic if its nodes have degree at
most 3. If S = Q(T) for a tree T , then a direction of x is associated with each
neighbour y of x and is the set of nodes of the connected component of T −{x}
that contains y.

(c) If S = qt(J) for a join tree J = (N,≤), then, the directions of x in S are
those of x in J together with]x,+∞[if this set is not empty. It follows that S
is subcubic if J is a BJ-tree.

(5.9) Lemma : Every subcubic quasi-tree is qt(fgs(J)) for some SBJ-tree J .

Proof: We choose a maximal line A of the given subcubic quasi-tree S and
distinct element a, b of A. By proposition (5.5.4), the partial order ≤A,a,b gives a
binary join-tree K. By using the method of Proposition (3.5) with U0 := A, we
obtain a structuring J of K, making it into an SBJ-tree as defined in Definition
(3.8). �

(5.10) Theorem: The following properties of a subcubic quasi-tree S are
equivalent:

(1) S is regular,

(2) S is described by a regular SBJ-scheme,

(3) S is MS-definable.

Proof : By Lemma (5.9) and Proposition (3.19), every subcubic quasi-tree
S is qt(fgs(val(t))) for some term t ∈ T∞(F).

Property (1) means that S = qt(fgs(val(t))) for some regular term in T∞(F ′)t.
Let (1’) mean that S = qt(fgs(val(t))) for some regular term in T∞(F). Then
(1’)=⇒(2) by the similar implication in Theorem (3.21).

(2)=⇒(3) by the similar implication in Theorem (3.21) and the observation
that, in a quasi-tree S, the SBJ-trees J such that S = qt(fgs(J)) can be specified
by MS formulas in terms of a 5-tuple (A,N0, N1, a, b) satisfying the formula
ϕ′(A,N0, N1, a, b) of the proof of Proposition (5.6).

(3)=⇒(1’) by the observation that the mapping α that transforms the rela-
tional structure ⌊t⌋ for t in T∞(F) into the subcubic quasi-tree qt(fgs(val(t)))
is an MS-transduction. The proof goes then as in Theorem (3.21).

The implication (1’)=⇒(1) is trivial and (1) implies that S is MSfin definable
by Theorem (5.6). But a term t ∈ T∞(F) that defines S is MS-definable, and
the relational structure representing a term has an MS-definable linear order. It
follows that S has an MS-definable linear order, hence that S is MS-definable
(cf. the appendix). �

42

6 Conclusion

We have defined quasi-trees and join-trees of different kinds from regular terms.
These terms have finitary descriptions. There are other infinite terms that haveg
finitary descriptions: the algebraic ones [Cou83] and more generally, those of
Caucal’s hierarchy [Blu+]. Such terms also yield effective (algorithmically us-
able) notions of join-trees and quasi-trees. It is unclear whether the correspond-
ing isomorphism problems are decidable.

7 References

[Blu+] A. Blumensath, T. Colcombet and C.Löding, Logical theories and com-
patible operations, in Logic and Automata: History and perspectives, J. Flum
et al. eds, Amsterdam University Press, 2008, pp. 73-106.

[BluCou] A. Blumensath and B. Courcelle, Monadic second-order definable
graph orderings. Logical Methods in Computer Science 10 (2014), issue 1.

[Cou78] B. Courcelle, Frontiers of Infinite Trees. ITA (Informatique Théorique
et Applications) 12 (1978) 317-339 (former name of the journal: RAIRO Infor-
matique théorique).

[Cou83] B. Courcelle, Fundamental properties of infinite trees. Theor. Com-
put. Sci. 25 (1983) 95-169.

[Cou04] B. Courcelle, Clique-width of countable graphs: a compactness prop-
erty. Discrete Mathematics 276 (2004) 127-148.

[Cou14] B. Courcelle, Several notions of rank-width for countable graphs,
2014, to appear in J. Comb. Theory, Ser. B.

[Cou15] B. Courcelle, Regularity equals monadic second-order definability
for quasi-trees, in Fields of Logic and Computation II, Lec. Notes Comput. Sci.
9300 (2015) 129-141.

[CouDel] B. Courcelle and C. Delhommé: The modular decomposition of
countable graphs. Definition and construction in monadic second-order logic.
Theor. Comput. Sci. 394 (2008) 1-38.

[CouEng] B. Courcelle and J. Engelfriet, Graph structure and monadic second-
order logic, a language theoretic approach, Cambridge University Press, 2012.

[Hei] S. Heilbrunner, An algorithm for the solution of fixed-point equations
for infinite words. ITA 14 (1980) 131-141.

[KriTho] I. Kriz and R. Thomas, Clique-sums, tree-decompositions and com-
pactness. Discrete Mathematics 81 (1990) 177-185.

[Oum] S. Oum, Rank-width and vertex-minors, J. Comb. Theory, Ser. B
95 (2005) 79-100.

[OumSey] S. Oum and P. Seymour, Approximating clique-width and branch-
width. J. Comb. Theory, Ser. B 96 (2006) 514-528.

[Tho86] W. Thomas: On Frontiers of Regular Trees. ITA 20 (1986) 371-381.
[Tho90] W. Thomas : Automata on Infinite Objects. in Handbook of The-

oretical Computer Science, Volume B, Elsevier 1990, pp. 133-192

43

8 Appendix

A.1: Monadic second-order logic and related notions.

Monadic second-order logic extends first-order logic by the use of set vari-
ables X,Y,Z ... denoting subsets of the domain of the considered logical struc-
ture, and the atomic formulas x ∈ X expressing membership of x in X. We
call first-order a formula where set variables are not quantified. For example,
a first-order formula can express that X ⊆ Y . A sentence is a formula without
free variables.

Logical structures, graphs, trees, partial orders are finite or countably infi-
nite.

Let R be a finite set of relation symbols, each symbol R being given with an
arity ρ(R). We call it a relational signature. For every set of variables W, we
denote by MS(R,W) the set of MS formulas written with R and free variables
in W. An R-structure is a tuple S = (DS, (RS)R∈R) where DS is a finite or
countable set, called its domain, and RS is a relation on DS of arity ρ(R). A
property P of R-structures is monadic second-order definable (MS-definable) if
it is equivalent to the validity, in everyR-structure S, of a monadic second-order
sentence ϕ, which we denote by S |= ϕ.

For example, a graph G is identified with the {edg}-structure (VG, edgG)
where VG is its vertex set and edgG(x, y) means that there is an edge from x to
y, or between x and y if G is undirected. To take an example, 3-colorability is
expressed by the MS-sentence :

∃X,Y [X ∩ Y = ∅ ∧ ¬∃u, v(edg(u, v) ∧ [(u ∈ X ∧ v ∈ X)∨

(u ∈ Y ∧ v ∈ Y) ∧ (u /∈ X ∪ Y ∧ v /∈ X ∪ Y)])].

Many properties of partial orders can also be expressed by MS sentences.
We take examples that are useful in our proofs.

(a) The formula Lin(X) defined as ∀x, y.[(x ∈ X ∧ y ∈ X) =⇒ (x ≤ y ∨ y ≤
x)] expresses that a subset X of N , partially ordered by ≤, is linearly ordered.

(b) The formula Lin(X)∧∃a, b.[Min(X, a)∧Max(X, b)∧θ(X, a, b)] expresses
that X is linearly ordered and finite, where Min(X, a) and Max(X, b) are first-
order formulas expressing respectively that X has a least element a and a largest
one b, and θ(X, a, b) is an MS formula expressing that :

(i) each element x of X except b has a successor c in X (i.e., c is the
least element of {y ∈ X | y > x}), and

(ii) (a, b) ∈ Suc∗, where Suc is the above defined successor relation
(depending on X) and Suc∗ is its reflexive and transitive closure.

Assertion (ii) is expressed by the MS formula:

∀U [U ⊆ X ∧ a ∈ U ∧ ∀x, y((x ∈ U ∧ (x, y) ∈ Suc) =⇒ y ∈ U)

=⇒ b ∈ U].

44

The reader will easily build first-order formulas expressing U ⊆ X, (x, y) ∈
Suc and Property (i). Without a linear order, the finiteness of a set X is
not MS-expressible. It is thus useful, in some cases, to enrich MS logic with a
finiteness predicate Fin(X) expressing that X is finite. We denote by MSfin the
corresponding extension of MS logic.

If S is a relational structure (N,≤t, (bri)1≤i≤ρ(F), (labf)f∈F) isomorphic to
⌊t⌋ that represents a term t ∈ T∞(F), then a linear order ⊑ on N is MS-
definable as follows:

x ⊑ y :⇐⇒ x ≤t y ∨ (x⊥ty and x is below the i-th son of x ⊔t y

and y is below the j-th son of x ⊔t y where i < j).

The definability of linear orders by MS-formulas is studied in [CouBlu].

Monadic second-order transductions (MS transductions) are transformations
of logical structures specified by MS or MSfin formulas. We use them in the
proofs of Theorems (3.21), (3.30), (4.11), (5.6) and (5.10). For these proofs, we
only need very simple MS transductions, said to be noncopying and parameter-
less in [CouEng]. We simply call them MS transductions.

Let R and R′ be two relational signatures. A definition scheme of type
R → R′ is a tuple of formulas of the form D = �χ, δ, (θR)R∈R′� such that
χ ∈ MS(R), δ ∈ MS(R, {x}) and θR ∈ MS(R, {x1, . . . , xρ(R)}) for each R in

R′. We define �D(S) := S′ = (DS′ , (RS′)R∈R′) as follows:

S′ is defined if and only if S |= χ,

DS′ is the set of elements d of DS such that S |= δ(d),

RS′ is the set of tuples (d1, . . . , dρ(R)) of elements of DS

such that S |= θR(d1, . . . , dρ(R)).

The mapping that associates the join-tree (N,≤) with ⌊t⌋ for t ∈ T∞(F)
(cf. Definition (3.15)) is an MS-transduction defined by D = �χ, δ, θ≤� such that
χ expresses that the considered input structure S is isomorphic to ⌊t⌋ for some
t ∈ T∞(F), δ(x) is labext(x) (expressing that x is in N) and θ≤(x, y) expresses
that x ≤ y, cf. Definition (3.15.b).

Our main tool is the following (well-known) result:

(A. 1) Theorem : Let D be a definition scheme as above and ϕ ∈ MSfin(R
′,

X). There exists a formula ϕD ∈ MSfin(R,X) such that, for every R-structure
S, for every X -assignment ν in DS , we have (S, ν) |= ϕD if and only if:

(i) S |= χ (so that �D(S) = S′ is well-defined),

(ii) ν is an X -assignment in DS′ (that is ν(x) ∈ DS′ and ν(X) ⊆ DS′

for x,X ∈ X) and

(iii) (S′, ν) |= ϕ.

45

Proof : The proof is given in [CouEng] (Backwards Translation Theorem,
Theorem 7.10) for finite structures, so that the finiteness predicate Fin(X) is
of no use. However, it works for infinite structures as well and the predicate
Fin(X), that translates back to itself (under the assumption that ν(X) ⊆ DS′).

The formula ϕD is the conjunction of χ, a formula expressing (ii) and a
formula ϕ′ obtained from ϕ by replacing each atomic formula R(x1, ..., xr) by
θR(x1, . . . , xρ(R)), i.e., by its definition given by D. �

It follows that, if the monadic theory of a class of structures S is decidable
and S′ = �D(S) for some definition scheme D, then the monadic theory of S ′ is
decidable, because S′ |= ϕ holds for all S′ in S ′ if and only if S |= ϕD holds for
all S in S.

A.2 : Rank-width of countable graphs.

Rank-width and modular decomposition (cf. [Cou14, CouDel]) motivate the
study of quasi-trees and join-trees respectively. We now review rank-width for
countable graphs. Rank-width is a width measure on finite graphs investigated
first in [Oum] and [OumSey]. Here is its generalization to countable graphs.

We consider finite or countable, loop-free, undirected graphs without parallel
edges. Let G be such a graph. Its adjacency matrix is MG : VG × VG → {0, 1}
with MG[x, y] = 1 if and only if x and y are adjacent. If U and W are disjoint
sets of vertices, we denote by MG[U,W] the matrix that is the restriction of
MG to U × W . Ranks are over GF (2). The rank of MG[U,W] defined as the
maximum cardinality of an independent set of rows (equivalently, of columns)
is denoted by rk(MG[U,W]); it belongs to N ∪ {ω}. It is convenient to take
rk(MG[∅,W]) = rk(MG[U, ∅]) := 0.

Fact : If X⊎Y is infinite, then rk(MG[X,Y]) = sup{rk(MG[U,W]) |
U ⊆ X,W ⊆ Y and, U and W are finite}.

In [Cou14] we define a layout of G as a subcubic quasi-tree T whose set of
leaves is VG. Its rank is the least upper-bound of the ranks rk(MG[X∩VG,Xc∩
VG]) such that X and Xc := NT−X are two convex subsets of NT . (X is convex
if x, z ∈ X ∧ B(x, y, z) =⇒ y ∈ X.) The rank-width of G, denoted by rwd(G),
is the smallest rank of a layout. Its discrete rank-width, denoted by rwddis(G),
is similar except that layouts are subcubic trees. Hence, rwd(G) ≤ rwddis(G).
For finite graphs, we get the rank-width of [Oum]. The notation G ⊆i H means
that G is an induced subgraph of H.

(A.2) Theorem [Cou14]: For every graph G:
(1) if H ⊆i G, then rwd(H) ≤ rwd(G) and rwddis(H) ≤ rwddis(G),
(2) Compactness : rwd(G) = Sup{rwd(H) | H ⊆i G and H is finite},

46

(3) Compactness with gap : rwddis(G) ≤ 2 · Sup{rwd(H) | H ⊆i G and H
is finite}.

The gap function in (3) is n 2→ 2n, showing a weak form of compactness. A
related gap concerns the clique-width of countable graphs [Cou04].

Proof sketch: (1) is clear from the definitions.
(2) is proved by Koenig’s Lemma.
(3) is based on the representation of a countable linear order as the set of

leaves of an ordered binary tree; this construction is adapted from [CouDel].�

47

