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Abstract

We consider the problem of unsupervised classification of hidden Markov models
(HMC) with dependent noise. Time is discrete, the hidden process takes its val-
ues in a finite set of classes, while the observed process is continuous. We adopt
an extended HMC model in which the rich possibilities of different kinds of de-
pendence in the noise are modelled via copulas. A general model identification
algorithm, in which different noise margins and copulas corresponding to dif-
ferent classes are selected in given families and estimated in an automated way,
from the sole observed process, is proposed. The interest of the whole procedure
is shown via experiments on simulated data and on a real SAR image.

Keywords: Hidden Markov models, Dependent noise, Model selection,
Iterative conditional estimation, Copulas, Unsupervised classification,
Pearson’s system of distributions.

1. Introduction

The paper deals with the problem of unsupervised estimation of a hidden
discrete process XN

1 = (X1, . . . , XN ) from an observed continuous one Y N
1 =

(Y1, . . . , YN ). Hidden Markov models (HMMs) are very widely used to deal with
the problem. Indeed, they allow recursive computations of different quantities5

used in optimal Bayesian processing in linear time. There are many papers
following the pioneering ones [1, 2], dealing with various application areas. Let
us mention some recent general papers or books about general setting [3, 4, 5],
signal and image processing [3], economy and finance [6, 7], or biology [8, 9].
Besides, copulas [10, 11] are also of interest in numerous situations, due to their10

ability of modelling dependent non-Gaussian data [12, 13, 14, 15]. Their use
goes increasing in different areas. Mainly applied in economy and finance [16,
17, 18, 19, 20, 21], they are becoming increasingly used in other fields, such as in
signal or image processing processing [22, 23, 24, 25] or in ecology [26, 27, 28].
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However, despite their great benefit when used separately, there is very little15

research and applications that combines them. First papers on the subject date
from about ten years: copulas use has been introduced at temporal level in
hidden Markov chains with dependent noise (HMC-DN) in [29], at vectorial
level in hidden Markov chains in [30], and in hidden Markov trees in [31]. Some
applications using vectorial-level copulas have been proposed in the context of20

hidden Markov chains [32], hidden Markov trees [33], hidden Markov fields [34,
35], or general Bayesian networks [36]. They were showed to be especially
useful in multi-sensor image processing where sensors are dependent and not
Gaussian [34, 35]. Temporal-level copulas remain, for their part, very little
used. This is certainly due to the fact that the observations in HMMs are usually25

assumed to be independent conditionally on the hidden data, and thus there is
no dependency to model. However, taking into account the noise dependence is
of interest, and using the right copulas can have strong influence on the efficiency
of Bayesian processing methods in HMMs with correlated noise [37].

Our paper deals with the problem of unsupervised classification of hidden30

Markov chains with copulas used at temporal level. The novelty of the work
is to propose a general method allowing one to search the best copulas in a
finite set of admissible copulas, as well as the best margins in a finite set of
admissible margins. In addition, the admissible sets of copulas and margins can
vary with the hidden discrete data. This allows one to select, from the only35

observed data, the best model in a quite rich set of possible models. Therefore
we simultaneously extend, first, the method presented in [37] where the copulas
where searched while the forms of margins were assumed known and, second, the
method presented in [38, 39] where the margins were searched while assuming
independence.40

Let us notice that the presented results can be almost directly applied to
more complex models than the HMC-DNs considered. Indeed, when parameter
estimation is concerned, dealing with “pairwise Markov models” (PMMs) [40,
41] or even “triplet Markov models” (TMMs), –which includes non stationary
PMMs [42], hidden semi-Markov models [43], or still hidden bivariate Markov45

models [44]–, is a quite similar problem [42, 43].
The organization of the paper is the following. In next Section we recall

the basics about HMM and how a dependent noise can be modelled using a
copula representation. The general model identification method we propose is
then specified in Section three. Section four is devoted to recall the classic50

computations in HMM-DN for different quantities of interest. Fifth section
contains some systematic experiments and the segmentation result of a real SAR
image. The last Section draws conclusions and proposes a few perspectives.

2. HMM with dependent noise and copulas

Let us consider two random sequences XN
1 = (X1, . . . , XN ) and Y N

1 =
(Y1, . . . , YN ), taking their values in Ω = {1, . . . ,K} and R respectively. XN

1 is
hidden, while Y N

1 is observed, and the problem is to estimate XN
1 from Y N

1 .

2



Optimal Bayesian methods can be used for the classic hidden Markov models
(HMMs), whose distribution is defined with

p
(
xN1 ,y

N
1

)
=p (x1) p (y1 |x1 ) p (x2 |x1 ) p (y2 |x2 )

. . . p (xN |xN−1 ) p (yN |xN ) .
(1)

HMMs can also be defined as verifying two hypotheses:55

XN
1 is Markov; (2)

p
(
yN1
∣∣xN1 ) =

N∏
n=1

p (yn |xn ). (3)

Let us notice that (3) means that the random variables Y1, . . . , YN are indepen-
dent conditionally on XN

1 ; for this reason we will call the classic HMM (2)-(3)
“HMM with independent noise” (HMM-IN).

It is possible to consider more general models in which both processes (XN
1 ,Y

N
1 )

and XN
1 are Markov and in which the same Bayesian processing as in HMM-IN

remains possible. The distribution of such models is written

p (xn+1, yn+1 |xn, yn ) = p (xn+1 |xn ) p (yn+1 |xn, yn, xn+1 ) . (4)

In this kind of models, called HMM with dependent noise (HMM-DN) Y1, . . . ,
YN are (possibly) dependent conditionally on XN

1 . Thus an HMM-IN is an60

HMM-DN for which p (yn+1 |xn, yn, xn+1 ) = p (yn+1 |xn+1 ).

Remark 2.1 It has been shown in [41, 40] that the Markovianity of XN
1 is not

even required, and the following model called “pairwise Markov model” (PMM)

p
(
xN1 ,y

N
1

)
= p (x1, y1)

N−1∑
n=1

p (xn+1, yn+1 |xn, yn ) (5)

allows the same processing than HMM-DNs.

In this paper we will deal with the stationary reversible case, which means
that p (xn, yn, xn+1, yn+1) does not depend on n = 1, . . . , N − 1, and the distri-
butions p (xn+1, yn+1 |xn, yn ) and p (xn, yn |xn+1, yn+1 ) are equal. In that case,
an HMM-DN is a particular case of PMM for which we have

p (yn+1 |xn+1, xn ) = p (yn+1 |xn+1 ) , (6)

for all n ∈ [1, N − 1], see [41]. Thus in the model considered in this paper we
have simultaneously (4) and (6). Let us notice that (6) does not imply that
p (yn+1 |xn, yn, xn+1 ) can be reduced to a simpler expression: the ditribution of65

Yn+1 conditional on Xn, Yn, Xn+1 can depend on the three variables.

The distribution of such a stationary reversible HMM-DN (XN
1 ,Y

N
1 ) is de-

fined by
p (x1, y1, x2, y2) = p (x1, x2) p (y1, y2 |x1, x2 ) . (7)
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The aim of this paper is to consider p (y1, y2 |x1, x2 ) in (7) under very general
form and to propose a way for its estimation, together with p (x1, x2), from the
observed sequence Y N

1 . More precisely, for given (x1, x2), p (y1, y2 |x1, x2 ) is
defined by70

• two margins p (y1 |x1, x2 ) = p (y1 |x1 ) = f lx1
(y1) and p (y2 |x1, x2 ) =

p (y2 |x2 ) = frx2
(y2), according to (6) (l and r stand for ‘left’ and ‘right’

to distinguish between the left and right variables, see below);

• a copula C with pdf c
(
F lx1

(y1), F rx2
(y2) |x1, x2

)
= cx1,x2

(F lx1
(y1), F rx2

(y2)),
where F is the cumulative distribution function (cdf) corresponding to f .75

We recall that a copula C is defined as a cumulative distribution function on
[0, 1]2 such that the corresponding marginal cumulative functions are identity,
which also means that the corresponding marginal distributions on [0, 1] are
uniform distributions, see e.g. [10]. Let h(y1, y2) be a probability distribution
on R2, which will be assumed continuous in this paper. Let H(y1, y2) be the cor-
responding cumulative function, hl(y1) and hr(y2) the corresponding marginal
densities, and H l(y1), Hr(y2) the associated cumulative functions. According
to Sklar’s theorem [11] there exists an unique copula C such that

H(y1, y2) = C(H l(y1), Hr(y2)). (8)

Setting c(u, v) = ∂∂C(u,v)
∂u∂v and deriving (8) with respect to y1, y2 gives

h(y1, y2) = hl(y1)hr(y2) c(H l(y1), Hr(y2)). (9)

Thus any continuous probability distribution h(y1, y2) is given by a triplet hl,
hr, and a probability distribution c on [0, 1]2 with uniform margins. Conversely,
such a triplet defines a probability distribution on [0, 1]2 with (9). Such a
representation of h(y1, y2) is of interest as every distribution among hl, hr, c
can be modified independently from the two others. For example, a Gaussian80

copula h(y1, y2) is given by Gaussian margins hl, hr, and a Gaussian copula
c. Replacing in (8) c with another non Gaussian copula c′ we obtain a non
Gaussian distribution H ′(y1, y2) with Gaussian margins. We can also keep the
Gaussian copula c and replace the Gaussian margins by any other ones. This
offers a very rich set of possibilities easy to handle with.85

We will assume that for each (x1, x2) ∈ Ω2, each f lx1
and each frx2

belongs to
a parametric set of distributions, which themselves belongs to a finite family of
parametric sets of distributions. For example, imagine that f l1 can be Gaussian
or Gamma, fr1 can be Beta, Gamma or Rayleigh, f l2 can be Beta or Gamma,
fr2 can be exponential and so on for x1 = 3, . . . ,K, x2 = 3, . . . ,K. Thus,90

for each (x1 = i, x2 = j), we have to find what is the general form of the
distributions f li and frj , and we have to find the parameters, which precisely
define the distribution of the determined shape. Similarly, for each (x1 = i, x2 =
j) we have to find general form of copula ci,j and estimate the parameters,
which set the copula in the set of copulas having the same form. For example,95
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c1,1 can be Gumbel or Gaussian, c1,2 can be Gaussian or Clayton, c2,1 can be
Student, product or Cubic Section, c1,3 can be A14 or Clayton, and so on for
x1 = 3, . . . ,K, x2 = 3, . . . ,K.

As mentionned above, such problems have been partly dealt with in [37].
Margins have been considered as known, and copulas have been searched - for100

each (x1, x2) - in finite sets of possible copulas. In particular, it has been
showed that the right form of copula - for each (x1, x2) - was of importance for
the efficiency of classification. Besides, automatic choice of the form of margins
p (y1 |x1 ) for each x1 - in the HMM-INs case - have been studied in [38, 39] and
it has also been showed that the use of right forms of margins was of importance.105

Thus in this paper we address these two problems simultaneously, which results
in a very general method of model identification from hte only observations
Y N

1 = yN1 .

3. Shapes and parameters estimation

So, the distribution of a stationary reversible PMM is defined by p (x1, x2)110

and p (y1, y2 |x1, x2 ) = fx1,x2
(y1, y2), the latter being defined by margins f lx1

,
frx2

, such that when x1 = x2 we have f lx1
= frx2

, and a copula cx1,x2 , such
that cx1,x2 = cx2,x1 , for each x1, x2 in Ω. The problem we deal with is to
find p (x1, x2) and p (y1, y2 |x1, x2 ) (for each (x1, x2) = (i, j)), using the sole
observation Y N

1 = yN1 .115

Let us concentrate on the search of fi,j(y1, y2), which is thus defined by f li ,
frj , and ci,j . The problem is twofold:

1. What forms these three functions are of?

2. Once the form known, what are the related parameters?

We are going to deal with these two problems simultaneously in a very wide-120

ranging setting.
As (XN

1 ,Y
N
1 ) is stationary reversible, only K different margins fi are re-

quired to define an HMM-DN model (as for HMM-IN). For each i ∈ Ω =
{1, . . . ,K} the form of fi is not know, but it belongs to a known set of pos-
sible shapes Fi =

{
Fi,1, . . . ,Fi,K(i)

}
. Besides, each form Fi,k is a parametric125

set of probability distributions Fi,k =
{
fθ(i,k)

}
θ(i,k)∈Θ(i,k)

. Similarly, for each

i, j ∈ Ω, ci,j is not known, but it belongs to a known set of possible forms
Gi,j =

{
Gi,j,1, . . . ,Gi,j,M(i,j)

}
, and each of them is a parametric set Gi,j,m of

copulas Gi,j,m =
{
cα(i,j,k)

}
α(i,j,m)∈A(i,j,m)

. Finally, for each i, j ∈ Ω, the prob-

lem is to find from Y N
1 = yN1 :130

1. the right forms Fi,k and Gi,j,m;

2. the right parameters θ(i, k) and α(i, j,m).

Besides, we assume to have two families of estimators. First, for each i ∈ Ω
and each k ∈ {1, . . . ,K(i)}, there exists an estimator θ̂(i, k)(y?N1 ) giving θ(i, k)
from Y ?N

1 whose distribution is such that the marginal distributions p (y?n) are135

equal and belong to Fi,k. Second, for each i, j ∈ Ω and each m ∈ {1, . . . ,M(i, j)}
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there exists an estimator α̂(i, j,m)(y?N1 ) giving α(i, j,m) from Y ?N
1 whose dis-

tribution is such that the distributions p
(
y?n, y

?
n+1

)
are equal and belong to

Gi,j,m. Let us notice that these conditions are not strong. Indeed, the problem
is to find right shapes and right parameters without knowing realizations of140

XN
1 = xN1 , and thus assuming that we can solve the problem by knowing them

is the least we should assume.
We will also assume, for each i, j ∈ Ω, to have two “decision rules” D1 and

D2 allowing to perform, from realizations Y N
1 = yN1 , the following decisions:

• For any fθ(i,1) ∈ Fi,1, . . . , fθ(i,K(i)) ∈ Fi,K(i), D1 makes correspond to145

Y N
1 = yN1 an unique element in

{
fθ(i,1), . . . , fθ(i,K(i))

}
.

• For any cα(i,j,1) ∈ Gi,j,1, . . . , cα(i,j,M(i,j)) ∈ Gi,j,M(i,j), D2 makes corre-

spond to Y N
1 = yN1 an unique element in

{
cα(i,j,1), . . . , cα(i,j,M(i,j))

}
.

Finally, we observe a sample Y N
1 = yN1 of a stationary reversible HMC

(XN
1 ,Y

N
1 ) and the problem is to estimate its distribution in the frame described150

above. Thus we have to find, for each i, j ∈ Ω :

1. pi,j = p (x1 = i, x2 = j);

2. k ∈ {1, . . . ,K(i)} - which gives Fi,k in Fi =
{
Fi,1, . . . ,Fi,K(i)

}
-, and

θ(i, k) in Θ(i, k), which gives fi = fθ(i,k) in Fi,k;

3. m ∈ {1, . . . ,M(i, j)} - which gives Gi,j,m in Gi,j =
{
Gi,j,1, . . . ,Gi,j,M(i,j)

}
155

-, and α(i, j, k) in A(i, j, k), which gives ci,j = cα(i,j,m) in Gi,j,m.

The general idea of the iterative GICE, drawn from the idea of the sim-
ple ICE, is the following. At a given iteration one uses the current shapes
and parameters to sample a sequence xN1 according to the distribution of XN

1

conditional on Y N
1 = yN1 , and this sequence is dealt with as if it were a true160

realization of XN
1 . Then for each possible shape one uses the sampled sequence

(with Y N
1 = yN1 ) to estimate the corresponding parameters, which fix the pos-

sible shapes. Finally, the decision rules D1 and D2 allow one to determine,
from xN1 and yN1 , the shapes (with the corresponding parameters just fixed by
estimators) which will be kept for the next iteration.165

We will need the following definition. Let (xN1 ,y
N
1 ) be a realization of a

stationary reversible HMC-DN (XN
1 ,Y

N
1 ). We will denote by yi,j(x

N
1 ) the

sequence of all couples (yn, yn+1) in yN1 such that (xn, xn+1) = (i, j), and by
yi(xN1 ) the sequence of yn in yN1 such that xn = i. In other words

yi,j(x
N
1 ) =

{
(yn, yn+1) ⊂ yN1 |(xn, xn+1) = (i, j)

}
,

yi(xN1 ) =
{
yn ⊂ yN1 |xn = i

}
.

The “generalized iterative conditional estimation” (GICE) we propose to170

search (pi,j , fi, ci,j), for each i, j ∈ Ω , is the following iterative method:

1. Initialize GICE with (p0
i,j , f

0
i , c

0
i,j) found with a simple method;

2. For each i, j ∈ Ω, to find (pq+1
i,j , f

q+1
i , cq+1

i,j ) from (pqi,j , f
q
i , c

q
i,j) and yN1 :
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(a) set pq+1
i,j = 1

N−1

∑N−1
n=1 p

q(xn, xn+1|yN1 ), where pq(xn, xn+1|yN1 ) are

based on (pqi,j , f
q
i , c

q
i,j), see Section 4.2 for their computation;175

(b) sample (xN1 )q+1 according to p
(
xN1

∣∣yN1 ) based on (pqi,j , f
q
i , c

q
i,j), see

Section 4.1 for the sampling method;
(c) for each i, j ∈ Ω, each k ∈ {1, . . . ,K(i)}, and eachm ∈ {1, . . . ,M(i, j)},

consider θq+1(i, k) = θ̂(i, k)(yi((xN1 )q+1)) and αq+1(i, j,m) = α̂(i, j,m)(yi,j((x
N
1 )q+1));

(d) use D1 and yi((xN1 )q+1)) to determine the unique element fq+1
i in180 {

fθq+1(i,1), . . . , fθq+1(i,K(i))

}
, and use D2 and yi,j((x

N
1 )q+1) to deter-

mine the unique element cq+1
i,j in

{
cαq+1(i,j,1), . . . , cαq+1(i,j,M(i,j))

}
.

3. Stop according to some criterion.

Such a general method offers rich possibilities of particular algorithms. In
fact, there exist, in general, different estimators θ̂(i, k), α̂(i, j,m). Similarly,185

there exists a great deal of different decision rules D1 and D2.

Remark 3.1 GICE is an extension, containing margin’s and copula’s automated
selection, of the classical ICE method [38, 40, 39, 45]. Let us briefly recall how
the latter runs and what are its differences with the well-known “expectation-
maximization” (EM) method [1, 46, 2]. Let us consider two random processes190

(V ,Y ) whose distribution depends on a vector of parameters θ = {θ1, . . . , θm}.
The problem is to estimate θ from Y . The ICE method is an iterative method
based on the following principle. Let θ̂(v,y) be an estimator of θ from complete
data (V ,Y ) = (v,y) and let us assume that we can sample realizations of V
according to p (v |y ). The ICE sequence is obtained as follows:195

1. Initialize θ0;

2. Compute θq+1 = E
[
θ̂(V ,Y ) |Y = y,θq

]
. In practice, θq+1

i = E
[
θ̂i(V ,Y ) |Y = y,θq

]
is computed for the components θi for which this computation can be
carried on explicitly and for the remaining components one simulates

vq1, . . . ,v
q
l according to p (v |y,θq ) and one sets θq+1

i =
[
θ̂i(v

q
1,y) + . . .+ θ̂i(v

q
l ,y)

]
/l,200

which approximates the expectation.

In practise one takes often l = 1, which is done in GICE. We see that ICE is
applicable under two very mild hypotheses: existence of an estimator θ̂(v,y)
from the complete data, and the ability of simulating V according to p (v |y ).

The principle of EM is205

1. Initialize θ0;
2. Compute -or approximate- θq+1 = arg maxθ E [ln (pθ(V ,Y )) |Y = y,θq ],

where pθ is a likelihood.

One can see that ICE is simpler to use than EM as there is no maximiza-
tion step. When θ̂(v,y) used in ICE is the Maximum Likelihood estimator210

we have θq+1 = E [arg maxθ ln (pθ(V ,Y )) |Y = y,θq ]; ICE and EM can give
the same sequence when “expectation” and “maximization” commute, which
occurs, roughly speaking, in exponential models [46].

Example 3.1 One possible rule D1 for choosing among K densities f1, . . . , fK
from Y r

1 = yr1, successfully used in [39] to search the margins forms in classic

7



multisensor HMM-IN, is the minimization of the Kolmogorov distance d between
these distributions and the empirical distribution. Let F1, . . . , FK be the related
cumulative distribution functions and Fe(y) = 1

r

∑r
n=1 1[yn<y] the empirical cdf.

We have
D1(yr1) = arg inf

Fk∈{F1,...,FK}
[d (Fk, Fe)], (10)

with the Kolmogorov distance d between two cdfs F and F ′ given by d(F, F ′) =
supy∈R |F (y)− F ′(y)|. We may notice that this distance is quite easy to com-215

pute, as the sup has to be searched only on y1, . . . , yr.

Example 3.2 In some situations in which there exist estimators θ̂(i) such that

the estimated parameter θ̂(i)(yN1 ) also gives the form Fi,k in Fi =
{
Fi,1, . . . ,Fi,K(i)

}
.

This is the case when Fi,j belongs to the Pearson’s system of distributions [47].
In such case, which has been successfully used in the context of independent220

noise and hidden multi-sensor Markov fields in [38], there is no rule D1 to use
as the choice of the shape and the estimation of its parameters are performed
simultaneously, cf. Section 5.

Example 3.3 One possible rule D2 for choosing among M copulas c1, . . . , cM
from (y1, y2), (y2, y3), . . . , (yr−1, yr) that we will call “pseudo-likelihood maxi-
mization” (PLM) method and which will be used in experiments below, is the
following:

D2((y1, y2), (y2, y3), . . . , (yr−1, yr)) = arg sup
cm∈{c1,...,cM}

r∏
i=2

cm(yi−1, yi). (11)

We also tested the “Bayesian copula selection method” proposed in [48] and
considered in [37], and the latter turns out to be less efficient than PLM in the225

context of the experiments considered in Section 5.

4. Sampling and classification of HMM-DNs

We recall in this section the classic computations needed in GICE and in
Bayesian MPM classification. Let us consider a reversible stationary HMM-DN
(XN

1 ,Y
N
1 ), with the distribution defined by p (x1, y1) and p (x2, y2 |x1, y1 ).230

4.1. Sampling HMM-DNs

To sample realizations of (XN
1 ,Y

N
1 ), we need p (x1, y1) and p (x2, y2 |x1, y1 )

(equal to p (xn+1, yn+1 |xn, yn ) for each n = 2, . . . , N − 1). Adopting the no-
tations of previous Section, for each i, j ∈ Ω, let pi,j = p (x1 = i, x2 = j) and
p (y1, y2 |x1 = i, x2 = j ) = fi,j(y1, y2) = f li (y1)frj (y2) ci,j(F

l
i (y1), F rj (y2)). In

addition, let pi = p (x1 = i) =
∑K
j=1 pi,j and pj|i = p (x2 = j |x1 = i ). Then

p (x1, y1) = p (x1) p (y1 |x1 ) and p (x2, y2 |x1, y1 ) = p (x2 |x1 ) p (y2 |x1, y1, x2 ),
see eq. (4), are given by

p (x1 = i) = pi, p (y1 |x1 = i ) = f li (y1), p (x2 = j |x1 = i ) = pj|i,

8



and

p (y2 |x1 = i, y1, x2 = j ) =
p (y1, y2 |x1 = i, x2 = j )

p (y1 |x1 = i )

= frj (y2) ci,j(F
l
i (y1), F rj (y2)),

So that we finally get

p (x2 = j, y2 |x1 = i, y1 ) = pj|i f
r
j (y2) ci,j(F

l
i (y1), F rj (y2)). (12)

There are different methods for sampling Y1 = y1 and Y2 = y2 according
to (8)-(9); in particular, acceptance-rejection method [49] may be used.

4.2. Estimation XN
1 in HMM-DN (XN

1 ,Y
N
1 )

Let us recall how the distributions p
(
xn
∣∣yN1 ), p (xn, xn+1

∣∣yN1 ), and p
(
xn+1

∣∣xn,yN1 )235

are computed in an HMM-DN (XN
1 ,Y

N
1 ). The first one is used in Bayesian

Maximum Posterior Mode (MPM) classification, which consists of estimating
XN

1 = (X1, . . . , XN ) = (x1, . . . , xN ) by x̂N1 = (x̂1, . . . , x̂N ) such that each x̂n
maximizes p

(
xn
∣∣yN1 ), and which minimizes the mean rate of errors. The second

and third ones are used in points (a) and (b) of GICE algorithm, respectively.240

Classically, we have

p
(
xn,y

N
1

)
= p (xn,y

n
1 ) p

(
yNn+1 |xn, yn

)
= αn(xn)βn(xn), (13)

where αn and βn are called “forward” and “backward” probabilities. They can
be computed with the following “forward” and “backward” recursions:

α1(x1) = p (x1, y1) ; (14)

αn+1(xn+1) =
∑
xn

p (xn+1, yn+1 |xn, yn )αn(xn),

for n = 1, . . . , N − 1; (15)

βN (xN ) = 1; (16)

βn(xn) =
∑
xn+1

p (xn+1, yn+1 |xn, yn )βn+1(xn+1),

for n = N − 1, . . . , 1. (17)

So that we can write

p
(
xn
∣∣yN1 ) ∝ αn(xn)βn(xn),

p
(
xn, xn+1

∣∣yN1 ) ∝ αn(xn)βn+1(xn+1)p (xn+1, yn+1 |xn, yn ) ,

p
(
xn+1

∣∣xn,yN1 ) =
p
(
xn, xn+1

∣∣yN1 )
p
(
xn
∣∣yN1 ) .
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Table 1: Parameters characterizing precisely f1 and f2, which are of type-III and type-VI
according to Pearson’s system of distributions (see Appendix A). Means m1

1 and m1
2 are not

specified here since experiments will be conducted according to variations of δ =
∣∣m1

1 −m1
2

∣∣.
Parameters b0, b1, ξ, λ, a1, a2, p1 and p2 are defined in Appendix A.

m1 m2 β1 β2 b0 b1 ξ λ
f1 m1

1 1.0 0.25 3.38 1.0 0.25 -9.5 6.37

m1 m2 β1 β2 a1 a2 p1 p2 λ
f2 m1

2 1.0 1.00 4.70 -16.9 -2.34 -50.6 8.13 -0.95

5. GICE algorithm evaluation

This Section aims to evaluate particular GICE algorithms in the context of245

data classification with two classes (Ω = {1, 2}). In a first series of experiments,
we consider an HMM-DN and experiment the margin and copula recovering
performances of GICE with respect to the distance between margins’ mean.
The experiment makes use of the Pearson’s system of distributions, summarized
in Appendix A. In a second series of experiments, we study in what situations250

the use of HMM-DN can improve the results obtained with classical HMM-INs.
Finally, in last subsection, we provide a series of comparative results regarding
the segmentation of a SAR image showing burn plots in Rondonia, Brazil.

5.1. HMM-DNs estimation and restoration

In this experimental setting, we consider fixed values for p1,1 = p2,2 = 0.45255

and for p1,2 = p2,1 = 0.05, variations of them being considered in Section 5.2.
A two-classes HMM-DN is defined with 2 margins and 4 copulas. The mar-

gins f1 and f2 considered here are specified in Table 1, where m1
i denotes the

mean, m2
i the variance,

√
β1
i the skewness and β2

i the kurtosis. Other parame-
ters refer to the description of type-III and type-VI distributions according to260

Pearson’s system (see Appendix A). The density of margins used in experiments
are drawn in Fig. 1. The three copulas c1,1, c1,2 = c2,1 and c2,2 involved in the
model were set to be respectively of Gumbel, Gaussian and Clayton types, with
Kendall’s tau given by τ1,1 = 0.1, τ1,2 = τ2,1 = 0.3 and τ2,2 = 0.7. Table 2
gives the details about the one-parameter families of copulas considered in this265

paper.
Data XN

1 = xN1 and Y N
1 = yN1 were sampled as specified in Section 4.1,

and the model was identified from Y N
1 = yN1 with GICE according to the

algorithm described in Section 3. The sets of possible shapes for the margins
was fixed to F1 = F2 = {Gamma, Inverse Gamma,Second kind Beta}. These270

three distributions correspond to a sub-set of Pearson’s system of distributions
(see remark below) so that, according to Example 3.2, the choice of the shapes
and their parameters are performed simultaneously. More precisely, to find the
margins at next iteration of GICE algorithm –points (c) and (d) of the GICE

10
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Figure 1: Density of margins used in experiments in Sections 5.1 and 5.2 (f1: Gamma; f2:
second kind Beta). Parameters are specified in Table 1, with m1

1 = m1
2 = 0.

procedure in Section 3– one uses yi(xN1 ) (see 10) to classically estimate, for i =275

1, 2, the four first moments m1
i = E[Y1|X1 = i], and ms

i = E[(Y1−m1
i )
s|X1 = i]

for s = 2, 3, 4, which gives β1
i and β2

i .
According to the general theory [47], the knowledge of (β1

i , β
2
i ) gives the

family which fi belongs to (among eight families forming the Pearson’s system
of distributions), and the additional knowledge of m1

i characterizes fi. More280

precisely, using the rules specified for each distribution in Appendix A, we first
identify the distribution family of fi from β̂1

i and β̂2
i , and then, using m̂1

i and
formulas for each identified distribution, we precisely identify the shape of fi.

Besides, we consider for all i, j ∈ Ω the same set of six possible shapes for
copulas given by G1,1 = G1,2 = G2,1 = G2,2 = {Product, Gaussian, Gumbel,
Cubic section, Clayton, Arch14}. All those copula families are detailed in Ta-
ble 2. Except for the “Product” family, reduced to one element, a copula is
entirely defined by its Kendall’s tau τ , which can be classically estimated from
concordance (c) and discordance (d) rates computed from yij(x

N
1 ):

τ̂i,j = 2
c− d

n(n− 1)
,

where n is the sample size. Then, for each τ̂i,j , we first compute the five possible
α̂i,j for each of the five considered families by inverting the formulas in the last285

column in Table 2, and then apply the Pseudo Maximum Likelihood rule (11)
to select the best-fitting one.

The classification error rates presented hereafter are means of 100 indepen-
dent experiments. An experiment consists in the simulation of N = 3000 data

11



Table 2: One-parameter copulas cp (y1, y2;α) used in this work. “Arch” means Archimedean,
and “14” in “Arch14” is the order of appearance in [10].

p Name pdf cp Kendall’s τ

0 Product c0(y1, y2) = 1 0

1 Gauss c1(y1, y2) =
1√

1− α2
exp

(
−1

2
ξT (ρ− I) ξ

)
2

π
asinα

where ξi = φ−1(yi) with φ the standard normal distribution, ρ =

(
1 α

α 1

)
and I are the 2× 2 correlation and identity matrices.

2 Gumbel c2(y1, y2) =
t1

y1 ln (y1)

t2
y2 ln (y2)

(α− 1 + t1 + t2)
1
α (t1 + t2)

1
α−2

exp
(
− (t1 + t2)

1
α

)
1− 1

α
where t1 = (− ln (y1))

α
and t2 = (− ln (y2))

α
.

3 Cubic Section c3(y1, y2) = 1 + 2α
(

(1− y1)(1− y2)(−8y2y1 + 2y1 + 2y2 + 1)
2

3
α− 2

75
α2

+y1(1− y2)(4y2y1 − y1 − 2y2 − 1) + (1− y1)y2(4y2y1 − 2y1 − y2 − 1)

+y1y2(−2y2y1 + y1 + y2 + 1)
)

4 Clayton c4(y1, y2) = (1 + α) y−1−α
1 y−1−α

2

(
−1 + y−α1 + y−α2

)− 1
α−2 α

α+ 2

5 Arch14 c5(y1, y2) = t1 t2 (t1 + t2)
1
α−2

(
1 + (t1 + t2)

1
α

)−2−α

(
α− 1 + 2α (t1 + t2)

1
α

)
αy1y2

(
y

1
α
1 − 1

) (
y

1
α
2 − 1

) 2α− 1

2α+ 1

where t1 =
(
y
− 1
α

1 − 1
)α

and t2 =
(
y
− 1
α

2 − 1
)α

according to the HMC-DN model specified above, and its restoration according290

to different algorithms. Figures 2, 3 and 4 present the evolution of error rates
of those algorithms according to the gap δ = |m1

2 −m1
2| between the means of

the two margins involved (see Table 1). In each figure, the black plot (diamond
marks) reports the error rate obtained with the true model (i.e. the restoration
with the parameters used for simulation), which is thus a reference for all other295

methods.
Fig. 2 reports the error rates of four algorithms, assuming that the parame-

ters are the true ones, for ‘Gaussian margins’, ‘Gaussian copulas’ and ‘Gaussian
margins and copulas’, or are estimated from the ground-truth for ‘Gaussian
Kernel’ (here GICE is not used):300

1. ‘Gaussian margins’ (Magenta plot, square marks): the shape of the mar-
gins were assumed Gaussian, with means and variances given by m1 and
m2 in Table 1, whereas the shape and the parameters of the copulas were
the true ones;

2. ‘Gaussian copulas’ (Green plot, triangle marks): the shape of the 4 copulas305

were all assumed Gaussian, with the same Kendall’s tau as the ones used
for simulation (τ1,1 = 0.1, τ1,2 = τ2,1 = 0.3 and τ2,2 = 0.7), whereas the
shape and the parameters of the margins were the true ones;

3. ‘Gaussian margins and copulas’Blue plot (circle marks): Both margins
and copulas were assumed Gaussian, with parameters set similarly to the310

two previous plots;

4. ‘Gaussian kernel’ (red plot, diamond marks): the shapes of the 4 class-
conditional pdf p (y1, y2 |x1, x2 ) were estimated using kernel density es-
timation. We used Gaussian kernels with no correlation and the d = 2
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Figure 2: MPM classification error rates of five algorithms (true parameters) according to the
gap δ between the two margins means (see text for details).

bandwidths were estimated using Scott’s rule ĥi = n−1/(d+4)σ̂i, with n315

the size of the sample and σ̂i the standard deviation for dimension i.

Regarding the first three plots, assuming the Gaussianity of either margins or
copulas degrades the classification performances. Assuming full-Gaussianity
when data are not Gaussian, which is often assumed in applications, leads to
very poor results (blue plot): Gaussian approximations do not allow to capture320

the complexity and richness of the simulated data. At least in this experiment,
when the copulas are the true ones, the margins shape has little influence on
results (magenta plot). Finally, the Gaussian kernel plot (red) shows similar
performances than the ‘Gaussian copulas’ configuration (green).

It is now interesting to measure the GICE performance for selecting shapes325

and estimating their parameters with respect to the classification error rates. To
get the results reported in Fig. 3, the GICE was initialized from the parameters
obtained with a Kmeans algorithm, and stopped after 100 iterations, assuming
convergence. Fig. 3 reports the performance of three algorithms:

• ‘GICE’ (green plot, triangle marks): all shapes were automatically selected330

within the set of possible shapes by the GICE algorithm;

• ‘GICE with Gaussian copulas and margins’ (magenta plot, square marks):
the shapes of the margins and copulas were all assumed Gaussian, ICE
algorithm only performing parameters estimation;

• ‘GICE with Gaussian Kernel’ (blue plot, circle marks): the shapes of335

the 2D class-conditional densities were estimated by ICE using a simple

13



1.0 1.5 2.0 2.5 3.0 3.5

δ=|m 1
1 −m 1

2 |

0

5

10

15

20

25

30

35

40

C
la

ss
if
ic

a
ti

o
n
 e

rr
o
r 

(%
)

True parameters

GICE

GICE with Gaussian copulas and margins

GICE with Gaussian Kernel

Figure 3: MPM classification error rate of five algorithms according to δ (see text for details).
The results are means µ̂ of 100 experiments. The shaded envelop associated to each curve
represents the 95% confidence interval of µ̂: µ̂± 1.96 σ̂√

100

Kernel density estimation algorithm (Gaussian Kernel, no correlation).
The bandwidths were estimated using Scott’s rule at each ICE iteration.

The performance of the ‘GICE’ algorithm (green plot) is almost optimal since
it is able to reach the performances of the reference, except when δ < 1.5 in340

which case the mixture becomes too complex to be retrieved. Nevertheless, it
gives very interesting results compared to the two other unsupervised algorithms
(magenta and blue plots), allowing to divide the error rate up to 5 for δ = 1.5.
Hence, at least in this experiment, the automatic selection of the right copulas
and the right margins are required to reach optimal performances. It is interest-345

ing to note that the configurations represented by the magenta and blue plots
give similar performances than the Kmeans and the “variation distance” classifi-
cation algorithms, the last one being obtained without Markovianity, estimating
each Xn from each Yn by a suited ICE algorithm (simple mixture model), see
Fig. 4.350

As a conclusion for this experiment, we may state that the GICE algorithm
we propose gives very satisfying results in HMM-DNs, even when the mixture to
be restored is very difficult. This nice behaviour is confirmed by other similar
experiments not reported in the paper. Let us note that the computational
burden of the algorithm depends on the number of copula shapes which are355

evaluated at each iteration of the GICE algorithm. The selection based on
PLM criterion (11) can be time-consuming, but the algorithm remains about
ten times less time consuming that the kernel-based estimation method, whereas
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Figure 4: MPM classification error rate of two algorithms (‘Variation distance’ and ‘Kmeans
algorithm’) according to δ (see text for details).

being much more performing. Otherwise, the selection of margins based on
Pearson’ system is done at nearly no supplementary cost.360

5.2. Comparison with HMM-INs

The aim of this second experiment is to evaluate the interest of using HMM-
DNs, which are not HMM-INs, i.e. in which p (y2 |x2, y1, x1 ) 6= p (y2 |x2 ). We
provide a study detailing the comparison w.r.t. p (x1, x2) in a simple two-classes
case. The parameters are here assumed to be known.365

Let us still consider the HMM-DN specified by the four copulas and the two
margins in previous sub-section. Parametrizing the joint a priori probability of
XN

1 according to p1,1 = p2,2 = ε and p1,2 = p2,1 = 1− ε, we study the influence
of ε value on the restoration of N = 3000 simulated data using the following
algorithms, with decreasing modelling capabilities:370

• HMM-DN (red plot, diamond marks): the HMM-DN model given by the
four copulas, the two margins and matrix pi,j ;

• HMM-IN (magenta plot, square marks): the classic HMM model defined
with margins f1 and f2 and matrix pi,j ;

• BLIND (green plot, triangle marks): the observations are assumed inde-375

pendent; the model is parametrized by margins f1 and f2 and the weights
of the mixture (0.5 and 0.5).

According to results reported in Fig. 5, we can state the following:
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Figure 5: Classification error rate according to the joint a priori probability ε =
p (x1 = 1, x2 = 1) = p (x1 = 2, x2 = 2) for 3 different models with decreasing generality:
HMM-DN, HMM-IN, BLIND (means of 10 experiments of N = 3000 data).

• Using HMM-DNs is always of interest, i.e. whatever the value of ε. The
best gain is obtained for ε = 0.40, the HMM-DN error being of 14% while380

the HMM-IN one is of 29%.

• The classic HMM-INs are quite inefficient, except for ε, i.e. inferior to 0.05.
As HMM-INs are very simple, this could be of interest in such particular
cases;

• The case ε = 0.25 is of special interest as it is very different from the usual385

models. Indeed, the hidden variables X1, X2, . . . , XN are independent
but, as observations Y1, Y2, . . . , YN are dependent conditionally on XN

1

in HMM-DNs, X1, X2, . . . , XN are dependent conditionally on Y N
1 and

thus the Markovianity of the couple (XN
1 ,Y

N
1 ) allows to improve blind

and HMM-INs classifications. This is not the case in HMM-INs and we390

see here a particular aspect of the interest of HMM-DNs with respect to
HMM-INs.

5.3. Unsupervised image segmentation

This section is intended to illustrate the use of automatic copulas and mar-
gins selection in HMC-DN for unsupervised image segmentation. We focus395

on the JERS1 Synthetic Aperture Radar (SAR) image of Rondonia, Brazil, in
Fig. 6a. The image is a 3 looks amplitude image with 256 × 256 pixels, and
25m × 25m soil resolution. SAR images are known to be very challenging due
to the speckle that degrades the image with non-Gaussian noises. The image
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(a) (b)

Figure 6: (a) 3-look JERS1 image. (b) Ground truth.

Table 3: Confusion matrices (in %) (a) for the HMC-DN model using GICE, and (b) for a
fully-Gaussian HMD-DN model using classical ICE.68.2 15.1 16.7

8.2 77.1 14.6

8.1 10.0 81.9


41.9 42.6 15.5

4.1 79.5 16.3

2.4 20.9 76.7


(a) Overall error rate : 26.0% (b) Overall error rate : 41.9%

was manually segmented by an expert into 3 classes (burn plot, cultivation, and400

dense forest), cf. Fig. 6b.
To segment the image in 3 classes, we

• apply the Hilbert-Peano scan [39] to get a 1D vector of data;

• apply the GICE algorithm and performed MPM-classification to get a 1D
vector of class data, assuming405

– F1 = F2 = F3 = {Gamma, Inverse Gamma,Second kind Beta} for
margins, and

– G1,1 = . . . = G3,3 = {Product, Gaussian, Gumbel, Cubic section,
Clayton, Arch14} for copulas.

• transform the segmented 1D data into a 2D image using inverse scanning.410

The result of segmentation with 3 classes is shown in Fig. 7a, with a confusion
matrix reported in Table 3(a). The segmentation with 3 classes leads to

• 9 different copulas c1,1, . . . , c3,3, all of them being of Gumbel-type, and

• 3 margins f1, f2, and f3, all of them being of Pearson’s Type-VI .
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(a) (b)

Figure 7: HMC-DN segmentation (a) within GICE framework with automatic margins and
copulas selection, (b) within classical ICE framework with Gaussian margins and copulas.

The good performances of the algorithm can be compared w.r.t the segmenta-415

tion obtained with a fully-Gaussian HMC-DN model with a parameters estima-
tion performed using a classical ICE algorithm, see Fig. 7b and the correspond-
ing confusion matrix reported in Table 3(b).

6. Conclusion

Classic Hidden Markov models are widely used in a number of situations.420

Considering dependent noise brings additional efficiency; however, it is not
easy to handle with in non-Gaussian cases. Introducing copulas allows to con-
sider large possibilities of different hidden Markov models. Extending works
in [29, 38, 37, 39], we proposed here a general model’s identification method from
the only observed data. Experiments presented show the interest of copulas-425

based Markov models with respect to the classic ones, and the efficiency of
the model’s identification method proposed. In particular, at least in the ex-
perimental setting considered here, the automatic selection of both copulas and
margins outperforms the results obtained using a Gaussian kernel representation
for data-driven densities. It might be interesting to pursue the comparison with430

“Bayesian non parametric methods”, such as Dirichlet Processes [50]. Neverthe-
less, in unsupervised context considered, it appears that Hidden Markov models
with dependent non-Gaussian noise based methods clearly improve those based
on the classic HMMs, as illustrated with a real SAR image.

In this paper, we considered mono-sensor cases and copulas were used at the435

temporal level. They may also be used, in hidden Markov context, at vectorial
level, modelling dependencies among sensors at a given time [31, 33, 34, 35]. As
perspective, one may consider to use copulas in hidden Markov models on both
temporal and vectorial levels simultaneously. Another perspective is to consider
extensions of the discrete hidden or pairwise Markov models considered to fuzzy440

ones, as introduced in [51, 52]. Finally, ICE has been successfully extended to
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long memory hidden Markov models [45], and thus considering copulas and
GICE in such models would possibly be an interesting perspective .
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Appendix A. Brief recall on Pearson’ system of distributions580

A pdf f on R belongs to Pearson’s system if it satisfies

∂

∂x
ln f(x) =

(x− λ) + a

b2(x− λ)2 + b1(x− λ) + b0
, (A.1)
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with

b0 =
4β2 − 3β1

10β2 − 12β1 − 18
m2, b2 =

2β2 − 3β1 − 6

10β2 − 12β1 − 18

b1 =
√
m2β1

β2 + 3

10β2 − 12β1 − 18
= a,

and mi denotes the moment of order i,
√
β1 the skewness, and β2 the kurtosis:

β1
i =

(m3
i )

2

(m2
i )

3
, β2

i =
m4
i

(m2
i )

2
. (A.2)

The variation of the parameters a, λ, b0, b1 and b2 provides distributions of
eight different shapes and, for each shape, defines the parameters fixing a given
distribution. The pdf used in experiments constitute a subset of Pearson’s
system made of 3 densities that are detailed in the following.585

Pearson type-III distribution. A distribution is said to be of type-III if β2 =
3
2 (β1 + 2). Hence, denoting,

ξ =
3(β2 − 1)

2(3− β2)
, λ =

b0
b1
− ξb1,

the random variate b0 + b1(x−λ−m1) is Gamma(ξ, θ)-distributed with θ = b21.

Pearson type-V distribution. A distribution is of type-V if β2 = −3 2(β1+4)1.5+13β1+16
β1−32 .

Hence, denoting,

c1 =
b1
2b2

, λ = − a− c1
1− 2b2

,

the random variate x − λ −m1 is distributed according to an inverse Gamma
distribution IG(α, β) with parameters α = 1

b2
− 1 and β = a−c1

b2
.

Pearson type-VI distribution. A distribution is said to be of type-V if values
of β1 and β2 belong to the restriction of Pearson (β1, β2)-plane delimited by590

type-III and type-V distributions. Hence, denoting,

∆ = b21 − 4b2b0, λ = (a2 − a1)
p2 + 1

p2 + p1 + 2
− a2,

a1 =
−b1 −

√
∆

2b2
, a2 =

−b1 +
√

∆

2b2
,

p1 =
b1 − a1

b2(a1 − a2)
, p2 =

b1 − a2

b2(a2 − a1)
,

the random variate x−λ−p1−a2
a2−a1 is distributed according to a Beta prime distri-

bution B’(α, β) with parameter α = p2 + 1 and β = −p2 − p1 − 1.
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