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Non-smooth modal analysis of piecewise-linear impact oscillators

Anders THORIN1, Pierre DELEZOIDE2, Mathias LEGRAND1

1 Department of Mechanical Engineering, McGill University, Canada
2 Independent researcher, France

ABSTRACT Periodic solutions of autonomous and conservative second-order dynamical systems of finite dimension n undergoing
one unilateral contact condition are investigated in continuous time. The unilateral constraint is complemented with
a purely elastic impact law which preserves total energy. The dynamics is linear when there is no contact. The
number k of impacts per period arises as a natural parameter of the proposed formulation.

Interestingly, the existence of the targeted periodic solutions is essentially governed by a system of only k � 1
nonlinear equations with k unknowns, regardless of the number of degrees-of-freedom. This serves to prove that the
phase-space is populated by one-dimensional continua of periodic solutions generating invariant manifolds which
can be understood as nonsmooth modes of vibration in the context of vibration analysis. Additionally, these equations
provide an efficient and systematic way of calculating nonsmooth modes of vibration. They also demonstrate the
existence of interesting properties: symmetries of trajectories and emergence of unique features such as manifolds
supporting constant-frequency orbits. All results are illustrated through a simple in-line spring–mass system whose
last mass undergoes the unilateral impact law. Stability is briefly discussed and a few neutrally stable modes are
depicted.

KEYWORDS impact dynamics, nonlinear normal modes, vibro-impact oscillators, nonlinear oscillators, nonlinear modal analysis,
nonsmooth dynamics
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1. Background In linear dynamics, the solution space is a linear space spanned by linear modes of
vibration. For nonlinear systems governed by Ordinary Differential Equations, the above linear space
structure no longer holds and methods able to systematically characterize the global dynamics are not
available. However, it is known that fixed points, also called equilibrium points, limit cycles, and chaos
may exist. The centre manifold theorem [13, 16] together with Lyapunov’s center theorem [6, p. 5] prove
that for second-order dynamics away from resonance conditions, two-dimensional manifolds of the phase
space exist and are tangent to the linear modes of the system linearized in the vicinity of its fixed points.
Such invariant two-dimensional manifolds in the phase space were later defined as nonlinear modes of
vibration [37, 40] in the vibration community.
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Nonlinear modes have been primarily applied to smooth systems, i.e. systems described by ODEs.
Though not as informative as their linear counterparts, nonlinear modes still reveal significant features such
as potential vibratory resonances, stability properties, and step up the ground for modal reduction [40].
However, many mechanical systems, referred to as nonsmooth systems, involve unilateral constraints
inducing velocity discontinuities and cannot be described with ODEs; existing methods can therefore not
be used to compute their nonlinear modes. Yet, the vibratory characterization of nonsmooth systems has
many applications. For instance, rotor–stator contact interactions in rotating machinery involves unilateral
contact occurrences between the casing and the blades [42], which needs to be understood for obvious
safety and maintenance reasons. Optimal progression rate of vibro-impact systems such as pile driving
or percussive drilling [31] or, on a smaller scale capsule systems (capsubots) [23], rely on capturing the
nonsmooth vibratory dynamics. The dynamics of impact dampers implemented to reduce vibrations
should also be properly understood [21]. Supplementary applications can be found in [4].

The present work is a contribution towards the vibration analysis of such nonsmooth systems. It
focuses on the following subclass of nonsmooth systems: n-degree-of-freedom linear oscillators subject
to a single unilateral contact condition complemented with an elastic impact law. Since modal analysis is
targeted, the autonomous and conservative dynamics is considered.

Similar systems, often referred to as vibro-impact oscillators, have been investigated for several
decades from the standpoint of vibratory analysis. A majority of such works consists either in i) regulariz-
ing the impact condition(s) with the addition of springs [4, 7, 15, 19, 27, 28, 36, 41] or ii) investigating
the dynamics of a forced vibro-impact oscillator [12, 34, 35, 43, 44]. Regularizing is known to introduce
numerical stiffness [1, 2] and is not considered in this work (the relationship between regularized and
infinitely rigid impact was studied using a two-degree-of-freedom system with an elastic stop with one
impact per period in ref. [30]).

Existence results for such nonsmooth systems are provided in [29] for grazing bifurcations as well
as in [32] for oscillators with bilateral rigid barriers where each contact is activated at most once per
period. Dynamic behaviour in the neighbourhood of grazing trajectories is investigated in [8, 11]. Most
occurrences in the literature of the terminology multiple impacts are related to impact oscillators with
several unilateral constraints (see some of the references above or [24, 26]); here, multiple impacts per
period refers to the same contact condition being activated several times during one period. Periodic
motions with multiple impacts per period have sometimes been mentioned for forced systems [17, 22, 25,
33] but never systematically explored. Recently, a spring–mass system subject to a purely elastic impact
law with one impact per period has been thoroughly investigated [20]. The present work significantly
extends the results of the latter—thorough stability analysis set aside—to more complex geometries,
non-diagonal mass matrices (such as in Finite–Element models) and multiple impacts per period, by
providing a general analytic and minimal expression of periodic solutions for such systems for any number
of k 2 N� impacts per period.

Because the dynamics is deterministic, the problem is formulated as finding the initial conditions
x0 2 R2n from which emanates T -periodic solutions which satisfies a succession of “free flights”
governed by linear dynamics, punctuated by k impacts. Enforcing periodicity boils down to finding an
initial condition invariant by a linear mapping which is explicitly exhibited. Although challenging, it
nicely reduces to solving two independent systems of equations, nonlinear in the k times of impacts and
linear in k scalar unknowns, irrespective of the number of degrees-of-freedom n. These k scalar quantities
then determine potential initial conditions x0 via an explicitly known isomorphism; x0 is a solution of the
problem when it satisfies a simple (but restrictive) inequality. The assumptions and the general problem of
interest are first described (Sec. 2). Then, the main results are succinctly provided (Sec. 3) and proven
(Sec. 4 to 6). Results are illustrated on a simple system (Sec. 7) and stability is briefly discussed (Sec. 8).
Animations of motions with k impacts per period are available online using the hyperplink provided
in [39].

Remark 1.1. Nonlinear modes of discrete systems are, by definition, continua of periodic orbits of a
nonlinear system. By extension, nonsmooth modes are defined as nonlinear modes of nonsmooth systems.
In the same spirit, linear modes can be conceived as continua of periodic elliptical orbits of a linear system.

2. Assumptions and formulation

2



2.1. General framework The following assumptions are considered throughout this work: the n-dof
mechanical system of interest lies in a one, two or three-dimensional space. No damping and no external
forces are considered. The system is constrained by a single unilateral condition preventing penetration
in a rigid still obstacle. The system is assumed to be linear when contact is not activated. In particular,
displacements are small so that the unilateral constraint is expressed in its linearized form.

Let u 2 Rn be the vector of generalized positions and v D Pu be the generalized velocities. As a
general principle, subscripts �1 indicate quantities related to u while �2 indicates v-related quantities. The
gap g.u/, i.e. the signed distance function separating the contacting dof and the rigid obstacle, is chosen
positive when there is no contact. Its time-derivative, the contact velocity, is denoted  . The unilateral
constraint preventing interpenetration writes

g.u/ � 0 (2.1)

which does not explicitly depend on time since the obstacle does not move. Because it is assumed linear
in u there exists w1 2 Rn such that

g.u/ D w>1 uC g0 (2.2)

where the real number g0 stands for the signed distance between the unconstrained rest position of the
system and the position of the obstacle, see Figure 1. Accordingly:

 D
dg.u/

dt
D w>1 Pu D w>1 v: (2.3)

x
g0 > 0

g0 = 0 g0 < 0

unconstrained rest unstressed grazing prestressed

Figure 1: Positions of the obstacle illustrated in a one-dimensional case.

At a given time, exactly two distinct configurations are possible:
1. Contact is not activated, that is g.u/ > 0 and the dynamics obeys

M RuCKu D 0 (2.4)

where M 2 Rn;n is the mass matrix and K 2 Rn;n, the stiffness matrix; M and K are symmetric
positive-definite. This situation is referred to as “free flight”. By convention, the unconstrained rest
positions are chosen to be zero.

2. Contact is activated, that is g.u/ D 0 and the dynamics is governed by [38]:

M.vC � v�/ D w1ƒ (2.5)

where ƒ is the contact impulse along the outward-pointing normal direction of the contact surface,
v� and vC are the pre- and post-impact velocities: if t is a time of impact, vC.t/ D lim"!0C v.tC"/
and v�.t/ D lim"!0� v.t C "/. Since this work involves a single unilateral constraint, g.u/ 2 R
and w1 is a column vector. Sticking is not considered, so necessarily ƒ � 0. The impulse ƒ is the
integral of a generalized contact force �.

In contrast to the space-continuous framework for which existence and uniqueness hold without any
impact law [10, 18], discrete mechanical systems do not incorporate the constitutive description of the
impact process and the formulation should be supplemented with an impact law [5, 9]. It maps .g.u/; �/
to C [5] where � and C are the pre- and post-impact normal contact velocities, respectively. Since
unforced periodic solutions are targeted, the only possible choice is a conservative impact law of the form

g.u/ D 0 H) C D ��: (2.6)

3



which can also be expressed in terms of the generalized velocities v� and vC through the introduction of
the matrix N2 2 Rn;n:

g.u/ D 0 H) vC D N2v�: (2.7)

Proposition 2.1, proven in Sec. 4.2, shows that N2 is fully determined by the mass matrix M and the
gradient w1 of the gap.

Proposition 2.1 The impact law (2.7) is such that

N2 D V�>.I � 2r2r>2 /V> (2.8)

where r2 is the unit vector defined by r2 D V�1w1.w>1 M�1w1/�1=2 and V comes from the Cholesky
decomposition M D VV>.

2.2. Formulation for periodic solutions We focus on solutions corresponding to t 7! g.u.t// of finite
support, excluding phenomena such as chattering or sticking. This naturally introduces two quantities
of interest: the unknown period T and the (finite) number of impacts per period (ipp) k. Solutions with
k D 0 are smooth solutions of the linear problem and are of course not of interest here, hence k 2 N�.
Without loss of generality, contact is assumed to be activated at t D 0, i.e. g.u.0// D 0. With T the
unknown period of a solution u, the times of impact in Œ0 ; T � are denoted by t1; : : : ; tk with tk D T and,
by convention, t0 D 0. The dynamics is governed by Problem (2.9) expressed as: Given T and k, find u,
v D Pu and t1; : : : ; tk 2 Œ0 ; T � satisfying8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

8i 2 J1; kK; 8t 2 .ti�1; ti /; M Ru.t/CKu.t/ D 0 free flight,

8i 2 J1; kK; g.u.ti // D 0 gap closure,

8t 2 Œ0 ; T �; g.u.t// � 0 non-penetration,

8i 2 J1; kK; vC.ti / D N2v�.ti / impact law,

u.0/ D u.T /; v.0/ D v.T / periodicity.

(2.9a)

(2.9b)

(2.9c)

(2.9d)

(2.9e)

The contact force � is determined at the times of impact t1; : : : ; tk through Eq. (2.5) and vanishes
everywhere else.

Definition 2.1 Nonsmooth modes of vibration are continuous families of periodic solutions to Prob-
lem (2.9).

2.2.1. Formulation in terms of initial conditions Being deterministic, Problem (2.9) can be written in terms
of initial positions u.0/ and initial velocities v.0/. The motion consists in a succession of k free flights
of linear dynamics, separated by k impacts dictated by the impact law. Introducing x D Œu>; v>�>, the
free dynamics between arbitrary times �1 and �2 can be written in the form x.�2/ D QS.�2 � �1/x.�1/. The
matrix QS.t/ 2 R2n;2n is derived explicitly in Sec. 4. Similarly, the impact law can be written as a mapping
of x:

g.u/ D 0 H) xC D QNx� with QN D
�

I 0
0 N2

�
: (2.10)

The overall dynamics results in the following composite linear mapping acting on x0 WD x.0/:(
8i 2 J2; kK; 8t 2 Œti�1; ti /; x.t/ D QS.t � ti�1/ QN : : : QN QS.t1 � t0/x0

x.tk/ D QN QS.tk � tk�1/ QN : : : QN QS.t1 � t0/x0:
(2.11a)

(2.11b)

with t0 D 0.
The question of finding periodic solutions to Problem (2.9) with impact times t1; : : : ; tk is formulated

in three necessary conditions (NC) to be satisfied by x0: Given T 2 R�C and k 2 N�, find x0 2 R2n and
t1; : : : ; tk such that:8̂̂̂̂

<̂
ˆ̂̂:
QN QS.tk � tk�1/ QN : : : QN QS.t1 � 0/x0 D x0 NC1 (dynamics + periodicity)

x determined from x0 through (2.11) satisfies:

8i 2 J1; kK; Qg.x.ti // D 0 NC2 (gap closure)

8t 2 Œ0; T �; Qg.x.t// � 0 NC3 (non-penetration)

(2.12a)

(2.12b)

(2.12c)
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with Qg.x/ WD g.u/. Eq. (2.12a) enforces periodicity through a sequence of free flights over .ti�1; ti /
punctuated by perfectly elastic impacts at ti , i 2 J1; kK. Eq. (2.12b) guarantees that the impact law applies
only when the separating gap is closed. Ineq. (2.12c) is necessary to ensure that the unilateral contact
condition is not violated during the free flights.

The fact that NC3 is an inequality while NC1 and NC2 are equalities introduces the distinction
between “potential solutions” and “admissible solutions” defined below.

Definition 2.2 [Potential solution] A potential solution is an initial condition x0 which satisfies NC1
and NC2 for some t1; : : : ; tk . By extension, a time-function x determined by a potential solution x0 using
relations (2.11) also qualifies as such.

Definition 2.3 [Admissible solution] An admissible solution is a potential solution which satisfies NC3.

3. Main results

3.1. Preliminary notations Efficiently exposing the main results necessitates a few quantities which
require various definitions. The resulting heavy notations must not mask the fact that their computations
are very inexpensive and they are all determined solely by the mass matrix M, the stiffness matrix K, the
gap g and the times of impact t1; : : : ; tk . Let us introduce the following quantities:
� V defined by the Cholesky decomposition of M D VV>.
� An orthogonal matrix Q such that V�1KV�> D Q�2Q> where� D diag.!1; : : : ; !n/.
� The period T 2 R�C, assumed not to be a multiple of a 2�=!i , that is 8i 2 J1; nK, T 6� 0

.mod 2�=!i /.
� The number k 2 N� of impacts per period and .t1; : : : ; tk/ 2 R�C

k the times of impact with
ti�1 < ti . The duration between two successive impacts is denoted by �i D ti � ti�1 with t0 D 0
and T D tk .
� The matrix P and vectors r, w defined by

P D
�
�Q>V> 0

0 Q>V>
�
; r D

�
0

Q>r2

�
; w D P�>

�
w1
0

�
: (3.1a)

� The matrix S.t/ whose four blocks are diagonal:

S.t/ D
�

cos.�t / sin.�t /
� sin.�t / cos.�t /

�
(3.1b)

� The skew-symmetric matrix… populated by the elements

…i;j .t1; : : : ; tk/ D ‡T .2.tj � ti / � T /; i < j � k: (3.1c)

where rnCi denotes the .nC i/-th entry of r and

‡T .�/ D

nX
iD1

sin.!i�=2/
sin.!iT=2/

rnCi 2: (3.1d)

� The symmetric matrix † populated by the elements

†i;j .t1; : : : ; tk/ D 2w>
�

S
�
T
2

�
� S

�
�
T
2

���1
S
�
ti � tj C

T
2

�
r; i � j � k: (3.1e)

� �T ; T 2 Rn defined by�
�T .�/

 T .�/

�
D 2P�1

�
S.T=2/ � S.�T=2/

��1S.�=2/r: (3.1f)

� The linear application

' W Rk ! R2n

� 7! 2P�1.S.T / � I/�1
kX
jD1

�jS.T � tj /r: (3.1g)
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3.2. Important theorems Solutions of Problem (2.12) satisfy three necessary conditions NC1, NC2 and
NC3. NC1 (Eq. (2.12a)) consists in finding invariant elements of a mapping defined as the product of 2k
matrices, k of which are matrix exponentials. This is a challenging problem even for k and n as small
as k D 2 and n D 3. Theorem 3.1 drastically simplifies it to the simple computation of the kernel of a
known k � k skew-symmetric matrix. Its proof is provided in section 4.

Theorem 3.1 x0 satisfies NC1 iff there exists a vector � 2 Rk such that:�
….t1; : : : ; tk/� D 0
x0 D '.�/:

(3.2a)

(3.2b)

Theorem 3.2 shows that the condition of gap closure NC2 (Eq. (2.12b)) can be expressed in terms of the
same vector '�1.x0/ D � 2 Rk .

Theorem 3.2 x0 satisfies NC2 iff there exists � 2 Rk such that:�
†.t1; : : : ; tk/� D �g0 j
x0 D '.�/:

(3.3a)

(3.3b)

with j D Œ1; : : : ; 1�> 2 Rk .

Together, theorems 3.1 and 3.2 give a practical way of finding potential solutions: it is sufficient to
find � 2 Rk verifying Eqs. (3.2a) and (3.3a) for some .t1; : : : ; tk/; x0 can then be explicitly computed
using (3.2b). The proof of Theorem 3.2 is provided in section 4.

The following theorem, which is a direct consequence of Theorems 3.1 and 3.2, addresses the existence
of potential solutions and thus of nonsmooth modes of vibration. It implies that, if g0 ¤ 0, then nonsmooth
modes are two-dimensional surfaces of the phase space in the neighbourhood of a generic point, as in the
smooth case.

Let S denote the set of impact times for which a potential solution exists:

S WD f.t1; : : : ; tk/ j 9� 2 Rk solution of….t1; : : : ; tk/� D 0 and †.t1; : : : ; tk/� D �g0jg (3.4)

Then, there exists a one-parameter continuum of potential solutions, for some specific t1; : : : ; tk .

Theorem 3.3 [Dimension of the space of potential solutions] A generic point of S is:
� a point of a curve of S if g0 ¤ 0;
� an isolated point of S if g0 D 0.

The proof of this theorem is given in section 5.

Corollary 3.1 [Dimension of nonsmooth modes of vibration seen as manifolds] If x is an admissible
solution for some generic impact times s D .t1; : : : ; tk/, then:
� s is a point of a curve in the space of the impact times, and the neighbourhood of s on the curve

corresponds to admissible solutions, if g0 ¤ 0 (manifold of dimension 2 in the phase space);
� s is an isolated point if g0 D 0 (manifold of dimension 1 in the phase space).

Corollary 3.1 shows that when g0 ¤ 0, an admissible solution is necessarily part of a one-parameter
continuum of periodic trajectories, which is by definition a nonsmooth mode. This one-parameter
continuum of trajectories is a two-dimensional surface in the phase space, since every trajectory is a
curve. In the end, it shows that periodic solutions of the initial nonsmooth problem form, when they exist,
two-dimensional manifolds, as in the linear and smooth nonlinear counterparts. Moreover, Theorem 3.4
gives the explicit expressions of the n positions and n velocities as functions of time. Its proof is provided
in section 4.

Theorem 3.4 [Expression of modal positions and velocities] If x0 is a potential solution for impact
times t1; : : : ; tk , then the time-evolution of the components of x D Œu v�> are given 8i 2 J0; k � 1K,
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8� 2 Œ0; �iC1� by

u.� C ti / D
iX

jD1
�j�T .2.� C ti � tj / � T /C

kX
jDiC1

�j�T .2.� C ti � tj /C T / (3.5)

v.� C ti / D
iX

jD1
�j T .2.� C ti � tj / � T /C

kX
jDiC1

�j T .2.� C ti � tj /C T /: (3.6)

where �j is the j -th component of � WD '�1.x0/.
An insight of these theorems is shown in Figure 2 for g0 ¤ 0. For a generic point s D .t1; : : : ; tk/ of
the space of the impact times, †.s/ is invertible and Theorems 3.1 and 3.2 indicate that s must satisfy
….s/†�1.s/j D 0 for a potential solution to exist. Such an s determines a vector � D �g0†�1.s/j
and the time-evolutions of positions and velocities are given by Theorem 3.4 as functions of �. They
correspond to trajectories in the phase space. If the unilateral constraints are satisfied by the potential
solution, the latter qualifies as admissible solution. Corollary 3.1 shows that such a point s is generically a
point of a curve in the space of impact times; the neighbourhood of s on the curve also corresponds to
admissible solutions. Along the neighbourhood of s in S , the corresponding admissible solutions describe
a k-ipp nonsmooth mode in the phase space.

•s
S

t1
t2

t k

Theo. 1&2: s |ΠΠΠ(s)ΣΣΣ−1(s)j = 0
Theo. 3: S is a curve

λλλ
Theo. 1&2

λλλ =−g0ΣΣΣ−1(s)j
x0

Theo. 1&2

x0 = ϕ(λλλ )
x(·)

Eq. (11)

Theo. 4 xn−1
xn

ẋ n

Nonsmooth periodic orbit
(Symmetries: cf. Theo. 5)

Figure 2: Summary of the main results for a generic point s 2 S with g0 ¤ 0. When s D .t1; : : : ; tk/
travels along the red curve S, the periodic solution describes a nonsmooth mode with k impacts per
period.

Remark 3.1. As shown in the proof of Theorem 3.3, finding � and thus x0 requires solving k�1 equations.
However, the set of equations depends on the parity of k. Because… is a skew-symmetric matrix, solving
the k � 1 equations can be significantly simplified using the Pfaffian operator, especially when k is odd.
Finally:
� If k is odd, for almost every s, rank.….s// D k�1 and it can be shown that its kernel is spanned by

the vector k of the Pfaffians of the diagonal k � 1 � k � 1 submatrices of… with alternating signs.
Hence, k writes as a function of the k impact times. Nevertheless…� D 0 so there exists a � ¤ 0
such that � D �k. Eq. (3.3a) implies that all the rows of †.t1; : : : ; tk/k have identical value; this
provides the k � 1 equations. Then � D �k where � is determined by†.t1; : : : ; tk/k D �g0

�
j and

the sought initial solution is given by x0 D '.�/.
� If k is even, for almost every s, rank.….s// D k and there is no � ¤ 0 solution of Eq. (3.2a).

Hence one must solve pf.…/ D 0 for .t1; : : : ; tk/. When this equation is satisfied, for almost every
s, rank.….s// D k � 2, and….t1; : : : ; tk/� D 0 provides k � 2 independent equations. Again, a
total of k � 1 equations are to be solved.

Remark 3.2. Theorem 3.3 illustrates the effectiveness of Theorems 3.1 and 3.2, but the latter are also
constructive. For example, let us treat the problem for k D 1. Then, … D Œ0� because it is skew-
symmetric, and the only condition on � 2 R and t1 D T is †.T /� D �g0j. This leads to the existence
of a continuum of potential solutions whenever†.T / ¤ 0, that is almost everywhere in R�C. Interestingly,
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this result does not depend on n. Theorems 3.1 and 3.2 hence allow to solve the periodic problem with
one impact per period in a few lines only. This is further detailed on a simple example in subsection 7.2.

Remark 3.3. No general result regarding the last necessary condition NC3 are presented here. In practice,
the first step is to compute potential solutions and then check NC3. However, it follows from Theorem 3.1
that a general admissible solution is an element of a continuum of admissible solutions. As a consequence,
the corresponding nonsmooth mode can be numerically retrieved from one admissible solution using
continuation techniques. It is important to note that potential solutions can be straightforwardly filtered
out by checking that the sign of the pre-impact velocities corresponds to non-penetration.

4. Proof of Theorems 3.1, 3.2, 3.4 As seen in Eq. (2.11), the dynamics is a combination of free flights,
captured by QS, and impacts, accounted for with QN. Matrices QS and QN respectively correspond to two
endomorphisms of fundamentally different nature: the free flight can be regarded as n rotations in n
orthogonal planes (the linear modes) of the phase space, while, as seen from Proposition 2.1, the impact
dynamics is a reflection with respect to a hyperplane and only affects the coordinates appearing explicitly
in the expression of g.u/.

Uncoupling the dynamics via a modal basis results in a impact law which affects modal positions.
Through an appropriate change of basis, this can be simplified: the dynamics is uncoupled (as with any
modal basis) while the impact law does not affect the position components (which is not the case a priori).
Geometrically, the new basis to be introduced is constructed in such a way that the hyperplane defining
the impact law intersects the n invariant subspaces of the dynamics along basis vectors. This is done
by rotating the pair of vectors spanning each stable plane such that the first vector is aligned with the
intersection between the stable plane and the hyperplane, see Fig. 3.

ei

ei+n

i-th plane invariant by S

hyperplane invariant by N

Figure 3: In the new basis, the hyperplane invariant by the impact law N intersects the n orthogonal
planes invariant by the free-flight matrix S along a line spanned by the position basis vectors.

4.1. Free flight dynamics Let y D V>u where V corresponds to the Cholesky decomposition M D VV>.
The free flight dynamics, Eq. (2.4), then reads:

RyC V�1KV�>y D 0: (4.1)

By symmetry and definite positiveness, V�1KV�> D Q�2Q> for some orthogonal matrix Q and
a diagonal matrix � D diag.!1; : : : ; !n/ Let z1 D �z, z2 D Pz and z D Œz1; z2�>, it follows that
Pz2 D ��z1, or:

Pz D
�

0 �

�� 0

�
z: (4.2)

Defining the transformation matrix P from the new to the old basis, Px D z, matrices QS and QN become in
the new basis S WD P QSP�1 and N WD P QNP�1, with

P D
�
�Q>V> 0

0 Q>V>
�
: (4.3)
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After this change of basis, the solutions of the dynamics during a free phase are simply given by

z.t/ D S.t/z0 D exp

 
t

�
0 �

�� 0

�!
z0 D

�
cos.�t / sin.�t /
� sin.�t / cos.�t /

�
z0 (4.4)

where cos.�t / and sin.�t / are diagonal matrices obtained by mapping cos and sin to each component of
�. The matrix S.t/ is orthogonal (S.t/S.t/> D I). Assuming t is not a multiple of a 2�=!i (!i t 62 2�Z
for all i ), it can then be shown that I � S.t/ is non-singular and

.I � S.t//�1 D 1

2

�
In cot �t

2

� cot �t
2

In

�
(4.5)

implying the two following identities:

.I � S.t//�1 C .I � S.t//�> D I (4.6)

S.t/.I � S.t//�1 D .S.�t / � I/�1: (4.7)

4.2. Formulation of the impact law We now proceed with the demonstration of Proposition 2.1. Through
Eq. (2.5), the normal contact velocity  D Jg.u/ v D w>1 v is such that

C � � D w>1 .vC � v�/ D w>1 M�1w1ƒ D Gƒ: (4.8)

The scalar quantity G D w>1 M�1w1 is non-zero because M�1 is positive definite. Inserting (2.6)
into (4.8) yields �2� D Gƒ hence ƒ D �2G�1� D �2G�1w>1 v� and thus, using Eq. (2.5),
vC D .I � 2M�1w1G�1w>1 /v�, providing the expression for N introduced in Eq. (2.7). With r2 D
V�1w1G�1=2, it comes that N2 D V�>.I � 2r2r>2 /V> which ends the proof. Vector r2 is a unit vector
since jjr2jj2 D r>2 r2 D G�1=2w>M�1wG�1=2 D G�1=2GG�1=2 D 1.

Introducing r D
�
0 r>2 Q

�>
2 R2n, it comes that

zC D Nz� with N D I � 2rr> (4.9)

which is known as a Householder matrix [14], correspond to a reflection with respect to the hyperplane
r?. It is easily seen that N does not affect the first n elements of z�, corresponding to displacements.

Remark 4.1. The impact law is conservative since N>2 MN2 DM.

Remark 4.2. Impact law (2.8) is not restricted to a mass impacting a rigid obstacle. It also handles two
impacting masses, for instance.

4.3. Sequence of impacts In this subsection, we introduce sequences which will be used to prove
Theorems 3.1 and 3.2. Define the following matrix sequences for l 2 J1; k � 1K:

U1 D NS.�1/; UlC1 D NS.�lC1/Ul 2 R2n;2n

C1 D r; ClC1 D
�
S.�lC1/Cl C1

�
2 R2n;l

L1 D r>S.�1/; LlC1 D
�

Ll
r>S.�lC1/Ul

�
2 Rl;2n

T1 D 1; TlC1 D
�

Tl 0l;1�
2r>S.tlC1 � t1/r � � � 2r>S.tlC1 � tl/r

�
1

�
2 Rl;l :

(4.10)

(4.11)

(4.12)

(4.13)

It can be shown that for all l 2 J1; k � 1K,

2C>l Cl D Tl C T>l : (4.14)

Assuming Ul D S.tl/ � 2ClLl leads to

S.tlC1/ � 2ClC1LlC1 D S.�lC1/S.tl/ � 2S.�lC1/ClLl � 2rr>S.�lC1/Ul (4.15a)

D S.�lC1/.S.tl/ � 2ClLl/ � 2rr>S.�lC1/Ul (4.15b)

D .I � 2rr>/S.�lC1/Ul D NS.�lC1/Ul D UlC1 (4.15c)
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and since U1 D S.t1/ � 2C1L1, it comes by induction that

Ul D S.tl/ � 2ClLl : (4.16)

It can also be shown by induction that

TlLl D C>l S.tl/ (4.17)

hence, since Tl is non-singular:

Ul � I D .I � 2ClLlS.�tl/ � S.�tl//S.tl/ (4.18)

4.4. Initial conditions invariant after k successive impacts (proof of Theorem 3.1) For tl such
that !i tl 62 2�Z for all i ,

Ul � I D �l
�
I � AlB>l

�
S.tl/ (4.19)

with Al D 2.I � S.�tl//�1Cl 2 R2n;l , B>
l
D LlS.�tl/ 2 R2n;l and�l D .I � S.�tl//. The unknown

initial conditions z0 are such that NS.�k/N : : :NS.�1/z0 D z0, i.e. z0 2 ker.Uk � I/. From Eq. (4.19)
and since tk D T ,

z0 2 ker.Uk � I2n/ ”
�

z0 D �S.�T /Ak�
� D B>

k
S.T /z0

” � 2 ker.Ik � B>k Ak/ (4.20)

and using property (4.7), z0 and � also satisfy

z0 D 2
�
S.T / � I

��1Ck�; � D Lkz0: (4.21)

Then, following from Eq. (4.17),

I � B>k Ak D I � 2LkS.�T /.I � S.�T //�1Ck D T�1… (4.22)

with… D T�2C>
k
�kCk , which means that finding initial conditions which are invariant by a succession

of k impacts and k free flights (i.e. in ker.Uk � I/) reduces to computing ker…. Matrix … is skew-
symmetric because

…C…> D TC T> � 2C>k�
�1
k Ck � 2C>k�

�>
k Ck (4.23)

D 2C>k Ck � 2C>k .�
�1
k C�

�>
k /Ck using Eq. (4.14) (4.24)

D 0 from Eq. (4.6). (4.25)

Since T is lower-triangular, because the j th column of Ck is S.tk � tj /r and since S.t/ and�k commute,
it comes that for i < j :

…i;j D �2r>
�
I � S.T /

��1S.ti � tj /r (4.26)

from which we can show that …i;j D ‡T .2.tj � ti / � T /, 8i < j with

‡T .�/ D

nX
iD1

sin.!i�=2/
sin.!iT=2/

rnCi 2: (4.27)

To summarize, Eq. (2.12a) holds iff Ukz0 D z0 iff…� D 0 where… is a known skew-symmetric matrix
function of the impact times t1; : : : ; tk with tk D T 62 f0; 2�=!1; : : : ; 2�=!ng. From Eq. (4.21), finding
solutions x0 2 R2n reduces to first finding � 2 Rk and x0 can then be recovered using

x0 D 2P�1S.�T /.I � S.�T //�1Ck� D 2P�1.S.T / � I/�1
kX
jD1

�jS.T � tj /r (4.28)

which ends the proof of Theorem 3.1.

Remark 4.3. The physical meaning of the condition T 62 f0; 2�=!1; : : : ; 2�=!ng is that T cannot be the
period of a linear mode. This condition is not really restrictive and does not prevent the investigation of
the resonant behaviour.

Remark 4.4. The quantity 2.tj � ti / � T for i < j is the signed sum of �1; : : : ; �k where the j � i
variables �q for i < q � j have the sign � while the k � j C i other variables have the signC.
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4.5. Gap closure at impact times (proof of Theorem 3.2) We now proceed with the proof of Theo-
rem 3.2, which ensures gap closure at impact times in terms of � (NC2). The gap closure conditions at
t1; : : : ; tk write Qg.x.tl// D 0 D w>1 u.tl/C g0 (Eq. (2.12b)) or, with w D P�>

�
w>1 0

�>,

8l 2 J1; kK; w>Ulz D �g0: (4.29)

Using Eqs. (4.16) and (4.21), it comes that

w>.S.tl/z � 2ClLlz/ D w>
�

S.tl/.S.tk/ � I/�1Ck �
�
Cl 0

� �
� D �g0 (4.30)

yielding k equations which can be gathered in a matrix equation

†� D �g0j (4.31)

with

†i;j D

8<:2w>
�
S.T=2/ � S.�T=2/

��1S.ti � tj C T=2/r if i < j

2w>
�
S.T=2/ � S.�T=2/

��1S.ti � tj � T=2/r if i � j

(4.32)

(4.33)

and j> D
�
1 : : : 1

�
. For any � ,

�
S.T=2/ � S.�T=2/

��1
.S.�/ � S.��// is a diagonal matrix so that

w>
�
S.T=2/ � S.�T=2/

��1
.S.�/ � S.��//r D 0, implying that † a symmetric matrix.

To summarize, the initial conditions z satisfy the gap closure conditions (NC2) iff †� D �g0j with
� D Lkz. Theorem 3.2 has been proven and † was shown to be symmetric.

4.6. Explicit expression of the positions and velocities (proof of Theorem 3.4) The expressions
of the positions u and velocities v as functions of the impact times t1; : : : ; tk are now derived. Given k
and i � k, 8� 2 Œ0; �i �:

z.� C ti / D S.�/Uiz0 (4.34)

D S.� C ti /z0 � 2S.�/ClLlz0 from (4.16)

D 2

kX
jD1

�jS.� C ti � tj /.I � S.�T //�1r � 2
iX

jD1
�jS.� C ti � tj /r from (4.7), (4.21)

D 2

kX
jDiC1

�j
�
S.T=2/ � S.�T=2/

��1S.� C ti � tj /r

C 2

iX
jD1

�j
�
S.T=2/ � S.�T=2/

��1S.� C ti � tj C T=2/r using (4.6)

Setting

�T .�/ D 2
�
V�>Q��1 0

� �
S.T=2/ � S.�T=2/

��1S.�=2/r; (4.35)

 T .�/ D 2
�
0 V�>Q

� �
S.T=2/ � S.�T=2/

��1S.�=2/r D 2
d�p;T

dt
.t/; (4.36)

Eq. (4.34) can be recast into

u.� C ti / D
iX

jD1
�j�T .2.� C ti � tj / � T /C

kX
jDiC1

�j�T .2.� C ti � tj /C T /; (4.37)

v.� C ti / D
iX

jD1
�j T .2.� C ti � tj / � T /C

kX
jDiC1

�j T .2.� C ti � tj /C T /; (4.38)

which ends the proof of Theorem 3.4.
The main notations are summarized in the nomenclature at the end.
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5. Dimension of the solution space and nonsmooth modes [proof of Theorem 3.3] We now
prove Theorem 3.3 which justifies the notion of nonsmooth modes as two-dimensional surfaces in the
phase space. It implies the existence of continua of potential solutions.

Proof. Assume g0 ¤ 0. Given a generic point s 2 S, †.s/ is invertible and then � D �g0†�1.s/j. So in
the neighbourhood of s, S is the set of .t1; : : : ; tk/ such that….t1; : : : ; tk/†�1.t1; : : : ; tk/j D 0. This gives a
priori k equations

Pk
jD1…i;j�j D 0 for i 2 J1; kK. But � ¤ 0 so there is an index i0 such that �i0 ¤ 0. And

… is skew-symmetric so

0 D �>…� D
kX
iD1

�i

kX
jD1

…i;j�j D �i0

kX
jD1

…i0;j�j C
X
i¤i0

�i

kX
jD1

…i;j�j : (5.1)

Hence, the nullity of the k � 1 rows i ¤ i0 of…†�1j implies the nullity of row i0, which proves that, in the
neighbourhood of s, S is the set of solutions of k � 1 equations in the k unknowns t1; : : : ; tk . These k � 1
equations can be linearized around s which yields k�1 linear equations Ei D 0 with i ¤ i0 in t1; : : : ; tk . In the
following, we assume w.l.o.g. that i0 D k. The Jacobian matrix of .t1; : : : ; tk/ 7! .E1; : : : ; Ek�1/ is generically
of rank k, because otherwise the k submatrices of dimension k � 1� k � 1 should be singular, corresponding to
k additional equations. Hence, generically, there exists a linear form F such that .E1; : : : ; Ek�1; F / is of rank
k, hence the Jacobian matrix of .t1; : : : ; tk/ 7! .E1; : : : ; Ek�1; F / is invertible. The inverse function theorem
implies that .E1; : : : ; Ek�1; F / yields locally a system of curvilinear coordinates and S is the set of points
whose first k � 1 coordinates are zero, corresponding to curves. This ends the proof for the case g0 ¤ 0.

If g0 D 0,†� D 0 with � ¤ 0 so necessarily† is singular. This gives one equation det.†.t1; : : : ; tk/ D 0
and when this condition is satisfied, † is generically of rank k � 1. Its adjunct matrix is of rank 1 and the
kernel of † is spanned by one column c of the transpose of its adjunct matrix. The other condition to satisfy
is…c D 0 which generically yields, as previously, k � 1 independent equations. A total of k equations to be
solved in k unknowns is available. There is generically a countable set of solutions. �

The sub-generic case where the sequence .�i / is invariant by a transformation n 7! n � a for some
a 2 N yields k�1 linearly dependent equationsEi D 0, i D 1; : : : ; k�1. However, from Proposition 6.6,
the solution space is still of dimension 1, provided g0 ¤ 0.

We now prove Corollary 3.1 concerning admissible solutions, which is a direct consequence of
Theorem 3.3. It proves the existence of nonsmooth modes as soon as an admissible solution exists, in the
generic case.

Proof. Admissible solutions are potential solutions satisfying NC3 so if an admissible solutions has impact
times s 2 Rk , then s 2 S. If g0 ¤ 0, Theorem 3.3 implies that a generic s lies on a curve of impact times
corresponding to some potential solutions. Since NC3 is satisfied for x, it is satisfied in the neighbourhood
of s by continuity of t 7! Qg.x.t// hence the curve of potential solutions is also locally a curve of admissible
solutions. If g0 D 0, from Theorem 3.3 S forms, generically, a set of isolated points, hence s is an isolated
point of Rk . �

6. Symmetries in the modal orbits Theorems 3.1 and 3.2 state that for a given k, potential solutions
x0 2 R2n can be sought as the images by ' of vectors � 2 Rk solutions of

�
….t1; : : : ; tk/� D 0
†.t1; : : : ; tk/� D �g0j:

(6.1a)

(6.1b)

When g0 ¤ 0, non-trivial solutions may exist only if†.t1; : : : ; tk/ is invertible and then the two vectorial
conditions reduce to ….t1; : : : ; tk/†�1.t1; : : : ; tk/j D 0 which yields a priori k � 1 equations in the k
unknowns t1; : : : ; tk , and then a potential solution for t1; : : : ; tk is given by x0 D '.�/ D

�
�g0†

�1j
�
.

However, some potential solutions x0 correspond to free-flight durations �i D ti � ti�1 which
are not all independent. For example, Fig. 4 illustrates the position of a contacting node of a 7-ipp
solution for which the sequence of free-flight durations : : : ; �1; �2; �3; �4; �5; �6; �7; : : : is of the form
: : : ; c; b; a; b; c; d; d; : : : . For more detailed about Fig. 4, refer to subsection 7.4 (Fig. 4 is the same as
Fig. 15 3 ). The sequence .�i / is invariant, modulo 7, by the transformation n 7! 6 � n, as shown in
Tab. 1. The position features two axes of symmetry corresponding to the symmetry in the sequence .�i /.

The current section shows in general how the symmetry in the sequence is reflected by symmetries in
the motion.
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n 1 2 3 4 5 6 7
�n c b a b c d d

6 � n 5 4 3 2 1 7 6
�6�n c b a b c d d

Table 1: Invariance of the sequence : : : ; c; b; a; b; c; d; d; : : : by the transformation n 7! 6 � n.
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Figure 4: Example of motions with symmetries of the free-flight durations sequence.

6.1. Symmetry of a k-periodic sequence Let .�n/n2Z denote a sequence of period k 2 N�.

Proposition 6.1 If .�n/ is invariant by the transformation n 7! a � n for some a 2 Z, then a is unique
modulo k.

Proof. The sequence .�n/, which is invariant by the transformation n 7! a� n, is also invariant by n 7! b � n

iff it is invariant by n 7! b � a C n, i.e. iff b � a is a multiple of k. Hence if such an a exists, it is unique
modulo k. �

The transformation n 7! a � n is involutory so its cycle decomposition only involves transpositions.
The following proposition lists the number of invariant elements of n 7! a � n, which explains several
properties proven later.

Proposition 6.2 [Number of invariant elements] The equation a � i D i of unknown i has:
� exactly one solution modulo k if k is odd;
� no solution if k is even and a is odd;
� exactly two solutions modulo k if both k and a are even.

Proof. If k D 2r � 1, in Z=kZ, 2r D 1 implies that, the equivalence class Œ2� is invertible, of inverse Œr�.
Hence a D 2i iff ra D 2ri D i which gives exactly one solution modulo k. If k D 2r , a D 2i has no solution
if a is odd. If a is even, i D a=2 modulo r so there are exactly two solutions: a=2 and r C a=2. �

6.2. Extension of the impact times sequence to Z In order to properly explore symmetries, the
sequence .ti / is extended from i 2 N to i 2 Z. The sequence of impact times .ti /i2N introduced in
subsection 2.2 is such that t0 D 0 and 8i 2 N, tiC1 D ti C �iC1. The sequence of free-flight durations
.�i /n can be defined over Z by periodicity, so the definition of .ti /n can also be extended to Z with t0 D 0
and 8i 2 Z, tiC1 D ti C �iC1.

It follows that the definition of… and † can be extended too. Recall that the skew-symmetric matrix
… is defined for 0 < i < j � k by …i;j D ‡T .2.tj � ti / � �/. Introducing the sign function ı defined
on J�.k C 1/; k C 1K with the convention ı.0/ D 0, this can be rewritten as

8.i; j / 2 J1; kK2; …i;j D ‡T .2.tj � ti / � ı.j � i/T /: (6.2)

Similarly, the symmetric matrix † is defined for i < j � k by

†i;j D 2w>
�
S.T
2
/ � S.�T

2
/
��1S.ti � tj C T

2
/r WD �T .2.tj � ti / � T /: (6.3)
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Introducing the sign function � on J�.k C 1/; k C 1K with the convention �.0/ D 1, it can be rewritten as

8.i; j / 2 J1; kK2; †ij D �T .2.tj � ti / � �.j � i/T / (6.4)

because �T .�/ is an even function. Finally, Definitions (6.2) and (6.4) can be extended from J1; kK2 to Z2
by defining ı and � on Z as:

8p 2 Z; ı.p C k/ D 2C ı.p/ and �.p C k/ D 2C �.p/ (6.5)

Then .…ij / and .†ij / define two sequences which are k-periodic with respect to both indices.

6.3. Symmetries of positions in the time domain Let .�i /i2Z denote a k-periodic sequence invariant
by n 7! a�n for some a 2 Z. From the previous subsection, this sequence uniquely defines the sequence
.ti /i2Z.

Proposition 6.3 The sequence .ti C ta�i�1/i is of constant value ta�1.

Proof. 8i < j ,

tj � ti D

jX
pDiC1

�p D

jX
pDiC1

�a�p D
a�i�1X
pDa�j

�p D ta�i�1 � ta�j�1 (6.6)

so that .ti C ta�i�1/i is constant of value t0 C ta�1 D ta�1. �

We can verify Proposition 6.3 with the example in Fig. 4, corresponding to a D 6:

t2 C t6�2�1 D t2 C t3 D .c C b/C .c C b C a/ D c C b C aC b C c D t5 (6.7a)

t4 C t6�4�1 D t4 C t1 D .c C b C aC b/C .c/ D c C b C aC b C c D t5: (6.7b)

Theorem 6.4 Let u denote the position defined over R corresponding to free dynamics of durations
.�i /i2Z. If g0 ¤ 0 and † is invertible, then

8t 2 R; u.t/ D u.ta�1 � t /: (6.8)

Proof. If g0 ¤ 0, it follows from Theorems 3.1 and 3.2 that for a given .t1; : : : ; tk/, u0 is uniquely determined
by x0'.�/ D '.�g0†�1j/. Then t 7! u.t/ and t 7! u.ta�1 � t /, which are both solutions of M RuCKu D 0,
correspond to the same g0 and the same free dynamics durations: �1 D �a�1, �2 D �a�2, etc., therefore
u.t/ D u.ta�1 � t / for all t 2 R. �

Corollary 6.1 8t 2 R, let u.t/ denote the positions corresponding to the free dynamics of durations
.�i /i2Z with g0 ¤ 0. Then u has the following axes of symmetry:

2t D ta�1Cpk; p 2 Z: (6.9)

These correspond to two axes of symmetry on every period.

Proof. From Theorem 6.4

u
�
t C

ta�1Cpk
2

�
D u

�
t C

ta�1 C pT
2

�
D u

�
ta�1 �

�
t C

ta�1 C pT
2

��
(6.10a)

D u
� ta�1 � pT

2
� t
�
D u

� ta�1 C pT
2

� t
�

(6.10b)

where the T -periodicity of u is used in the last equality. This proves that ta�1Cpk=2 is an axis of symmetry
of u, for any p 2 Z. This corresponds to two axes of symmetry in Œ0; T / because if ta�1Cpk=2 2 Œ0; T / for
some p, then exactly one of ta�1Cpk=2C T=2 and ta�1Cpk=2 � T=2 is in Œ0; T / too. �

Corollary 6.2 Under the assumptions of Theorem 6.4, the following lines are axes of symmetry for the
position u, 8p 2 Z:
� if k D 2r � 1 and a D 2b,

t D
tb�1 C tb

2
C pT and tbCr�1 C pT (6.11)
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� if k D 2r � 1 and a D 2b C 1,

t D
tbCr�1 C tbCr

2
C pT and tb C pT (6.12)

� if k D 2r and a D 2b,

t D
tb�1 C tb

2
C pT and

tbCr�1 C tbCr
2

C pT (6.13)

� if k D 2r and a D 2b,

t D tb C pT and tbCr C pT (6.14)

Proof. If k D 2r � 1 and a D 2b, Proposition 6.3 with i D b in Corollary 6.1 implies that

t D
ta�1
2
D
t2b�b�1 C tb

2
D
tb�1 C tb

2
(6.15)

is an axis of symmetry. Another one is given by

t D
ta�1
2
C
T

2
D
ta�1
2
C
�b�rC1 C � � � C �b�1 C �b C �bC1 C � � � C �bCr�1

2
(6.16a)

D
ta�1
2
C
�b C 2.�bC1 C � � � C �bCr�1/

2
D tb C �bC1 C � � � C �bCr�1 D tbCr�1 (6.16b)

� If k D 2r � 1 and a D 2b C 1, then a C k is even and .k C a/=2 D r C b which yields the axis of
symmetry.

� If k D 2r and a D 2b, as in Eq. (6.15), t D .tb�1 C tb/=2 is an axis of symmetry. The other axis over
the period is given by

t D
ta�1
2
C
T

2
D
ta�1
2
C
.�b�rC1 C � � � C �b�1/C �b C .�bC1 C � � � C �bCr�1/C �bCr

2

D
tb C tb�1 C �b C 2.�bC1 C � � � C �bCr�1/C �bCr

2

D tbCr�1 C
�bCr
2
D
tbCr�1 � tbCr

2
(6.17)

� If k D 2r and a D 2b � 1,

t D
ta�1
2
D
t2b�b C tb

2
D tb (6.18)

which provides an axis of symmetry. And a0 D k � a D 2r � 2b � 1 D 2.r � b/ � 1 is odd too, so
t D tr�b D tr�bCk D tbCr is also an axis of symmetry.

�

The conclusions of Corollary 6.2 apply to the introductory example in Fig. 4 where k D 7 D 2r � 1

with r D 4 and a D 6 D 2b with b D 3: there are indeed two axes of symmetry, of equations
t D .tb�1 C tb/=2 D .t2 C t3/=2 D c C b C a=2 and t D tbCr�1 D t6 D c C b C aC b C c C d .

6.4. Dimension of the solution space in the symmetric case The following proposition shows the
consequences of symmetry of the sequence .�i / on the matrices… and †.

Proposition 6.5 If .�i / is a symmetric sequence (invariant by n 7! a � n), then

…i;j D …�.j /;�.i/ and †i;j D †�.j /;�.i/ (6.19)

where � W p 7! a � p � 1 (modulo k).
Proof. Using Proposition 6.3 in Eq. (6.2):

…i;j D ‡T .2.tj � ti / � ı.j � i/T / (6.20a)
D ‡T .2.ta�i�1 � ta�j�1/ � ı..a � i � 1/ � .a � j � 1//T / (6.20b)
D …a�j�1;a�i�1 (6.20c)

In the exact same way, †i;j D †a�j�1;a�i�1. �

When .�i / is a k-periodic symmetric sequence, the unknowns t1; : : : ; tk are no longer independent.
However, this reduction of independent unknowns comes together with the reduction of the number of
independent equations in Theorem 3.3 in such a way that the dimension of the solution space is unchanged.
This result is shown in Appendix A and provided as the following Proposition.

Proposition 6.6 If the k-periodic sequence .�i /i2Z is invariant by the transformation i 7! a� i � 1 and
if g0 ¤ 0, the solution space of….t1; : : : ; tk/†

�1.t1; : : : ; tk/j D 0 is of dimension 1.
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7. Illustration on a simple serial oscillator The mathematical results exposed in Section 3 are now
illustrated on a simple oscillator: a one-dimensional spring–mass system with n masses m1; : : : ; mn and
n springs of positive stiffnesses k1; : : : ; kn as depicted in Figure 5. For this system, the derivations slightly
simplify. However, the methodology to calculate nonsmooth modes and the computational cost would be
similar for more sophisticated systems.

Supplementary material

Animations corresponding to the solutions presented in this section can be viewed online using the
hyperplink provided in [39]; animations for other systems are also available there.

The positions of the masses are denoted x1; : : : ; xn and by choice, x1 D � � � D xn D 0 at the resting
position. The motion of the last mass (in red) is constrained by an obstacle. The gap between the

m1 m2 mn�1 mn d

k1 k2 kn�1 kn

x1 x2 xn�1 xn

Figure 5: Base model for the study of nonsmooth modes. Top: at rest. Bottom: in motion.

contacting mass and the obstacle is given by Qg.x/ D d � xn, corresponding to g0 D d where d can be
positive or negative. The perfectly elastic Newton impact law for the description of contact reads

d � xn.ti/ D 0 H) PxCn .ti/ D �Px�n .ti/: (7.1)

All illustrations are provided with n D 5, mi D 1=n, ki D n and g0 D d D 1.

7.1. Simplified governing equations

7.1.1. Mass and stiffness matrices The equilibrium equation for each mass writes, with the convention
x0 D xnC1 D 0 and knC1 D 0:

8i 2 J1; nK; mi Rxi D kiC1.xiC1 � xi / � ki .xi � xi�1/ (7.2)

or in a matrix form

M Ru D �Ku (7.3)

with

u D

2666664
x1
x2
:::

xn�1
xn

3777775 ; M D

2666664
m1

m2
: : :

mn�1
mn

3777775 ; K D

2666664
k1 C k2 �k2
�k2 k2 C k3 �k3

: : :
: : :

: : :

�kn�1 kn�1 C kn �kn
�kn kn

3777775
which provides the M and K matrices of Problem (2.12). It is noteworthy that M is positive-definite as a
diagonal matrix of coefficients m1; : : : ; mn > 0 and so is K: k1; : : : ; kn > 0 and the associated quadratic
form

Pn
iD1 ki .xi � xi�1/2 is positive, and zero iff x0 D : : : D xn D 0.

7.1.2. Gap and impact law The gradient w1 of the gap g.u/ D d � xn is given by w1 D Œ0 : : : 0 � 1�>, so
G D m�1n , r2 D V�1w1G�1=2 D �w1 and

r D
�

0
Q>r2

�
D

2666666664

0
:::

0

Qn;1
:::

Qn;n

3777777775
; w D P�>

�
w1
0

�
D

1

mn

2666666664

Qn;1=!1
:::

Qn;n=!n
0
:::

0

3777777775
: (7.4)
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7.1.3. Positions and velocities Following from Theorem 3.4, the positions and velocities u and v are given
8� 2 Œ0; �iC1� by

u.� C ti / D
iX

jD1
�j�p;T .2.� C ti � tj / � T /C

kX
jDiC1

�j�p;T .2.� C ti � tj /C T /; (7.5a)

v.� C ti / D
iX

jD1
�j p;T .2.� C ti � tj / � T /C

kX
jDiC1

�j p;T .2.� C ti � tj /C T / (7.5b)

where �T .�/ and  T .�/ can be computed with�
�T .�/

 T .�/

�
D 2P�1

�
S.T=2/ � S.�T=2/

��1S.�=2/r (7.6)

D

�
V�>Q��1 0

0 V�>Q

�2664
sin.��=2/
sin.�T=2/

�
cos.��=2/
sin.�T=2/

cos.��=2/
sin.�T=2/

sin.��=2/
sin.�T=2/

3775
26664

0
Qn;1
:::

Qn;n

37775 : (7.7)

It follows that

�p;T .�/ D �
1
p
mp

nX
jD1

cos.!j�=2/
!j sin.!jT=2/

Qp;jQn;j ; (7.8)

 p;T .�/ D
1
p
mp

nX
jD1

sin.!j�=2/
sin.!jT=2/

Qp;jQn;j D 2
d�p;T

dt
.�/: (7.9)

where �p;T .�/ and  p;T .�/ denote the p element of �T .�/ and  T .�/, respectively.

7.1.4. Components of the governing matrices Using the definition of† with the values of r and w found in
Eq. 7.4, it comes that † is populated by the following elements with i � j � k:

†i;j D
1
p
mn

nX
iD1

cos.!i .ti � tj C T=2//
!i sin.!iT=2/

Q2n;i D ��n;T .2.ti � tj /C T /: (7.10a)

The entries of matrix… reduce for i < j � k to

…i;j D ‡T .2.tj � ti / � T / D

nX
iD1

sin.!i .ti � tj C T=2//
sin.!iT=2/

Q2n;i (7.11)

because riCn D Qn;i (see Eq. 7.4).

7.1.5. Physical interpretation of the kernel isomorphic to the invariant subspace of u The n-th velocity
just before the j -th impact is given by

vn.tj / D e>2nP�1zj D
1
p
mn

r>zj (7.12)

where zj denotes the state of the system just before the j -th impact written in the new basis: zj D
S.�j /N : : :NS.�1/z0. However, � D Lkz0 implies �j D r>zj and then

�j D
p
mnv

�
n .tj /: (7.13)

This provides a physical interpretation of �: its component j is proportional to the velocity just before the
j -th impact. In particular, �j and v�n .tj / have the same sign. This observation suggests an efficient way
of detecting potential solutions which are not admissible solutions, since admissible solutions necessarily
have non-negative pre-impact velocities.
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7.2. One-impact-per-period solutions In order to facilitate the coming discussions, the following defi-
nition of harmonic is used.

Definition 7.1 [Harmonic] A harmonic is a multiple of Ti WD 2�=!i for some i 2 J1; nK.

7.2.1. Periodicity: Theorem 3.1 (NC1) If k D 1, t1 D T is the period. The skew-symmetric matrix … is of
dimension k D 1, hence… D

�
0
�

and j D Œ1�, � D Œ��. Any � 2 R satisfies…� D 0 and Theorem 3.1
stipulates that potential x0 lie at most in a one-dimensional manifold.

7.2.2. Potential solutions: Theorem 3.2 (NC2) According to Theorem 3.2, NC2 can be expressed as†.T /� D
�g0j D �d j, which gives a condition on � D Œ��. Here, † D Œ��n;T .T /� and the condition becomes
�n;T .T /� D d . The existence and uniqueness of potential solutions is determined by the values of
�n;T .T / and the nullity of d .
� If d D 0, there is generically no non-trivial potential solution. If T is solution of �n;T .T / D 0,

which occurs for a countable set of values, there is an infinity of potential solutions with the same
period T given by '.�/, � 2 R.
� If d ¤ 0, there is no potential solution if �n;T .T / D 0 and a unique potential solution corresponding

to � D d=�n;T .T / whenever �n;T .T / ¤ 0. Generically, �n;T .T / ¤ 0 hence, as implied by
Theorem 3.3, there is locally a one-parameter family of periodic trajectories, parametrized by T .

7.2.3. Admissible solutions for a non-vanishing unconstrained gap at rest We focus on the case d ¤ 0

in the neighbourhood of a T such that �n;T .T / ¤ 0. The unique potential solution for T is given by
'.d=�n;T .T //. It is an admissible solution if the gap remains non-negative (NC3). Following the results
from paragraph 7.1.5, a significant proportion of time intervals can be easily excluded using the necessary
(but not sufficient) criterion � � 0, or equivalently

sign.d/ D sign.�n;T .T //: (7.14)

The sign of �n;T .T / is thus an meaningful quantity to track, in order to exclude straightforwardly
non-admissible solutions. From Eq. (7.8), the following holds:

�n;T .T / D �
1
p
mn

nX
jD1

cot.!jT=2/
Qn;j

2

!j
: (7.15)

Since cot is a decreasing function on any of its intervals of definition, T 7! �n;T .T / increases on any
open interval bounded by two consecutive harmonics. On such an interval, its left limit is �1 and its
right limit is C1. It is continuous, hence necessarily has a unique root T0 on every such interval. The
condition � � 0 comes down to seeking periods T of admissible solutions in intervals delimited:
� on the the left, by a harmonic and on the right, by the next root T0 of �n;T .T /, if d > 0;
� on the the left, by a root T0 of �n;T .T / and the right, by the next harmonic, if d < 0.

The sufficient condition NC3 (xn � d on .0; T /with xn given by Eq. (7.5)) has to be tested numerically on
every such intervals. If it is satisfied for one T , then '.d=�n;T .T // is the unique admissible solution and
there is a one-parameter family of admissible solutions in the neighbourhood of T through Corollary 3.1.

It is worthy to note that there is a complementarity between the open gap (d > 0) and pre-stressed
system (d < 0) configurations, in the sense that for any given period, the impact velocity is always
compatible with the unilateral constraints for either d > 0 or d < 0, but not simultaneously. This
complementarity is illustrated in Fig. 6.

7.2.4. Closed-form expression of the nonsmooth modes and illustrations From Eq. (7.5) consequence of
Theorem 3.4, the positions and the velocities are known explicitly: 8� 2 Œ0; T �,8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:
xp.�/ D �

�
p
mp

nX
jD1

cos.!j .� � T=2//
!j sin.!jT=2/

Qp;jQn;j

Pxp.�/ D �
�
p
mp

nX
jD1

sin.!j .� � T=2//
sin.!jT=2/

Qp;jQn;j :

(7.16a)

(7.16b)

On an interval of periods corresponding to admissible solutions, Eq. (7.16) gives a closed-form expression
of 1-ipp nonsmooth modes parametrized by the period T and time � . The motion of the n-th mass is
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Figure 6: Graph of T 7! �n;T .T / [ ]. Harmonics [ ]. Grey area [ ] corresponds to � < 0, i.e.
zones with no admissible solutions if d > 0. Orange area [ ] corresponds to � > 0, i.e. zones with no
admissible solutions if d < 0. 1 and 6 delimit an interval of periods corresponding to admissible
solutions, see Fig. 7.
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Figure 7: Continuum of solutions with 1 impact per period. All solutions correspond to positive
pre-impact velocities (�n;T .T // > 0), located in the hatched orange zone of Fig. 6.

plotted in Fig. 7 for several periods in the interval delimited by 1 and 6 in Fig. 6. The nonsmooth mode
corresponding to this continuum of admissible solutions is projected in the .xn�1; xn; Pxn/ space in Fig. 8.

Remark 7.1.
� The sequence of free flights is 1-periodic, hence Corollary 6.1 with a D 0 implies that t D t0=2 D 0

and t D t1=2 D T=2 are axes of symmetry for the positions, hence the velocities are symmetric
with respect to the points .0; 0/ and .T=2; 0/. This is clear in Fig. 7 and corresponds to the symmetry
with respect to the plane Pxn D 0 in Fig. 8.
� All the velocities Pxp vanish at � D T=2, which is a direct consequence of the symmetry.
� For p ¤ n, PxCp .0/ D Px�p .T / because the lines of Q are orthogonal:

P
j Qp;jQn;j D 0 which

implies from Eq. (7.16) the continuity of positions of the non-constrained masses.
� For p D n, Pxn.0C/ D �1=mn D �Pxn.T �/ which corresponds to the impact law.
� For larger T , the probability of meeting the obstacle between impacts increases together with the

number of oscillations during one period. This indicates that the density of nonsmooth modes
decreases with the period.

7.3. Two-impact-per-period solutions

7.3.1. Invariance by u: Theorem 3.1 (NC1) The impact times are t1; t2, T D t2 being the period. The free
flight durations are �1 D t1 and �2 D T � t1. The skew-symmetric matrix 2 � 2-… reads:

… D

�
0 a

�a 0

�
(7.17)
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Pxn

xn�1xn

(a) From 5 to 6 . (b) From 3 to 6 .

(c) From 2 to 6 . (d) From 1 to 6 .

Figure 8: Projection in .xn�1; xn; Pxn/ of the 1-ipp nonsmooth mode in the neighbourhood of 4T3.
The plots correspond to various intervals of T . The green ellipse shows the motion 6 in Fig. 7, i.e. the
grazing orbit of the third linear mode. The red curves correspond to motions 5 , 3 , 2 , and 1 . The
yellow curve highlights the intersection between the nonsmooth mode and the hyperplane xn D d .

with

a D ‡�1C�2
.�2 � �1/ D

nX
jD1

sin.1
2
!j .�2 � �1//

sin.1
2
!j .�1 C �2//

Q2n;j D
p
mn n;�1C�2

.�2 � �1/: (7.18)

Using Theorem 3.1, NC1 comes down to…� D 0 hence � D 0 or a D 0. Non-trivial solutions can be
found only if a D 0, which yields the following nonlinear equation in �1; �2:

 n;�1C�2
.�2 � �1/ D 0: (7.19)

The set of roots of a is denoted by S .

Solution curves of Eq. (7.19) There is generally no closed-form expressions for the solutions to
Eq. (7.19). It is yet possible to describe the behaviour of the roots of  n;�1C�2

.�2 � �1/ when �1 C �2 is
in the neighbourhood of a harmonic. Indeed, the function .�1; �2/ 7!  n;�1C�2

.�2 � �1/ is defined when
�1 C �2 is not a harmonic. It shares the roots of

Qa.�1; �2/ WD a.�1; �2/

nY
jD1

sin.1
2
!j .�1 C �2// (7.20)

which is a linear combination of sin.!j .�2 � �1/=2/ for fixed T , hence the equation Qa.�1; �2/ D 0 is
easier to solve numerically. Roots of Qa are depicted in Fig. 9.

Obvious roots are given by �1 D �2, which corresponds to NC1 for 1-ipp motions seen as 2-ipp
motions. The set �2 D �1 emerges clearly in Fig. 9. Some other particular roots can be very easily
computed. When �1C �2 is in the vicinity of a harmonic pTi , a.�1; �2/ is dominated by the i -th element
of the sum and its roots are in the neighbourhood of the roots of

sin.1
2
!i .�2 � �1// D sin.1

2
!i .T � 2�1// D sin.1

2
!iT / cos.!i�1//� cos.1

2
!iT / sin.!i�1/ (7.21)
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Figure 9: Level set 0 of ‡�1C�2
.�2 � �1/, which corresponds to potential solutions [ ]. Line

�1 C �2 D 3T3 [ ]. Lower-right triangle: Curve corresponding to an continuum of admissible
solutions [ ]. 1 and 6 correspond to the curves reported in Fig. 10. Upper-left triangle: Dashed
lines are iso-periods when �1 C �2 is harmonic. The dots correspond to the intersection between the
roots and iso-period lines and they are regularly spaced on each line.

which converges to � sin.!i�1/ when T approaches pTi . After all, the solutions of Eq. (7.19) are such
that �1 D pTi=2 with p 2 N� when �1 C �2 ! pTi . The intersections between the harmonics lines
�2 D qTi � �1 and the roots of a is the setn�p

2
Ti ;

�
q �

p

2

�
Ti

�
; i; p; q 2 N�

o
: (7.22)

This is illustrated by coloured dots in Fig. 9 and produces obvious roots of Qa. This result will become very
handy in view of subsection 7.3.3.

Remark 7.2.
� Because a.�1; �2/ D �a.�2; �1/, �1 D �2 is an axis of symmetry for the roots of a (see Fig. 9).
� Since Qa is analytic, the implicit function theorem applies almost everywhere and it is therefore

possible to calculate locally a parametrization T .�1/.
� Generically, the roots of a are arranged along curves, in agreement with Theorem 3.3.

7.3.2. Potential solutions: Theorem 3.2 (NC2) The set of times of impact .t1; t2/ for which there exists a
potential solution is a subset of the set of the roots of a. Using Theorem 3.2, NC2 writes

†� D �d j where † D

�
˛ ˇ

ˇ ˛

�
; j D

�
1

1

�
(7.23)

with ˛ D ��n;�1C�2
.�1 C �2/ and ˇ D ��n;�1C�2

.�2 � �1/. For �1; �2 solutions of Eq. (7.19), the
existence and uniqueness of potential solutions is determined by the value of ˛, ˇ and the nullity of d .
The following illustrates Theorem 3.3 for k D 2.

Non-vanishing algebraic gap d ¤ 0
� If ˛ D ˇ ¤ 0, any � such that �2 D ��1 � d=˛ satisfies (7.23), hence a solution space of

dimension 1.
� If ˛ D �ˇ, †� D �d j has no solution.
� If ˛ ¤ ˇ, † is invertible and there is a unique solution � D �d†�1j. This is the generic case.

Case d D 0
� If ˛ D ˇ D 0, then � satisfies †� D �d j and the solution space is two-dimensional.
� If ˛ D ˇ ¤ 0, any � such that �1 D ��2 satisfies NC2 so the set of solutions is of dimension 1.
� If ˛ D �ˇ ¤ 0, �1 D �2 is sufficient and the solution space if of dimension 1.
� If ˛ ¤ ˇ, � D �d†�1j D 0 and there is no non-trivial solution (generic case).

For d ¤ 0, admissible solutions of the generic case ˛ ¤ ˇ and the non-generic case ˛ D ˇ ¤ 0 are
investigated in depth in subsection 7.3.3.

7.3.3. Admissible solution when d ¤ 0
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Generic case ˛ ¤ ˇ The general setting ˛ ¤ ˇ is considered and � satisfies both …� D 0 and
†� D �d j. Hence, � D �d†�1j but j is obviously an eigenvector of† corresponding to the eigenvalue
˛ C ˇ so �1 D �2 WD � and � D 1=˛ C ˇ. The physical interpretation is that the mass n has the
same impact velocity at t1 and T . The expressions of the positions and velocities result from Eq. (7.5):
8� 2 Œ0; �1�,(

xp.�/ D �.�p;�1C�2
.2� C �2 � �1/C �p;�1C�2

.2� � �1 � �2//

Pxp.�/ D �. p;�1C�2
.2� C �2 � �1/C  p;�1C�2

.2� � �1 � �2//

(7.24a)

(7.24b)

and 8� 2 Œ0; �2�,(
xp.� C �1/ D �.�p;�1C�2

.2� � �1 � �2/C �p;�1C�2
.2� C �1 � �2//

Pxp.� C �1/ D �. p;�1C�2
.2� � �1 � �2/C  p;�1C�2

.2� C �1 � �2//:

(7.25a)

(7.25b)

As previously, the admissible solutions necessarily correspond to non-negative pre-impact velocities:
�1 � 0, �2 � 0 which reduces to � � 0. Besides, the sign of � switches when T crosses a harmonic.
This sign is the product between the sign of d and the sign of

˛C ˇ D ��n;T .T /� �n;T .T � 2t1/ D
1
p
mn

nX
jD1

Q2n;j

!j

cos
�!j

2
T
�
C cos

�!j

2
.T � 2t1/

�
sin
�!j

2
T
� : (7.26)

When T is in a punctured neighbourhood of a harmonic pTi and t1 is not a multiple of Ti , the term i of
the above sum dominates since sin.!iT=2/ ! 0 when T ! Ti . It tends to C1 when T ! TCi and
�1 when T ! T �i . Therefore, when d > 0, � � 0 for T in the left-neighbourhood of a harmonic and
� � 0 in the right-neighbourhood. When d < 0, � � 0 in the right-neighbourhood of a harmonic and
� � 0 in the left-neighbourhood.

Remark 7.3. Recall that the intersection points between the set S of impact times leading to potential
solutions and harmonic lines (�1 C �2 D pTi ) are given by Eq. (7.22). One strategy to search for
admissible solutions is hence to check the admissibility of potential solutions in the left-neighbourhood
(resp. right-neighbourhood) of these points if d > 0 (resp. d < 0).
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Figure 10: Positions of the n-th mass of on a continuum of admissible solutions with 2 impacts per
period. Circled numbers refer to Figs. 9 and 11. Impact times [ ]. Axes of symmetry [ ].

The position xn of a continuum of admissible solutions obtained for T in the left-neighbourhood of
3T3 is pictured in Fig. 10. In Fig. 9, the admissible solution 6 is indeed at the intersection of the line
�2 D 3T 3 � �1 and S . This continuum constitutes a nonsmooth mode illustrated in Fig. 11.

Remark 7.4. Theorem 6.4 holds here because the sequence of free-flight durations : : : ; �1; �2; : : : is
invariant by the transformation n 7! 2 � n. The sets t D t1=2 and t D .t1 C T /=2 are indeed axes of
symmetry for every xp, in particular for xn as shown in Fig. 10.
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Pxn

xn�1xn

(a) From 3 to 6 . Opaque: Œ0; �1�. (b) From 3 to 6 . Opaque: Œ�1; �2�.

(c) From 1 to 6 . Opaque: Œ0; �1�. (d) From 1 to 6 . Opaque: Œ�1; �2�.

Figure 11: 2-ipp nonsmooth mode. Circled numbers refer to Figs. 9 and 10.

Non-generic case ˛ D ˇ ¤ 0 As opposed to the generic case for which continua of solutions emanate
from a curve in the space of impact times .t1; T / (or .�1; �1 C �2/), when ˛ D ˇ ¤ 0 continua emanate
from a single point in this space. The condition †� D �d j reads �1 C �2 D �d=˛ and the expression
of the positions stems from Eq. (7.5):

xp.�/ D

8̂<̂
:�1�p;T .2� C �2 � �1/ �

�d
˛
C �1

�
�p;T .2� � T / if � 2 Œ0; �1�

�1�p;T .2� � T / �
�d
˛
C �1

�
�p;T .2� C �1 � �2/ if � 2 .�1; T �

(7.27)

Examples of such solutions are proposed in Fig. 12, which illustrates a continuum of admissible solutions
sharing the same impact times t1 and T . In contrast to the generic case where † is invertible, it shows
that positions do not display any axis of symmetry, except the blue one (�1 D 0, axes at 0 and T=2), red
one (�2 D 0, axes at t1 and t1 C T=2) and the purple one (�1 D �2, axes at t1=2 and .t1 C T /=2). This
highlights the necessity of an invertible † in Theorem 6.4.

The geometric properties of the position curves in Fig. 12 are now interpreted.
� The pre-impact velocities �1 and ��1 � d=˛ are bounded by 0 and �d=˛. Since Pxn is a con-

tinuous function of �1, the pre-impact velocities continuously vary from .0;�d=˛/ (blue curve)
to .�d=˛; 0/ (red curve), which are trajectories with two grazing contacts and one (non-grazing)
impact. The sum of the two pre-impact velocities is constant.
� Even though every position xn has generically no symmetry, the set of all admissible positions for
.t1; T / has two axes of symmetry: t D t1=2 and t D .t1 C T /=2. Indeed, if x is an admissible
solution for �1, then, for � 2 Œ0; t1�,

xp.�1 � �/ D �
�d
˛
C �1

�
�n;T .2� C �2 � �1/C �1�n;T .2� � T /; (7.28)

hence � 7! x.���/ is an admissible solution for��1�d=˛ � 0. This proves that t D �1=2 D t1=2
is an axis of symmetry for all positions; similarly, t D .t1 C T /=2 is another axis of symmetry.
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Figure 12: Continuum of 2-ipp admissible solutions with constant impact times. The continuum is
delimited by the blue and the red curves, which both correspond to one impact and two grazing contacts.
The thick purple curve has two axes of symmetry. All the other curves have no axis of symmetry,
because † is not invertible (see Theorem 6.4).

If �1 D �d=.2˛/, then �2 D �1 and these two axes are axes of symmetry for the corresponding
position.
� It can also be shown that the two limiting configurations �1 D 0 and �2 D 0 are associated to the

same solution, but with a time-shift of �1 (and by interchangeability of �1 and �2, of �2 too).
� The continuum of positions has fixed points, i.e. points common to all trajectories. For example,

xp.t1=2/ D �1�n;T .�2/ �
�d
˛
C �1

�
�p;T .�1 � T / D �

d

˛
�n;T .�2/ (7.29)

which does not depend on �1.
� Lastly, positions xp and velocities yp are linear functions of �1, for all p 2 J1; nK. This means that

the manifold of solutions is a ruled surface of the phase space.

0 T0/2 T0

0
d

Time t

Po
si

tio
n

x n

Figure 13: Continuum of 2-ipp admissible solutions with constant impact times and t1 D T0=2. The
continuum includes a 1-ipp admissible solution [ ]: it is a bridge between 1-ipp and 2-ipp solutions.

Interestingly, some manifolds with constant impact times exhibit the additional property of joining a 1-ipp
manifold to a 2-ipp manifold. Such a situation is referred to as bridge between 1-ipp and 2-ipp and arises
when ˛ D ˇ. The positions then reduce to

xp.�/ D

8̂<̂
:�1�p;T .2�/ �

�d
˛
C �1

�
�p;T .2� � T / if � 2 Œ0; T=2�;

�1�p;T .2� � T / �
�d
˛
C �1

�
�p;T .2�/ if � 2 .T=2; T �:

(7.30)

An illustration is provided in Fig. 13. The corresponding manifold is shown in Fig. 14. Such solutions
have the following attributes:
� when �1 D �d=.2˛/, the solution is certainly a 1-ipp of period T=2,
� if this 1-ipp solution is admissible, it is generically part of a 1-ipp nonsmooth mode (Theorem 3.3),

hence its trajectory both belongs to a 2-ipp NSM and a 1-ipp NSM,
� all positions have an axis of symmetry at t D T0=2.
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Pxn

xn�1xn

Figure 14: NSM bridge connecting 1-ipp and 2-ipp manifolds. All trajectories of this manifold
share the same period. Opaque: part corresponding to Œ0; T0=2�. Transparent: part corresponding to
ŒT0=2; T0�. 1-ipp solution [ ]. The purple curve surface intersects 1-ipp nonsmooth mode which is
not represented for clarity purposes.

7.4. Multiple-impact-per-period solutions In the more general case k > 2, the principle is identical to
k D 1 or k D 2. Numerical difficulties emerge from the higher number of equations to be solved. From
Theorems 3.1 and 3.2, it is known that potential solutions can be sought as impact times s D .t1; : : : ; tk/
such that there exists a � 2 Rk solution of….s/� D 0 and †.s/� D �d j. Following up on Remark 3.1
when k is odd, then generically rank.….s// D k � 1 and the kernel of… is spanned by the vector k.s/
of the Pfaffians of the diagonal k � 1 � k � 1 submatrices of … with alternating signs. It therefore
suffices to find s such that the k lines of †.s/k.s/ are all equal to the same arbitrary value � ¤ 0 (k � 1
equations) and for such an s, � is given by � D �dk.s/=�. In practice, one possibility to find admissible
solutions is to seek s with a root-finding numerical solver starting from a random initial guess. The vector
� D �d†�1.s/j corresponding to the numerical solution s must have only non-negative components.
If satisfied, the only remaining condition is that the unilateral constraint should not be violated during
the free flights, which has to be checked numerically as well. When such a point is found, Theorem 3.3
ensures that s is a point of a curve S of impact times corresponding to admissible solutions. This curve
can be computed using continuation techniques [3].
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Figure 15: Continuum of 7-ipp admissible solutions. Bottom-left: symmetric motion of free-flight
durations c; b; a; b; c; d; d . The bottom horizontal arrows in 1 and 4 illustrate the relationship
between the two trajectories: they correspond to the same orbit but with different time-orientation.

Fig. 15 depicts four positions of a 7-ipp nonsmooth mode, identified through the procedure described
above. Diagrams 1 and 4 represent limiting cases of the admissible curve: indeed, they both have a
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Figure 16: Examples of neutrally stable solutions after 1000 periods for 1 ipp (top), 2 ipp (middle),
3 ipp (bottom). [ ] Modal trajectory. [ ] Perturbed solutions.

zero pre-impact velocity, which would become negative if s followed the curve of potential solutions.
In other words, 1 and 4 each have a grazing contact (the fifth and the seventh, respectively); on the
outer-neighbourhood of the admissible domain, the motion violates the contact condition.

Interestingly, 3 exhibits an axis of symmetry. Indeed, the periodic sequence of free-flight durations
�1; �2; : : : ; �7 is of the form c; b; a; b; c; d; d , which is invariant by the transformation n 7! 6 � n.
Invoking Theorem 6.4 (or its Corollary 6.2), it follows that the positions have two axes of symmetry per
period: t D .t2 C t3/=6 and t D t6, as observed in diagram 3 .

Lastly, 1 and 4 correspond to the same curve in the phase space, one parametrized in increasing
time and the other one, in decreasing time (see arrows in Fig. 15, 1 and 4 ).

8. Insight on stability of nonsmooth modes Stability of the periodic trajectories is not thoroughly
investigated in this work, however we give a few indications on how to perform the stability analysis and
illustrate a few neutrally stable orbits. Given an initial condition x0 leading to a k-ipp periodic solution x,
we choose the Poincaré section g.x/ D 0. The question is to quantify the effect of a perturbation ıx0 of
x0 on the state when x returns to the Poincaré map after k impacts—assuming such a state exists in the
neighbourhood of x.T /. This corresponds to the mapping

x0 C ıx0 7! QN QS.�k C ı�k/ QN : : : QN QS.�1 C ı�1/.x0 C ıx0/ (8.1)

where ı�l is an unknown change of duration of the l-th free flight. The first-order Taylor expansion of
this assumed smooth mapping yields an equation of the form

ıx D QN QS.�k/ QN : : : QN QS.�1/ıx0 C
� kX
lD1
QN QS.�k/ : : : QNS 0.�l/ QN : : : QN QS.�1/ı�l

�
x0: (8.2)

The unknowns ı�1; : : : ; ı�k can be found by solving the linear system provided by the k equations
Qg.x..�1 C ı�1/C � � � C .�l C ı�l/// D 0 so that in the end, the perturbation ıx is related to ıx0 by a
matrix A.x0/ such that

ıx D A.x0/ıx0: (8.3)

The eigenvalues of A.x0/ determine the spectral stability of the periodic solutions emanating from x0.
As in [20], the spectral radius � of A.x0/ is observed to be at least 1. If � > 1 for some x0, then the
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Nomenclature
Quantities related to the original basis
N2 mapping of the impact law vC D N2v� n � n

r2 normal vector to the hyperplane of the impact law (Prop. 2.1) n � 1

u; v generalized positions, generalized velocities n � 1
QN mapping of the impact law xC D QNx� 2n � 2n
QS mapping of a free flight of duration � : x.� C t / D QS.�/x.t/ 2n � 2n

w1 gradient of the gap g.u/ D w>1 uC g0 n � 1

x D Œu v�> state vector 2n � 1

g.u/; Qg.x/ gap in terms of positions u, of state x (g.u/ D Qg.x/) 1 � 1

Quantities involved in the change of basis
P change of basis matrix defined in (4.3) such that Px D z 2n � 2n

Q;� orthogonal and diagonal matrices from V�1KV�> D Q�2Q> n � n

V triangular matrix from the Cholesky decomposition M D VV> n � n

Quantities related to the new basis
N mapping of the impact law zC D Nz� (N D I � 2rr>) 2n � 2n

r normal vector to the hyperplane r D Œ0 Q>r2�> 2n � 1

S mapping of a free flight of duration � : z.� C t / D S.�/z.t/ 2n � 2n

w gradient of the gap w D P�1Œw1 0�> 2n � 1

z state vector 2n � 2n

periodic solutions induced by x0 is unstable. If � D 1, it is neutrally stable. First numerical investigations
show that both cases can be observed. Neutrally stable solutions are depicted in Fig. 16 for the system
of section 7 for different numbers of impact per periods (k 2 f1; 2; 3g). The motion stemming from a
perturbed initial condition is shown to consist of the modal trajectory plus a small variation and a time
shift.

9. Concluding remarks Periodic solutions of n-degree-of-freedom nonsmooth systems i) involving
piecewise-linear dynamics and ii) subjected to a single affine unilateral constraint have been investigated.
Apart from the two above assumptions, the formulation is general and embraces non-diagonal mass
matrices as in Finite Element Models, three dimensional systems, two impacting elastic bodies or self-
contact, provided condition ii) holds, etc. Such periodic trajectories have been shown to be governed
by k equations, where k is the considered number of impacts per period. They are organized as one-
parameter continuous families, also called manifolds which commonly define nonsmooth modes of
vibration. Symmetries in the sequence of free-flight durations have been shown to induce symmetries of
the corresponding nonsmooth modes, seen as manifolds of the phase space.

Overall, the present work contributes to characterizing the vibratory properties of nonsmooth systems
and directly makes possible the systematic computation of the response spectrum of a piecewise-linear
vibro-impact oscillators, including branches of multiple-impact solutions. Results have been illustrated on
a 5-dof spring-mass system. It was shown that some periodic solutions are neutrally stable, meaning that
they can be potentially encountered and observed in a wide variety of real-world applications.

Future work will include a more detailed stability analysis and, ideally, an experimental comparison
between the measured response spectrum of a vibro-impact oscillator and the computed one.
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A. Dimensions of modes in the symmetric case The transformation � is an involution since
�.�.i// D a � .a � i � 1/� 1 D i and if P� is the associated permutation matrix,… and † are invariant
by the transformation T defined for a generic matrix A by T .A/ D

�
A�.j /;�.i/

�
i;j
D P��1A>P� . Let �

be such that †� D �g0j. † is symmetric so † D P��1†>P� D P��1†P� and P�† D †P� . P� is a
permutation matrix so P� j D j and

�g0j D �g0P� j D P�†� D †P�� (A.1)

hence if g0 ¤ 0, P�� D �g0†�1j D �. Additionally, …� D 0 WD E and … D P��1…>P� D
�P��1…P� so that

P�E D P�…� D �…P�� D �…� D �E (A.2)

which gives a priori k equations. The equations corresponding to invariant elements of � are always
satisfied (for some i , Ei D �Ei H) Ei D 0). The others are in even number and half of them can be
dropped (Ei D �Ej H) Ej D �Ei ). The number of remaining equations is the number of transpositions
in the decomposition of the permutation � .

From Theorem 3.3, …†�1j D 0 yields k � 1 equations for the k unknowns t1; : : : ; tk corresponding,
generically, to a solution space of dimension 1. However, when the sequence .�i /i is invariant by a
transformation � W i 7! a� i � 1, the number of independent unknowns is reduced. It was just shown that
this reduction comes together with the reduction of the number of independent equations. The following
proposition indicates that, even in the subgeneric case where symmetries in the flight durations sequence
reduce the number of independent unknowns, the solution space dimension is 1.

We now proceed with the proof of Proposition 6.6.

Proof. The number of unknowns is determined by the involution i 7! a � i ; the number of equations is
determined by the involution i 7! a � 1 � i .
� If k D 2r � 1, both transformations have one invariant element (see Prop. 6.2) and are composed of r � 1

transpositions, hence the number of unknowns is .r � 1/C 1 and the number of equations is r � 1. The
space of solutions is of dimension 1.

� If k D 2r and a is even, i 7! a � i � 1 has no invariant elements and is made of r transpositions, so the
number of equations is r . The involution i 7! a � i has two invariant elements and is made of r � 1
transpositions, so the number of unknowns is r � 1C 2 D r C 1. The space of solutions is of dimension
1.
� If k D 2r and a is odd, i 7! a � i has two invariant elements and is made of r � 1 transpositions, which

corresponds to r � 1 equations. i 7! aC i � 1 has no invariant element and is made of r transpositions,
yielding r unknowns so, again, a space of solutions of dimension 1.

�
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