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PHASE SPACE

Equivalence:

Mechanical state ⇐⇒ Point in the phase space
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LINEAR MODE 1
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LINEAR MODE 2
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LINEAR MODES: SUMMARY

Linear modes:

I rely on superposition principle
I structure of vector space (base: linear modes)
I linear algebra (∼ end of 19th)
I eigenvalues: resonance
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WHAT ABOUT NONLINEAR SYSTEMS?

Nonlinear modes:

I superposition principle no longer holds
I impossible to calculate all the trajectories

I but maths results (Lyapunov theorem (1907) + central manifold theorem (∼
1970))

I existence of fix points, periodic orbits, attractors, continuums of periodic
orbits in the vicinity of fixed points

I applied to dynamical systems (Rosenberg, Shaw, Pierre, Vakakis, etc.)
I practical interest: local behaviour + prediction of resonance
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LIMITATION OF NONLINEAR MODAL ANALYSIS

Limitation
Computation of nonlinear modes relies on smoothness.

What about non-smooth systems?
I Non-smooth system: system undergoing impact and/or dry friction.

Newton cradle [Inria] Turbomachine [McGill]
I Long-term objective: extend non-linear modal analysis to non-smooth

systems
I Literature in (ultra) short: nonlinear smooth modes or time-evolution of

non-smooth systems 10
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OUTLINE

1. Introduction

2. Formulation

3. Resolution

4. Illustrations

5. Additional properties

6. Conclusions
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INVESTIGATED SYSTEMS: ASSUMPTIONS

g(x)

M =

• 0
. . .

0 •



g(x)

M =

• · · · •
...

...
• · · · •



I linear system (material + geometry)

piecewise

I autonomous (= unforced)
I conservative (= undamped)

I unique contact condition
I perfectly elastic impact law
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FREE FLIGHT

k1 k2 k3 k4 k5m1 m2 m3 m4 m5

I Dynamics Mẍ + Kx = 0

I First-order Ẋ = AX with X =

(
x
ẋ

)
and A =

[
0 I

−M−1K 0

]
I Solutions X(t) = etAX(0)

I After a change of basis: X(t) = S(t)X(0) where S(t) is block-diagonal:[
cos(ωi t) − sin(ωi t)
sin(ωi t) cos(ωi t)

]

=⇒ S(t) acts like n rotations in n orthogonal planes
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IMPACT

k1 k2 k3 k4 k5m1 m2 m3 m4 m5 g(x)

I gap: g(x) = g0 − x with g0 unconstrained gap

I Newton impact law: ẋn(t+imp) = −e ẋn(t−imp) with e = 1
. conservative when M is diagonal: ẋ+>Mẋ+ =

∑
i mi,i ẋ+2

i = ẋ−>Mẋ−

. non-conservative in general: ẋ+>Mẋ+ 6= ẋ−>Mẋ−

I more generally: ẋ+ = Nẋ− with N = M−1/2(I − 2rr>)M1/2

=⇒ N acts as a reflection w.r.t to a hyperplane
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LINEAR MAPPING AFTER K IMPACTS

t
0

0 σ1 t1 σ2 t2 tk−1 σk tk

I State at time t :

X(t) = S(t)X0

I Formulation: For a given k, find X0 and t1, . . . , tk such that
u(X0) = X0 NC1 (dynamics + periodicity)
X determined by X0 such that:
∀i ∈ J1, kK, g(X(ti)) = 0 NC2 (gap closures)
∀t ∈ [0,T ], g(X(t)) ≥ 0 NC3 (non-interpenetration)
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0 σ1 t1 σ2 t2
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MAIN RESULTS

I Formulation: For a given k, find X0 and t1, . . . , tk such that
u(X0) = X0 NC1 (dynamics + periodicity)
X détermined by X0 such that:
∀i ∈ J1, kK, g(X(ti)) = 0 NC2 (gap closures)
∀t ∈ [0,T ], g(X(t)) ≥ 0 NC3 (non-interpenetration)

I Example: for n = 2, k = 2, NC1:

NS(σ2)NS(σ1)X0 = X0

N =

[ 1
1

1
−1

]
S(t) = P

[ cos(ω1t) − sin(ω1t)
sin(ω1t) cos(ω1t)

cos(ω2t) − sin(ω2t)
sin(ω2t) cos(ω2t)

]
P−1

Very computationally expensive!

17
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X détermined by X0 such that:
∀i ∈ J1, kK, g(X(ti)) = 0 NC2 (gap closures)
∀t ∈ [0,T ], g(X(t)) ≥ 0 NC3 (non-interpenetration)

Theorem (NC1)

X0 is invariant by u iff ∃λ ∈ Rk such that{
Π(t1, . . . , tk)λ = 0
X0 = ϕ(λ)

The applications Π and ϕ are known !
Π is a skew-symmetric k × k matrix.
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I Formulation: For a given k, find X0 and t1, . . . , tk such that
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∀i ∈ J1, kK, g(X(ti)) = 0 NC2 (gap closures)
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Theorem (NC2)

X0 verifies NC2 iff ∃λ ∈ Rk such that{
Σ(t1, . . . , tk)λ = g0j
X0 = ϕ(λ)

with j = [1, . . . , 1]>.

The applications Σ and ϕ are known, and ϕ is the same as in Theorem 1.
Σ is a symmetric k × k matrix.
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MAIN RESULTS

I For a given k, find X0 ∈ R2n and t1, . . . , tk such that
u(X0) = X0 NC1
X determined by X0 such that:
∀i ∈ J1, kK, g(X(ti)) = 0 NC2
∀t ∈ [0,T ], g(X(t)) ≥ 0 NC3

becomes:

I For a given k, find λ ∈ Rk and t1, . . . , tk such that
Π(t1, . . . , tk)λ = 0 NC1
Σ(t1, . . . , tk)λ = g0j NC2
X determined by X0 = ϕ(λ) such that:
∀t ∈ [0,T ], g(X(t)) ≥ 0 NC3
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CASE k = 1

I For a given k, find λ ∈ Rk and t1, . . . , tk such that
Π(t1, . . . , tk)λ = 0 NC1
Σ(t1, . . . , tk)λ = g0j NC2
X determined by X0 = ϕ(λ) such that:
∀t ∈ [0,T ], g(X(t)) ≥ 0 NC3

I Example k = 1:
. Π(t1) = [0], so NC1 is always satisfied.
. Σ(t1) = [f (t1)] so NC2 reads:

f (t1)λ = g0.

If g0 6= 0, λ = g0/f (t1) so X0 = ϕ(g0/f (t1)).

=⇒ vector of initial conditions X0 is parametrised by t1 = T !

. NC3 has to be checked numerically.
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CASE k = 1

I Parametrisation X0 = ϕ(g0/f (t1)).
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TERMINOLOGY

Definition (Potential solution)

Initial conditions satisfying NC1 + NC2

Definition (Admissible solution)

Initial conditions satisfying NC1 + NC2 + NC3

In practice, seek potential solutions and check NC3 numerically.

23
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NON-SMOOTH MODE (1 IMPACT PER PERIOD)
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CASE 2 IMPACTS PER PERIOD (k = 2)

I For a given k, find λ ∈ Rk and t1, . . . , tk such that
Π(t1, . . . , tk)λ = 0 NC1
Σ(t1, . . . , tk)λ = g0j NC2
X determined by X0 = ϕ(λ) such that:
∀t ∈ [0,T ], g(X(t)) ≥ 0 NC3

I Example k = 2:
. Π(t1, t2) =

[
0 π(t1,t2)

−π(t1,t2) 0

]
so NC1 implies that π(t1, t2) = 0.

. Σ(t1, t2) =
[

0 f (t1,t2)
f (t1,t2) 0

]
is invertible a.e. so if π(t1, t2) = 0 and g0 6= 0,

λ = g0Σ
−1(t1, t2)j

and X0 = ϕ(g0Σ
−1(t1, t2)j).

=⇒ vector of initial conditions X0 parametrised by the roots of π(t1, t2)
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CASE 2 IMPACTS PER PERIOD (k = 2)

I Parametrisation: X0 = ϕ(g0Σ
−1(t1, t2)j) for (t1, t2) roots of π.
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GENERAL CASE (k ∈ N∗)

I Potential solutions: curves in the space (t1, . . . , tk).
If Σ invertible,{

Π(t1, . . . , tk)λ = 0
Σ(t1, . . . , tk)λ = g0j =⇒ Π(s)Σ−1(s)j = 0

This gives k − 1 equations in k unknowns =⇒ 1-parameter continuum

t1
t2

t k

xn−1
xn

ẋ n

I Admissibles solutions: parts of such curves=⇒ existence of non-smooth
modes in the neighbourhood of admissible solutions

I Isolated points where Σ is not invertible.

28



Introduction Formulation Resolution Illustrations Additional properties Conclusions

GENERAL CASE (k ∈ N∗)

I Potential solutions: curves in the space (t1, . . . , tk).
If Σ invertible,{

Π(t1, . . . , tk)λ = 0
Σ(t1, . . . , tk)λ = g0j =⇒ Π(s)Σ−1(s)j = 0

This gives k − 1 equations in k unknowns =⇒ 1-parameter continuum

t1
t2

t k

xn−1
xn
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ẋ n

I Admissibles solutions: parts of such curves=⇒ existence of non-smooth
modes in the neighbourhood of admissible solutions

I Isolated points where Σ is not invertible.

28



Introduction Formulation Resolution Illustrations Additional properties Conclusions

GENERAL CASE (k ∈ N∗)

I Potential solutions: curves in the space (t1, . . . , tk).
If Σ invertible,{

Π(t1, . . . , tk)λ = 0
Σ(t1, . . . , tk)λ = g0j =⇒ Π(s)Σ−1(s)j = 0

This gives k − 1 equations in k unknowns =⇒ 1-parameter continuum

•••

t1
t2

t k

xn−1
xn
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METHODOLOGY

1. Find a potential solution (solve Π(s)Σ−1(s)j = 0 for s ∈ Rk
+).

. det(Π) = Pf2(Π): Pfaffian, defined for skew-symmetric matrices

. if k is odd, ker(Π) is known as a function of the comatrices’ Pfaffians

2. Numerical continuation to compute the curve (unexpensive)
3. Check admissibility (∀t, g(x(t)) > 0).
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CASE 7 IMPACTS PER PERIOD
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SYMMETRIES

−
8

−
4

0
1

T

σ1 σ2 σ3 σ4 σ5 σ6 σ7

time t

p
os
it
io
n
x n

I symmetry of the periodic sequence σ1, . . . , σk :
for some p ∈ Z, ∀i ∈ Z, σi = σp−i

Theorem (Symmetries if Σ invertible)
If (σi) is invertible, then positions have 2 axes of symmetry.
I Examples:

. k = 1: . . . , σ1, σ1, σ1, . . . is symmetric.

. k = 2: . . . , σ1, σ2, σ1, σ2, . . . is symmetric.
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SINGULARITY OFΣ(s)

I If Σ(s) is invertible: 1-parameter continuum of periodic orbits...
I ... but Σ(s) can be singular for some isolated s.

If so, then Σ(s)λ = g0j has:

I either no solutions;
I either a line, plane, etc. of solutions.

=⇒ continuum of orbites of same frequency!
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SINGULARITY OFΣ(s): EXAMPLE WITH 2 IPP
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NON-SMOOTH STICKING MODES

I “sticking” modes: contact duration of non-zero measure
I algorithm converge to non-sticking modes
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CONCLUSIONS

Investigated system:
I main assumptions: piecewise-linear + single contact condition
I no known results for such systems

Has been shown:
I periodic solutions form non-smooth modes (NSM)
I NSM gouverned by a number of equations independent of the number of

dof
I symmetries

To investigate:
I relationships between NSM
I comparison with experiments
I forced damped behaviour VS non-smooth modes

Other lessons:
I large variety of behaviours induced by contact
I importance of mathematics and multidisciplinary collaborations
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Thank you for your attention

Any questions?
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