

# NON-SMOOTH MODAL ANALYSIS OF PIECEWISE-LINEAR IMPACT OSCILLATORS

Seminar, Lab. of Solid Mechanics, École Polytechnique, France

March 17, 2016

<u>Anders Thorin,</u> Pierre Delezoide, Mathias Legrand.

McGill University, Montreal, Canada

# INTRODUCTION

| Introduction<br>••••••• | Formulation | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|-------------------------|-------------|-------------------|-----------------------------|-----------------------|-------------|
| PHASE SP                | ACE         |                   |                             |                       |             |

| Introduction<br>•••••••••••••••••••••••••••••••••••• | Formulation | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|------------------------------------------------------|-------------|-------------------|-----------------------------|-----------------------|-------------|
| PHASE SP                                             | ACE         |                   |                             |                       |             |

## Equivalence:

Mechanical state  $\iff$  Point in the phase space

| Introduction<br>OOOOOOOO | Formulation | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|--------------------------|-------------|-------------------|-----------------------------|-----------------------|-------------|
|                          |             |                   |                             |                       |             |

## LINEAR MODAL ANALYSIS

| Introduction | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|--------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| LINEAR M     | 10DE 1              |                   |                             |                       |             |

| Introduction | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|--------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| LINEAR M     | 10DE 2              |                   |                             |                       |             |

| Introduction<br>○○○○●○○○○ | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
|                           |                     |                   |                             |                       |             |

### LINEAR MODES: SUMMARY

Linear modes:

- rely on superposition principle
- structure of vector space (base: linear modes)
- linear algebra ( $\sim$  end of 19th)
- ► eigenvalues: resonance

| Introduction | Formulation | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|--------------|-------------|-------------------|-----------------------------|-----------------------|-------------|
|              | 1           | 1                 |                             |                       |             |

### WHAT ABOUT NONLINEAR SYSTEMS?

#### Nonlinear modes:

- superposition principle no longer holds
- impossible to calculate all the trajectories

| Introduction | Formulation | Resolution | Illustrations | Additional properties | Conclusions |
|--------------|-------------|------------|---------------|-----------------------|-------------|
| 000000000    | 0000        | 000        | 000000000     | 00000                 |             |
|              |             |            |               |                       |             |

### WHAT ABOUT NONLINEAR SYSTEMS?

### Nonlinear modes:

- superposition principle no longer holds
- impossible to calculate all the trajectories
- ▶ but maths results (Lyapunov theorem (1907) + central manifold theorem (~ 1970))
- existence of fix points, periodic orbits, attractors, continuums of periodic orbits in the vicinity of fixed points
- ▶ applied to dynamical systems (Rosenberg, Shaw, Pierre, Vakakis, etc.)
- ▶ practical interest: local behaviour + prediction of resonance

| Introduction | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|--------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
|              |                     |                   |                             |                       |             |

| Introduction | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|--------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
|              |                     |                   |                             |                       |             |

| Introduction | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|--------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
|              |                     |                   |                             |                       |             |

| Introduction | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|--------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
|              |                     |                   |                             |                       |             |

| Introduction | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|--------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
|              |                     |                   |                             |                       |             |

| Introduction | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|--------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
|              |                     |                   |                             |                       |             |

| Introduction                                                 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |  |
|--------------------------------------------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|--|
| LIMITATI                                                     | ION OF NON          |                   | 10DAL ANALY                 | /SIS                  |             |  |
| Limitati                                                     | on                  |                   |                             |                       |             |  |
| Computation of nonlinear modes relies on <i>smoothness</i> . |                     |                   |                             |                       |             |  |
|                                                              | $\longrightarrow$ \ | What about        | non-smooth sy               | ystems?               |             |  |

► Non-smooth system: system undergoing impact and/or dry friction.





Newton cradle [Inria]

Turbomachine [McGill]

- Long-term objective: extend non-linear modal analysis to non-smooth systems
- Literature in (ultra) short: nonlinear smooth modes or time-evolution of non-smooth systems

| Introduction<br>000000000 | Formulation<br>0000 | Resolution | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|------------|-----------------------------|-----------------------|-------------|
| OUTLINE                   |                     |            |                             |                       |             |

- 1. Introduction
- 2. Formulation
- 3. Resolution
- 4. Illustrations
- 5. Additional properties
- 6. Conclusions

# FORMULATION

| Introduction | Formulation | Resolution | Illustrations | Additional properties | Conclusions |
|--------------|-------------|------------|---------------|-----------------------|-------------|
| 00000000     | 0000        | 000        | 000000000     | 00000                 |             |
|              |             |            |               |                       |             |

### **INVESTIGATED SYSTEMS: ASSUMPTIONS**





- linear system (material + geometry)
- ▶ autonomous (= unforced)
- conservative (= undamped)

| Introduction<br>000000000 | Formulation<br>•000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
|                           |                     |                   |                             |                       |             |

### INVESTIGATED SYSTEMS: ASSUMPTIONS



- ▶ linear system (material + geometry) *piecewise*
- ▶ autonomous (= unforced)
- conservative (= undamped)
- unique contact condition

| Introduction<br>000000000 | Formulation<br>•000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
|                           |                     |                   |                             |                       |             |

### INVESTIGATED SYSTEMS: ASSUMPTIONS



- ▶ linear system (material + geometry) *piecewise*
- ► autonomous (= unforced)
- conservative (= undamped)
- unique contact condition
- perfectly elastic impact law

| Introduction<br>000000000 | Formulation<br>O●OO | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| FREE FLI                  | GHT                 |                   |                             |                       |             |

$$k_1 m_1 k_2 m_2 k_3 m_3 k_4 m_4 k_5 m_5$$



- Dynamics  $M\ddot{x} + Kx = 0$
- ► First-order  $\dot{X} = AX$  with  $X = \begin{pmatrix} x \\ \dot{x} \end{pmatrix}$  and  $A = \begin{bmatrix} 0 & I \\ -M^{-1}K & 0 \end{bmatrix}$
- Solutions  $\mathbf{X}(t) = e^{t\mathbf{A}}\mathbf{X}(0)$

| Introduction<br>000000000 | Formulation<br>OOOO | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| FREE FLIG                 | ЭНТ                 |                   |                             |                       |             |



• Dynamics  $M\ddot{x} + Kx = 0$ 

First-order 
$$\dot{X} = AX$$
 with  $X = \begin{pmatrix} x \\ \dot{x} \end{pmatrix}$  and  $A = \begin{bmatrix} 0 & I \\ -M^{-1}K & 0 \end{bmatrix}$ 

• After a change of basis:  $\overline{\mathbf{X}}(t) = \mathbf{S}(t)\overline{\mathbf{X}}(0)$  where  $\mathbf{S}(t)$  is block-diagonal:

$$egin{bmatrix} \cos(\omega_i t) & -\sin(\omega_i t) \ \sin(\omega_i t) & \cos(\omega_i t) \end{bmatrix}$$

 $\implies$  **S**(t) acts like *n* rotations in *n* orthogonal planes

| Introduction<br>000000000 | Formulation<br>00●0 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| IMPACT                    |                     |                   |                             |                       |             |



- gap:  $g(\mathbf{x}) = g_0 \mathbf{x}$  with  $g_0$  unconstrained gap
- ► Newton impact law:  $\dot{x}_n(t_{imp}^+) = -e \dot{x}_n(t_{imp}^-)$  with e = 1▷ conservative when **M** is diagonal:  $\dot{\mathbf{x}}^{+\top} \mathbf{M} \dot{\mathbf{x}}^+ = \sum_i m_{i,i} \dot{x}_i^{+2} = \dot{\mathbf{x}}^{-\top} \mathbf{M} \dot{\mathbf{x}}^-$

| Introduction<br>000000000 | Formulation<br>00●0 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| IMPACT                    |                     |                   |                             |                       |             |



- gap:  $g(\mathbf{x}) = g_0 \mathbf{x}$  with  $g_0$  unconstrained gap
- Newton impact law:  $\dot{x}_n(t_{imp}^+) = -e \dot{x}_n(t_{imp}^-)$  with e = 1
  - ▷ conservative when **M** is diagonal:  $\dot{\mathbf{x}}^{+\top}\mathbf{M}\dot{\mathbf{x}}^{+} = \sum_{i} m_{i,i}\dot{x}_{i}^{+2} = \dot{\mathbf{x}}^{-\top}\mathbf{M}\dot{\mathbf{x}}^{-}$ ▷ non-conservative in general:  $\dot{\mathbf{x}}^{+\top}\mathbf{M}\dot{\mathbf{x}}^{+} \neq \dot{\mathbf{x}}^{-\top}\mathbf{M}\dot{\mathbf{x}}^{-}$

| Introduction<br>000000000 | Formulation<br>00●0 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| IMPACT                    |                     |                   |                             |                       |             |



- gap:  $g(\mathbf{x}) = g_0 \mathbf{x}$  with  $g_0$  unconstrained gap
- Newton impact law: x<sub>n</sub>(t<sup>+</sup><sub>imp</sub>) = -e x<sub>n</sub>(t<sup>-</sup><sub>imp</sub>) with e = 1
   ▷ conservative when M is diagonal: x<sup>+⊤</sup>Mx<sup>+</sup> = ∑<sub>i</sub> m<sub>i,i</sub>x<sub>i</sub><sup>+2</sup> = x<sup>-⊤</sup>Mx<sup>-</sup>
   ▷ non-conservative in general: x<sup>+⊤</sup>Mx<sup>+</sup> ≠ x<sup>-⊤</sup>Mx<sup>-</sup>
- ► more generally:  $\dot{\mathbf{x}}^+ = \mathbf{N}\dot{\mathbf{x}}^-$  with  $\mathbf{N} = \mathbf{M}^{-1/2}(\mathbf{I} 2\mathbf{r}\mathbf{r}^\top)\mathbf{M}^{1/2}$

| Introduction<br>000000000 | Formulation<br>00●0 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| IMPACT                    |                     |                   |                             |                       |             |



- gap:  $g(\mathbf{x}) = g_0 \mathbf{x}$  with  $g_0$  unconstrained gap
- Newton impact law: x̂<sub>n</sub>(t<sup>+</sup><sub>imp</sub>) = -e x̂<sub>n</sub>(t<sup>-</sup><sub>imp</sub>) with e = 1
   ▷ conservative when M is diagonal: ẋ<sup>+⊤</sup>Mẋ<sup>+</sup> = ∑<sub>i</sub> m<sub>i,i</sub>ẋ<sup>+2</sup><sub>i</sub> = ẋ<sup>-⊤</sup>Mẋ<sup>-</sup>
   ▷ non-conservative in general: ẋ<sup>+⊤</sup>Mẋ<sup>+</sup> ≠ ẋ<sup>-⊤</sup>Mẋ<sup>-</sup>
- ▶ more generally:  $\dot{\mathbf{x}}^+ = \mathbf{N}\dot{\mathbf{x}}^-$  with  $\mathbf{N} = \mathbf{M}^{-1/2}(\mathbf{I} 2\mathbf{r}\mathbf{r}^\top)\mathbf{M}^{1/2}$

#### $\implies$ **N** acts as a reflection w.r.t to a hyperplane

### LINEAR MAPPING AFTER K IMPACTS



► State at time *t* :

 $\mathbf{X}(t) = \mathbf{S}(t)\mathbf{X}_0$ 

### LINEAR MAPPING AFTER K IMPACTS



► State at time *t* :

 $\mathbf{X}(t) = \mathbf{NS}(\sigma_1)\mathbf{X}_0$ 

### LINEAR MAPPING AFTER K IMPACTS



$$\mathbf{X}(t) = \mathbf{S}(t - t_1)\mathbf{N}\mathbf{S}(\sigma_1)\mathbf{X}_0$$

 Introduction
 Formulation
 Resolution
 Illustrations
 Additional properties
 Conclusions

 00000000
 000●
 000
 000000000
 00000
 00000

### LINEAR MAPPING AFTER K IMPACTS



► State at time *t* :

 $\mathbf{X}(t) = \mathbf{NS}(\sigma_2)\mathbf{NS}(\sigma_1)\mathbf{X}_0$ 

| Introduction | Formulation | Resolution | Illustrations | Additional properties | Conclusions |
|--------------|-------------|------------|---------------|-----------------------|-------------|
| 00000000     | 0000        | 000        | 000000000     | 00000                 |             |
|              |             |            |               |                       |             |



$$\mathbf{X}(t) = \mathbf{NS}(\sigma_k) \dots \mathbf{NS}(\sigma_2) \mathbf{NS}(\sigma_1) \mathbf{X}_0$$

| Introduction | Formulation | Resolution | Illustrations | Additional properties | Conclusions |
|--------------|-------------|------------|---------------|-----------------------|-------------|
| 000000000    | 0000        | 000        | 0000000000    | 00000                 |             |
|              |             |            |               |                       | 1           |



$$\mathbf{X}(t) = \mathbf{NS}(\sigma_k) \dots \mathbf{NS}(\sigma_2) \mathbf{NS}(\sigma_1) \mathbf{X}_0 = \mathbf{X}_0$$

| Introduction | Formulation | Resolution | Illustrations | Additional properties | Conclusions |
|--------------|-------------|------------|---------------|-----------------------|-------------|
| 00000000     | 0000        | 000        | 000000000     | 00000                 |             |
| ·            |             |            |               |                       |             |



$$u(\mathbf{X}_0) = \mathbf{X}(t) = \mathbf{NS}(\sigma_k) \dots \mathbf{NS}(\sigma_2) \mathbf{NS}(\sigma_1) \mathbf{X}_0 = \mathbf{X}_0$$

| Introduction | Formulation | Resolution | Illustrations | Additional properties | Conclusions |
|--------------|-------------|------------|---------------|-----------------------|-------------|
| 00000000     | 0000        | 000        | 000000000     | 00000                 |             |
| ·            |             |            |               |                       |             |



► State at time *t* :

$$u(\mathbf{X}_0) = \mathbf{X}(t) = \mathbf{NS}(\sigma_k) \dots \mathbf{NS}(\sigma_2) \mathbf{NS}(\sigma_1) \mathbf{X}_0 = \mathbf{X}_0$$

▶ Formulation: For a given k, find  $X_0$  and  $t_1, \ldots, t_k$  such that

 $\begin{cases} u(\mathbf{X}_0) = \mathbf{X}_0 & \text{NC1 (dynamics + periodicity)} \\ \mathbf{X} \text{ determined by } \mathbf{X}_0 \text{ such that:} \\ \forall i \in [\![1, k]\!], \ g(\mathbf{X}(t_i)) = 0 & \text{NC2 (gap closures)} \\ \forall t \in [0, T], \ g(\mathbf{X}(t)) \ge 0 & \text{NC3 (non-interpenetration)} \end{cases}$ 

# RESOLUTION

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>●○○ | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| MAIN RES                  | SULTS               |                   |                             |                       |             |

• Formulation: For a given k, find  $X_0$  and  $t_1, \ldots, t_k$  such that

 $\begin{cases} u(\mathbf{X}_0) = \mathbf{X}_0 & \text{NC1 (dynamics + periodicity)} \\ \mathbf{X} \text{ détermined by } \mathbf{X}_0 \text{ such that:} & \\ \forall i \in [\![1,k]\!], \ g(\mathbf{X}(t_i)) = 0 & \text{NC2 (gap closures)} \\ \forall t \in [0,T], \ g(\mathbf{X}(t)) \ge 0 & \text{NC3 (non-interpenetration)} \end{cases}$ 

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>●○○ | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| MAIN RES                  | ULTS                |                   |                             |                       |             |

▶ Formulation: For a given k, find  $X_0$  and  $t_1, \ldots, t_k$  such that

 $\begin{cases} u(\mathbf{X}_0) = \mathbf{X}_0 & \text{NC1 (dynamics + periodicity)} \\ \mathbf{X} \text{ détermined by } \mathbf{X}_0 \text{ such that:} \\ \forall i \in [\![1, k]\!], \ g(\mathbf{X}(t_i)) = 0 & \text{NC2 (gap closures)} \\ \forall t \in [0, T], \ g(\mathbf{X}(t)) \ge 0 & \text{NC3 (non-interpenetration)} \end{cases}$ 

• Example: for n = 2, k = 2, NC1:

 $\mathsf{NS}(\sigma_2)\mathsf{NS}(\sigma_1)\mathsf{X}_0=\mathsf{X}_0$ 

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>●○○ | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| MAIN RES                  | SULTS               |                   |                             |                       |             |

• Formulation: For a given k, find  $X_0$  and  $t_1, \ldots, t_k$  such that

 $\begin{cases} u(\mathbf{X}_0) = \mathbf{X}_0 & \text{NC1 (dynamics + periodicity)} \\ \mathbf{X} \text{ détermined by } \mathbf{X}_0 \text{ such that:} \\ \forall i \in [\![1, k]\!], \ g(\mathbf{X}(t_i)) = 0 & \text{NC2 (gap closures)} \\ \forall t \in [0, T], \ g(\mathbf{X}(t)) \ge 0 & \text{NC3 (non-interpenetration)} \end{cases}$ 

• Example: for n = 2, k = 2, NC1:

$$\mathbf{NS}(\sigma_2)\mathbf{NS}(\sigma_1)\mathbf{X}_0 = \mathbf{X}_0$$
$$\mathbf{N} = \begin{bmatrix} 1 & & \\ & 1 & \\ & & -1 \end{bmatrix} \qquad \mathbf{S}(t) = \mathbf{P} \begin{bmatrix} \cos(\omega_1 t) & -\sin(\omega_1 t) \\ \sin(\omega_1 t) & \cos(\omega_1 t) \\ & & \cos(\omega_2 t) & -\sin(\omega_2 t) \\ & & \sin(\omega_2 t) & \cos(\omega_2 t) \end{bmatrix} \mathbf{P}^{-1}$$

Very computationally expensive!

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>●○○ | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| MAIN RES                  | SULTS               |                   |                             |                       |             |

Formulation: For a given k, find  $\mathbf{X}_0$  and  $t_1, \ldots, t_k$  such that 

 $\begin{cases} u(\mathbf{X}_0) = \mathbf{X}_0 & \text{NC1 (dynamics + periodicity}) \\ \mathbf{X} \text{ détermined by } \mathbf{X}_0 \text{ such that:} \\ \forall i \in [\![1, k]\!], \ g(\mathbf{X}(t_i)) = 0 & \text{NC2 (gap closures)} \\ \forall t \in [0, T], \ g(\mathbf{X}(t)) \ge 0 & \text{NC3 (non-interpenetration)} \end{cases}$ 

NC1 (dynamics + periodicity)

### Theorem (NC1)

 $\mathbf{X}_0$  is invariant by u iff  $\exists \boldsymbol{\lambda} \in \mathbb{R}^k$  such that

 $\begin{cases} \Pi(t_1,\ldots,t_k)\lambda = \mathbf{0} \\ \mathbf{X}_0 = \wp(\lambda) \end{cases}$ 

The applications  $\Pi$  and  $\varphi$  are **known** ! **\Pi** is a skew-symmetric  $k \times k$  matrix.

| Introduction<br>000000000 | Formulation | Resolution<br>○●○ | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|-------------|-------------------|-----------------------------|-----------------------|-------------|
| MAIN RES                  | SULTS       |                   |                             |                       |             |

▶ Formulation: For a given k, find  $X_0$  and  $t_1, \ldots, t_k$  such that

 $\begin{cases} u(\mathbf{X}_0) = \mathbf{X}_0 & \text{NC1 (dynamics + periodicity)} \\ \mathbf{X} \text{ determined by } \mathbf{X}_0 \text{ such that:} & \\ \forall i \in \llbracket 1, k \rrbracket, \ g(\mathbf{X}(t_i)) = 0 & \text{NC2 (gap closures)} \\ \forall t \in [0, T], \ g(\mathbf{X}(t)) \ge 0 & \text{NC3 (non-interpenetration)} \end{cases}$ 

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>OOO | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| MAIN RES                  | SULTS               |                   |                             |                       |             |

Formulation: For a given k, find  $X_0$  and  $t_1, \ldots, t_k$  such that

 $\begin{cases} u(\mathbf{X}_0) = \mathbf{X}_0 & \text{NC1 (dynamics + periodicity)} \\ \mathbf{X} \text{ determined by } \mathbf{X}_0 \text{ such that:} & \\ \forall i \in \llbracket 1, k \rrbracket, \ g(\mathbf{X}(t_i)) = 0 & \text{NC2 (gap closures)} \\ \forall t \in [0, T], \ g(\mathbf{X}(t)) \ge 0 & \text{NC3 (non-interpenetration)} \end{cases}$ 

## Theorem (NC2)

 $\mathbf{X}_0$  verifies NC2 iff  $\exists \lambda \in \mathbb{R}^k$  such that

$$\left\{egin{aligned} \mathbf{\Sigma}(t_1,\ldots,t_k)oldsymbol{\lambda} = g_0\mathbf{j}\ \mathbf{X}_0 = arphi(oldsymbol{\lambda}) \end{aligned}
ight.$$

with  $\mathbf{j} = [1, ..., 1]^{\top}$ .

The applications  $\Sigma$  and  $\varphi$  are **known**, and  $\varphi$  is the same as in Theorem 1.  $\Sigma$  is a symmetric  $k \times k$  matrix.

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>00● | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| MAIN RES                  | SULTS               |                   |                             |                       |             |

▶ For a given k, find  $\mathbf{X}_0 \in \mathbb{R}^{2n}$  and  $t_1, \ldots, t_k$  such that

$$\begin{cases} u(\mathbf{X}_0) = \mathbf{X}_0 & \text{NC1} \\ \mathbf{X} \text{ determined by } \mathbf{X}_0 \text{ such that:} \\ \forall i \in [\![1,k]\!], \ g(\mathbf{X}(t_i)) = 0 & \text{NC2} \\ \forall t \in [\![0,T]\!], \ g(\mathbf{X}(t)) \ge 0 & \text{NC3} \end{cases}$$

becomes:

$$\begin{cases} \Pi(t_1, \dots, t_k) \boldsymbol{\lambda} = \boldsymbol{0} & \text{NC1} \\ \boldsymbol{\Sigma}(t_1, \dots, t_k) \boldsymbol{\lambda} = g_0 \mathbf{j} & \text{NC2} \\ \boldsymbol{X} \text{ determined by } \boldsymbol{X}_0 = \varphi(\boldsymbol{\lambda}) \text{ such that:} \\ \forall t \in [0, T], \ g(\boldsymbol{X}(t)) \ge 0 & \text{NC3} \end{cases}$$

## ILLUSTRATIONS

| Introduction<br>000000000 | Formulation | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|-------------|-------------------|---------------|-----------------------|-------------|
| CASE <i>k</i> =           | 1           |                   |               |                       |             |

$$\begin{cases} \Pi(t_1, \dots, t_k) \boldsymbol{\lambda} = \boldsymbol{0} & \text{NC1} \\ \boldsymbol{\Sigma}(t_1, \dots, t_k) \boldsymbol{\lambda} = g_0 \mathbf{j} & \text{NC2} \\ \textbf{X} \text{ determined by } \mathbf{X}_0 = \varphi(\boldsymbol{\lambda}) \text{ such that:} \\ \forall t \in [0, T], \ g(\mathbf{X}(t)) \ge \mathbf{0} & \text{NC3} \end{cases}$$

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
| CASE <i>k</i> =           | 1                   |                   |               |                       |             |

$$\begin{cases} \Pi(t_1, \dots, t_k) \boldsymbol{\lambda} = \boldsymbol{0} & \text{NC1} \\ \boldsymbol{\Sigma}(t_1, \dots, t_k) \boldsymbol{\lambda} = g_0 \mathbf{j} & \text{NC2} \\ \boldsymbol{X} \text{ determined by } \boldsymbol{X}_0 = \varphi(\boldsymbol{\lambda}) \text{ such that:} \\ \forall t \in [0, T], \ g(\boldsymbol{X}(t)) \ge 0 & \text{NC3} \end{cases}$$

• Example k = 1:

 $\triangleright \Pi(t_1) = [0]$ , so NC1 is always satisfied.

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
| CASE $k =$                | 1                   |                   |               |                       |             |

$$\begin{cases} \Pi(t_1, \dots, t_k) \boldsymbol{\lambda} = \boldsymbol{0} & \text{NC1} \\ \boldsymbol{\Sigma}(t_1, \dots, t_k) \boldsymbol{\lambda} = g_0 \mathbf{j} & \text{NC2} \\ \boldsymbol{X} \text{ determined by } \boldsymbol{X}_0 = \varphi(\boldsymbol{\lambda}) \text{ such that:} \\ \forall t \in [0, T], \ g(\boldsymbol{X}(t)) \ge 0 & \text{NC3} \end{cases}$$

- Example k = 1:
  - $\begin{tabular}{ll} & {\boldsymbol{\mathsf{\Pi}}}(t_1) = [0], \text{ so NC1 is always satisfied.} \\ & {\boldsymbol{\mathsf{\Sigma}}}(t_1) = [f(t_1)] \text{ so NC2 reads:} \end{tabular}$

$$f(t_1)\lambda=g_0.$$

If  $g_0 
eq 0$ ,  $\lambda = g_0/f(t_1)$ 

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
| CASE $k =$                | 1                   |                   |               |                       |             |

$$\begin{cases} \Pi(t_1, \dots, t_k) \boldsymbol{\lambda} = \boldsymbol{0} & \text{NC1} \\ \boldsymbol{\Sigma}(t_1, \dots, t_k) \boldsymbol{\lambda} = g_0 \mathbf{j} & \text{NC2} \\ \boldsymbol{X} \text{ determined by } \boldsymbol{X}_0 = \varphi(\boldsymbol{\lambda}) \text{ such that:} \\ \forall t \in [0, T], \ g(\boldsymbol{X}(t)) \ge 0 & \text{NC3} \end{cases}$$

- Example k = 1:

$$f(t_1)\lambda=g_0.$$

If  $g_0 \neq 0$ ,  $\lambda = g_0/f(t_1)$  so  $\mathbf{X}_0 = \varphi(g_0/f(t_1))$ .

 $\implies$  vector of initial conditions **X**<sub>0</sub> is parametrised by  $t_1 = T!$ 

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
| CASE $k =$                | 1                   |                   |               |                       |             |

$$\begin{cases} \Pi(t_1, \dots, t_k) \boldsymbol{\lambda} = \boldsymbol{0} & \text{NC1} \\ \boldsymbol{\Sigma}(t_1, \dots, t_k) \boldsymbol{\lambda} = g_0 \mathbf{j} & \text{NC2} \\ \mathbf{X} \text{ determined by } \mathbf{X}_0 = \varphi(\boldsymbol{\lambda}) \text{ such that:} \\ \forall t \in [0, T], \ g(\mathbf{X}(t)) \ge 0 & \text{NC3} \end{cases}$$

- Example k = 1:

$$f(t_1)\lambda=g_0.$$

If  $g_0 \neq 0$ ,  $\lambda = g_0/f(t_1)$  so  $\mathbf{X}_0 = arphi(g_0/f(t_1))$ .

 $\implies$  vector of initial conditions  $\mathbf{X}_0$  is parametrised by  $t_1 = T!$ 

▷ NC3 has to be checked numerically.

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>OOOOOOOOO | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|----------------------------|-----------------------|-------------|
| CASE $k = 1$              | 1                   |                   |                            |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>OOOOOOOOO | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|----------------------------|-----------------------|-------------|
| CASE $k = 1$              | 1                   |                   |                            |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>OOOOOOOOO | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|----------------------------|-----------------------|-------------|
| CASE $k = 1$              | 1                   |                   |                            |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>OOOOOOOOO | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|----------------------------|-----------------------|-------------|
| CASE $k = 1$              | 1                   |                   |                            |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>OOOOOOOOO | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|----------------------------|-----------------------|-------------|
| CASE $k = 1$              | 1                   |                   |                            |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>OOOOOOOOO | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|----------------------------|-----------------------|-------------|
| CASE $k = 1$              | 1                   |                   |                            |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>OOOOOOOOO | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|----------------------------|-----------------------|-------------|
| CASE $k = 1$              | 1                   |                   |                            |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>OOOOOOOOO | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|----------------------------|-----------------------|-------------|
| CASE $k = 1$              | 1                   |                   |                            |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
|                           |                     |                   |               |                       |             |

#### Definition (Potential solution)

Initial conditions satisfying NC1 + NC2

Definition (Admissible solution)

Initial conditions satisfying NC1 + NC2 + NC3

In practice, seek potential solutions and check NC3 numerically.

 Introduction
 Formulation
 Resolution
 Illustrations
 Additional properties
 Conclusions

 000000000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00



 Introduction
 Formulation
 Resolution
 Illustrations
 Additional properties
 Conclusions

 000000000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00



 Introduction
 Formulation
 Resolution
 Illustrations
 Additional properties
 Conclusions

 000000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000</td



 Introduction
 Formulation
 Resolution
 Illustrations
 Additional properties
 Conclusions

 000000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000</td



 Introduction
 Formulation
 Resolution
 Illustrations
 Additional properties
 Conclusions

 000000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000



 Introduction
 Formulation
 Resolution
 Illustrations
 Additional properties
 Conclusions

 000000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000



| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations   | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------|-----------------------|-------------|
| CASE 2 IN                 | MPACTS PE           | R PERIOD          | ( <i>k</i> = 2) |                       |             |

$$\begin{array}{ll} \Pi(t_1,\ldots,t_k)\boldsymbol{\lambda} = \boldsymbol{0} & \text{NC1} \\ \boldsymbol{\Sigma}(t_1,\ldots,t_k)\boldsymbol{\lambda} = g_0 \mathbf{j} & \text{NC2} \\ \boldsymbol{X} \text{ determined by } \boldsymbol{X}_0 = \varphi(\boldsymbol{\lambda}) \text{ such that:} \\ \forall t \in [0,T], \ g(\boldsymbol{X}(t)) \geq 0 & \text{NC3} \end{array}$$

| Introduction<br>000000000 | Formulation | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|-------------|-------------------|---------------|-----------------------|-------------|
| CASE 2 IM                 | IPACTS PE   | R PERIOD          | (k = 2)       |                       |             |

$$\begin{cases} \Pi(t_1, \dots, t_k) \boldsymbol{\lambda} = \boldsymbol{0} & \text{NC1} \\ \boldsymbol{\Sigma}(t_1, \dots, t_k) \boldsymbol{\lambda} = g_0 \mathbf{j} & \text{NC2} \\ \boldsymbol{X} \text{ determined by } \boldsymbol{X}_0 = \varphi(\boldsymbol{\lambda}) \text{ such that:} \\ \forall t \in [0, T], \ g(\boldsymbol{X}(t)) \ge 0 & \text{NC3} \end{cases}$$

► Example 
$$k = 2$$
:  

$$\models \Pi(t_1, t_2) = \begin{bmatrix} 0 & \pi(t_1, t_2) \\ -\pi(t_1, t_2) & 0 \end{bmatrix}$$
so NC1 implies that  $\pi(t_1, t_2) = 0$ .

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations   | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------|-----------------------|-------------|
| CASE 2 IN                 | MPACTS PE           | R PERIOD          | ( <i>k</i> = 2) |                       |             |

$$\begin{cases} \Pi(t_1, \dots, t_k) \boldsymbol{\lambda} = \boldsymbol{0} & \text{NC1} \\ \boldsymbol{\Sigma}(t_1, \dots, t_k) \boldsymbol{\lambda} = g_0 \mathbf{j} & \text{NC2} \\ \mathbf{X} \text{ determined by } \mathbf{X}_0 = \varphi(\boldsymbol{\lambda}) \text{ such that:} \\ \forall t \in [0, T], \ g(\mathbf{X}(t)) \ge 0 & \text{NC3} \end{cases}$$

• Example 
$$k = 2$$
:  
 $\triangleright \Pi(t_1, t_2) = \begin{bmatrix} 0 & \pi(t_1, t_2) \\ -\pi(t_1, t_2) & 0 \end{bmatrix}$  so NC1 implies that  $\pi(t_1, t_2) = 0$ .  
 $\triangleright \Sigma(t_1, t_2) = \begin{bmatrix} 0 & f(t_1, t_2) \\ f(t_1, t_2) & 0 \end{bmatrix}$  is invertible *a.e.* so if  $\pi(t_1, t_2) = 0$  and  $g_0 \neq 0$ ,  
 $\lambda = g_0 \Sigma^{-1}(t_1, t_2) \mathbf{j}$ 

| Introduction<br>000000000             | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
| CASE 2 IMPACTS PER PERIOD ( $k = 2$ ) |                     |                   |               |                       |             |

$$\begin{cases} \Pi(t_1, \dots, t_k) \boldsymbol{\lambda} = \boldsymbol{0} & \text{NC1} \\ \boldsymbol{\Sigma}(t_1, \dots, t_k) \boldsymbol{\lambda} = g_0 \mathbf{j} & \text{NC2} \\ \mathbf{X} \text{ determined by } \mathbf{X}_0 = \varphi(\boldsymbol{\lambda}) \text{ such that:} \\ \forall t \in [0, T], \ g(\mathbf{X}(t)) \ge 0 & \text{NC3} \end{cases}$$

► Example 
$$k = 2$$
:  

$$\triangleright \Pi(t_1, t_2) = \begin{bmatrix} 0 & \pi(t_1, t_2) \\ -\pi(t_1, t_2) & 0 \end{bmatrix}$$
so NC1 implies that  $\pi(t_1, t_2) = 0$ .  

$$\triangleright \Sigma(t_1, t_2) = \begin{bmatrix} 0 & \pi(t_1, t_2) \\ f(t_1, t_2) & 0 \end{bmatrix}$$
is invertible *a.e.* so if  $\pi(t_1, t_2) = 0$  and  $g_0 \neq 0$ .

$$\boldsymbol{\lambda} = g_0 \boldsymbol{\Sigma}^{-1}(t_1, t_2) \mathbf{j}$$

and  $X_0 = \varphi(g_0 \Sigma^{-1}(t_1, t_2) \mathbf{j}).$ 

 $\implies$  vector of initial conditions **X**<sub>0</sub> parametrised by the roots of  $\pi(t_1, t_2)$ 



#### CASE 2 IMPACTS PER PERIOD (k = 2)

• Parametrisation:  $\mathbf{X}_0 = \varphi(g_0 \mathbf{\Sigma}^{-1}(t_1, t_2) \mathbf{j})$  for  $(t_1, t_2)$  roots of  $\pi$ .

Level-set 0 of  $\pi$ 





### CASE 2 IMPACTS PER PERIOD (k = 2)

• Parametrisation:  $\mathbf{X}_0 = \varphi(g_0 \mathbf{\Sigma}^{-1}(t_1, t_2) \mathbf{j})$  for  $(t_1, t_2)$  roots of  $\pi$ .

Level-set 0 of  $\pi$ 





### CASE 2 IMPACTS PER PERIOD (k = 2)

► Parametrisation:  $\mathbf{X}_0 = \varphi(g_0 \mathbf{\Sigma}^{-1}(t_1, t_2)\mathbf{j})$  for  $(t_1, t_2)$  roots of  $\pi$ .

Level-set 0 of  $\pi$ 



| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
|                           |                     |                   |               |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
|                           |                     |                   |               |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
|                           |                     |                   |               |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
|                           |                     |                   |               |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
|                           |                     |                   |               |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
|                           |                     |                   |               |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
|                           |                     |                   |               |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
| GENERAL                   | CASE ( $k \in$      | N*)               |               |                       |             |

$$\begin{cases} \Pi(t_1,\ldots,t_k)\lambda = 0\\ \mathbf{\Sigma}(t_1,\ldots,t_k)\lambda = g_0\mathbf{j} \end{cases} \implies \Pi(\mathbf{s})\mathbf{\Sigma}^{-1}(\mathbf{s})\mathbf{j} = \mathbf{0} \end{cases}$$

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
| GENERAL                   |                     | N*)               |               |                       |             |

$$\left( egin{array}{ccc} \Pi(t_1,\ldots,t_k)m{\lambda}=0 \ \Sigma(t_1,\ldots,t_k)m{\lambda}=g_0 \mathbf{j} \end{array} 
ight) \Longrightarrow \quad \Pi(\mathbf{s})\mathbf{\Sigma}^{-1}(\mathbf{s})\mathbf{j}=\mathbf{0}$$



| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
| GENIEDAI                  | CASE (KC            | N*)               |               |                       |             |

$$\begin{cases} \Pi(t_1,\ldots,t_k)\lambda = 0\\ \mathbf{\Sigma}(t_1,\ldots,t_k)\lambda = g_0\mathbf{j} \end{cases} \implies \Pi(\mathbf{s})\mathbf{\Sigma}^{-1}(\mathbf{s})\mathbf{j} = \mathbf{0} \end{cases}$$



| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
| GENIEDAI                  | CASE (KC            | N*)               |               |                       |             |

$$\begin{cases} \Pi(t_1,\ldots,t_k)\lambda = 0\\ \mathbf{\Sigma}(t_1,\ldots,t_k)\lambda = g_0\mathbf{j} \end{cases} \implies \Pi(\mathbf{s})\mathbf{\Sigma}^{-1}(\mathbf{s})\mathbf{j} = \mathbf{0} \end{cases}$$



| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
| GENERAL                   | CASE (KC            | : N*)             |               |                       |             |

$$\begin{cases} \Pi(t_1,\ldots,t_k)\lambda = 0\\ \mathbf{\Sigma}(t_1,\ldots,t_k)\lambda = g_0\mathbf{j} \end{cases} \implies \Pi(\mathbf{s})\mathbf{\Sigma}^{-1}(\mathbf{s})\mathbf{j} = \mathbf{0} \end{cases}$$





<

$$\left\{ egin{array}{ll} \Pi(t_1,\ldots,t_k)m{\lambda}=0 \ \mathbf{\Sigma}(t_1,\ldots,t_k)m{\lambda}=g_0\mathbf{j} \end{array} 
ight. \Longrightarrow \quad \Pi(\mathbf{s})\mathbf{\Sigma}^{-1}(\mathbf{s})\mathbf{j}=\mathbf{0}$$

This gives k - 1 equations in k unknowns  $\implies$  1-parameter continuum



► Admissibles solutions: parts of such curves ⇒ existence of non-smooth modes *in the neighbourhood of admissible solutions* 



$$\left\{ egin{array}{ll} \Pi(t_1,\ldots,t_k)m{\lambda}=0 \ \mathbf{\Sigma}(t_1,\ldots,t_k)m{\lambda}=g_0\mathbf{j} \end{array} 
ight. \Longrightarrow \quad \Pi(\mathbf{s})\mathbf{\Sigma}^{-1}(\mathbf{s})\mathbf{j}=\mathbf{0}$$

This gives k - 1 equations in k unknowns  $\implies$  1-parameter continuum



- Admissibles solutions: parts of such curves => existence of non-smooth modes in the neighbourhood of admissible solutions
- Isolated points where  $\Sigma$  is not invertible.

<

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>○○○○○○○○●○ | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| METHODO                   | LOGY                |                   |                             |                       |             |

- 1. Find a potential solution (solve  $\Pi(s)\Sigma^{-1}(s)j = 0$  for  $s \in \mathbb{R}^k_+$ ).
  - ▷ det( $\Pi$ ) = Pf<sup>2</sup>( $\Pi$ ): Pfaffian, defined for skew-symmetric matrices
  - $\triangleright$  if k is odd, ker( $\Pi$ ) is known as a function of the comatrices' Pfaffians

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>○○○○○○○○●○ | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| METHODO                   | LOGY                |                   |                             |                       |             |

- 1. Find a potential solution (solve  $\Pi(s)\Sigma^{-1}(s)j = 0$  for  $s \in \mathbb{R}^k_+$ ).
  - $\triangleright$  det( $\mathbf{\Pi}$ ) = Pf<sup>2</sup>( $\mathbf{\Pi}$ ): Pfaffian, defined for skew-symmetric matrices
  - $\triangleright$  if k is odd, ker(**Π**) is known as a function of the comatrices' Pfaffians
- 2. Numerical continuation to compute the curve (unexpensive)

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|---------------|-----------------------|-------------|
| METHODOL                  | _OGY                |                   |               |                       |             |

- 1. Find a potential solution (solve  $\Pi(s)\Sigma^{-1}(s)j = 0$  for  $s \in \mathbb{R}^k_+$ ).
  - $\triangleright$  det( $\Pi$ ) = Pf<sup>2</sup>( $\Pi$ ): Pfaffian, defined for skew-symmetric matrices
  - $\triangleright$  if k is odd, ker( $\Pi$ ) is known as a function of the comatrices' Pfaffians
- 2. Numerical continuation to compute the curve (unexpensive)
- 3. Check admissibility  $(\forall t, g(\mathbf{x}(t)) \ge 0)$ .

| Introduction<br>000000000 | Formulation<br>0000 | Resolution | Illustrations<br>○○○○○○○○○○● | Additional properties | Conclusions |
|---------------------------|---------------------|------------|------------------------------|-----------------------|-------------|
|                           |                     | /          |                              |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution | Illustrations<br>○○○○○○○○○○● | Additional properties | Conclusions |
|---------------------------|---------------------|------------|------------------------------|-----------------------|-------------|
|                           |                     | /          |                              |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution | Illustrations<br>○○○○○○○○○○● | Additional properties | Conclusions |
|---------------------------|---------------------|------------|------------------------------|-----------------------|-------------|
|                           |                     | /          |                              |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution | Illustrations<br>○○○○○○○○○○● | Additional properties | Conclusions |
|---------------------------|---------------------|------------|------------------------------|-----------------------|-------------|
|                           |                     | /          |                              |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution | Illustrations<br>○○○○○○○○○○● | Additional properties | Conclusions |
|---------------------------|---------------------|------------|------------------------------|-----------------------|-------------|
|                           |                     | /          |                              |                       |             |

| Introduction<br>000000000 | Formulation<br>0000 | Resolution | Illustrations<br>○○○○○○○○○○● | Additional properties | Conclusions |
|---------------------------|---------------------|------------|------------------------------|-----------------------|-------------|
|                           |                     | /          |                              |                       |             |

# ADDITIONAL PROPERTIES

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| SYMMETR                   | IES                 |                   |                             |                       |             |



| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| SYMMETR                   | RIES                |                   |                             |                       |             |



| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| SYMMETR                   | IES                 |                   |                             |                       |             |



time t

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| SYMMETR                   | IES                 |                   |                             |                       |             |



for some  $p \in \mathbb{Z}, \forall i \in \mathbb{Z}, \sigma_i = \sigma_{p-i}$ 

#### Theorem (Symmetries if $\Sigma$ invertible)

If  $(\sigma_i)$  is invertible, then positions have 2 axes of symmetry.

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| SYMMETR                   | IES                 |                   |                             |                       |             |



for some  $p \in \mathbb{Z}, \forall i \in \mathbb{Z}, \sigma_i = \sigma_{p-i}$ 

#### Theorem (Symmetries if $\Sigma$ invertible)

If  $(\sigma_i)$  is invertible, then positions have 2 axes of symmetry.

Examples:

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| SYMMETR:                  | IES                 |                   |                             |                       |             |



for some  $p \in \mathbb{Z}, \forall i \in \mathbb{Z}, \sigma_i = \sigma_{p-i}$ 

#### Theorem (Symmetries if $\Sigma$ invertible)

If  $(\sigma_i)$  is invertible, then positions have 2 axes of symmetry.

Examples:

 $\triangleright k = 1: \ldots, \sigma_1, \sigma_1, \sigma_1, \ldots$  is symmetric.

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| SYMMETR:                  | IES                 |                   |                             |                       |             |



for some  $p \in \mathbb{Z}, \forall i \in \mathbb{Z}, \sigma_i = \sigma_{p-i}$ 

#### Theorem (Symmetries if $\Sigma$ invertible)

If  $(\sigma_i)$  is invertible, then positions have 2 axes of symmetry.

#### Examples:

- $\triangleright \ k = 1; \ldots, \sigma_1, \sigma_1, \sigma_1, \ldots$  is symmetric.
- $\triangleright k = 2: \ldots, \sigma_1, \sigma_2, \sigma_1, \sigma_2, \ldots$  is symmetric.

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| SINGULAF                  | RITY OF Σ           | (s)               |                             |                       |             |

- If  $\Sigma(s)$  is invertible: 1-parameter continuum of periodic orbits...
- $\blacktriangleright$  ... but  $\Sigma(s)$  can be singular for some isolated s.

| Introduction<br>000000000 | Formulation                 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|-----------------------------|-------------------|-----------------------------|-----------------------|-------------|
| SINGULA                   | RITY OF $oldsymbol{\Sigma}$ | (s)               |                             |                       |             |

- If  $\Sigma(s)$  is invertible: 1-parameter continuum of periodic orbits...
- $\blacktriangleright$  ... but  $\pmb{\Sigma}(s)$  can be singular for some isolated s.

If so, then  $\mathbf{\Sigma}(s)\mathbf{\lambda} = g_0 \mathbf{j}$  has:

- either no solutions;
- either a line, plane, etc. of solutions.

| Introduction<br>000000000 | Formulation                 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|-----------------------------|-------------------|-----------------------------|-----------------------|-------------|
| SINGULA                   | RITY OF $oldsymbol{\Sigma}$ | (s)               |                             |                       |             |

- If  $\Sigma(s)$  is invertible: 1-parameter continuum of periodic orbits...
- $\blacktriangleright$  ... but  $\pmb{\Sigma}(s)$  can be singular for some isolated s.

If so, then  $\mathbf{\Sigma}(s)\mathbf{\lambda} = g_0 \mathbf{j}$  has:

- either no solutions;
- either a line, plane, etc. of solutions.

| Introduction<br>000000000 | Formulation<br>0000         | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|-----------------------------|-------------------|-----------------------------|-----------------------|-------------|
| SINGULAF                  | RITY OF $oldsymbol{\Sigma}$ | (s)               |                             |                       |             |

- If Σ(s) is invertible: 1-parameter continuum of periodic orbits...
- $\blacktriangleright$  ... but  $\Sigma(s)$  can be singular for some isolated s.

If so, then  $\mathbf{\Sigma}(s)\mathbf{\lambda} = g_0 \mathbf{j}$  has:

- either no solutions;
- either a line, plane, etc. of solutions.

 $\implies$  continuum of orbites of same frequency!

## SINGULARITY OF $\Sigma(s)$ : EXAMPLE WITH 2 IPP



time t

## SINGULARITY OF $\Sigma(s)$ : EXAMPLE WITH 2 IPP

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties<br>○○○○● | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|--------------------------------|-------------|
| NON-SMC                   | OTH STIC            | KING MOD          | ES                          |                                |             |
|                           |                     |                   |                             |                                |             |

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes



| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties<br>○○○○● | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|--------------------------------|-------------|
| NON-SMC                   | OTH STIC            | KING MOD          | ES                          |                                |             |
|                           |                     |                   |                             |                                |             |

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes



| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties<br>○○○○● | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|--------------------------------|-------------|
| NON-SMC                   | OTH STIC            | KING MOD          | ES                          |                                |             |
|                           |                     |                   |                             |                                |             |

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes



| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties<br>○○○○● | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|--------------------------------|-------------|
| NON-SMC                   | OTH STIC            | KING MOD          | ES                          |                                |             |
|                           |                     |                   |                             |                                |             |

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes



| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties<br>○○○○● | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|--------------------------------|-------------|
| NON-SMC                   | OTH STIC            | KING MOD          | ES                          |                                |             |
|                           |                     |                   |                             |                                |             |

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes



| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties<br>○○○○● | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|--------------------------------|-------------|
| NON-SMC                   | OTH STIC            | KING MOD          | ES                          |                                |             |
|                           |                     |                   |                             |                                |             |

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes



| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties<br>○○○○● | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|--------------------------------|-------------|
| NON-SMC                   | OTH STIC            | KING MOD          | ES                          |                                |             |
|                           |                     |                   |                             |                                |             |

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes



## CONCLUSIONS

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| CONCLUS:                  | IONS                |                   |                             |                       |             |

- ▶ main assumptions: piecewise-linear + single contact condition
- no known results for such systems

| Introduction<br>000000000 | Formulation | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|-------------|-------------------|-----------------------------|-----------------------|-------------|
| CONCLUS                   | IONS        |                   |                             |                       |             |

- ▶ main assumptions: piecewise-linear + single contact condition
- no known results for such systems

Has been shown:

- ▶ periodic solutions form **non-smooth modes** (NSM)
- NSM gouverned by a number of equations independent of the number of dof
- symmetries

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| CONCLUS                   | IONS                |                   |                             |                       |             |

- ▶ main assumptions: piecewise-linear + single contact condition
- no known results for such systems

Has been shown:

- ▶ periodic solutions form non-smooth modes (NSM)
- NSM gouverned by a number of equations independent of the number of dof
- symmetries

To investigate:

- relationships between NSM
- comparison with experiments
- forced damped behaviour VS non-smooth modes

| Introduction<br>000000000 | Formulation<br>0000 | Resolution<br>000 | Illustrations<br>0000000000 | Additional properties | Conclusions |
|---------------------------|---------------------|-------------------|-----------------------------|-----------------------|-------------|
| CONCLUS                   | IONS                |                   |                             |                       |             |

- ▶ main assumptions: piecewise-linear + single contact condition
- no known results for such systems

Has been shown:

- ▶ periodic solutions form non-smooth modes (NSM)
- NSM gouverned by a number of equations independent of the number of dof
- symmetries

To investigate:

- relationships between NSM
- comparison with experiments
- forced damped behaviour VS non-smooth modes

Other lessons:

- large variety of behaviours induced by contact
- importance of mathematics and multidisciplinary collaborations

Thank you for your attention

