笱 McGill

NON-SMOOTH MODAL ANALYSIS OF PIECEWISE-LINEAR IMPACT OSCILLATORS

Seminar, Lab. of Solid Mechanics, École Polytechnique, France

March 17, 2016

Anders Thorin,
Pierre Delezoide,
Mathias Legrand.
McGill University, Montreal, Canada

INTRODUCTION

PHASE SPACE

Model

- Mechanical system

身 H_{1}

- Generalised coordinates x_{1}, x_{2}
- Laws of physics

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K x}=\mathbf{0}, \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Mathematical standpoint

- Ordinary differential equation (ODEs)
- Solutions: trajectories

PHASE SPACE

Model

- Mechanical system
- Generalised coordinates x_{1}, x_{2}
- Laws of physics

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K x}=\mathbf{0}, \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Mathematical standpoint

- Ordinary differential equation (ODEs)
- Solutions: trajectories

Equivalence:

Mechanical state

Point in the phase space

LINEAR MODAL ANALYSIS

Model

$$
\mathbf{M} \ddot{\mathrm{x}}+\mathrm{Kx}=\mathbf{0}, \quad \mathrm{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Time-evolution

Mathematical standpoint

LINEAR MODE 1

Linear system

気 num- - - м m -

$$
\mathbf{M} \ddot{\mathrm{x}}+\mathrm{Kx}=\mathbf{0}, \quad \mathrm{x}=\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]
$$

Time-evolution

Phase space: linear mode

Definition (Linear mode)

Invariant plane of periodic orbits in the phase space.

LINEAR MODE 2

Linear system
纹 1 mun- WWMW-

$$
\mathbf{M} \ddot{\mathbf{X}}+\mathbf{K X}=\mathbf{0}, \quad \mathbf{X}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Time-evolution

Phase space: linear mode

Definition (Linear mode)

Invariant planes of periodic orbits in the phase space.

LINEAR MODES: SUMMARY

Linear modes:

- rely on superposition principle
- structure of vector space (base: linear modes)
- linear algebra (\sim end of 19th)
- eigenvalues: resonance

WHAT ABOUT NONLINEAR SYSTEMS?

Nonlinear modes:

- superposition principle no longer holds
- impossible to calculate all the trajectories

WHAT ABOUT NONLINEAR SYSTEMS?

Nonlinear modes:

- superposition principle no longer holds
- impossible to calculate all the trajectories
- but maths results (Lyapunov theorem (1907) + central manifold theorem (~ 1970))
- existence of fix points, periodic orbits, attractors, continuums of periodic orbits in the vicinity of fixed points
- applied to dynamical systems (Rosenberg, Shaw, Pierre, Vakakis, etc.)
- practical interest: local behaviour + prediction of resonance

NONLINEAR MODES

Nonlinear system

总WMWM-

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K}\left(\mathbf{x}+\alpha \mathbf{x}^{3}\right)=\mathbf{0}
$$

Time-evolution

Phase space

Definition (Nonlinear mode)

Continuum of periodic orbits in the phase space, tangent to a linear mode.

NONLINEAR MODES

Nonlinear system

彔WMWM-

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K}\left(\mathbf{x}+\alpha \mathbf{x}^{3}\right)=\mathbf{0}
$$

Time-evolution

Phase space

Definition (Nonlinear mode)

Continuum of periodic orbits in the phase space, tangent to a linear mode.

NONLINEAR MODES

Nonlinear system

彔WMWM-

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K}\left(\mathbf{x}+\alpha \mathbf{x}^{3}\right)=\mathbf{0}
$$

Time-evolution

Phase space

Definition (Nonlinear mode)

Continuum of periodic orbits in the phase space, tangent to a linear mode.

NONLINEAR MODES

Nonlinear system

彔WMWM-

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K}\left(\mathbf{x}+\alpha \mathbf{x}^{3}\right)=\mathbf{0}
$$

Time-evolution

Phase space

Definition (Nonlinear mode)

Continuum of periodic orbits in the phase space, tangent to a linear mode.

NONLINEAR MODES

Nonlinear system

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K}\left(\mathbf{x}+\alpha \mathbf{x}^{3}\right)=\mathbf{0}
$$

Time-evolution

Phase space

Definition (Nonlinear mode)

Continuum of periodic orbits in the phase space, tangent to a linear mode.

NONLINEAR MODES

Nonlinear system

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K}\left(\mathbf{x}+\alpha \mathbf{x}^{3}\right)=\mathbf{0}
$$

Time-evolution

Phase space

Definition (Nonlinear mode)

Continuum of periodic orbits in the phase space, tangent to a linear mode.

LIMITATION OF NONLINEAR MODAL ANALYSIS

Limitation

Computation of nonlinear modes relies on smoothness.

\longrightarrow What about non-smooth systems?

- Non-smooth system: system undergoing impact and/or dry friction.

Newton cradle [Inria]

Turbomachine [McGill]

- Long-term objective: extend non-linear modal analysis to non-smooth systems
- Literature in (ultra) short: nonlinear smooth modes or time-evolution of non-smooth systems

OUTLINE

1. Introduction
2. Formulation
3. Resolution
4. Illustrations
5. Additional properties
6. Conclusions

FORMULATION

INVESTIGATED SYSTEMS: ASSUMPTIONS

$$
\begin{aligned}
& \mathbf{M}=\left[\begin{array}{lll}
\bullet & & 0 \\
& \ddots & \\
0 & & \bullet
\end{array}\right] \\
& \mathbf{M}=\left[\begin{array}{ccc}
\bullet & \cdots & \bullet \\
\vdots & & \vdots \\
\bullet & \cdots & \bullet
\end{array}\right]
\end{aligned}
$$

- linear system (material + geometry)
- autonomous (= unforced)
- conservative (= undamped)

INVESTIGATED SYSTEMS: ASSUMPTIONS

$$
\begin{aligned}
& \mathbf{M}=\left[\begin{array}{lll}
\bullet & & 0 \\
& \ddots & \\
0 & & \bullet
\end{array}\right] \\
& \mathbf{M}=\left[\begin{array}{lll}
\bullet & \cdots & \bullet \\
\vdots & & \vdots \\
\bullet & \cdots & \bullet
\end{array}\right]
\end{aligned}
$$

- linear system (material + geometry) piecewise
- autonomous (= unforced)
- conservative (= undamped)
- unique contact condition

INVESTIGATED SYSTEMS: ASSUMPTIONS

- linear system (material + geometry) piecewise
- autonomous (= unforced)
- conservative (= undamped)
- unique contact condition
- perfectly elastic impact law

FREE FLIGHT

- Dynamics $\mathbf{M} \ddot{\mathrm{x}}+\mathrm{Kx}=\mathbf{0}$
- First-order $\dot{\mathbf{X}}=\mathbf{A X}$ with $\mathbf{X}=\binom{\mathbf{x}}{\dot{\mathbf{x}}}$ and $\mathbf{A}=\left[\begin{array}{cc}\mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1} \mathbf{K} & \mathbf{0}\end{array}\right]$
- Solutions $\mathbf{X}(t)=e^{t \mathbf{A}} \mathbf{X}(0)$

FREE FLIGHT

- Dynamics $\mathbf{M} \ddot{\mathrm{x}}+\mathrm{Kx}=\mathbf{0}$
- First-order $\dot{\mathbf{X}}=\mathbf{A X}$ with $\mathbf{X}=\binom{\mathbf{X}}{\dot{\mathbf{x}}}$ and $\mathbf{A}=\left[\begin{array}{cc}\mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1} \mathbf{K} & \mathbf{0}\end{array}\right]$
- Solutions $\mathbf{X}(t)=e^{t \mathbf{A}} \mathbf{X}(0)$
- After a change of basis: $\overline{\mathbf{X}}(t)=\mathbf{S}(t) \overline{\mathbf{X}}(0)$ where $\mathbf{S}(t)$ is block-diagonal:

$$
\left[\begin{array}{cc}
\cos \left(\omega_{i} t\right) & -\sin \left(\omega_{i} t\right) \\
\sin \left(\omega_{i} t\right) & \cos \left(\omega_{i} t\right)
\end{array}\right]
$$

$\Longrightarrow \mathbf{S}(t)$ acts like n rotations in n orthogonal planes

IMPACT

- gap: $g(\mathbf{x})=g_{0}-\mathbf{x}$ with g_{0} unconstrained gap
- Newton impact law: $\dot{x}_{n}\left(t_{\mathrm{imp}}^{+}\right)=-e \dot{x}_{n}\left(t_{\mathrm{imp}}^{-}\right)$with $e=1$
\triangleright conservative when \mathbf{M} is diagonal: $\dot{\mathbf{x}}^{+\top} \mathbf{M} \dot{\mathbf{x}}^{+}=\sum_{i} m_{i, i} \dot{x}_{i}^{+2}=\dot{\mathbf{x}}^{-\top} \mathbf{M} \dot{\mathbf{x}}^{-}$

IMPACT

- gap: $g(\mathbf{x})=g_{0}-\mathbf{x}$ with g_{0} unconstrained gap
- Newton impact law: $\dot{x}_{n}\left(t_{\mathrm{imp}}^{+}\right)=-e \dot{x}_{n}\left(t_{\mathrm{imp}}^{-}\right)$with $e=1$
\triangleright conservative when \mathbf{M} is diagonal: $\dot{\mathbf{x}}^{+\top} \mathbf{M} \dot{\mathbf{x}}^{+}=\sum_{i} m_{i, i} \dot{x}_{i}^{+2}=\dot{\mathbf{x}}^{-\top} \mathbf{M} \dot{\mathbf{x}}^{-}$
\triangleright non-conservative in general: $\dot{\mathbf{x}}^{+\top} \mathbf{M} \dot{\mathbf{x}}^{+} \neq \dot{\mathbf{x}}^{-\top} \mathbf{M} \dot{\mathbf{x}}^{-}$

IMPACT

- gap: $g(\mathbf{x})=g_{0}-\mathbf{x}$ with g_{0} unconstrained gap
- Newton impact law: $\dot{x}_{n}\left(t_{\mathrm{imp}}^{+}\right)=-e \dot{x}_{n}\left(t_{\mathrm{imp}}^{-}\right)$with $e=1$
\triangleright conservative when \mathbf{M} is diagonal: $\dot{\mathbf{x}}^{+\top} \mathbf{M} \dot{\mathbf{x}}^{+}=\sum_{i} m_{i, i} \dot{x}_{i}^{+2}=\dot{\mathbf{x}}^{-\top} \mathbf{M} \dot{\mathbf{x}}^{-}$ \triangleright non-conservative in general: $\dot{\mathbf{x}}^{+\top} \mathbf{M} \dot{\mathbf{x}}^{+} \neq \dot{\mathbf{x}}^{-\top} \mathbf{M} \dot{\mathrm{x}}^{-}$
- more generally: $\dot{\mathbf{x}}^{+}=\mathbf{N} \dot{\mathbf{x}}^{-}$with $\mathbf{N}=\mathbf{M}^{-1 / 2}\left(\mathbf{I}-2 \mathbf{r} \mathbf{r}^{\top}\right) \mathbf{M}^{1 / 2}$

IMPACT

- gap: $g(\mathbf{x})=g_{0}-\mathbf{x}$ with g_{0} unconstrained gap
- Newton impact law: $\dot{x}_{n}\left(t_{\mathrm{imp}}^{+}\right)=-e \dot{x}_{n}\left(t_{\mathrm{imp}}^{-}\right)$with $e=1$
\triangleright conservative when \mathbf{M} is diagonal: $\dot{\mathbf{x}}^{+\top} \mathbf{M} \dot{\mathbf{x}}^{+}=\sum_{i} m_{i, i} \dot{x}_{i}^{+2}=\dot{\mathbf{x}}^{-\top} \mathbf{M} \dot{\mathbf{x}}^{-}$ \triangleright non-conservative in general: $\dot{\mathbf{x}}^{+\top} \mathbf{M} \dot{\mathbf{x}}^{+} \neq \dot{\mathbf{x}}^{-\top} \mathbf{M} \dot{\mathbf{x}}^{-}$
- more generally: $\dot{\mathbf{x}}^{+}=\mathbf{N} \dot{\mathbf{x}}^{-}$with $\mathbf{N}=\mathbf{M}^{-1 / 2}\left(\mathbf{I}-2 \mathbf{r r}^{\top}\right) \mathbf{M}^{1 / 2}$
$\Longrightarrow \mathbf{N}$ acts as a reflection w.r.t to a hyperplane

LINEAR MAPPING AFTER K IMPACTS

- State at time t :

$$
\mathbf{X}(t)=\mathbf{S}(t) \mathbf{X}_{0}
$$

LINEAR MAPPING AFTER K IMPACTS

- State at time t :

$$
\mathbf{X}(t)=\mathbf{N S}\left(\sigma_{1}\right) \mathbf{X}_{0}
$$

LINEAR MAPPING AFTER K IMPACTS

"ג~w who

- State at time t :

$$
\mathbf{X}(t)=\mathbf{S}\left(t-t_{1}\right) \mathbf{N S}\left(\sigma_{1}\right) \mathbf{X}_{0}
$$

LINEAR MAPPING AFTER K IMPACTS

- State at time t :

$$
\mathbf{X}(t)=\mathbf{N S}\left(\sigma_{2}\right) \mathbf{N S}\left(\sigma_{1}\right) \mathbf{X}_{0}
$$

LINEAR MAPPING AFTER K IMPACTS

- State at time t :

$$
\mathbf{X}(t)=\mathbf{N S}\left(\sigma_{k}\right) \ldots \mathbf{N S}\left(\sigma_{2}\right) \mathbf{N S}\left(\sigma_{1}\right) \mathbf{X}_{0}
$$

LINEAR MAPPING AFTER K IMPACTS

- State at time t :

$$
\mathbf{X}(t)=\mathbf{N S}\left(\sigma_{k}\right) \ldots \mathbf{N S}\left(\sigma_{2}\right) \mathbf{N S}\left(\sigma_{1}\right) \mathbf{X}_{0}=\mathbf{X}_{0}
$$

LINEAR MAPPING AFTER K IMPACTS

- State at time t :

$$
u\left(\mathbf{X}_{0}\right)=\mathbf{X}(t)=\mathbf{N S}\left(\sigma_{k}\right) \ldots \mathbf{N S}\left(\sigma_{2}\right) \mathbf{N S}\left(\sigma_{1}\right) \mathbf{X}_{0}=\mathbf{X}_{0}
$$

LINEAR MAPPING AFTER K IMPACTS

- State at time t :

$$
u\left(\mathbf{X}_{0}\right)=\mathbf{X}(t)=\mathbf{N S}\left(\sigma_{k}\right) \ldots \mathbf{N S}\left(\sigma_{2}\right) \mathbf{N S}\left(\sigma_{1}\right) \mathbf{X}_{0}=\mathbf{X}_{0}
$$

- Formulation: For a given k, find \mathbf{X}_{0} and t_{1}, \ldots, t_{k} such that

$$
\left\{\begin{array}{l}
u\left(\mathbf{X}_{0}\right)=\mathbf{X}_{0} \\
\mathbf{X} \text { determined by } \mathbf{X}_{0} \text { such that: } \\
\forall i \in \llbracket 1, k \rrbracket, g\left(\mathbf{X}\left(t_{i}\right)\right)=0 \\
\forall t \in[0, T], g(\mathbf{X}(t)) \geq 0
\end{array}\right.
$$

NC1 (dynamics + periodicity)

NC2 (gap closures)
NC3 (non-interpenetration)

RESOLUTION

MAIN RESULTS

- Formulation: For a given k, find \mathbf{X}_{0} and t_{1}, \ldots, t_{k} such that

$$
\left\{\begin{array}{l}
u\left(\mathbf{X}_{0}\right)=\mathbf{X}_{0} \\
\mathbf{X} \text { détermined by } \mathbf{X}_{0} \text { such that: } \\
\forall i \in \llbracket 1, k \rrbracket, g\left(\mathbf{X}\left(t_{i}\right)\right)=0 \\
\forall t \in[0, T], g(\mathbf{X}(t)) \geq 0
\end{array}\right.
$$

NC1 (dynamics + periodicity)

NC2 (gap closures)
NC3 (non-interpenetration)

MAIN RESULTS

- Formulation: For a given k, find \mathbf{X}_{0} and t_{1}, \ldots, t_{k} such that

$$
\begin{cases}u\left(\mathbf{X}_{0}\right)=\mathbf{X}_{0} & \text { NC1 (dynamics }+ \text { periodicity) } \\ X \text { détermined by } X_{0} \text { such that: } & \\ \forall i \in[1, k], g\left(X\left(t_{i}\right)\right)=0 & \text { NC2 (gap closures) } \\ \forall t \in[0, T], g(X(t)) \geq 0 & \text { NC3 (non-interpenetration) }\end{cases}
$$

- Example: for $n=2, k=2, N C 1$:

$$
\mathbf{N S}\left(\sigma_{2}\right) \mathbf{N S}\left(\sigma_{1}\right) \mathbf{X}_{0}=\mathbf{X}_{0}
$$

MAIN RESULTS

- Formulation: For a given k, find \mathbf{X}_{0} and t_{1}, \ldots, t_{k} such that

$$
\begin{cases}u\left(\mathbf{X}_{0}\right)=\mathbf{X}_{0} & \text { NC1 (dynamics }+ \text { periodicity) } \\ X \text { détermined by } X_{0} \text { such that: } & \\ \forall i \in[1, k], g\left(X\left(t_{i}\right)\right)=0 & \text { NC2 (gap closures) } \\ \forall t \in[0, T], g(X(t)) \geq 0 & \text { NC3 (non-interpenetration) }\end{cases}
$$

- Example: for $n=2, k=2, \mathrm{NC1}$:

$$
\begin{aligned}
& \mathbf{N S}\left(\sigma_{2}\right) \mathbf{N S}\left(\sigma_{1}\right) \mathbf{X}_{0}=\mathbf{X}_{0} \\
& \mathbf{N}=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & -1
\end{array}\right] \quad \mathbf{S}(t)=\mathbf{P}\left[\begin{array}{lll}
\cos \left(\omega_{1} t\right) & -\sin \left(\omega_{1} t\right) & \\
\sin \left(\omega_{1} t\right) & \cos \left(\omega_{1} t\right) & \\
& & \begin{array}{l}
\cos \left(\omega_{2} t\right) \\
\\
\\
\\
\end{array} \\
& & \sin \left(\omega_{2} t\right) \\
& \sin \left(\omega_{2} t\right)
\end{array}\right] \mathbf{P}^{-1}
\end{aligned}
$$

Very computationally expensive!

MAIN RESULTS

- Formulation: For a given k, find \mathbf{X}_{0} and t_{1}, \ldots, t_{k} such that

$$
\left\{\begin{array}{l}
u\left(\mathbf{X}_{0}\right)=\mathbf{X}_{0} \\
X \text { détermined by } X_{0} \text { such that: } \\
\forall i \in[1, k], g\left(X\left(t_{i}\right)\right)=0 \\
\forall t \in[0, T], g(X(t)) \geq 0
\end{array}\right.
$$

NC1 (dynamics + periodicity)

Theorem (NC1)

X_{0} is invariant by u iff $\exists \lambda \in \mathbb{R}^{k}$ such that

$$
\left\{\begin{array}{l}
\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=\mathbf{0} \\
\mathbf{X}_{0}=\varphi(\boldsymbol{\lambda})
\end{array}\right.
$$

The applications $\boldsymbol{\Pi}$ and φ are known!
Π is a skew-symmetric $k \times k$ matrix.

MAIN RESULTS

- Formulation: For a given k, find \mathbf{X}_{0} and t_{1}, \ldots, t_{k} such that

$$
\left\{\begin{array}{l}
u\left(\mathrm{X}_{0}\right)=\mathrm{X}_{0} \\
\mathbf{X} \text { determined by } \mathbf{X}_{0} \text { such that: } \\
\forall i \in \llbracket 1, k \rrbracket, g\left(\mathbf{X}\left(t_{i}\right)\right)=0
\end{array}\right.
$$

NC1 (dynamics + periodicity)
NC2 (gap closures)
NC3 (non-interpenetration)

MAIN RESULTS

- Formulation: For a given k, find \mathbf{X}_{0} and t_{1}, \ldots, t_{k} such that

$$
\begin{cases}u\left(\mathrm{X}_{0}\right)=\mathrm{X}_{0} & \text { NC1 (dynamics + periodicity) } \\ \mathbf{X} \text { determined by } \mathbf{X}_{0} \text { such that: } & \\ \forall i \in \llbracket 1, k \rrbracket, g\left(\mathbf{X}\left(t_{i}\right)\right)=0 & \text { NC2 (gap closures) } \\ \forall t \in[0, T], g(X(t)) \geq 0 & \text { NC3 (non-interpenetration) }\end{cases}
$$

Theorem (NC2)

X_{0} verifies $N C 2$ iff $\exists \boldsymbol{\lambda} \in \mathbb{R}^{k}$ such that

$$
\left\{\begin{array}{l}
\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \boldsymbol{j} \\
\mathbf{X}_{0}=\varphi(\boldsymbol{\lambda})
\end{array}\right.
$$

with $\mathbf{j}=[1, \ldots, 1]^{\top}$.
The applications $\boldsymbol{\Sigma}$ and φ are known, and φ is the same as in Theorem 1 . $\boldsymbol{\Sigma}$ is a symmetric $k \times k$ matrix.

MAIN RESULTS

- For a given k, find $\mathbf{X}_{0} \in \mathbb{R}^{2 n}$ and t_{1}, \ldots, t_{k} such that

$$
\begin{cases}u\left(\mathbf{X}_{0}\right)=\mathbf{X}_{0} & \text { NC1 } \\ \mathbf{X} \text { determined by } \mathbf{X}_{0} \text { such that: } & \\ \forall i \in \llbracket 1, k \rrbracket, g\left(\mathbf{X}\left(t_{i}\right)\right)=0 & \text { NC2 } \\ \forall t \in[0, T], g(\mathbf{X}(t)) \geq 0 & \text { NC3 }\end{cases}
$$

becomes:

- For a given k, find $\boldsymbol{\lambda} \in \mathbb{R}^{k}$ and t_{1}, \ldots, t_{k} such that

$$
\begin{cases}\Pi\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=\mathbf{0} & \text { NC1 } \\ \boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \boldsymbol{j} & \text { NC2 } \\ \mathbf{X} \text { determined by } \mathbf{X}_{0}=\varphi(\boldsymbol{\lambda}) \text { such that: } & \\ \forall t \in[0, T], g(\mathbf{X}(t)) \geq 0 & \text { NC3 }\end{cases}
$$

ILLUSTRATIONS

CASE $k=1$

- For a given k, find $\boldsymbol{\lambda} \in \mathbb{R}^{k}$ and t_{1}, \ldots, t_{k} such that

$$
\begin{cases}\Pi\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=\mathbf{0} & \text { NC1 } \\ \boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j} & \text { NC2 } \\ \mathbf{X} \text { determined by } \mathbf{X}_{0}=\varphi(\boldsymbol{\lambda}) \text { such that: } & \\ \forall t \in[0, T], g(\mathbf{X}(t)) \geq 0 & \text { NC3 }\end{cases}
$$

CASE $k=1$

- For a given k, find $\boldsymbol{\lambda} \in \mathbb{R}^{k}$ and t_{1}, \ldots, t_{k} such that

$$
\begin{cases}\Pi\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=\mathbf{0} & \text { NC1 } \\ \boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j} & \text { NC2 } \\ \mathbf{X} \text { determined by } \mathbf{X}_{0}=\varphi(\boldsymbol{\lambda}) \text { such that: } & \\ \forall t \in[0, T], g(\mathbf{X}(t)) \geq 0 & \text { NC3 }\end{cases}
$$

- Example $k=1$:
$\triangleright \boldsymbol{\Pi}\left(t_{1}\right)=[0]$, so NC1 is always satisfied.

CASE $k=1$

- For a given k, find $\boldsymbol{\lambda} \in \mathbb{R}^{k}$ and t_{1}, \ldots, t_{k} such that

$$
\begin{cases}\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=\mathbf{0} & \text { NC1 } \\ \boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j} & \text { NC2 } \\ \mathbf{X} \text { determined by } \mathbf{X}_{0}=\varphi(\boldsymbol{\lambda}) \text { such that: } & \\ \forall t \in[0, T], g(\mathbf{X}(t)) \geq 0 & \text { NC3 }\end{cases}
$$

- Example $k=1$:
$\triangleright \boldsymbol{\Pi}\left(t_{1}\right)=[0]$, so NC1 is always satisfied.
$\triangleright \boldsymbol{\Sigma}\left(t_{1}\right)=\left[f\left(t_{1}\right)\right]$ so NC2 reads:

$$
f\left(t_{1}\right) \lambda=g_{0} .
$$

If $g_{0} \neq 0, \lambda=g_{0} / f\left(t_{1}\right)$

CASE $k=1$

- For a given k, find $\boldsymbol{\lambda} \in \mathbb{R}^{k}$ and t_{1}, \ldots, t_{k} such that

$$
\begin{cases}\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=\mathbf{0} & \text { NC1 } \\ \boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j} & \text { NC2 } \\ \mathbf{X} \text { determined by } \mathbf{X}_{0}=\varphi(\boldsymbol{\lambda}) \text { such that: } & \\ \forall t \in[0, T], g(\mathbf{X}(t)) \geq 0 & \text { NC3 }\end{cases}
$$

- Example $k=1$:
$\triangleright \boldsymbol{\Pi}\left(t_{1}\right)=[0]$, so NC1 is always satisfied.
$\triangleright \boldsymbol{\Sigma}\left(t_{1}\right)=\left[f\left(t_{1}\right)\right]$ so NC2 reads:

$$
f\left(t_{1}\right) \lambda=g_{0} .
$$

If $g_{0} \neq 0, \lambda=g_{0} / f\left(t_{1}\right)$ so $\mathbf{X}_{0}=\varphi\left(g_{0} / f\left(t_{1}\right)\right)$.
\Longrightarrow vector of initial conditions \mathbf{X}_{0} is parametrised by $t_{1}=T$!

CASE $k=1$

- For a given k, find $\boldsymbol{\lambda} \in \mathbb{R}^{k}$ and t_{1}, \ldots, t_{k} such that

$$
\begin{cases}\Pi\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=\mathbf{0} & \text { NC1 } \\ \boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j} & \text { NC2 } \\ \mathbf{X} \text { determined by } \mathbf{X}_{0}=\varphi(\boldsymbol{\lambda}) \text { such that: } & \\ \forall t \in[0, T], g(\mathbf{X}(t)) \geq 0 & \text { NC3 }\end{cases}
$$

- Example $k=1$:
$\triangleright \boldsymbol{\Pi}\left(t_{1}\right)=[0]$, so NC1 is always satisfied.
$\triangleright \boldsymbol{\Sigma}\left(t_{1}\right)=\left[f\left(t_{1}\right)\right]$ so NC2 reads:

$$
f\left(t_{1}\right) \lambda=g_{0} .
$$

If $g_{0} \neq 0, \lambda=g_{0} / f\left(t_{1}\right)$ so $\mathbf{X}_{0}=\varphi\left(g_{0} / f\left(t_{1}\right)\right)$.
\Longrightarrow vector of initial conditions \mathbf{X}_{0} is parametrised by $t_{1}=T$!
\triangleright NC3 has to be checked numerically.

CASE $k=1$

- Parametrisation $\mathbf{X}_{0}=\varphi\left(g_{0} / f\left(t_{1}\right)\right)$. $t_{1}=T$

CASE $k=1$

- Parametrisation $\mathbf{X}_{0}=\varphi\left(g_{0} / f\left(t_{1}\right)\right)$.

CASE $k=1$

- Parametrisation $\mathbf{X}_{0}=\varphi\left(g_{0} / f\left(t_{1}\right)\right)$.

CASE $k=1$

- Parametrisation $\mathbf{X}_{0}=\varphi\left(g_{0} / f\left(t_{1}\right)\right)$.

CASE $k=1$

- Parametrisation $\mathbf{X}_{0}=\varphi\left(g_{0} / f\left(t_{1}\right)\right)$.

CASE $k=1$

- Parametrisation $\mathbf{X}_{0}=\varphi\left(g_{0} / f\left(t_{1}\right)\right)$.

CASE $k=1$

- Parametrisation $\mathbf{X}_{0}=\varphi\left(g_{0} / f\left(t_{1}\right)\right)$.

CASE $k=1$

- Parametrisation $\mathbf{X}_{0}=\varphi\left(g_{0} / f\left(t_{1}\right)\right)$.

TERMINOLOGY

Definition (Potential solution)

Initial conditions satisfying NC1 + NC2

Definition (Admissible solution)

Initial conditions satisfying NC1 $+\mathrm{NC} 2+\mathrm{NC} 3$
In practice, seek potential solutions and check NC3 numerically.

NON-SMOOTH MODE (1 IMPACT PER PERIOD)

NON-SMOOTH MODE (1 IMPACT PER PERIOD)

NON-SMOOTH MODE (1 IMPACT PER PERIOD)

NON-SMOOTH MODE (1 IMPACT PER PERIOD)

NON-SMOOTH MODE (1 IMPACT PER PERIOD)

NON-SMOOTH MODE (1 IMPACT PER PERIOD)

CASE 2 IMPACTS PER PERIOD ($k=2$)

- For a given k, find $\boldsymbol{\lambda} \in \mathbb{R}^{k}$ and t_{1}, \ldots, t_{k} such that

$$
\begin{cases}\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=\mathbf{0} & \text { NC1 } \\ \boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \boldsymbol{j} & \text { NC2 } \\ \mathbf{X} \text { determined by } \mathbf{X}_{0}=\varphi(\boldsymbol{\lambda}) \text { such that: } & \\ \forall t \in[0, T], g(\mathbf{X}(t)) \geq 0 & \text { NC3 }\end{cases}
$$

CASE 2 IMPACTS PER PERIOD ($k=2$)

- For a given k, find $\boldsymbol{\lambda} \in \mathbb{R}^{k}$ and t_{1}, \ldots, t_{k} such that

$$
\left\{\begin{array}{lr}
\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=\mathbf{0} & \text { NC1 } \\
\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j} & \text { NC2 } \\
\mathbf{X} \text { determined by } \mathbf{X}_{0}=\varphi(\boldsymbol{\lambda}) \text { such that: } & \\
\forall t \in[0, T], g(\mathbf{X}(t)) \geq 0 & \text { NC3 }
\end{array}\right.
$$

- Example $k=2$:
$\triangleright \boldsymbol{\Pi}\left(t_{1}, t_{2}\right)=\left[\begin{array}{cc}0 \\ -\pi\left(t_{1}, t_{2}\right) & \pi\left(t_{1}, t_{2}\right) \\ 0\end{array}\right]$ so NC1 implies that $\pi\left(t_{1}, t_{2}\right)=0$.

CASE 2 IMPACTS PER PERIOD ($k=2$)

- For a given k, find $\boldsymbol{\lambda} \in \mathbb{R}^{k}$ and t_{1}, \ldots, t_{k} such that

$$
\left\{\begin{array}{lr}
\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=\mathbf{0} & \text { NC1 } \\
\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j} & \text { NC2 } \\
\mathbf{X} \text { determined by } \mathbf{X}_{0}=\varphi(\boldsymbol{\lambda}) \text { such that: } & \\
\forall t \in[0, T], g(\mathbf{X}(t)) \geq 0 & \text { NC3 }
\end{array}\right.
$$

- Example $k=2$:
$\triangleright \boldsymbol{\Pi}\left(t_{1}, t_{2}\right)=\left[\begin{array}{cc}0 \\ -\pi\left(t_{1}, t_{2}\right) & \pi\left(t_{1}, t_{2}\right) \\ 0\end{array}\right]$ so NC1 implies that $\pi\left(t_{1}, t_{2}\right)=0$.
$\triangleright \boldsymbol{\Sigma}\left(t_{1}, t_{2}\right)=\left[\begin{array}{c}0 \\ f\left(t_{1}, t_{2}\right)\end{array}{f\left(t_{1}, t_{2}\right)}_{0}^{1}\right]$ is invertible a.e. so if $\pi\left(t_{1}, t_{2}\right)=0$ and $g_{0} \neq 0$,

$$
\boldsymbol{\lambda}=g_{0} \boldsymbol{\Sigma}^{-1}\left(t_{1}, t_{2}\right) \mathbf{j}
$$

CASE 2 IMPACTS PER PERIOD $(k=2)$

- For a given k, find $\boldsymbol{\lambda} \in \mathbb{R}^{k}$ and t_{1}, \ldots, t_{k} such that

$$
\begin{cases}\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=\mathbf{0} & \text { NC1 } \\ \boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j} & \text { NC2 } \\ \mathbf{X} \text { determined by } \mathbf{X}_{0}=\varphi(\boldsymbol{\lambda}) \text { such that: } & \\ \forall t \in[0, T], g(\mathbf{X}(t)) \geq 0 & \text { NC3 }\end{cases}
$$

- Example $k=2$:
$\triangleright \boldsymbol{\Pi}\left(t_{1}, t_{2}\right)=\left[\begin{array}{cc}0 & \pi\left(t_{1}, t_{2}\right) \\ -\pi\left(t_{1}, t_{2}\right) \\ 0\end{array}\right]$ so NC1 implies that $\pi\left(t_{1}, t_{2}\right)=0$.
$\triangleright \boldsymbol{\Sigma}\left(t_{1}, t_{2}\right)=\left[\begin{array}{cc}0 \\ f\left(t_{1}, t_{2}\right) & f\left(t_{1}, t_{2}\right) \\ 0\end{array}\right]$ is invertible a.e. so if $\pi\left(t_{1}, t_{2}\right)=0$ and $g_{0} \neq 0$,

$$
\boldsymbol{\lambda}=g_{0} \boldsymbol{\Sigma}^{-1}\left(t_{1}, t_{2}\right) \mathbf{j}
$$

and $\mathbf{X}_{0}=\varphi\left(g_{0} \boldsymbol{\Sigma}^{-1}\left(t_{1}, t_{2}\right) \mathbf{j}\right)$.
\Longrightarrow vector of initial conditions \mathbf{X}_{0} parametrised by the roots of $\pi\left(t_{1}, t_{2}\right)$

CASE 2 IMPACTS PER PERIOD $(k=2)$

- Parametrisation: $\mathbf{X}_{0}=\varphi\left(g_{0} \boldsymbol{\Sigma}^{-1}\left(t_{1}, t_{2}\right) \mathbf{j}\right)$ for $\left(t_{1}, t_{2}\right)$ roots of π.

Level-set 0 of π

CASE 2 IMPACTS PER PERIOD $(k=2)$

- Parametrisation: $\mathbf{X}_{0}=\varphi\left(g_{0} \boldsymbol{\Sigma}^{-1}\left(t_{1}, t_{2}\right) \mathbf{j}\right)$ for $\left(t_{1}, t_{2}\right)$ roots of π.

Level-set 0 of π

CASE 2 IMPACTS PER PERIOD $(k=2)$

- Parametrisation: $\mathbf{X}_{0}=\varphi\left(g_{0} \boldsymbol{\Sigma}^{-1}\left(t_{1}, t_{2}\right) \mathbf{j}\right)$ for $\left(t_{1}, t_{2}\right)$ roots of π.

Level-set 0 of π

CASE 2 IMPACTS PER PERIOD $(k=2)$

CASE 2 IMPACTS PER PERIOD $(k=2)$

CASE 2 IMPACTS PER PERIOD $(k=2)$

CASE 2 IMPACTS PER PERIOD $(k=2)$

CASE 2 IMPACTS PER PERIOD $(k=2)$

CASE 2 IMPACTS PER PERIOD $(k=2)$

CASE 2 IMPACTS PER PERIOD $(k=2)$

GENERAL CASE $\left(k \in \mathbb{N}^{*}\right)$

- Potential solutions: curves in the space $\left(t_{1}, \ldots, t_{k}\right)$. If $\boldsymbol{\Sigma}$ invertible,

$$
\left\{\begin{array}{l}
\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=0 \\
\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j}
\end{array} \quad \Longrightarrow \quad \Pi(\mathbf{s}) \boldsymbol{\Sigma}^{-1}(\mathbf{s}) \mathbf{j}=\mathbf{0}\right.
$$

GENERAL CASE $\left(k \in \mathbb{N}^{*}\right)$

- Potential solutions: curves in the space $\left(t_{1}, \ldots, t_{k}\right)$. If $\boldsymbol{\Sigma}$ invertible,

$$
\left\{\begin{array}{l}
\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=0 \\
\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j}
\end{array} \quad \Longrightarrow \quad \Pi(\mathbf{s}) \boldsymbol{\Sigma}^{-1}(\mathbf{s}) \mathbf{j}=\mathbf{0}\right.
$$

This gives $k-1$ equations in k unknowns $\Longrightarrow 1$-parameter continuum

GENERAL CASE $\left(k \in \mathbb{N}^{*}\right)$

- Potential solutions: curves in the space $\left(t_{1}, \ldots, t_{k}\right)$. If $\boldsymbol{\Sigma}$ invertible,

$$
\left\{\begin{array}{l}
\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=0 \\
\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j}
\end{array} \quad \Longrightarrow \quad \Pi(\mathbf{s}) \boldsymbol{\Sigma}^{-1}(\mathbf{s}) \mathbf{j}=\mathbf{0}\right.
$$

This gives $k-1$ equations in k unknowns $\Longrightarrow 1$-parameter continuum

GENERAL CASE $\left(k \in \mathbb{N}^{*}\right)$

- Potential solutions: curves in the space $\left(t_{1}, \ldots, t_{k}\right)$. If $\boldsymbol{\Sigma}$ invertible,

$$
\left\{\begin{array}{l}
\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=0 \\
\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j}
\end{array} \quad \Longrightarrow \quad \Pi(\mathbf{s}) \boldsymbol{\Sigma}^{-1}(\mathbf{s}) \mathbf{j}=\mathbf{0}\right.
$$

This gives $k-1$ equations in k unknowns $\Longrightarrow 1$-parameter continuum

GENERAL CASE $\left(k \in \mathbb{N}^{*}\right)$

- Potential solutions: curves in the space $\left(t_{1}, \ldots, t_{k}\right)$. If $\boldsymbol{\Sigma}$ invertible,

$$
\left\{\begin{array}{l}
\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=0 \\
\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j}
\end{array} \quad \Longrightarrow \quad \Pi(\mathbf{s}) \boldsymbol{\Sigma}^{-1}(\mathbf{s}) \mathbf{j}=\mathbf{0}\right.
$$

This gives $k-1$ equations in k unknowns $\Longrightarrow 1$-parameter continuum

GENERAL CASE $\left(k \in \mathbb{N}^{*}\right)$

- Potential solutions: curves in the space $\left(t_{1}, \ldots, t_{k}\right)$. If $\boldsymbol{\Sigma}$ invertible,

$$
\left\{\begin{array}{l}
\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=0 \\
\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j}
\end{array} \quad \Longrightarrow \quad \Pi(\mathbf{s}) \boldsymbol{\Sigma}^{-1}(\mathbf{s}) \mathbf{j}=\mathbf{0}\right.
$$

This gives $k-1$ equations in k unknowns $\Longrightarrow 1$-parameter continuum

- Admissibles solutions: parts of such curves \Longrightarrow existence of non-smooth modes in the neighbourhood of admissible solutions

GENERAL CASE $\left(k \in \mathbb{N}^{*}\right)$

- Potential solutions: curves in the space $\left(t_{1}, \ldots, t_{k}\right)$. If $\boldsymbol{\Sigma}$ invertible,

$$
\left\{\begin{array}{l}
\boldsymbol{\Pi}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=0 \\
\boldsymbol{\Sigma}\left(t_{1}, \ldots, t_{k}\right) \boldsymbol{\lambda}=g_{0} \mathbf{j}
\end{array} \quad \Longrightarrow \quad \Pi(\mathbf{s}) \boldsymbol{\Sigma}^{-1}(\mathbf{s}) \mathbf{j}=\mathbf{0}\right.
$$

This gives $k-1$ equations in k unknowns $\Longrightarrow 1$-parameter continuum

- Admissibles solutions: parts of such curves \Longrightarrow existence of non-smooth modes in the neighbourhood of admissible solutions
- Isolated points where $\boldsymbol{\Sigma}$ is not invertible.

METHODOLOGY

1. Find a potential solution (solve $\boldsymbol{\Pi}(\mathbf{s}) \boldsymbol{\Sigma}^{-1}(\mathbf{s}) \mathbf{j}=\mathbf{0}$ for $\mathbf{s} \in \mathbb{R}_{+}^{k}$).
$\triangleright \operatorname{det}(\boldsymbol{\Pi})=\operatorname{Pf}^{2}(\boldsymbol{\Pi})$: Pfaffian, defined for skew-symmetric matrices
\triangleright if k is odd, $\operatorname{ker}(\boldsymbol{\Pi})$ is known as a function of the comatrices' Pfaffians

METHODOLOGY

1. Find a potential solution (solve $\boldsymbol{\Pi}(\mathbf{s}) \boldsymbol{\Sigma}^{-1}(\mathbf{s}) \mathbf{j}=\mathbf{0}$ for $\mathbf{s} \in \mathbb{R}_{+}^{k}$).
$\triangleright \operatorname{det}(\boldsymbol{\Pi})=\operatorname{Pf}^{2}(\boldsymbol{\Pi})$: Pfaffian, defined for skew-symmetric matrices
\triangleright if k is odd, $\operatorname{ker}(\boldsymbol{\Pi})$ is known as a function of the comatrices' Pfaffians
2. Numerical continuation to compute the curve (unexpensive)

METHODOLOGY

1. Find a potential solution (solve $\boldsymbol{\Pi}(\mathbf{s}) \boldsymbol{\Sigma}^{-1}(\mathbf{s}) \mathbf{j}=\mathbf{0}$ for $\mathbf{s} \in \mathbb{R}_{+}^{k}$).
$\triangleright \operatorname{det}(\boldsymbol{\Pi})=\operatorname{Pf}^{2}(\boldsymbol{\Pi})$: Pfaffian, defined for skew-symmetric matrices
\triangleright if k is odd, $\operatorname{ker}(\boldsymbol{\Pi})$ is known as a function of the comatrices' Pfaffians
2. Numerical continuation to compute the curve (unexpensive)
3. Check admissibility $(\forall t, g(\mathbf{x}(t)) \geqslant 0)$.

CASE 7 IMPACTS PER PERIOD

CASE 7 IMPACTS PER PERIOD

CASE 7 IMPACTS PER PERIOD

CASE 7 IMPACTS PER PERIOD

CASE 7 IMPACTS PER PERIOD

CASE 7 IMPACTS PER PERIOD

ADDITIONAL PROPERTIES

SYMMETRIES

SYMMETRIES

SYMMETRIES

SYMMETRIES

time t

- symmetry of the periodic sequence $\sigma_{1}, \ldots, \sigma_{k}$: for some $p \in \mathbb{Z}, \forall i \in \mathbb{Z}, \quad \sigma_{i}=\sigma_{p-i}$

Theorem (Symmetries if $\boldsymbol{\Sigma}$ invertible)

If $\left(\sigma_{i}\right)$ is invertible, then positions have 2 axes of symmetry.

SYMMETRIES

time t

- symmetry of the periodic sequence $\sigma_{1}, \ldots, \sigma_{k}$: for some $p \in \mathbb{Z}, \forall i \in \mathbb{Z}, \quad \sigma_{i}=\sigma_{p-i}$

Theorem (Symmetries if $\boldsymbol{\Sigma}$ invertible)

If $\left(\sigma_{i}\right)$ is invertible, then positions have 2 axes of symmetry.

- Examples:

SYMMETRIES

time t

- symmetry of the periodic sequence $\sigma_{1}, \ldots, \sigma_{k}$: for some $p \in \mathbb{Z}, \forall i \in \mathbb{Z}, \quad \sigma_{i}=\sigma_{p-i}$

Theorem (Symmetries if $\boldsymbol{\Sigma}$ invertible)

If $\left(\sigma_{i}\right)$ is invertible, then positions have 2 axes of symmetry.

- Examples:

$$
\triangleright k=1: \ldots, \sigma_{1}, \sigma_{1}, \sigma_{1}, \ldots \text { is symmetric. }
$$

SYMMETRIES

time t

- symmetry of the periodic sequence $\sigma_{1}, \ldots, \sigma_{k}$: for some $p \in \mathbb{Z}, \forall i \in \mathbb{Z}, \quad \sigma_{i}=\sigma_{p-i}$

Theorem (Symmetries if $\boldsymbol{\Sigma}$ invertible)

If $\left(\sigma_{i}\right)$ is invertible, then positions have 2 axes of symmetry.

- Examples:

$$
\begin{aligned}
& \triangleright k=1: \ldots, \sigma_{1}, \sigma_{1}, \sigma_{1}, \ldots \text { is symmetric. } \\
& \triangleright k=2: \ldots, \sigma_{1}, \sigma_{2}, \sigma_{1}, \sigma_{2}, \ldots \text { is symmetric. }
\end{aligned}
$$

SINGULARITY OF $\boldsymbol{\Sigma}(\mathrm{s})$

- If $\boldsymbol{\Sigma}(\mathbf{s})$ is invertible: 1-parameter continuum of periodic orbits...
- ... but $\boldsymbol{\Sigma}(\mathbf{s})$ can be singular for some isolated \mathbf{s}.

SINGULARITY OF $\Sigma(s)$

- If $\boldsymbol{\Sigma}(\mathbf{s})$ is invertible: 1-parameter continuum of periodic orbits...
- ... but $\boldsymbol{\Sigma}(\mathbf{s})$ can be singular for some isolated \mathbf{s}.

If so, then $\boldsymbol{\Sigma}(s) \boldsymbol{\lambda}=g_{0} \boldsymbol{j}$ has:

- either no solutions;
- either a line, plane, etc. of solutions.

SINGULARITY OF $\Sigma(s)$

- If $\boldsymbol{\Sigma}(\mathbf{s})$ is invertible: 1-parameter continuum of periodic orbits...
- ... but $\boldsymbol{\Sigma}(\mathbf{s})$ can be singular for some isolated \mathbf{s}.

If so, then $\boldsymbol{\Sigma}(s) \boldsymbol{\lambda}=g_{0} \boldsymbol{j}$ has:

- either no solutions;
- either a line, plane, etc. of solutions.

SINGULARITY OF $\Sigma(s)$

- If $\boldsymbol{\Sigma}(\mathbf{s})$ is invertible: 1-parameter continuum of periodic orbits...
- ... but $\boldsymbol{\Sigma}(\mathbf{s})$ can be singular for some isolated \mathbf{s}.

If so, then $\boldsymbol{\Sigma}(s) \boldsymbol{\lambda}=g_{0} \boldsymbol{j}$ has:

- either no solutions;
- either a line, plane, etc. of solutions.
\Longrightarrow continuum of orbites of same frequency!

SINGULARITY OF $\boldsymbol{\Sigma}(\mathrm{s})$: EXAMPLE WITH 2 IPP

SINGULARITY OF $\boldsymbol{\Sigma}(\mathrm{s})$: EXAMPLE WITH 2 IPP

NON-SMOOTH STICKING MODES

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes

NON-SMOOTH STICKING MODES

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes

NON-SMOOTH STICKING MODES

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes

NON-SMOOTH STICKING MODES

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes

NON-SMOOTH STICKING MODES

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes

NON-SMOOTH STICKING MODES

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes

NON-SMOOTH STICKING MODES

- "sticking" modes: contact duration of non-zero measure
- algorithm converge to non-sticking modes

CONCLUSIONS

CONCLUSIONS

Investigated system:

- main assumptions: piecewise-linear + single contact condition
- no known results for such systems

CONCLUSIONS

Investigated system:

- main assumptions: piecewise-linear + single contact condition
- no known results for such systems

Has been shown:

- periodic solutions form non-smooth modes (NSM)
- NSM gouverned by a number of equations independent of the number of dof
- symmetries

CONCLUSIONS

Investigated system:

- main assumptions: piecewise-linear + single contact condition
- no known results for such systems

Has been shown:

- periodic solutions form non-smooth modes (NSM)
- NSM gouverned by a number of equations independent of the number of dof
- symmetries

To investigate:

- relationships between NSM
- comparison with experiments
- forced damped behaviour VS non-smooth modes

CONCLUSIONS

Investigated system:

- main assumptions: piecewise-linear + single contact condition
- no known results for such systems

Has been shown:

- periodic solutions form non-smooth modes (NSM)
- NSM gouverned by a number of equations independent of the number of dof
- symmetries

To investigate:

- relationships between NSM
- comparison with experiments
- forced damped behaviour VS non-smooth modes

Other lessons:

- large variety of behaviours induced by contact
- importance of mathematics and multidisciplinary collaborations

Thank you for your attention

