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Equivalence:

Mechanical state

Point in the phase space
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Linear system
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Definition (Linear mode)




LINEAR MODE 2

Linear system Phase space: linear mode

MX + KX =0, X= [Xl}
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Time-evolution
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LINEAR MODES: SUMMARY

Linear modes:

» rely on superposition principle
» structure of vector space (base: linear modes)
> linear algebra (~ end of 19th)

> eigenvalues: resonance
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Nonlinear modes:

» superposition principle no longer holds

» impossible to calculate all the trajectories



WHAT ABOUT NONLINEAR SYSTEMS?

Nonlinear modes:

» superposition principle no longer holds
» impossible to calculate all the trajectories

» but maths results (Lyapunov theorem (1907) + central manifold theorem (~
1970))

» existence of fix points, periodic orbits, attractors, continuums of periodic
orbits in the vicinity of fixed points

» applied to dynamical systems (Rosenberg, Shaw, Pierre, Vakakis, etc.)

» practical interest: local behaviour + prediction of resonance
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LIMITATION OF NONLINEAR MODAL AN

Limitation

Computation of nonlinear modes relies on smoothness.

—— What about non-smooth systems?

» Non-smooth system: system undergoing impact and/or dry friction.

Newton cradle [Inria] Turbomachine [McGill]
» Long-term objective: extend non-linear modal analysis to non-smooth
systems
» Literature in (ultra) short: nonlinear smooth modes or time-evolution of

non-smooth systems .
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> linear system (material + geometry)
» autonomous (= unforced)
» conservative (= undamped)
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INVESTIGATED SYSTEMS: ASSUMPTIONS

777777777,
720272777

linear system (material + geometry) piecewise
autonomous (= unforced)

conservative (= undamped)

unique contact condition

vV vy Vv VvYvyy

perfectly elastic impact law

12



FREE FLIGHT
Z'ﬁig ki mi ko mo ks m3 ki my ks ms

» Dynamics Mx + Kx =0

. : . X 0 |
» First-order X = AX with X = <x) and A = {—M_IK 0}

» Solutions X(t) = e*AX(0)

13



FREE FLIGHT

v

v

v

Z'ﬁig ki mi ko mo ks m3 ki my ks ms

Dynamics Mx + Kx =0

First-order X = AX with X = <§) and A = {_ 0 I}

M-K 0

Solutions X(t) = e*AX(0)

After a change of basis: X(t) = S(t)X(0) where S(t) is block-diagonal:

[cos(w,-t) - sin(w,-t)]

sin(w;t)  cos(wjt)

= S(t) acts like n rotations in n orthogonal planes

13



IMPACT

g(x)
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> gap: g(x) = go — x with gp unconstrained gap

» Newton impact law: )'(n(t;p) = —eXn(tin,) with e =1

> conservative when M is diagonal: x™"Mx" = 3. m; ;%2 = x~ TMx~
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> gap: g(x) = go — x with gp unconstrained gap

» Newton impact law: )'(n(t;p) = —eXn(tin,) with e =1

> conservative when M is diagonal: x™"Mx" = 3", m; ;%™ = x~ TMx~
> non-conservative in general: X7 Mx" # x~ T Mx~

» more generally: x* = Nx~ with N = M~Y/2(1 — 2rr " )M'/2
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IMPA

ki m ko ma ks ms kg mg ks ms g(x)
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> gap: g(x) = go — x with gp unconstrained gap

» Newton impact law: )'(n(t;p) = —eXn(tin,) with e =1

> conservative when M is diagonal: x™"Mx" = 3", m; ;%™ = x~ TMx~
> non-conservative in general: X7 Mx" # x~ T Mx~

» more generally: x* = Nx~ with N = M~Y/2(1 — 2rr " )M'/2

= N acts as a reflection w.r.t to a hyperplane

14



LINEAR MAPPING AFTER K IMPACTS
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» State at time t :

X(t) = NS(o1)Xo
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» State at time t :
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» State at time t :

X(t) = NS(O'k) C NS(O'Q)NS(CTl)Xo
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» State at time t :

X(t) = NS(O'k) C NS(O'Q)NS(CTl)Xo = Xp



LINEAR MAPPING AFTER K IMPACTS
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> State at time ¢ :
U(Xo) :X(t) = NS(O'k) R NS(O'Q)NS(CTl)Xo = Xo



LINEAR MAPPING AFTER K IMPACTS
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» State at time t :

U(Xo) :X(t) = NS(O'k) R NS(O'Q)NS(CTl)Xo = Xo

» Formulation: For a given k, find Xq and ty, ..., tx such that
u(Xo) = Xo NC1 (dynamics + periodicity)
X determined by Xq such that:
Vie[1,k], g(X(t;))=0 NC2 (gap closures)

vt e [0, T], g(X(t)) >0 NC3 (non-interpenetration)
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MAIN RESULTS

» Formulation: For a given k, find Xg and ty, ..., tx such that
u(Xo) = Xo NC1 (dynamics + periodicity)
X détermined by Xg such that:
Vie[1,k], g(X(t;))=0 NC2 (gap closures)

vt e [0, T], g(X(t)) >0 NC3 (non-interpenetration)



MAIN RESULTS

» Formulation: For a given k, find Xg and ty, ..., tx such that

u(Xo) = Xo NC1 (dynamics + periodicity)

» Example: for n =2, k =2, NCIL:

NS(O’Q)NS(CTl)XO - X0



MAIN RESULTS

» Formulation: For a given k, find Xg and ty, ..., tx such that

u(Xo) = Xo NC1 (dynamics + periodicity)

» Example: for n =2, k =2, NCIL:

NS(O’Q)NS(CTl)XO - X0
cos(wit) — sin(wst)

1 .
N = [ 1 ) :| S(t) -p sin(wit) cos(wit) P_1
—1

cos(wat) — sin(wat)
sin(wat) cos(wat)

Very computationally expensive!



MAIN RESULTS

» Formulation: For a given k, find Xq and ty, ..., tx such that

u(Xo) = Xo NC1 (dynamics + periodicity)

Theorem (NC1)

The applications N and ¢ are known !
M is a skew-symmetric k x k matrix.
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MAIN RESULTS

» Formulation: For a given k, find Xq and ty, ..., tx such that

X determined by X such that:
Vie 1, k], g(X(t;))=0 NC2 (gap closures)

Theorem (NC2)

The applications X and ¢ are known, and ¢ is the same as in Theorem 1.
2 is a symmetric k X k matrix.




MAIN RESULTS

» For a given k, find Xo € R?>" and ty,..., t; such that
U(XQ) = Xo NC1
X determined by Xq such that:
Vie 1, k], g(X(t;))=0 NC2
vVt e [0, T], g(X(t)) >0 NC3
becomes:
» For a given k, find A € R and t;,..., t, such that
N(ty,...,t)A=0 NC1
Z(tl,...,tk))\:goj NC2

X determined by Xo = ¢(A) such that:
vt e [0, T], g(X(t)) >0 NC3
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CASE k=1

» For a given k, find A € R and t1,..., tx such that
I'I(tl,...,tk))\:O NC1
Z(tl,...,tk))\:goj NC2

X determined by Xo = ¢(A) such that:
vt e [0, T], g(X(t)) >0 NC3
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» For a given k, find A € R and t1,..., tx such that
I'I(tl,...,tk))\:O NC1
Z(tl,...,tk))\:goj NC2
X determined by Xo = ¢(A) such that:
vt e [0, T], g(X(t)) >0 NC3

» Example k = 1:
> M(t1) = [0], so NC1 is always satisfied.



CASE k=1

» For a given k, find A € R and t1,..., tx such that
I'I(tl,...,tk))\:O NC1
Z(tl,...,tk)A:goj NC2
X determined by Xo = ¢(A) such that:
vt e [0, T], g(X(t)) >0 NC3

» Example k = 1:

> M(t1) = [0], so NC1 is always satisfied.
> X(t1) = [f(t1)] so NC2 reads:

f(t1))\ = £o.

If 80 ;é 0, A= go/f(t1)



CASE k=1
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» Example k = 1:
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> X(t1) = [f(t1)] so NC2 reads:
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If go # 0, A\ = go/f(t1) so Xo = ¢(go/f(t1)).

= vector of initial conditions Xg is parametrised by t; = T!



CASE k=1

» For a given k, find A € R and t1,..., tx such that

N(t,...,t)A=0

X(t1,..., tk) A = goj

X determined by Xo = ¢(A) such that:
vt e [0, T], g(X(t)) >0

» Example k = 1:

> M(t1) = [0], so NC1 is always satisfied.
> X(t1) = [f(t1)] so NC2 reads:

f(t1))\ = £o.

If go # 0, A\ = go/f(t1) so Xo = ¢(go/f(t1)).

NC1

NC3

= vector of initial conditions Xg is parametrised by t; = T!

> NC3 has to be checked numerically.
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CASE k=1

» Parametrisation Xo = ©(go/f(t1)).
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TERMINOLOGY

Definition (Potential solution)

Definition (Admissible solution)

In practice, seek potential solutions and check NC3 numerically.

23
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CASE 2 IMPACTS PER PERIOD (k = 2)
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X determined by Xy = ¢(A) such that:
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» For a given k, find A € R and t;,..., t, such that
N(t,...,t)A=0 NC1
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CASE 2 IMPACTS PER PERIOD (k = 2)

» For a given k, find A € R and t;,..., t, such that
N(t,...,t)A=0 NC1
Z(tl,...,tk))\zgoj NC2
X determined by Xy = ¢(A) such that:
vVt e [0, T], g(X(t)) >0 NC3

» Example k = 2:
> N(t, b) = [4(0 ’“’-};‘2)] so NC1 implies that (t1, t2) = 0.

t1,tp)

b X(h, t) = [f(tﬁtz) F(t107t2)] is invertible a.e. so if w(t1,t2) =0 and go # 0,

A =gX (t, t)j

and Xo = (g X~} (t1, b)j).

= vector of initial conditions Xo parametrised by the roots of 7(t1, t2)
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CASE 2 IMPACTS PER PERIOD (k = 2)

» Parametrisation: Xo = (g0 *(t1, t2)j) for (t1, t2) roots of 7.
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Conclusions

26



CASE 2 IMPACTS PER PERIOD (k = 2)

» Parametrisation: Xo = ¢(goX *(t1, t,)j) for (t1,t,) roots of m.
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GENERAL CASE (k € N¥)

» Potential solutions: curves in the space (t1, ..., tk).
If X invertible,

I'I(tl,...,tk))\:O —1/ N\
. = T[I(s)X =
{ (ty, ..., tk)A = goj (s) (s)i=0
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» Admissibles solutions: parts of such curves=> existence of non-smooth
modes in the neighbourhood of admissible solutions
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GENERAL CASE (k € N¥)

» Potential solutions: curves in the space (t1, ..., tk).
If X invertible,

I'I(tl,...,tk))\:O —1/ N\
. = T[I(s)X =
{ (ty, ..., tk)A = goj (s) (s)i=0

This gives k — 1 equations in k unknowns = 1-parameter continuum

tk

5

» Admissibles solutions: parts of such curves=> existence of non-smooth
modes in the neighbourhood of admissible solutions

> |solated points where X is not invertible.

28



METHODOLOGY

1. Find a potential solution (solve M(s)X~*(s)j = 0 for s € RX).

> det(M) = P(N): Pfaffian, defined for skew-symmetric matrices
> if k is odd, ker(I) is known as a function of the comatrices’ Pfaffians
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METHODOLOGY

1. Find a potential solution (solve M(s)X~*(s)j = 0 for s € RX).

> det(M) = P(N): Pfaffian, defined for skew-symmetric matrices
> if k is odd, ker(I) is known as a function of the comatrices’ Pfaffians

2. Numerical continuation to compute the curve (unexpensive)
3. Check admissibility (Vt, g(x(t)) > 0).
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SINGULARITY OF X(s)

» If X(s) is invertible: 1-parameter continuum of periodic orbits...

> ... but X(s) can be singular for some isolated s.
If so, then Z(s)\ = goj has:

> either no solutions;

» either a line, plane, etc. of solutions.

= continuum of orbites of same frequency!
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CONCLUSIONS

Investigated system:

> main assumptions: piecewise-linear + single contact condition
» no known results for such systems

Has been shown:

» periodic solutions form non-smooth modes (NSM)

» NSM gouverned by a number of equations independent of the number of
dof

» symmetries
To investigate:

> relationships between NSM
» comparison with experiments
» forced damped behaviour VS non-smooth modes

Other lessons:

» large variety of behaviours induced by contact
» importance of mathematics and multidisciplinary collaborations



Thank you for your attention




	Introduction
	Phase space
	Linear modes
	Nonlinear modes

	Formulation
	Formulation

	Resolution
	Main results

	Illustrations
	Case k=1
	Case k=2

	Additional properties
	Symmetries
	Constant-frequency manifold
	Sticking modes

	Conclusions

	anm0: 
	anm1: 
	anm2: 
	anm3: 
	anm4: 
	anm5: 
	anm6: 
	anm7: 
	anm8: 
	anm9: 
	anm10: 
	anm11: 
	anm12: 
	anm13: 
	anm14: 
	anm15: 
	anm16: 
	anm17: 
	anm18: 
	anm19: 
	anm20: 
	anm21: 
	anm22: 
	anm23: 
	anm24: 
	anm25: 
	anm26: 
	anm27: 
	anm28: 
	anm29: 
	anm30: 
	anm31: 
	anm32: 
	anm33: 


