
HAL Id: hal-01298979
https://hal.science/hal-01298979v1

Submitted on 6 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Order Numerical Methods for KEEN Wave
Vlasov-Poisson Simulations

Michel Mehrenberger, Nicolas Crouseilles, Eric Sonnendrücker, Bedros Afeyan

To cite this version:
Michel Mehrenberger, Nicolas Crouseilles, Eric Sonnendrücker, Bedros Afeyan. High-Order Numerical
Methods for KEEN Wave Vlasov-Poisson Simulations. PPPS, Jun 2013, San Francisco, United States.
�10.1109/PLASMA.2013.6634958�. �hal-01298979�

https://hal.science/hal-01298979v1
https://hal.archives-ouvertes.fr

Institut de Recherche
Mathématique Avancée

High-Order Numerical Methods for
KEEN Wave Vlasov-Poisson

Simulations
Michel Mehrenberger a Nicolas Crouseilles b Eric Sonnendrücker c

Bedros Afeyan d

a IRMA, Université de Strasbourg, France b INRIA-Rennes, France c Max-Planck-Institut für
Plasmaphysik, Garching, Germany d Polymath Research, Pleasanton, USA

mehrenbe@math.unistra.fr, crouseil@inria.fr, sonnen@ipp.mpg.de,
bafeyan@gmail.com

Abstract

KEEN waves [1] provided a challenging test case for
Vlasov Poisson numerical solvers since they involve
highly non stationary, multiple-harmonic self-organized
kinetic states. They require high resolution in the phase
space region around the phase velocity of the drive
wave. Different interpolation strategies are discussed
and compared to classical cubic splines.

1. KEEN wave test case

We solve Vlasov-Poisson equation

∂tf + v∂xf + (E − Eapp)∂vf = 0, ∂xE =

∫
R
fdv − 1,

where Eapp(t, x) is of the form

Eapp(t, x) = Emaxka(t) sin(kx− ωt),

where

a(t) =
0.5(tanh(t−tLtwL

)− tanh(t−tRtwR
))− ε

1− ε
,

ε = 0.5(tanh(
t0 − tL
twL

)− tanh(
t0 − tR
twR

))

is the amplitude, t0 = 0, tL = 69, tR = 307, twL = twR =
20, k = 0.26, ω = 0.37 and Emax = 0.2. The initial condi-
tion is

f0(x, v) =
1√
2π

exp

(
−v

2

2

)
, (x, v) ∈ [0, 2π/k]× [−6, 6].

2. Implementation on uniform mesh

Strang (or higher order) splitting leads to

∂tf + v∂xf = 0, ∂tf + (E − Eapp)∂vf = 0,

i.e. N ∈ {Nx, Nv} 1D constant advection equations

∂tu + c∂xu = 0, u = u(t, x)

tn

tn+1
xi

xi − c∆txi∗ xi∗+1

uni∗ uni∗+1un+1
i

un+1
i ' u(tn+1, xi) = u(tn, xi − c∆t)

We can write un+1 = Aun with circulant matrix

A :=

a0 a1 aN−1

aN−1 a0 a1 . . . aN−2
.
.
a1 aN−1 a0

•Use of FFT for efficient matrix/vector product
• Same form for different interpolations:

– LAG(2d+1): symmetric Lagrange of order p = 2d+ 1

– SPL(p): B-splines of order p
– SPL3 corresponds to classical cubic splines
• Almost same complexity independently of k

3. Acceleration on GPU

Use of existing GPU kernels
• Transposition
• cufft for complex FFT
• Adaption of ScalarProd for charge density:∑

fi = 〈f, 1〉

Kernel for computing A:
• analytical formula for LAG-(2d+1)
• switch complexity from O(Nd) to O(Nd2)

Dealing with single precision issues:
• δ-f method

f (x, v) = δf (x, v) + feq(v), feq(v) =
1√
2π

exp(−v2/2).

→ Modification of v-advection

δf (x, v −∆tEn(x)) + feq(v −∆tEn(x))− feq(v)

• Zero mean condition for charge density ρ =
∫
fdv

ρ̃k = ρk −M, M =
1

N

N−1∑
k=0

ρk,

instead of ρ̃k = ρk − 1, whose RHS is only approxima-
tively of zero mean.

4. Cubic Hermite formulation on uniform mesh

Classical cubic splines method is reinterpreted as cu-
bic Hermite interpolation with particular choice of deriva-
tive reconstruction leading to a tridiagonal system for
u′j+ = u′j−

tn
xi − c∆txj xj+1 = xj + h

uj uj+1un+1
i

u′j+ u′
(j+1)−

⇒ In this framework, we can choose other reconstruc-
tions for the derivatives
FD(p): compact finite difference of order p

u′j+, u
′
(j+1)− : formula with stencil j − bp

2
c, j + bp + 1

2
c

• The order p is for point derivatives not for interpolation
which remains third order
• Formulae are explicit, which permits easy change of

parameter p in the code
• Interpolation becomes local and remains third order
→ generalizations not prohibitive w.r.t cost
• For p even, we get a C1 reconstruction with u′j+ = u′j−
• For p odd, upwinding effect; better for small ∆t

→ no dispersion effect as for p even or SPL3
• FD3=LAG3
• FD(2d+1) ' LAG(2d+1), d ≥ 2

– equality for limit ∆t→ 0

– schemes remain different, as FD(2d+1) is third order
• FD6 ' SPL3

5. Description of a simple non uniform mesh

Higher resolution needed for velocity around ω/k
⇒We have to adapt the methods to deal with a uniform
mesh with a refined zone
Mesh spacing on coarse/fine grids are

∆vcoarse =
vmax − vmin

Ncoarse
, ∆vfine =

vmax − vmin

Nfine

and Nfine is an integer multiple of Ncoarse.
The refined zone is chosen with 0 ≤ i1 < i2 ≤ Ncoarse

and the total number of cells is

N = i1 + Nf + Ncoarse − i2, Nf =
Nfine

Ncoarse
(i2 − i1)

Nfi1 Ncoarse − i2

v0 vi1 vi1+Nf vN

6. Hermite formulation on such mesh

Classical non uniform cubic splines can be used and
are again reinterpreted as cubic Hermite interpolation
with a particular choice of derivative reconstructions
• Again, tridiagonal solver for derivatives
•Works for arbitrary non uniform mesh (not only uniform

refined mesh)
For using the specificity of this uniform refined mesh, we
can use a two-grid reconstruction for the derivatives:
Two-grid cubic splines:
•Compute derivatives on coarse grid points to get it at

points

vj, j ∈ {0, . . . , i1} ∪ {i1 + Nf , . . . , N}.

•Compute it on fine grid points

vj, j ∈ {i1, . . . , i1 + Nf},
using boundary conditions at points vi1, vi1+Nf

As in the case of uniform grid, we can adapt the recon-
struction of derivatives in the FD(p) case.
Two-grid FD(p):
•Compute derivatives using FD formula on coarse grid
•Compute function values on some boundary fine grid

points in [v0, vi1]∪ [vi1+Nf
, vN], that are needed for next

step, using interpolation on coarse grid
•Compute derivatives using FD formula on fine grid

7. Conservative version

Previous version has to be changed on non uniform grids
in order to be mass conservative.
•Unknowns are uj+1/2 = 1

vj+1−vj
∫ vj+1
vj

u(v)dv

•Use of previous Hermite interpolation on primitive data

U(vj) =

∫ vj

v0
u(y)dy, vj, j = 0, . . . , N

•Choose adhoc integration constant for dealing with a
primitive that is also periodic

8. Numerical results

Figure 1: f (1000, x, v)− f0(x, v), ∆t = 0.05. Comparison
of SPL3, with Nx = Nv = 4096 on CPU (left) and LAG17
Nx = Nv = 2048 on GPU double precision (right).

Figure 2: Absolute values of the first three Fourier
modes of ρ vs time. Reference solution with LAG17Nx =
Nv = 2048 on GPU double precision (red, green and
blue) compared to solution on uniform mesh in space
(LAG17, Nx = 256) and uniform refined mesh in velocity
with Nv = 374 (Ncoarse = 64, Nfine = 2048, i1 = 34, i2 = 44)
(left): conservative non uniform cubic splines
(right): conservative two-grid FD5

9. Conclusion

• Efficient GPU 1D × 1D uniform Vlasov-Poisson solver
– double precision: 2048× 2048, 30 Gflops
– single precision: 4096× 4096, 100 Gflops
•Non uniform 1D × 1D Vlasov-Poisson solver

– number of points are reduced
– encouraging results for future 2D × 2D simulations

References

[1] B. Afeyan, K. Won, V. Sachenko et al., Kinetic Elec-
trostatic Electron Nonlinear (KEEN) waves and their
interactions driven by the ponderomotive force of
crossing laser beams, IFSA Proceedings 2003 and
ArXiv:1210.8105

[2] M. Mehrenberger, C. Steiner, L. Marradi, N. Crou-
seilles, E. Sonnendrücker, B. Afeyan, Vlasov on
GPU, submitted to ESAIM Proceedings, 2013.

PPPS, 16-21 june 2013, San Francisco

