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R ésolution num érique de l'op érateur de gyromoyenne

L 'OP ÉRATEUR de gyromoyenne est d éfini par

Dans un champ magn étique uniforme, les particules d écrivent une trajectoire h élicoïdale et la projection sur le plan perpendiculaire est un cercle. L'op érateur de gyromoyenne traduit alors, dans la th éorie gyrocin étique, l'id ée de moyenner la fonction de distribution des particules autour d'un cercle d'un rayon caract éristique (le rayon de Larmor ρ) repr ésentant le mouvement de gyration tr ès rapide des particules autour des lignes de champs. On s'int éresse ici à la r ésolution num érique de cet op érateur en pr ésentant et comparant diff érentes m éthodes num ériques. On suppose f 2π p ériodique en x et en y. On d éfinit une grille cart ésienne de taille N x × N y .

D écomposition dans une base

O N écrit f (x, y) = j,k η j,k B j,k (x, y), Le calcul de la gyromoyenne se r éduit au calcul de la gyromoyenne sur les él éments de base J (f )(x, y) = j,k η j,k J (B j,k )(x, y).

Expression en Fourier

E N prenant la base de Fourier B j,k (x, y) = exp(ijx) exp(iky), on obtient J (B j,k ) = J (B j,k )(0, 0)B j,k = J 0 ( j 2 + k 2 ρ)B j,k , o ù J 0 est la fonction de Bessel. Sur la grille cart ésienne, on obtient la m éthode de Bessel, qui est exacte sur la grille pour les fonctions B j,k . Il s'agit de la m éthode de r éf érence.

Approximation de Pad é et autres variantes

O N consid ère l'approximation

J 0 ( j 2 + k 2 ρ) 1 + ρ 2 j 2 + k 2 4 -1
, qui se traduit par

1 - ρ 2 4 ∆ J (f ) = f.
Sur la grille cart ésienne, on obtient la m éthode de Pad é, not ée PADE1. On d éfinit de mani ère similaire PADE2 par

J 0 ( j 2 + k 2 ρ) 1 + ρ 2 j 2 + k 2 4 + ρ 4 (j 2 + k 2 ) 2 64 -1 , TAYLOR1 J 0 ( j 2 + k 2 ρ) 1 -ρ 2 j 2 + k 2 4 , et TAYLOR2 J 0 ( j 2 + k 2 ρ) 1 -ρ 2 j 2 + k 2 4 + ρ 4 (j 2 + k 2 ) 2 64 .

Approximation lin éaire et par splines cubiques

O N prend les fonctions de base lin éaire (LIN) ou splines cubiques (SPL) sur la grille cart ésienne. Pour la quadrature des fonctions de bases, on discr étise [0, 2π[ de mani ère uniforme, pour obtenir les m éthodes LIN4, LIN8, LIN16, SPL4, SPL8, SPL16 ou de mani ère adaptative suivant le rayon (3 points de Gauss utilis és sur chaque arc d'intersection avec le maillage), pour obtenir les m éthodes IM -LIN, IM -SPL

Comparaison des m éthodes

C ONNAISSANT f sur la grille, chacune des m éthodes permet de calculer J (f ) sur la grille:

f j,k ∈ R N x ×N y → J (f ) j,k ∈ R N x ×N y
En notant g j,k la transformation de Fourier discr ète de g j,k , pour la m éthode de Bessel, on a

J(f ) j,k f j,k = J 0 (ρ j 2 + k 2 ). (1) 
Les autres m éthodes fournissent alors par le membre de gauche de (1) une approximation de la fonction de Bessel. Plus pr écis ément, pour chaque m éthode, on peut écrire

J (f ) r,s = j,k a j,k f j+r,k+s .
Le terme a j,k correspond à la contribution du point d'indice (j, k) de la gyromoyenne au point (0, 0). On obtient alors J (f ) j,k = a j,k f j,k . 

Conclusion

P R ÉSENTATION d'un cadre g én éral englobant la m éthode de Bessel et les m éthodes de quadrature Comparaison entre les m éthodes dans le cas p ériodique (espace r éel et de Fourier)
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 1 Figure 1: Approximation de la fonction de Bessel et erreur pour diff érentes m éthodes N x = N y = 128, (j, k) = (1, 1), (3, 3), (9, 9), (12, 12).
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 2 Figure 2:Erreur avec la fonction de Bessel pour IM-LIN et IM-SPL N x = N y = 128, (j, k) = (1, 1), (3, 3), (9, 9), (12, 12), (32, 32), (64, 64).
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 34 Figure 3: Comparaison de la gyromoyenne et de la fonction dans l'espace de Fourier pour diff érentes m éthodes ρ = 1.
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 5 Figure 5: Erreur L 1 (par rapport à la m éthode de Bessel) en fonction de ρ ( échelle log).