
HAL Id: hal-01298965
https://hal.science/hal-01298965v2

Submitted on 7 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logic for Unambiguous Context-Free Languages
Yassine Hachaïchi

To cite this version:
Yassine Hachaïchi. Logic for Unambiguous Context-Free Languages. International Journal of Com-
puter Science Theory and Application, 2016, 5 (1), pp.12-19. �hal-01298965v2�

https://hal.science/hal-01298965v2
https://hal.archives-ouvertes.fr


Logic for Unambiguous Context-Free

Languages

Yassine Hachäıchi

LAMSIN - ENIT, Université de Tunis El Manar

Abstract

We give in this paper a logical characterization for unambiguous Context Free Lan-
guages, in the vein of descriptive complexity. A fragment of the logic characterizing
context free languages given by Lautemann, Schwentick and Thérien based on im-
plicit definability is used for this aim. We obtain a new connection between two
undecidable problems, a logical one and a language theoretical one.

Key words: Descriptive complexity, logic and language theory, implicit
definability on finite models.

1 Introduction

A language L over an alphabet A can be defined by several manners. The
most famous are:

(1) a subset of A∗ whose elements satisfy some given property; it is the anal-
ogous of comprehension schema in set theory,

(2) a subset of A∗ whose elements are generated by some formal grammar,
(3) a subset of A∗ whose elements are recognized by some model of compu-

tation.

In complexity theory, we try to classify languages according to the recognizer
used (finite automata, push down automata, · · ·), or by the ressources (time,
space, · · ·) neded by some model of computation (turing machine, random
access machine, · · ·), see [21] for a detailed introduction to the field.

Email address: hachaichi.ens@gmail.com (Yassine Hachäıchi).
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One of the aims of descriptive complexity [7,23] is to evaluate how easy or
hard it is to express a given property defining some language (as in 1 above)
in the language of logic.

The answer to this question got a meaning by the works of Büchi [4] and
Elgot [9] who made the link between formal logic and formal language theory.
This connection was made by identifying words to finite logical structures.
Their result was that a word language is regular if, and only if it is the class of
models of some Monadic Second-order sentence. Two questions were naturally
asked:

The first one is:

(1) What is the expressive power of Monadic Second-order Logic on other
structures than words, graphs and trees for example?
The other question is:

(2) Is there a logical description for each known class of words: star free,
context free, . . .?

Both directions were explored since, we will recall some results in the next
section.

The logical description of the behaviour of computational models was also
taken up in complexity theory. Starting with Fagin’s work, it was shown that
many complexity classes such as NP, P, LogSpace, NLogSpace, Pspace, · · ·
could be characterized by different varieties of second-order logic (involving for
example fixed point logic or transitive closure operator). For an introduction
to this field see Ebbinghaus and Flum’s book [7].

In [12] and [13], I used some generalized quantifiers of comparison of cardinal-
ity, to get a new logical characterizations of the class of rudimentary languages
in the scope of descriptive complexity. Lautemann, Schwentick and Thérien
[18] gave recently a logical description of Context Free Languages. They used
for this purpose the semantic quantifier of matching.

Our contribution in this paper is, in a first time, using a result of McNaughton
and Papert [19] we will refine an algebraic normal form of Chomsky and
Schützenberger which characterizes Context Free Languages using the Dyck
languages.

The Second result of this paper is a description of Unambiguous Context Free
Languages. This description uses a fragment of a logic built from first-order
implicitely definable predicates introduced by Kolaitis [16]. This logic was
motivated by the failure of the Beth property when we confine ourselves to
finite structures.
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This paper is organized as follows:

In the next section we give some background of language theory and logic,
and we introduce some results of descriptive recognizability. We introduce in
the last subsection the result of Lautemann and al [18].

In section 3 we refine an algebraic normal form given by Chomsky and Schützenberger
[5], for describing Context Free Languages using the Dyck language.

In section 4 we give the logical characterization of unambiguous context free
languages.

In the conclusion we try to link undecidability of unambiguity and undecid-
ability of the logic IMP .

2 Notations and Background

We give here some definitions and results in formal language theory, logic and
the connection between them.

For the rest of the section Σ will denote a finite vocabulary {c1, . . . , cs}. A
language is a subset of Σ∗, which is the set of finite words on Σ.

2.1 Formal Language Theory

We will recall in this section some notions of language theory, from the gram-
matical point of view, which we will use later in this paper, the curious reader
can find more details on this area in Harrison’s book [14].

A context free grammar is a 4-tuple < Σ, N, S, P > such that:

• Σ and N are finite disjoint sets, called respectively the set of terminal and
non-terminal symbols,

• S is a special symbol of N , called the start symbol or the axiom of the
grammar,

• P is a set of productions of the form X → w, where X is a non-terminal
and w ∈ (Σ ∪N)∗.

If we replace each non-terminal symbol by a new symbol | not in Σ∪N in the
right-hand side of a production we obtain a string called the pattern of the
production.
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A context free grammar is regular if all productions are of the formX → w|wY
where X and Y are non-terminals and w ∈ Σ∗.

We define the (one step) derivation rule ⇒G for a grammar G by

w1Xw2 ⇒G w1ww2 is a derivation if and only if X → w ∈ P .

The reflexive and transitive closure of ⇒G is denoted
∗⇒G.

A language L ⊆ Σ∗ is context free (resp. regular) if and only if there is a
context free (resp. regular) grammar which derives it from S, i.e
L = L(G) = {w ∈ Σ|S ∗⇒Gw}.

A language is star free if it is build from finite languages by only boolean
operations and concatenation.

The derivation tree of a word w associates naturely to the derivations made
from S until reaching w.

Formally, a derivation tree of a word w ∈ L(G) is a tree so that :

• the root is labelled by the start symbol S,
• the leaves are labelled by terminals,
• the internal nodes are labelled by non terminals,
• the passage from an internal node to its sons corresponds to a production,
• the lecture of leaves from left to right give w.

Example Let’s take the grammar

G =< {a, b}, {X0, X1, X2, X3, X4}, X0, P >

where P contains the following productions:

P0,1 : X0 → aX1X2ba

P1,1 : X1 → aX3X2b

P2,1 : X2 → aab

P2,2 : X2 → ab

P3,1 : X3 → ab

Let w = aaababbaabba the word with derivation tree given in figure 1.

A context free grammar is unambiguous if every word in L(G) has a unique
derivation tree.

A context free language is unambiguous if it has an unambiguous context free
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Fig. 1. A derivation tree of w

grammar which derives it.

2.2 Logic

As we mentioned in the introduction, we can identify words to finite models
in a special logical signature τΣ = {<,Pc1 , . . . , Pcs}.

In this introductory section to logic we define formally the word model and
some logics that we will use in the forthcoming sections.

We will confine ourselves to finite structures and especially to words.

Let Σ = {c1, . . . , cs} be a finite vocabulary. We associate with a word w =
a1 . . . an over Σ, the word model Sw, namely the relational structure Sw =
({1, ..., n}, <, Pc1 , . . . , Pcs), where < is the natural order on {1, ..., n} and Pa

is the unary predicate collecting the positions of w labelled a:
Pa = {i ∈ N |ai = a}.

For example let’s take the word w = aabbabb on the vocabulary Σ = {a, b}.

The corresponding logical structure will be:

Sw = ({1, 2, 3, 4, 5, 6, 7}, <, Pw
a = {1, 2, 5}, Pw

b = {3, 4, 6, 7}).

The set of first-order formulas (on words), F.O., is built inductively from
atomic formulas of the form:

x < y and Pa(x) for a ∈ Σ.

by means of connectives ∧, ∨, →, ↔, and ¬ and the quantifiers ∃ and ∀.

Formally:

(1) If x, y are any variable symbol or constant symbol then x < y and Pa(x)
for a ∈ Σ are first-order formulas.
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(2) If ϕ, ψ are first-order formulas then

ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ϕ↔ ψ, and¬ϕ

are also first-order formulas.
(3) If ϕ is a first-order formula and x is a variable then ∃xϕ, and ∀xϕ are

first-order formulas.

Monadic second-order logic, M.S.O., is built like first-order logic where we add
Xi(x) to atomic formulas (the first item in the first-order construction), for
some unary variables (Xi)i∈N and can quantify over X ′

is (in the last item of
the first-order construction).

A language L is said to be (explicitly) definable in a logic λ if and only if there
exists a formula ϕ ∈ λ such that:

∀w ∈ A∗(w ∈ L⇔ Sw |= ϕ).

Most classical model theoretical results fail when we confine ourselves to only
finite models [7], especially Beth’s theorem.

Let R be an n-ary relation symbol not in τΣ. An F.O. [τΣ ∪ {R}] sentence, ϕ,
defines R implicitly if every word structure has at most one expansion (Sw, R)
to a τΣ ∪ {R}-structure satisfying ϕ.

The Beth’s theorem says that a predicate is implicitly definable in F.O. if and
only if it is explicitely definable in F.O., in the class of all structures (finite
and infinite).

The failure of the Beth property for finite models, (see [7] for all properties of
(classical) model theory that fail in finite model theory), stimulated Kolaitis
[16] to define a logic of implicitly defined queries in some logic.

We will only use the case of first-order implicitely defined queries.

Remark. We use a different definition from the one used by Kolaitis in [16].
For a discussion see [7, page 213]

The logic IMP = IMP (F.O.) is the set of formulas, that allows to define
exactly those queries (properties) that are expressible in F.O. using first-order
implicitely definable queries.

Formally:

An IMP -formula ϕ(x) is a tuple,

(ψ1(R1), . . . , ψm(Rm), ψ(x,R1, . . . , Rm))
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where all ψ′
is are first-order sentences on τΣ ∪ {Ri}, and ψ is first-order on

τΣ ∪ {R1, . . . , Rm}
such that |=fin ∃!R1 . . . ∃!Rm(ψ1(R1) ∧ . . . ∧ ψm(Rm)).
Where |=fin means satisfiability on finite models, and ∃! means there is a
unique.

The meaning of ϕ(x) is fixed by requiring that:

Sw |= ∀X1 . . . ∀Xm(ψ1(X1) ∧ . . . ∧ ψm(Xm))

→ ∀x(ϕ(x) ↔ ψ(x,X1, . . . , Xm))

This means: Sw |= ϕ(a) ⇔ Sw |= ψ(a,R1, . . . , Rm)), where the R′
is are

uniquely determined by Sw |= ψi(Ri).

If we use only unary predicates we will denote this logic IMP (1).

2.3 Logic vs. Language theory

We will give in this section some results, in chronological order of their publica-
tions, on logical characterization of classes of languages, and the link between
logical complexity and recognizability complexity.

Theorem 1 (Büchi [4], Elgot [9] and Lacroix [17]) A language is regu-
lar if and only if it is definable in monadic second-order logic if and only if it
is definable in IMP(1).

Thomas improved the result of Büchi and Elgot to formulas of the form
∃P F.O. where P is a monadic predicate.

The connection between trees and words was given by Mezei and Wright, for
a comprehensive proof and a definition of regular tree languages see [11].

Theorem 2 (Mezei and Wright [20]) A word language is context free if
and only if the set of the derivation trees of its words is regular.

And a new description of regular tree languages in the same vein as Büchi’s
result arises,

Theorem 3 (Doner, Thatcher and Wright [6,24]) A tree language is reg-
ular if and only if it is definable in monadic second-order logic.

First-order logic, the most natural sublogic of monadic second-order logic, on
words was studied by McNaughton, for more details see [23].
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Theorem 4 (McNaughton and Papert [19]) A language is star free if
and only if it is definable in first-order logic.

Fagin studied the Existensial fragment of Second-order Logic and proved:

Theorem 5 (Fagin [10]) Languages definable in existential second-order logic
are exactly those computable in polynomial time by a non deterministic Turing
machine.

This result is true for all finite relational structures not only for word struc-
tures.

Theorem 6 (Thomas, Perrin and Pin [25]) A star free set is of dot depth
n if and only if it is definable in the boolean closure of Σn, Where Σn is the
set of first-order formulas allowing n alternations of quantifiers (universal,
existential).

A recent result of Eiter and al [8], which says that every Existential Second-
order prefix class either describes only regular languages or describes an NP-
complete problem.

I suggest to curious readers to see the expository papers of Thomas [25], or
Pin’s one [22] for more details and results.

2.4 Matching vs. Context free languages

In this section we recall a result of Lautemann, Shwentick and Thérien for
the description of Context Free Languages using the semantic quantifier of
Matching.

Definition 7 A binary relation M is called a matching if it satisfies the fol-
lowing conditions :

(1) ∀ij[(i, j) ∈M ⇒ i < j] .
(2) ∀ij[(i, j) ∈M ⇒ ∀k ̸= i, j

((i, k), (k, i), (j, k), and(k, j) are not in M)].
(3) ∀ijkl[(i, j), (k, l) ∈M ⇒ (i < k < j → i < l < j)].

We will denote by ψ(M), the conjunction of these three first-order items on
τ ∪ {M}.

Let Match denote the class of matchings on word structures.

∃Match ϕ means : there exists a relationM ∈Match such that < S,M >|= ϕ.
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In order to define any non regular language, one have to go beyond M.S.O.
Logic. On the other hand, existential quantification over a simple binary rela-
tion express all context free languages and some NP−complete languages by
the result of Eiter and al [8], their result says that any prefix class of Existen-
tial Second-order Logic either expresses only regular languages or expresses
some NP−complete language.

Moreover they proved that NP -hardness is present with a sentence ∃Rϕ where
R is a binary predicate and ϕ is first-order of the appropriate form.

Lautemann and al [18] choose a semantical approach for this purpose, in which
they restrict the second-order quantifier to range over the class of matchings,
Match. They define the class ∃MatchF.O. to consist of all those sets L of
τ−structures for which there is a first-order sentence ϕ over τ ∪ {M} such
that, For every τ−structures Sw:
Sw ∈ L if and only if, there is some matching M over Sw such that< Sw,M >|=
ϕ.

They proved the following:

Theorem 8 (Lautemann, Schwentick and Thérien [18]) A language L
is context free if and only if it is definable by a formula of the form ∃Match ϕ
where ϕ ∈ F.O.

The result remains true also for ϕ ∈M.S.O.

For proving this result, the first step was to construct a first-order sentence
over τ ∪{M} for each grammar G, which holds for a word structure Sw if and
only if there is a G-derivation tree T of w, and there is an effective way to
construct the matching from the tree, and vice versa.

For the other direction they combined results of Doner [6], Thatcher and
Wright [24] and Mezei and Wright [20] to have the fact: A language is context
free if and only if the set of derivation trees of his words is a regular tree
language. (And this is independent of the grammar used.)

The last step was to construct trees from the matching, and prove that these
trees satisfy some monadic second-order sentence. More details will be given
in the proof of the theorem 10.

3 A new Chomsky and Schützenberger Normal form

In this section we reprove a stronger version of the Chomsky and Schützenberger
theorem, by restricting the expression K, of theorem 8, to be only star free.
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This result is also given in [1], but we reprove it by only logical arguments.

Theorem 9 (Chomsky and Schützenberger [5]) A language L in Σ∗ is
context free if and only if L = ψ(Dn ∩ K) where Dn is the Dyck language
on n “brackets”, K a regular expression and ψ a monöıd homomorphism from
Γ ∪ Γ intoΣ∗.

We recall the Dyck language Dn on n brackets is the language generated by
the grammar:

G =< {a1, . . . , an, a1, . . . , a1}, {S}, S, P > where P is the set of productions:

S → a1Sa1S| . . . |anSanS|ε where ε denotes the empty word.

If the a′is are assumed to be the opening brackets and ai
′s the closing ones,

Dn will be the set of well balanced brackets words.

Theorem 10 A language L is context free if and only if L = ψ(Dn ∩ K)
where Dn is the Dyck language on n “brackets”, K a star-free expression and
ψ a monöıd homomorphism from Γ ∪ Γ intoΣ∗.

We recall the double Greibach normal form.

Lemma 11 Every context free language is generated by a grammar G =<
N,Σ, S, P > which satisfies the following condition:
all productions are of one of the forms:

(1) S → a, a ∈ Σ or
(2) X → aub, X ∈ N, a, b ∈ Σ, and u ∈ (Σ ∪N)∗.

For a detailed proof we send the reader to the paper of Autebert and al [3].

Proof of the Theorem The way L = ψ(D∗
n∩K) for some star free expression

K implies that L is a context free language derives obviously from the Chomsky
and Schützenberger theorem because star free expressions are regular.

For the other way we will give some first-order conditions on a Dyck language
to construct a set Z such that L = ψ(Z). These conditions are intimately
connected to the history of derivations.

Let L be a context free language. By the previous lemma we have a grammar
in double Greibach normal form G =< Σ, N, S, P > which derive it from S.

We enumerate first the non-terminal symbols, X0 = S, ..., XN .

After we label productions by ordered pairs < i, j > where Xi is the left
hand side non terminal of the production, and j enumerates injectively the
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productions having Xi as left hand side non terminal. The elements of P are:

P0,1 : X0 → w0,1

. . .

P0,i0 : X0 → w0,i0

. . .

PN,1 : XN → wN,1

. . .

PN,iN : XN → wN,iN

and for each production we denote ci,j the total number of right hand side non
terminals in the production pi,j.

We construct now the set of brackets Γ. It is the set of tuples of integers
< a, b, c, d, e, f > where:

a, b are a production code such that ca,b ̸= 0 or a = b = 0.
c is 1 if a = b = 0, else c = ca,b.
d is such that 1 ≤ d ≤ c and represents the range of the current non terminal
in pa,b, 1 ≤ d ≤ c.

e, f are the next production code where e must be the code of the cth non
terminal in the right hand side of the production pa,b and f ≤ ie ,or e = 0
if a = b = 0.

Γ will be the set of < a, b, c, d, e, f > for each element
< a, b, c, d, e, f >∈ Γ.

We give now the conditions on the words of the Dyck language on DΓ to be
in Z.

We will decide of the successor of each symbol in this word and give the range
of the first and the last symbol.

(1) The first symbol in our word must be an opening bracket of a start config-
uration and the last one must close this bracket

∨
1≤i≤i0(P<0,0,1,1,0,i>(min)∧

P<0,0,1,1,0,i>(max)).
(2) P<a,b,c,d,e,f>(x) and ce,f = 0 then we must close immediately our bracket

P<a,b,c,d,e,f>(x+ 1) because pe,f is a terminal production.
(3) P<a,b,c,d,e,f>(x) and ce,f > 0 then we have∨

e′,f ′ P<e,f,ce,f ,1,e′,f ′>(x + 1) such that e′ is the first non terminal in the
right hand side of pe,f .

(4) P<a,b,c,d,e,f>(x) for some x and c > d then we must have
∨

e′,f ′ P<a,b,c,d+1,e′,f ′>(x+
1) for some f ′ < i′e such that e′ is the d+ 1st non terminal in pa,b.
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(5) P<a,b,c,d,e,f>(x) for some x and c = d then we must have
∨

<a,b,c,d,e,f> P<a,b,c,d,e,f>(x+
1).

We are sure in item 5 to close the good type of parenthese because we are in
a Dyck language.

Because of the finiteness of the set Γ these conditions are expressed by a
first-order formula.

By McNaughton and Papert’s theorem Z is a star free subset of DΓ.

If ca,b ̸= 0 then the production pa,b have the form:

pa,b : Xa → w(a,b,0)Xj1 . . . w(a,b,ca,b−1)Xjca,b
w(a,b,ca,b).

We now give the homorphism ϕ:

ϕ(< a, b, c, d, e, f >) = w(e,f,0), and
ϕ(< a, b, c, d, e, f >) = w(a,b,d), and
ϕ(< 0, 0, 1, 1, 0, i >) = ε.

Where ε is the empty string.

By identifying the brackets to internal nodes of the spanning tree and the
homomorphism images to leaves in the right place, we can trivially verify the
eqality L = ψ(Z). Q.E.D

Example Let’s take the grammar

G =< {a, b}, {S, Y, Z}, S, P >

where P contains the following productions:

S → abba|aY abZba

Y → aaY baZbb|aZb

Z → ab

We first enumerate the non-terminals: S = X0, Y = X1, and Z = X2. We
can now enumerate productions:
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p0,1 : X0 → abba

p0,2 : X0 → aX1abX2ba

p1,1 : X1 → aaX1baX2bb

p1,2 : X1 → aX2b

p2,1 : X2 → ab

So we have:
Σ = {⟨001101⟩, ⟨001102⟩, ⟨022111⟩, ⟨022112⟩, ⟨022221⟩,
⟨112111⟩, ⟨112112⟩, ⟨112221⟩, ⟨121121⟩}

Which we will denote later 1, 2, 3, 4, 5, 6, 7, 8, and 9.

The Dyck words must satisfy the formula
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F ≡ (((P1(min) ∧ P1(max)) ∨ (P2(min) ∧ P2(max)))∧

(P1(x) → P1(x+ 1))∧

(P2(x) → (P3(x+ 1) ∨ P4(x+ 1)))∧

(P3(x) → (P6(x+ 1) ∨ P7(x+ 1)))∧

(P4(x) → P9(x+ 1))∧

(P5(x) → (P5(x+ 1))∧

(P6(x) → (P6(x+ 1) ∨ P7(x+ 1)))∧

(P7(x) → P9(x+ 1))∧

(P8(x) → (P8(x+ 1))∧

(P9(x) → (P9(x+ 1))∧

(P1(x) → x = max)∧

(P2(x) → x = max)∧

(P3(x) → (P5(x+ 1))∧

(P4(x) → (P5(x+ 1))∧

(P5(x) →
∨

1≤i≤11
Pi(x+ 1))∧

(P6(x) → (P8(x+ 1))∧

(P7(x) → (P8(x+ 1))∧

(P8(x) →
∨

1≤i≤11
Pi(x+ 1))∧

(P9(x) →
∨

1≤i≤11
Pi(x+ 1)).

The homomorphism ϕ is defined by:
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Fig. 2. Matching from derivation tree of w

ϕ(1) = abba , ϕ(2) = a

ϕ(3) = aa , ϕ(4) = a

ϕ(5) = ab , ϕ(6) = aa

ϕ(7) = a , ϕ(8) = ab

ϕ(9) = ab , ϕ(1) = ε

ϕ(2) = ε , ϕ(3) = ab

ϕ(4) = ab , ϕ(5) = ba

ϕ(6) = ba , ϕ(7) = ba

ϕ(8) = bb and ϕ(9) = b

Let’s take as example the word w = aaabbababba, we give in the figure below
its derivation tree.

Then by extracting in a prefixed (first reach) way the opening brackets and
at the same time in a postfixed (last reach) way the closing ones we get the
word wD ∈ D∗

wD = 2 4 9 9 4 5 5 2

We then remark that ϕ(wD) = w.

The construction is closely connected to the derivation tree this is why we are
sure of the equivalence.
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4 A logic for unambiguous Context free languages

We give now a logic for unambiguous Context free languages. The main idea
is that unambiguity needs unicity of existence.

Let the Logic IMP2 be the sublogic of IMP where we use the implicit defi-
nition of only one predicate, which is binary.

∃Match F.O.∩ IMP2 will be the set of formulas of ∃!Match F.O. where only
one matching M satisfy the first-order formula.

Theorem 12 A language is unambiguous context free if and only if it is de-
finable in
∃Match F.O. ∩ IMP2.

One of the keysteps in the proof is:

Lemma 13 ([15]) Every Unambiguous Context Free Language has an Un-
ambiguous Context Free Grammar G =< N,Σ, S, P > where all productions
are of one of the forms:

(1) S → a, a ∈ Σ or
(2) X → aub, X ∈ N, a, b ∈ Σ, and u ∈ (Σ ∪N)∗.

This lemma uses only the fact that the classical construction preserves unam-
biguity.

Proof of the theorem. The proof of this theorem is intimately connected
to the one of Lautemann and al for giving a logic for context free languages,
we only have to prove that unambiguity of the language implies uniqueness of
the matching and vice versa.

By the previous lemma we have an unambiguous grammar in the normal form
used in [18]. The processes:

(1) Eliminate all productions of the form X → α for some α ∈ Σ by intro-
ducing a new production Y → uαv, for every production Y → uXv ∈ P .

(2) Enumerate all non-terminals, X1 = S, ..., XN . Starting with i = 2 do
the following for every i, as long as there is non-terminal production
p= Xi → v whose pattern also appears as the pattern of a production
with left-hand side Xj, j < i replace p by all productions which can
be obtained from it by substituting one of the non-terminals in v in all
possible ways.

terminates and preserves unambiguity.
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Then for every Unambiguous Context Free Language we have a Unambiguous
Context Free Grammar in double Greibach Normal Form and any two non
terminal productions have the same pattern iff they have the same left hand
non terminal.

Let T be a derivation tree of w, the matching corresponding to T is MT

defined by:(i, j) ∈MT if and only if i corresponds to the leftmost and j to the
rightmost child of the same internal node of T.

We construct now the formula ψG over < Σ, <,M > which holds for a string
w with matching M iff there is a G derivation tree T for w such thatM =MT .
It follows that there is a matching M on w with < w,M >|= ψG iff w can be
derived in G.

Let (i, j) ∈ MT an arch, the pattern of (i, j) is the string composed of their
“brothers” written from left to right where internal nodes are replaced by|.

To be the matching constructed from a G derivation tree, the pattern must
correspond to the pattern of a production in G.

For p ≡ X0 → αv0X1v1 . . . Xsvsβ where α, β ∈ Σ, vi ∈ Σ∗, and Xi ∈ N we
construct a first-order formula: πp(x, y) =
Pα(x) ∧ Pβ(y) ∧ ∃x1y1 . . . xsys[(x < x1 < y1 < . . . < xs < ys < y)
∧(ψv0(x, x1) ∧ ψv1(y1, x2) ∧ . . . ∧ ψvs(ys, y))
∧(M(x1, y1) ∧ . . . ∧M(xs, ys))],

where ψv(i, j) is the first-order formula
∧n=j

n=i Pwn−i
(n) if v = w0 . . . wr, Which

characterize the pattern between two positions x and y to correspond to some
production p of G.

Let πX(x, y), for x ∈ N be the disjunction of all the πp(x, y) whenever p has
X as lefthand side.

We can write now the formula πp(x, y) =
Pα(x) ∧ Pβ(y) ∧ ∃x1y1 . . . xsys[(x < x1 < y1 < . . . < xs < ys < y)
∧(ψv0(x, x1) ∧ ψv1(y1, x2) ∧ . . . ∧ ψvs(ys, y))
∧(M(x1, y1) ∧ . . . ∧M(xs, ys)) ∧ (πX1(x1, y1) ∧ . . . ∧ πXs(xs, ys)],

which restricts the pattern of the matching between x and y to correspond
to the matching of a production having the appropriate non terminal as left
hand side.

The formula ψG is then:

∨
S→u∈P

(ψu(min,max)) ∨ [∀x∀y(M(x, y) →
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∨
p∈P

πp(x, y)) ∧ (M(min,max) ∧ πS(min,max))]

Since every production is uniquely determined by its pattern, this formula is
appropriate for our aim.

For the other direction we remark that the construction of the tree is intimately
connected to the matching. Then the uniqueness of the matching implies the
uniqueness of the derivation tree for each word, this gives us, by definition,
the unambiguity of the language. Q.E.D.

Note. As the property ”a binary relation is a matching” can be expressed in
first-order logic, we can construct a syntactic sublogic of IMP2 which captures
Unambiguous Context Free Languages. This can be done by the set of formulas
ϕ ∧ ψ, where ϕ defines a binary relation implicitely and ψ test if this relation
is a matching. We gave in this paper the semantic definition rather than the
syntactic one because of the simplicity of this notion in this case.

Corollary 14 IMP2 is undecidable.

This is a simple consequence of undecidability of unambiguity.

5 Conclusion

We reproved in this paper an algebraic characterization of Context Free Lan-
guages by means of Dyck languages, using a result of McNaughton and Papert
[19] for the logical description of star free expressions and the Double Greibach
Normal Form. We could get a cleaner proof by using the Double Quadratic
Greibach Normal Form.

Unambiguity of Context Free languages is relevant for compiling theory be-
cause if a program has two different derivations we can have different results
for the same input.

This motivates me to try to describe Unambiguous Context Free Languages
by logical means. But the undecidability of Unambiguity compels us to use an
undecidable logic, which is IMP . For a proof of its undecidability see [16].

The undecidability of IMP is in the sense commonly understood. That is the
set of IMP -formulas is co-recursively enumerable complete. But the undecid-
ability of IMP2 is in the sense that we can’t decide if a given binary predicate,
which is a matching, can be whether or not implicitly defined by a first-order
formula.
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The result of Eiter and al [8] discouraged me to look for some more syntactic
logic for all classes between N.P. and regular sets.

The result makes the link between two undecidable problems, a logical one
and a language theoretic one.

The question which naturally arises after our result is:

Is there a logic for deterministic Context Free Languages?
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[1] AUTEBERT, Jean Michel. Théorie des langages et des automates, Masson 1994.

[2] AUTEBERT, Jean Michel. Personnal communication, 1998.

[3] AUTEBERT, Jean-Michel, BERSTEL, Jean, et BOASSON, Luc. Context-free
languages and pushdown automata. In : Handbook of formal languages. Springer
Berlin Heidelberg, 1997. p. 111-174.
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