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Domain of attraction estimation of cancer chemotherapy model affected
by state proportional uncertainty

Rachid Riah1, Mirko Fiacchini1 and Mazen Alamir1

Abstract— This paper proposes an analytical method for the
characterisation of the set of all initial tumor and normal
states of a cancer dynamical model for which there exists a
successful drug administration therapy. The dynamical model
considered simulates the behaviour of the tumor and the normal
cells populations growth in presence of a chemotherapy drug.
This model is assumed to be affected by a state proportional
uncertainty. The successful drug administration therapy is
attained by respecting the tumor eradication and avoiding the
lower admissible bound of the normal cells population which
is viewed as an indicator of the patients health. The problem
is posed in terms of domain of attraction computation and is
solved by applying set theory and invariance tools.

Keywords— Cancer, Chemotherapy, Uncertainty, Invariance,
Set theory.

I. INTRODUCTION

On cancer research, the mathematical modeling is viewed
as the pillar that have a big impact on the success of the
cancer treatment. Some of the models are based on the
evolution of different cells, see [1], [9], [14], [18]. Such
models may incorporate the effect of external drugs on the
evolution of the cancer, as chemotherapy and immunotherapy
drug or their combination. In the recent years, mathematical
models of cancer have been widely used also for control-
based tumoral therapy design, applying optimal control [8],
[16], or feedback control, see [4], [7].

In this paper, the cancer chemotherapy model to be studied
is inspired from the work [1], [18]. It represents the evolution
of normal and tumor cells populations under chemotherapy
drug therapy. In [1], this model is used to represent the
evolution of acute myeloblastic leukemia (AML) and in [18]
it has been used to simulate the cancer evolution. The normal
cells represent a part of the innate immune system of the
human body and can be interpreted as the aggregation of
NK cells, CD8+ cells and a circulating lymphocytes (or white
blood cells) as defined in [7].

The uncertainties affecting the cancer models, either para-
metric [3], or additive are crucial for the analysis and control
design in order to find the successful drug administration
therapy. Therefore, the main objective of the paper, whose
preliminary version is [19], consists in the development of a
new method for chemotherapy design considering that the
model is affected by state proportional uncertainties. The
state proportional uncertainties are the uncertainties which
affect proportionally the dynamic of each state of the model.
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This method is based on the properties of robust invariant
sets for Convex Difference Inclusions (CDI) systems.

In this paper, our contribution is substantially based on set
theory and invariance for control. Stability and robustness
will be addressed using the properties of invariant sets.
Many results regarding invariance and related topics have
been provided in the literature, see [5], [13], [15], [11] and
[6]. Invariance is related to reachability [17], and viability.
Typically, the viability kernel is much harder to compute
[21].

The new method provides the domain of attraction of the
cancer chemotherapy model affected by a state proportional
uncertainty. This domain contains all tumor and normal states
for which a set of admissible administration chemotherapy
profile exists, that drives theses states to the safe region. The
safe region is defined to be the set for which the number
of tumor cells is small enough and the normal cells number
higher than the minimal admitted level. A minimal level is
imposed as a health condition.

The paper is organized as follows: First the mathematical
model of cancer is recalled in Section II. Section III presents
the problem statement addressed in the paper. The properties
and numerical methods related to controlled robust invariant
sets and convex difference inclusions systems are given in
Section IV. The application to the cancer problem of the
methods developed in Section IV is proposed in Section V.
Section VI illustrates the results given in Section V. Section
VII ends the paper providing conclusions and giving hints
for future investigations.

Notation: Given n ∈N, define Nn = {m ∈N : 1≤m≤ n}.
Given A ∈ Rn×m, Ai with i ∈ Nn denotes its i-th row, Ai, j
with i ∈ Nn and j ∈ Nm a value that corresponds to the i-th
row and the j-th column.

II. MATHEMATICAL CANCER MODEL

We consider the mathematical model that has been devel-
oped in [18], [1] and [2] in order to describe the dynamical
behaviour of the normal and tumor cells populations under a
chemotherapy drug. This model involves the following cells
populations
• L: tumor cells population,
• N: normal cells population.
The assumptions considered on the model are given in the

following, see [18], [1] and [2] for more details.
1) The growth dynamics of both tumor and normal cells

populations are the same anywhere in the body;
2) The tumor and normal cells populations follow a

process of Gompertizian growth;



3) The tumor cells exhibit a negative and inhibiting effect
on the growth and development of the normal cells;

4) The chemotherapy drug kills both tumor and normal
cells and affects the normal more than the tumor cells;

5) The drug spreads instantaneously within the body.
The resulting model, based on the above assumptions, is

defined as follows

L̇ = αL ln
θL

L
−Π1(u)L, L(0) = L0,

Ṅ = βN ln
θN

N
−Ξ(L)N−Π2(u)N, N(0) = N0,

(1)

where the description of each term is given in Table I.

Term Description

α Tumor growth rate
θL Greatest size of the tumor cells population
αL ln θL

L Gompertizian tumor growth
Π1(u)L Death of tumor cells due to chemotherapy
β Normal cells growth rate
θN Greatest size of the normal cells population
βN ln θN

N Gompertizian normal growth
Ξ(L)N Stimulation of tumor cells on normal cells
Π2(u)N Death of normal cells due to chemotherapy

TABLE I: Model terms description (1).

Following the reasonings in [1], [18] and [2], the assump-
tions below can be done to simplify the model.
• The function Ξ(L) is taken to be linear as in [1] (i.e.

Ξ(L) = γL, where γ is a given parameter);
• We consider that the loss function Π1(u) is linear, taking

into account the saturation phenomena, i.e, Π1(u) = ku,
k is the fraction of tumor cells that are killed due to the
chemotherapy drugs;

• We assume that the loss function Π2(u) is linear, i.e,
Π1(u) = lu, l is the fraction of the normal cells that are
destroyed by the effects of the chemotherapy drugs (it
is assumed that l < k);

• We assume also that the dynamics of the cells popula-
tions are affected by state proportional uncertainties.

Physically, the state proportional uncertainties can be
viewed as a disturbance that grows proportionally with the
number of the cells populations. It is in fact reasonable to
suppose that these uncertainties should depend on the number
of the cells populations, since its effect on the dynamic of
the model must be suitable for small and high number of the
cells populations.

The resulting model becomes

L̇ = αL ln
θL

L
− kuL+w1L, L(0) = L0,

Ṅ = βN ln
θN

N
− γLN− luN +w2N, N(0) = N0,

(2)

where (w1 w2)
T ∈ W ⊆ R2 is an unknown uncertainty

belonging to a bounded set W . The bounded set W can be
taken as a box, a polyhedral set, an ellipsoidal set or their
intersection.

As proposed in [18], we introduce the change of variables
x1 = ln θL

L and x2 = ln θN
N , and we get the equivalent system

ẋ1 =−αx1 + ku−w1, x1(0) = x10,
ẋ2 =−βx2 + γθLe−x1 + lu−w2, x2(0) = x20.

(3)

The discrete-time system modelling the cancer evolution
is obtained by sampling the continuous system (3), with
numerical integration schemes using Euler’s method and
sampling time of Ts = 1 day. It results in

x+1 = (1−Tsα)x1 +Tsku−Tsw1
= f1(x,u)−Tsw1, x1(0) = x10,

x+2 = (1−Tsβ )x2 +TsγθLe−x1 +Tslu−Tsw2
= f2(x,u)−Tsw2, x2(0) = x20.

(4)

The model (4) involves two state variables x1,x2, one
manipulated variable u and two uncertainties variables w1
and w2. Notice that in this space, the uncertainty appears
as additive terms. The consistent values for the parameters
involved in this model are inferred from [1] and [18], then
modified to reproduce the cells evolutions given in [1] and
summarized in Table II.

III. PROBLEM STATEMENT

Consider the nonlinear model (2) that describes the dy-
namics of the cells populations in presence of chemotherapy
drug and state proportional uncertainties.

The system is subject to the following constraints on
system states, control inputs and uncertainty variables.

(L N)T ∈ Y ⊆ R2, (5)

u ∈U ⊆ R= {u ∈ Rm : umin ≤ u≤ umax}, (6)

w ∈W ⊆ R2. (7)

In cancer therapy drug administration, the main objective is
to reduce the tumor cells population L, while maintaining the
number of the normal cells population N above a prescribed
level, see [7], [9]. The initial values of (L N)T belong to Y .
The number of the normal cells population N is used in [18]
as a measure of the patient health.

In this paper we would like to determine all the initial
tumor and normal states for which there exists an appropriate
drug injection profile u satisfying the constraint (6) for all
uncertainties realizations w belonging to W . This therapy
must lead to a substantial regression of the tumor size, i.e.
L becomes small enough, while avoiding that the health
measure reaches dangerous values for the patient, i.e. N ≥
Nmin, with Nmin denoting the minimal admitted value of the
normal cells.

In the space of x1 and x2, the state constraint (5) becomes

(x1 x2)
T ∈ X ⊆ Rn, (8)

where X is determined from the set Y applying the change
of variable defined above.

In this space, we would like to determine the set of
the initial points (x1,x2) ∈ X , such that the dynamics of
the system (4) can be driven to the safe region for all

param. value param. value

α 3.96×10−4 day−1 β 3.33×10−2 day−1

θN 1.4×108 cells θL 3×108 cells
k 8×10−2 l 15×10−3

γ 10−9 (cells.day)−1

TABLE II: Parameters of the dynamic model (2).



uncertainties realizations w belonging to W , by applying
an admissible chemotherapy drug profile u satisfying the
constraint (6). The safe region is the set in the state space
x1,x2 defined by x1 high enough and x2 ≤ x2max, where
x2max = ln θN

Nmin
denotes the maximal admitted value of x2.

These initial tumor and normal states represent the domain
of attraction of the cancer system (4). Its computation is
substantially based on the properties of positively invariant
sets and convex inclusions, that will be introduced in the
next section.

IV. CONVEX DIFFERENCE INCLUSIONS SYSTEMS AND
DOMAIN OF ATTRACTION

In this section, the method that provides the domain of
attraction of a nonlinear systems is stated. This method is
based on the approximation of the nonlinear system with a
Convex Difference Inclusions (CDI) system and also on the
properties of positively invariant sets. In practice, this method
computes the maximal contractive invariant convex set as an
estimation of the domain of attraction of a nonlinear system.

The convex difference inclusions systems are defined by
a particular class of set valued maps as a dynamic function.
The set valued maps that can be used to define this class
of systems is such that, given a point in the state space, its
image through the map is a convex and compact set.

Let us consider the uncertain difference inclusions system

x+ ∈FW (x,u) = F (x,u)+W (9)

where x ∈ X ⊆ Rn is the state, x+ is the successor, u ∈
U ⊆Rm is the control input and F (·, ·) is a set valued map
on Rn, that is F (x,u) represents a function which relates
a set to every point (x u)T ∈ Rn×Rm, i.e. F (x,u) ⊆ Rn

for all x ∈ Rn. The sets X , W and U represent the set of
state constraints, the set of additive uncertainties and the
set of admissible control inputs respectively. The set W is
an additive uncertainty bounding set satisfying the following
assumption.

Assumption 1: The set W ⊂ Rn is compact, convex and
0 ∈W .

The interest of an uncertain difference inclusions systems
lies in the fact that they can be used to approximate the
uncertain nonlinear systems x+ = f (x,u)+w, i.e. f (x,u)+
w ∈FW (x,u) for all x ∈ X , all w ∈W and for all u ∈U .

Since a robust invariant set for the CDI system is robust in-
variant also for the nonlinear system then the approximation
may be useful in order to determine the domain of attraction
of the nonlinear system. Although some conservatism is in
general introduced, it is arbitrarily small for the case under
analysis.

Notice that the important tool to deal with convex closed
sets and convexity is the support function. For some proper-
ties of support functions readers can see [20].

Definition 1: Given a set Ω⊆Rn, the support function of
Ω evaluated at η ∈ Rn is φΩ(η) = supx∈Ω ηT x.

The support function permits to transform the set-inclusion
condition in terms of linear inequalities, see [20] for instance.
From the definition of the support function, we get this
property.

Property 1: Given two closed, convex sets Ω ⊆ Rn and
Γ⊆Rn, then x∈Ω if and only if ηT x≤ φΩ(η) for all η ∈Rn,
and Γ⊆Ω if and only if φΓ(η)≤ φΩ(η), for all η ∈ Rn.

In order to define the uncertain difference inclusions
systems, let us introduce this assumption.

Assumption 2: Assume that the set valued map F de-
termining the system dynamics (9) is such that F (x,u) is
compact and convex for all (x u) ∈ Rn×Rm and for every
η ∈Rn, the function F(x,u,η) : Rn×Rm×Rn −→R defined
as

F(x,u,η) = φF (x,u)(η) = sup
z∈F (x,u)

η
T z, (10)

is convex with respect to (x u) on X×U .
Thus, in practice, F(x,u,η) is the support function of the

set F (x,u) evaluated at η ∈ Rn and then

F (x,u) = {z ∈ Rn : η
T z≤ F(x,u,η), ∀η ∈ Rn}, (11)

and it is convex in (x u)T .
Since the set-valued map FW (x,u) determining the system

(9) is the sum of two convex sets, then it is convex also
with respect to (x u)T ∈Rn×Rm. Thus, the set valued map
determining the system (9) is such that

FW (x,u) = {z ∈ Rn : η
T z≤ F(x,u,η)+φW (η), ∀η ∈ Rn}.

(12)
The dynamical systems (9) for which Assumption 2 holds

are tightly related to the uncertain CDI systems defined in
[10], [12].

Now, we recall the standard definitions of the controlled
robust invariant set for the generic nonlinear system, adapted
here for the case of potentially unbounded sets that do not
necessarily contain the origin and set valued maps.

Definition 2 ([6]): The closed convex set Ω ⊆ Rn is a
controlled robust invariant set for the uncertain nonlinear
system x+ = fW (x,u) = f (x,u)+w if for every x ∈Ω, there
exists u ∈ U such that fW (x,u) ∈ Ω for all w ∈ W ; it is
controlled robust invariant for the CDI system (9) if for every
x ∈Ω, there exists u ∈U such that FW (x,u)⊆Ω.

Whatever the additive uncertainties w ∈W affecting the
trajectory started in a controlled robust invariant set Ω, there
exists an admissible control input, such that this trajectory
remains inside Ω.

For the system (9), the robust controlled invariance of
Ω ⊆ X can be tested using the controlled robust one-step
backward operator, defined below.

Definition 3: Consider the closed convex set Ω and as-
sume that Assumption 2 holds for the set valued map F (·, ·)
determining the dynamic system (9). The controlled robust
one-step operator is defined as follows

QW (Ω,U,X) = {x ∈ X : ∃u ∈U : FW (x,u)⊆Ω}. (13)
Hence, the controlled robust one-step operator associates

to every set Ω the set of points that are mapped inside Ω

through FW (·, ·) applying an appropriate control input u∈U .
Thus, by definition, a closed convex set Ω ⊆ X is robust
invariant if and only if Ω⊆ QW (Ω,U,X) and the controlled
robust one-step operator can be used to check controlled
robust invariance and to compute increasing sequences of
nested controlled robust invariant sets as for linear or CDI
systems. Indeed, Algorithm 1, standard for generating a
sequence of convex sets that converges to the domain of
attraction, see [6], can be applied also in this context.



Algorithm 1 Sequence of convex sets converging to the
maximal controlled robust invariant set for the system (9)

Input: Initial convex closed controlled robust invariant set
Ω0 ⊆ X .

1: for k ∈ NN do
2: Compute Ωk+1 = QW (Ωk,U,X)∩X
3: if Ωk+1 = Ωk then Ωmax = Ωk return
4: end if
5: end for

Notice that Algorithm 1 can be used starting from the
set of state constraints Ω0 = X or from an initial controlled
robust invariant set Ω0. Thus, in the latter case, Ωk are
controlled robust invariant set and converges to the domain
of attraction for the system (9), and hence for all nonlinear
systems approximated by (9). Finally, being our objective to
have a sequence of Ωk that are polyhedral, we introduce the
following results, proved in [10], which is functional for this
purpose.

Proposition 1: Consider the set-valued map FW (x,u) de-
termining the system dynamics (9). Given the state constraint
set X , the control input set U and the polytope Ω = {x ∈
Rn : Hx ≤ h}, with H ∈ Rnh×n, the controlled robust one-
step operator is

QW (Ω,U,X) = {x ∈ X : ∃u ∈U : F(x,u,Hi
T )≤ hi

−φW (HT
i ), ∀i ∈ Nnh}.

(14)

Proof: From Definition 2, we have that x ∈ QW (Ω,U,X)
if and only if ∃u ∈U such that FW (x,u)⊆Ω, which is the
condition given to determine the controlled robust one-step
operator. Thus, using the Property 1 and Eq.(12) the latter
condition is equivalent to x∈QW (Ω,U,X) if and only if ∃u∈
U such that φF (x,u)(η)+ φW (η) ≤ φΩ(η) for all η ∈ Rn.
For polyhedral case, this condition is equivalent also to x ∈
QW (Ω,U,X) if and only if ∃u ∈U such that F(x,u,Hi

T )≤
hi−φW (HT

i ),∀i ∈ Nnh which is proved in [10]. Finally, the
controlled robust one-step operator can be defined as given
by Eq.(14).

Notice that, as proved in [10] for general convex closed
sets, for every polytopic Ω, the set QW (Ω,U,X) is closed and
convex. Moreover, if F(·, ·,η) are piecewise affine functions
of (x u)T , then QW (Ω,U,X) is a polyhedron, that is the
intersection of a finite number of halfspaces, for every
polytopic (or polyhedral) Ω.

Finally, once the controlled robust one-step operator is
given, Algorithm 1 can be used to compute the domain of
attraction of the nonlinear systems x+ = f (x,u) +w, with
w ∈W .

V. CONTROL ROBUST ONE-STEP OPERATOR FOR CANCER
CHEMOTHERAPY

In this section, the controlled robust one-step operator
for the uncertain cancer chemotherapy model (4) is stated.
Notice that the model (4) is in the form x+ = f (x,u)+w.
Then given the set Ω = {x ∈ R2 : Hx≤ h}, with H ∈ Rnh×2,
the controlled robust one-step operator of this model can be
computed using Eq.(14). Eq.(14) depends on the bounding

functions F(x,u,Hi) for all Hi
T ∈R2, i ∈Nnh , that must first

be determined.
First, we will compute the bounding functions F(x,u,η)

for all η ∈ R2. This function has to be convex with respect
to (x u)T , and such that the associated set-valued maps
F (x,u) as (11), satisfies f (x,u) ∈F (x,u), with f (x,u) in
(4), for every (x u)T ∈ X×U . Thus, according to Property 1,
the functions F(x,u,η) must satisfy the following inequality
ηT f (x,u)≤F(x,u,η), for every η ∈R2. Moreover, since the
nonlinearity in (4) involves only f2(x,u) then the bounding
functions of ηT f (x,u) are related only to η2, since the
dynamics of x1 is linear. A possible choice is
• if η2 ≥ 0: F(x,u,η) = ηT f (x,u),

since F(x,u,η) is already convex in this case;
• if η2 < 0:

F(x,u,η) = η1

(
(1−Tsα)x1 +Tsku

)
+η2

(
(1−Tsβ )x2

+TsγθL(ax1 +b)+Tslu
)
,

(15)
with a and b such that (ax1 + b) ≤ e−x1 , obtained for

instance as the tangent to the graph of e−x1 at one point;
for all η ∈ R2.

We are interested in convex piecewise affine bounding
functions for computational purposes. For this it is sufficient
to replace e−x1 with a convex piecewise affine upper bound,
which is easily obtainable, for the case of η2 ≥ 0. In fact,
it is sufficient to choose a set of q ∈ N parameters ci ∈ R,
di ∈R, with i ∈Nq, such that, e−x1 ≤max

i∈Nq
{cix1 +di}, for all

x1 ∈ R. To obtain those parameters, it is sufficient to define
zi with i ∈ Nq+1 such that zi < zi+1 and then

ci =
e−zi+1 − e−zi

zi+1− zi
, di =

zi+1e−zi − zie−zi+1

zi+1− zi

are the parameters of an affine function such that e−x1 ≤
cix1 +di for every x1 ∈ [zi, zi+1] and e−zi = cizi +di for all
i ∈ Nq, see Figure 1.

Remark 1: Notice that, in order to increase the precision,
the number of parameters q can be taken as big as desired.
Hence, arbitrary precision can be attained.

Concerning the case of η2 < 0, no modification is required
with respect to (15), since the function (15) is already
piecewise affine function. Then, we obtain

F(x,u,η)=


η1

(
(1−Tsα)x1 +Tsku

)
+η2

(
(1−Tsβ )x2

+TsγθL max
i∈Nq

{cix1 +di}+Tslu
)

if η2 ≥ 0,

F(x,u,η) as in (15) if η2 < 0.
(16)

Figure 1 shows the convex upper bound and the concave
lower bound of e−x1 implicitly used to determine F(x,u,η).
Notice that F(x,u,η) is a convex upper bound of ηT f (x,u),
for all (x u)T ∈ X ×U and for all η ∈ R2. Once a convex
upper bound of ηT f (x,u) is determined, the controlled robust
one-step operator will be given using the Proposition 1.

Remark 2: By applying Algorithm 1, we found that the
sequence of polytopes Ωk = {x ∈ Rn : Hkx ≤ hk} generated
by the controlled robust one step operator never have a
facet determined by Hk

i with Hk
i,2 < 0 except the case

related to the trivial constraints x2 ≤ 0. Since the latter
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constraints can be neglected in the computation, then the
lower bound of e−x1 is never used. This would mean that the
sequence of polytopes obtained and the domain of attraction
are affected only by the mismatches between e−x1 and the
piecewise function max

i∈Nq
{cix1 + di}, mismatch that can be

done arbitrarily small, as notice in Remark 1. Hence, the
desired precision can be achieved by employing sufficiently
close piecewise approximations of e−x1 . Consequently, the
conservatism introduced by approximating the uncertain non-
linear cancer system (4) by the uncertain CDI system (9) can
be reduced increasing the precision as indicated in Remark 1.

According to Remark 2, the piecewise affine bound func-
tion of ηT f (x,u) to be employed is the one given for η2 > 0.
Therefore, the related controlled robust one-step operator
defined in Proposition 1becomes

QW (Ω,U,X) =
{

x ∈ X | ∃u ∈U : ∀i ∈ Nnh , ∀ j ∈ Nq,(
Hi,1(1−Tsα)+Hi,2Tsδc j

)
x1 +Hi,2

(
1−Tsβ

)
x2

≤ hi−Hi,2Tsδd j−
(

Hi,1Tsk+Hi,2Tsl
)

u−φW (HT
i )
}
.

(17)
Then QW (Ω,U,X) maps polytopes in polytopes and the

Algorithm 1 generates a sequence of polytopes that converge
to the maximal controlled robust invariant polytopic set for
the system (4).

VI. SIMULATIONS

Let us assume that the chemotherapy drug profile is
constrained to take value from U such that umin = 0 and
umax = 1. We also consider that the minimal admitted level of
the normal cells is Nmin = 107Cells, which implies,using the
change of variable that x2max = 2.30. Since the exact values
of the model parameters are not available in the literature,
the value of Nmin is also taken approximately as the others
parameters described and noted in Section II.

Let us also assume that the polyhedral set of the state
constraints in the domain of L and N is Y = {y = (L N)T ∈
R2 : L ≥ 0; Nmin ≤ N}, which implies, using the change
of variables that X = {x ∈ R2 : x1 ≥ 0; 0≤ x2 ≤ x2max}.

The state proportional uncertainty w is assumed to belong
to the set W = {w ∈R2 : ‖ w ‖2 6 0.06; 0 6 w1; w2 6 0}.
This set corresponds to the worst case that can affect the
dynamics of the cells populations. In the model (2), the tumor
cells population L without chemotherapy drug diverges. The

worst case for the uncertainties increases the divergence of
the tumor cells population L to infinity, i.e. w1 is taken
positive. The normal cells population needs to grow and the
worst case of the uncertainties prevent this growth, i.e. w2 is
taken negative.

Once the set of constraint states X and the initial invariant
set Ω0 are selected, Algorithm 1 is fully automatic and no
parameters need to be selected.

Now, applying Algorithm 1 with the controlled robust one-
step operator given by Eq.(17), starting from an initial set
Ω0, we get a sequence of convex sets that converges to the
maximal controlled robust invariant set for the cancer system
(4).

In Figure 2, the sequence of nested controlled robust
invariant sets that converge to the maximal controlled robust
invariant set is depicted in black line whereas the maximal
controlled robust invariant set is depicted in blue line. This
sequence of polytopes are computed starting from the set
Ω0 = {x ∈ X : x1 ≥ a} with a big enough, for which the in-
variance condition Ω0 ⊆QW (Ω0,X ,U) holds. Consequently,
the controlled robust one-step operator can be used to check
controlled robust invariance.

Notice that Ωk+1 is defined as the set that contains all the
states for which there exists a set of admissible chemotherapy
drug such that these states will be mapped in Ωk in one step
regardless of state proportional uncertainties. In the same
figure, the maximal controlled invariant set for the cancer
system (4) is depicted in red line.

Figure 3 shows the maximal controlled robust invariant
set in blue line and the maximal controlled invariant set in
red line. Notice that the maximal controlled robust invariant
set is calculated using Algorithm 1 starting from the set of
state constraints X . The sequence of polytopes is depicted in
black line.

By applying the change of variable defined above to the
sets given in Figure 2, one gets the tumor-normal cells
domains of attraction of the cancer system (2), that are
depicted in Figure 4. In blue line, the domain of attraction
of the uncertain cancer system (2) is showed. This contains
all the tumor and normal states that can be driven to the
set of healthy states considering that the dynamical can-
cer chemotherapy model is affected by state proportional
uncertainties. In the same figure, the tumor-normal cells
domain of attraction of the cancer system (2) without the
state proportional uncertainties is given by the red line.

Remark from Figure 4 the drastic reduction of the domain
of attraction caused by the state proportional uncertainties.
Therefore, in order to achieve a successful chemotherapy
treatment, the identification of the real values of the model
parametersis crucial.

These domains of attraction represent, with arbitrary preci-
sion, the exact set of all the initial tumor and normal states for
which there exists a specified set of administration therapy
profile. This therapy leads to the eradication of the tumor
cells without violating the constraint on the patient’s health.
Therefore, given the initial state of a patient, one could infer
on the existence of a successful chemotherapy treatment.
Furthermore, the amount of drugs that should be delivered



and the therapy length can be calculated.

Fig. 2: Comparison between the maximal controlled invariant polyhedral
set (red line) and the maximal controlled robust invariant polyhedral set
(blue line) provided with polyhedral sequences considering state propor-
tional uncertainty w∈W = {w∈R2 : ‖ w ‖2 6 0.06; 06w1; w2 6 0} (black
line), computed starting from an initial set Ω0. The admitted level of x2 is
equivalent to the admitted level of the normal cells, which is 10−1 θN cells.
The chemotherapy drugs are constrained to take value between umax = 1
and umin = 0.

Fig. 3: Comparison between the maximal controlled invariant polyhedral
set (red line) and the maximal controlled robust invariant polyhedral set
(blue line) provided with polyhedral sequences considering state propor-
tional uncertainty w ∈ W = {w ∈ R2 : ‖ w ‖2 6 0.06; 0 6 w1; w2 6 0}
(black line), computed starting from the state constraints set X . The admitted
level of x2 is equivalent to the admitted level of the normal cells, which
is 10−1 θN cells. The chemotherapy drugs are constrained to take value
between umax = 1 and umin = 0.

VII. CONCLUSION

In this paper, we developed a method to determine the
domain of attraction for cancer chemotherapy model. This
domain contains all the initial tumor and normal states for
which there exists a set of admissible drug administration
therapy. This method could be used to characterize which
patients can be successfully cured. This domain is obtained
in the presence of state proportional uncertainties affecting
the model and saturation constraints which limit the amount
of the drug injection. In future work, alternative modelling
frameworks could be employed.
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