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Abstract

In this paper we focus on high order finite element approximations of the electric field
combined with suitable preconditioners, to solve the time-harmonic Maxwell’s equa-
tions in waveguide configurations. The implementation of high order curl-conforming
finite elements is quite delicate, especially in the three-dimensional case. Here, we ex-
plicitly describe an implementation strategy, which has been embedded in the open
source finite element software FreeFem++ (http://www.freefem.org/ff++/). In par-
ticular, we use the inverse of a generalized Vandermonde matrix to build a basis of
generators in duality with the degrees of freedom, resulting in an easy-to-use but pow-
erful interpolation operator. We carefully address the problem of applying the same
Vandermonde matrix to possibly differently oriented tetrahedra of the mesh over the
computational domain. We investigate the preconditioning for Maxwell’s equations
in the time-harmonic regime, which is an underdeveloped issue in the literature, par-
ticularly for high order discretizations. In the numerical experiments, we study the
effect of varying several parameters on the spectrum of the matrix preconditioned with
overlapping Schwarz methods, both for 2d and 3d waveguide configurations.

Keywords: High order finite elements; edge elements; Schwarz preconditioners; time-
harmonic Maxwell’s equations; FreeFem++.

1 Introduction

Developing high-speed microwave field measurement systems for wireless, medical or engi-
neering industries is a challenging task. These systems often rely on high frequency (from
1 to 60 GHz) electromagnetic wave propagation in waveguides, and the underlying mathe-
matical model is given by Maxwell’s equations. High order finite elements methods make
it possible, for a given precision, to reduce significantly the number of unknowns, and they
are particularly well suited to discretize wave propagation problems since they can provide
a solution with very low dispersion and dissipation errors. However, the resulting algebraic
linear systems can be ill conditioned, so that preconditioning becomes mandatory when
using iterative solvers.

In the case of finite elements (FE) for Maxwell’s equations, degrees of freedom (dofs)
are associated with geometrical mesh elements other than nodes, such as edges or faces.
Indeed, one needs to recognize that different physical quantities have different properties
and must be treated accordingly. Whitney finite elements are thus generally adopted [1, 2].
The high order version of Whitney finite elements we consider here is the one developed in
[3, 4] (for other possible high order finite element bases see for example [5, 6, 7, 8, 9]). In
particular, within the family of Whitney finite elements, we address the edge elements case,
which is the standard choice to describe the electric field solution of a waveguide propagation
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problem. We thus added high order edge finite elements to FreeFem++ [10]. FreeFem++
is an open source domain specific language (DSL) specialized in solving boundary value
problems (BVP) by using variational methods, and it is based on a natural transcription of
the weak formulation of the considered BVP. Moreover, the user can add new finite elements
to it by defining certain ingredients including an interpolation operator. For the definition of
the latter, in the high order edge elements case we need the generalized Vandermonde matrix
introduced in [11] to build a basis of generators in duality with the degrees of freedom. In
this work, we carefully address various implementation issues, as the problem of applying the
same Vandermonde matrix to possibly differently oriented simplices (triangles, tetrahedra)
of the whole mesh, in order to be able to use in numerical experiments the concepts presented
for just one simplex in [11]. Note that in FreeFem++ the basis functions are constructed
locally, i.e. in each simplex, without the need of a transformation from the reference simplex;
the chosen definition of high order generators fits perfectly this local construction feature of
FreeFem++ since it involves only the barycentric coordinates of the simplex.

For Maxwell’s equations in the time domain, for which an implicit time discretization
yields at each step a positive definite problem, there are many good solvers and precon-
ditioners in the literature: multigrid or auxiliary space methods, see e.g. [12, 13, 14, 15]
for low order finite elements, [16] for high order ones, and Schwarz domain decomposition
methods, see e.g. [17, 18]. In this paper, we are interested in solving Maxwell’s equations
in the frequency domain, also called the time-harmonic Maxwell’s equations: these involve
the inherent difficulties of the indefinite Helmholtz equation, which is difficult to solve for
high frequencies with classical iterative methods [19]. It is widely recognized that domain
decomposition methods or preconditioners are key in solving efficiently Maxwell’s equations
in the time-harmonic regime.

The first domain decomposition method for the time-harmonic Maxwell’s equations was
proposed by Després in [20]. Further improvements can be found in [21] where modified,
more efficient Robin transmission conditions are used at the interfaces between subdomains.
Over the last decade, optimized Schwarz methods were developed: for the first order formu-
lation of the equations complete optimized results are known, also in the case of conductive
medium [18, 22], while for the second order (or curl-curl) formulation partial optimization
results were obtained in various works. Recently it has been shown that the convergence
factors and the optimization process for the two formulations are the same [23].

Nevertheless, the development of Schwarz algorithms and preconditioners for high or-
der discretizations is still an open issue. A recent work for the non overlapping case is
reported in [24]. In the present work, we use overlapping Schwarz preconditioners based on
impedance transmission conditions for high order discretizations of the curl-curl formulation
of time-harmonic Maxwell’s equations. Note that domain decomposition preconditioners are
suited by construction to parallel computing, which is necessary for large scale simulations.
The coupling of high order edge finite elements with domain decomposition precondition-
ers studied in this paper has been applied in [25] to a large scale problem, coming from
a practical application in microwave brain imaging: there, it is shown that the high order
approximation of degree 2 makes it possible to attain a given accuracy with much fewer
unknowns and much less computing time than the lowest order approximation.

The paper is organized as follows. In Section 2 we introduce the waveguide time-harmonic
problem and its variational formulation. In Section 3 we recall the definition of generators
and degrees of freedom that we adopted here as high order edge FEs. Then, in Section 4
we describe in detail the implementation issues of these FEs, the strategy developed to
overcome those difficulties and the ingredients to add them as a new FE in FreeFem++.
The overlapping Schwarz preconditioners we used are described in Section 5, followed in
Section 6 by the numerical experiments, both in two and three dimensions.

2 The waveguide problem

Waveguides are used to transfer electromagnetic power efficiently from one point in space,
where an antenna is located, to another, where electronic components treat the in/out
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Figure 1: Rectangular waveguide configuration for 3d (left) and 2d (right) problems with
wave propagation in the x-direction. The physical domain D is in thin line, with dashed
style for those boundaries that should be extended to infinity. The computational domain Ω
is in thick line, with dashed style for those boundaries where suitable absorbing conditions
are imposed.

information. Rectangular waveguides, which are considered here, are often used to transfer
large amounts of microwave power at frequencies greater than 2 GHz. In this section, we
describe in detail the derivation of the simple but physically meaningful boundary value
problem which simulates the electromagnetic wave propagation in such waveguide structures.
To work in the frequency domain, we restrict the analysis to a time-harmonic electromagnetic
field varying with an angular frequency ω > 0. For all times t ∈ R, we consider the
representation of the electric field E and the magnetic field H as

E(x, t) = <(E(x)eiωt), H(x, t) = <(H(x)eiωt),

where E(x), H(x) are the complex amplitudes, for all x ∈ D, D ⊂ R3 being the considered
physical domain. The mathematical model is thus given by the (fist order) time-harmonic
Maxwell’s equations:

∇×H = iωεσE, ∇×E = −iωµH,

where µ is the magnetic permeability and εσ the electric permittivity of the considered
medium in D. To include dissipative effects, we work with a complex valued εσ, related to
the dissipation-free electric permittivity ε and the electrical conductivity σ by the relation
εσ = ε − i σω . This assumption holds in the regions of D where the current density J is of
conductive type, that is, J and E are related by Ohm’s law J = σE. Both ε and µ are
assumed to be positive, bounded functions. Expressing Maxwell’s equations in terms of the
electric field, and supposing that µ is constant, we obtain the second order (or curl-curl)
formulation

∇× (∇×E)− γ2E = 0, (1)

where the (complex-valued) coefficient γ is related to the physical parameters as follows

γ =
√
ω2µε− iωµσ = ω

√
µεσ, εσ = ε− i

σ

ω
.

Note that if σ = 0, we have γ = ω̃, ω̃ = ω
√
µε being the wavenumber.

Equation (1) is to be solved in a suitable bounded section Ω of the physical domain D,
as shown in Fig. 1. In the 3d case, the physical domain D ⊂ R3 is an infinite ‘parallelepiped’
parallel to the x-direction and the computational domain is a bounded section, say Ω =
(0, X) × (0, Y) × (0, Z) = (0, c) × (0, b) × (0, a) of D. In the 2d case, the physical domain
D ⊂ R3 is the space contained between two infinite parallel metallic plates, say y = 0, y = b,
and all physical parameters µ, σ, ε have to be assumed invariant in the z-direction. The
computational domain in 2d is a bounded section, say Ω = (0, X)× (0, Y) = (0, c)× (0, b), of
D. In both 2d and 3d cases, the wave propagates in the x-direction within the domain.

Let n be the unit outward normal to ∂Ω. We solve the boundary value problem given
by equation (1), with metallic boundary conditions

E× n = 0, on Γw, (2)
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on the waveguide perfectly conducting walls Γw = {x ∈ ∂Ω, n(x) · ex = 0}, with ex =
(1, 0, 0)t, and impedance boundary conditions

(∇×E)× n + iηn× (E× n) = gin, on Γin, η ∈ R+,

(∇×E)× n + iηn× (E× n) = gout, on Γout,
(3)

at the waveguide entrance Γin = {x ∈ ∂Ω, n(x) · ex < 0}, and exit Γout = {x ∈ ∂Ω, n(x) ·
ex > 0}. The vectors gin, gout depend on the incident wave. On one hand, the impedance
conditions on the artificial boundaries Γin, Γout are absorbing boundary conditions, first
order approximations of transparent boundary conditions defined to let outgoing waves pass
through Ω unaffected; they mathematically translate the fact that Ω is a truncated part of
an infinite domain D. On the other hand, they simply model the fact that the waveguide is
connected to electronic components such as co-axial cables or antennas.

To cast in the weak form the continuous problem (1) with boundary conditions (2)
and (3), one has to multiply (1) by the complex conjugate of a test function v of a suitable
functional space V and integrate by parts over the computational domain Ω. More precisely,
the weak problem reads: find E ∈ V such that∫

Ω

[
(∇×E) · (∇× v)− γ2E · v

]
+

∫
Γin∪Γout

iη(E× n) · (v × n)

=

∫
Γin

gin · v +

∫
Γout

gout · v ∀v ∈ V, (4)

with V = {v ∈ H(curl,Ω),v × n = 0 on Γw}, where H(curl,Ω) is the space of square
integrable functions whose curl is also square integrable. For a detailed discussion about
existence and uniqueness of solutions we refer to [26]. Note that in this paper we chose
the sign convention with e+iωt in the time-harmonic assumption, and therefore negative
imaginary part in the complex valued electric permittivity εσ = ε − iσ/ω and positive
parameter η in the impedance boundary condition (3).

3 High order edge finite elements

Consider a simplicial (triangular in 2d, tetrahedral in 3d) mesh Th over Ω̄, where h denotes
the maximal diameter of simplices in Th. The unknown E and the functional operators on
it have meaningful discrete equivalents if we work in the curl-conforming finite dimensional
subspace Vh ⊂ H(curl,Ω) of Nédélec edge finite elements [27]. For a simplex T ∈ Th, the
local lowest order basis functions for the Nédélec curl-conforming space are associated with
the oriented edges e = {ni, nj} of T as follows

we = λni
∇λnj

− λnj
∇λni

, (5)

where the λn`
are the barycentric coordinates of a point x ∈ T with respect to the node n`

of T of Cartesian coordinates x`. The degrees of freedom (dofs) over T are defined as the
functionals

ξe : w 7→ 1

|e|

∫
e

w · te, ∀ e ∈ E(T ),

where te = xj − xi is the tangent vector to the edge e, |e| = |te| the length of e and E(T )
the set of edges of T . At the lowest order, the basis functions are in duality with the dofs,
that is ξe(w

e′) = 1, resp. 0, if e = e′, resp. if e 6= e′. As a consequence, the coefficients that
define the Galerkin projection Eh of the field E onto Vh are the circulations of Eh along the
oriented edges e of the simplicial mesh Th: locally, in each T ∈ Th, we have

E(x) ≈ Eh(x) =
∑

e∈E(T )

cew
e(x), ∀x ∈ T, ce =

1

|e|

∫
e

Eh · te.

There are several reasons to rely on edge elements rather than on other FE discretizations of
H(curl,Ω) [28]. By construction, edge elements guarantee the continuity of the tangential
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components across inter-element interfaces, they thus fit the continuity properties of the
electric field. In addition, for propagation problems, edge elements are known to avoid the
pollution of the numerical solution by spurious modes [29, 30].

High order curl-conforming finite elements of Nédélec type have become established tech-
niques in computational electromagnetism. Their popularity for wave propagation problems
is due to the fact that they are characterized by low numerical dispersion and dissipation
errors. Moreover, at a fixed number of dofs, their numerical accuracy is higher.

We adopt the high order generators of Nédélec elements presented in [3, 4]: the definition
of these generators is rather simple since it only involves the barycentric coordinates of the
simplex (see also [8] for previous work in this direction). Moreover, we consider the friendly
definition of the degrees of freedom and the ‘dualizing’ Vandermonde matrix which were in-
troduced in [11] for all the spaces of the complexHgrad

∇−−−−→ Hcurl
∇×−−−−→ Hdiv

∇·−−−−→ L2,.
Here, to make the presentation more accessible, we recall the definitions for the case of Hcurl

in which we are interested, and highlight the relevant properties, also with illustrative ex-
amples. Then, in Section 4 we describe how to deal with the delicate implementation issues
of these finite elements.

To state the definitions and further properties, we need to introduce multi-index nota-
tions. A multi-index is an array k = (k1, . . . , kν) of ν integers ki ≥ 0, and its weight k is∑ν
i=1 ki. The set of multi-indices k with ν components and of weight k is denoted I(ν, k).

If d = 2, 3 is the ambient space dimension, we consider ν ≤ d + 1 and, given k ∈ I(ν, k),
we set λk =

∏ν
i=1 (λni)

ki , where the ni are ν nodes of the d + 1 nodes of T . Now, in the
generators definition we take ν = d+ 1 and k = r − 1, with r the polynomial degree of the
generators.

Definition 3.1 (Generators). The generators for Nédélec edge element spaces W 1
h,r(T ) of

degree r ≥ 1 in a simplex T ∈ Th are the λkwe, with k ∈ I(d+1, k), k = r−1 and e ∈ E(T ).
The we are the low order edge basis functions (5) (note that the polynomial degree of the
we is r = 1 and they are obtained with k = 0).

In Section 1.2 of [27] W 1
h,r(T )-unisolvent dofs are presented, for any r ≥ 1 (the space

W 1
h,r(T ) is indeed a discrete counterpart of H(curl, T ) = {v ∈ L2(T )3,∇ × v ∈ L2(T )3}).

By relying on the generators introduced in Definition 3.1, the functionals in [27] can be
recast in a new more friendly form as follows (see details in [11], which are inspired by [26]).

Definition 3.2 (Degrees of freedom). For r ≥ 1, d = 3, the functionals

ξe : w 7→ 1

|e|

∫
e

(w · te) q, ∀ q ∈ Pr−1(e), ∀ e ∈ E(T ), (6)

ξf : w 7→ 1

|f |

∫
f

(w · tf,i) q, ∀ q ∈ Pr−2(f), ∀ f ∈ F(T ), (7)

tf,i two independent sides of f, i = 1, 2,

ξT : w 7→ 1

|T |

∫
T

(w · tT,i) q, ∀ q ∈ Pr−3(T ), (8)

tT,i three independent sides of T, i = 1, 2, 3,

with F(T ) the set of faces of T , are the dofs for a function w ∈ W 1
h,r(T ). The norm of the

vectors te, tf,i, tT,i is the length of the associated edge. We say that e, f, T are the supports
of the dofs ξe, ξf , ξT .

Note that for d = 2, the dofs are given only by (6) and (7) substituting f with the
triangle T ; similarly, in the following, when d = 2, what concerns volumes should not be
taken into account and what concerns faces f actually concerns the triangle T .

Remark 3.3. To make the computation of dofs easier , a convenient choice for the polynomials
q spanning the polynomial spaces over (sub)simplices e, f, T that appear in Definition 3.2 is
given by suitable products of the barycentric coordinates associated with the nodes of the
considered (sub)simplex. The space Pρ(S) of polynomials of degree ≤ ρ over a p-simplex S
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Figure 2: For the tetrahedron in the figure, the edges are e1 = {1, 2}, e2 = {1, 3}, e3 = {1, 4},
e4 = {2, 3}, e5 = {2, 4}, e6 = {3, 4}, the faces are f1 = {2, 3, 4}, f2 = {1, 3, 4}, f3 = {1, 2, 4},
f4 = {1, 2, 3} (note that the face fi is the one opposite the node i).

(i.e. a simplex of dimension 1 ≤ p ≤ d) can be generated by the products λk =
∏p+1
i=1 (λni)

ki ,
with k ∈ I(p+ 1, ρ) and ni being the nodes of S.

The classification of dofs into edge-type, face-type, volume-type dofs can be done also for
generators: volume-type generators contain (inside λk or we) the barycentric coordinates
w.r.t. all the nodes of a tetrahedron T , face-type generators contain the ones w.r.t. all and
only the nodes of a face f , edge-type generators contain the ones w.r.t. only the nodes of an
edge e. Note that face-type (resp. volume-type) generators appear for r > 1 (resp. r > 2)
(and the same happens for face-type and volume-type dofs). See the explicit list of generators
and dofs for the case d = 3, r = 2 in Example 1. It turns out that dofs ξe are 0 on face-type
and volume-type generators, and dofs ξf are 0 on volume-type generators.

For the high order case (r > 1), the fields λkwe in Definition 3.1 are generators for
W 1
h,r(T ), but some of the face-type or volume-type generators are linearly dependent. The

selection of generators that constitute an actual basis of W 1
h,r(T ) can be guided by the dofs

in Definition 3.2. More precisely, as face-type (resp. volume-type) generators keep the ones
associated with the two (resp. three) edges e chosen as the two sides tf,1, tf,2 (resp. three
sides tT,1, tT,2, tT,3) of face-type dofs (7) (resp. volume-type dofs (8)). A convenient choice
of sides is described in Subsection 4.1 and is the one adopted in Example 1. One can
check that the total number of dofs ξe, ξf , ξT in a simplex T is equal to dim(W 1

h,r(T )) =
(r + d)(r + d− 1) · · · (r + 2)r/(d− 1)!.

The considered basis functions are not in duality with the dofs in Definition 3.2 when
r > 1, namely, the matrix V with entries the weights Vij = ξi(wj), 1 ≤ i, j ≤ ndofs =
dim(W 1

h,r(T )) after a suitable renumbering of dofs, is not the identity matrix for r > 1.
Duality can be re-established, if necessary, by considering new basis functions w̃j built as
linear combinations of the previous basis functions with coefficients given by the entries of
V −1 [11]. The matrix V is a sort of generalized Vandermonde matrix. Note that V (and then
V −1) does not depend on the metric of the simplex T for which its entries are calculated.
Indeed, first of all note that dofs in Definition 3.2 are conveniently normalized. Moreover,
the ξi(wj) are integrals of two addends of the type λk

′∇λni
·te (here λk

′
gathers the products

of barycentric coordinates appearing in the basis functions and in q, and te stands also for
tf,i, tT,i). Now, we have ∇λni

·te = −1 if ni is the first node of e, +1 if it is its second node,

0 if it isn’t a node of e; so, in the end, only terms of the type λk
′

survive in the integral
and the value of ξi(wj) can be calculated using the ‘magic formula’ (it is a classical result,

see for instance [3]): if S is a p-simplex, 1
|S|
∫
S

∏p+1
i=1 (λni

)ki = p!(
∏p+1
i=1 ki!)/(p +

∑p+1
i=1 ki)!.

This value is clearly independent of the metric of T . Moreover, the entries of V −1 turn out
to be integer numbers. See Example 1 for the case d = 3, r = 2.

Example 1 (Generators, dofs, dualizing matrix for d = 3, r = 2). If the edges and the faces
of a tetrahedron are numbered as in Fig. 2, the basis functions are wj = λnrj

wesj , 1 ≤ j ≤
20, where the 12 edge-type basis functions have (rj)

12
j=1 = (1, 2, 1, 3, 1, 4, 2, 3, 2, 4, 3, 4) and

(sj)
12
j=1 = (1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6), and the 8 face-type basis functions have (rj)

20
j=13 =

(4, 3, 4, 3, 4, 2, 3, 2) and (sj)
20
j=13 = (4, 5, 2, 3, 1, 3, 1, 2). Note that in order to get a basis,

i.e. a set of linearly independent generators, we have chosen to eliminate the (face-type)
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generators w21 = λn2
we6 , w22 = λn1

we6 , w23 = λn1
we5 , w24 = λn1

we4 . The corresponding
edge-type dofs are:

ξ1 : w 7→ 1

|e1|

∫
e1

(w · te1)λn1
, ξ2 : w 7→ 1

|e1|

∫
e1

(w · te1)λn2
, . . .

ξ11 : w 7→ 1

|e6|

∫
e6

(w · te6)λn3
, ξ12 : w 7→ 1

|e6|

∫
e6

(w · te6)λn4
,

and the face-type dofs are:

ξ13 : w 7→ 1

|f1|

∫
f1

(w · te4), ξ14 : w 7→ 1

|f1|

∫
f1

(w · te5), . . .

ξ19 : w 7→ 1

|f4|

∫
f4

(w · te1), ξ20 : w 7→ 1

|f4|

∫
f4

(w · te2).

For this ordering and choice of generators and dofs, the ‘dualizing’ matrix V −1 is

V −1 =



4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 4 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4 −2 2 −2 2 4 8 −4 0 0 0 0 0 0
0 0 0 0 0 0 2 −2 −4 −2 −4 −2 −4 8 0 0 0 0 0 0
0 0 −4 −2 2 −2 0 0 0 0 2 4 0 0 8 −4 0 0 0 0
0 0 2 −2 −4 −2 0 0 0 0 −4 −2 0 0 −4 8 0 0 0 0
−4 −2 0 0 2 −2 0 0 2 4 0 0 0 0 0 0 8 −4 0 0
2 −2 0 0 −4 −2 0 0 −4 −2 0 0 0 0 0 0 −4 8 0 0
−4 −2 2 −2 0 0 2 4 0 0 0 0 0 0 0 0 0 0 8 −4
2 −2 −4 −2 0 0 −4 −2 0 0 0 0 0 0 0 0 0 0 −4 8



.

4 Implementation of high order edge finite elements in
FreeFem++

In general, to add a new finite element to FreeFem++, the user can write a C++ plugin
that defines in a simplex the basis functions (and their derivatives), and an interpolation
operator (which requires dofs and basis functions in duality). Indeed, in FreeFem++ the
basis functions (and in some cases the coefficients of the interpolation operator) are con-
structed locally, i.e. in each simplex of Th, without the need of a transformation from the
reference simplex. Note that the chosen definition of high order generators, which involves
only the barycentric coordinates of the simplex, fits perfectly this local construction feature
of FreeFem++. Nevertheless, the local construction should be done in such a way that the
contributions coming from simplices sharing edges or faces can be then assembled properly
inside the global matrix of the FE discretization. The strategy developed to deal with this
issue for the high order edge elements is described in Subsection 4.1.The definition and the
implementation of the interpolation operator are detailed in Subsection 4.2.

We added in this way the edge elements in 3d of degree 2, 3 presented before. The code of
the C++ plugin Element Mixte3d.cpp, in which they are defined, is visible if FreeFem++
sources are downloaded (from http://www.freefem.org/ff++/) and is thus found in the
folder examples++-load.

4.1 Local implementation strategy for the global assembling

The implementation of edge finite elements is quite delicate. Indeed, basis functions and
dofs are associated with the oriented edges of mesh simplices: note that the low order we

http://www.freefem.org/ff++/
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Figure 3: Orientation of edges (‘filled’ arrows) and choice of 2 edges (‘empty’ arrows) of the
face shared by two adjacent tetrahedra using the numbering of mesh nodes.

1
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2

T̂

12

32

42

22

T

Figure 4: Using global numbers to examine edges and faces, the ‘structure of orientation’ of
T = {12, 32, 42, 22} is the one of T̂ = {1, 2, 3, 4} up to a rotation.

and the high order λkwe generators change sign if the orientation of the edge e is reversed.
Moreover, recall that for r > 1, in order to get a set of linearly independent generators, we
also have to choose 2 edges for each face f . Here we wish to construct basis functions locally,
i.e. in each simplex of Th, in such a way that the contributions coming from simplices sharing
edges or faces could be assembled properly inside the global matrix of the FE discretization.
For this purpose, it is essential to orient in the same way edges shared by simplices and to
choose the same 2 edges for faces shared by adjacent tetrahedra. We have this need also to
construct dofs giving the coefficients for the interpolation operator.

This need is satisfied using the global numbers of the mesh nodes (see Fig. 3). More
precisely, to orient the edges e of the basis functions and the vectors te, tf,i, i = 1, 2, tT,i, i =
1, 2, 3 of the dofs, we go from the node with the smallest global number to the node with the
biggest global number. Similarly, to choose 2 edges per face for the face-type basis functions
and dofs, we take the 2 edges going out from the node with the smallest global number in
the face (and the 1st edge goes to the node with the 2nd smallest global number, the 2nd
edge goes to the node with the biggest global number in the face).

Moreover, when we want basis functions w̃j in duality with the dofs, a second need should
be satisfied: we wish to use for all mesh simplices T the ‘dualizing’ coefficients of the matrix
V̂ −1 calculated, once for all, for the reference simplex T̂ with a certain choice of orientation
and choice of edges (recall that V −1 already does not depend on the metric of the simplex
for which it is calculated). To be allowed to do this, it is sufficient to use the nodes global
numbers to decide the order in which the non dual wj (from which we start to then get the
w̃j) are constructed locally on T . More precisely, for the edge-type (resp. face-type) basis
functions the edges (resp. faces) are examined in the order written in the caption of Fig. 2,
but replacing the nodes numbers 1, 2, 3, 4 with the increasing global numbers of the nodes
of T : the 1st examined edge is from the node with the 1st smallest global number to the
one with the 2nd smallest global number, the 2nd examined edge is from the node with the
1st smallest global number to the one with the 3rd smallest global number, and so on, then
the 1st examined face is the one opposite the node with the smallest global number, and so
on. Indeed, in this way the first need is respected and the ‘structure of orientation’ of T is
the one of T̂ up to a rotation (see Fig. 4): then we are allowed to use the coefficients of V̂ −1

for the linear combinations giving the w̃j .
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Note that in 3d (resp. in 2d), to assemble the global linear system matrix, it is not
essential which volume-type (resp. face-type) generators are chosen since they are not shared
between tetrahedra (resp. triangles). On the contrary, also this choice is important when
we want to use for all mesh simplices the coefficients of V̂ −1 calculated for a simplex with
a certain choice of orientation and choice of edges.

4.1.1 Implementation of the basis functions

To implement the strategy introduced to construct locally the basis functions w̃j while
respecting the two requirements just described, two permutations can be used; note that
in this paragraph the numberings start from 0, and no more from 1, in order to comply
with the C++ plugin written for the insertion in FreeFem++ of the new FE space. First,
to construct the non dual wj , we define a permutation pd+1 of d + 1 elements as follows:
pd+1[i] is the local number (it takes values among 0, . . . , d) of the node with the i-th smallest
global number in the simplex T , so we can say that pd+1 is the permutation for which the
nodes of T are listed with increasing global number. For instance, for the tetrahedron
T = {12, 32, 42, 22} in Fig. 4, we have p4 = {0, 3, 1, 2}. So, in the first step of construction
of the wj , we replace each λi appearing in their expression with λpd+1[i]. In the code of the
FreeFem++ plugin, the permutation p4 is called perm.

Then, in the second step of construction of the w̃j as linear combinations of the wj , we use
a permutation Pndofs

of ndofs = dim(W 1
h,r(T )) elements to go back to the local order of edges

and faces. For instance for the tetrahedron T = {12, 32, 42, 22}, the order in which edges are
examined in the first step is {{12, 22}, {12, 32}, {12, 42}, {22, 32}, {22, 42}, {32, 42}}, while
the local order of edges would be {{12, 32}, {12, 42}, {12, 22}, {32, 42}, {22, 32}, {22, 42}}
(the local order is given by how the nodes of T are listed); similarly, the order in which faces
are examined in the first step is {{22, 32, 42}, {12, 32, 42}, {12, 22, 42}, {12, 22, 32}}, while
the local order of faces would be {{22, 32, 42}, {12, 22, 42}, {12, 22, 32}, {12, 32, 42}}. So for
this tetrahedron, if r = 2 (for which there are 2 basis functions for each edge and 2 basis
functions for each face, 20 basis functions in total listed in Example 1), we have

P20 = {4, 5, 0, 1, 2, 3, 8, 9, 10, 11, 6, 7; 12, 13, 18, 19, 14, 15, 16, 17},

(note that inside each edge or face the 2 related dofs remain ordered according to the global
numbers). This permutation (r = 2) is built with the following code. There, edgesMap

corresponds to a map that associates the pair {a, b} of nodes of an edge ei with its number
0 ≤ i ≤ 5; this map is rather implemented with an array defined as edgesMap[(a+1)(b+1)] =
i, where (a + 1)(b + 1) results to be unique and symmetric for a pair (a, b), 0 ≤ a, b ≤ 3,
representing a tetrahedron edge.

int edgesMap[13] = {-1,-1,0,1,2,-1,3,-1,4,-1,-1,-1,5};

// static const int nvedge[6][2] = {{0,1},{0,2},{0,3},{1,2},{1,3},{2,3}};

int p20[20];

for(int i=0; i<6; ++i) // edge dofs

{

int ii0 = Element::nvedge[i][0], ii1 = Element::nvedge[i][1];

int i0 = perm[ii0]; int i1 = perm[ii1];

int iEdge = edgesMap[(i0+1)*(i1+1)]; // i of the edge [i0,i1]

p20[i*2] = iEdge*2;

p20[i*2+1] = iEdge*2+1;

}

for(int j=0; j<4; ++j) // face dofs

{

int jFace = perm[j];

p20[12+j*2] = 12+jFace*2;

p20[12+j*2+1] = 12+jFace*2+1;

}

Then, we will save the linear combinations of the w`, with coefficients given by the j-th
column of V̂ −1 (see Example 1), in the final basis functions w̃P20[j], thus in duality with the
chosen dofs:
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wtilde[p20[0]] = +4*w[0]-2*w[1]-4*w[16]+2*w[17]-4*w[18]+2*w[19];

wtilde[p20[1]] = -2*w[0]+4*w[1]-2*w[16]-2*w[17]-2*w[18]-2*w[19];

wtilde[p20[2]] = +4*w[2]-2*w[3]-4*w[14]+2*w[15]+2*w[18]-4*w[19];

wtilde[p20[3]] = -2*w[2]+4*w[3]-2*w[14]-2*w[15]-2*w[18]-2*w[19];

wtilde[p20[4]] = +4*w[4]-2*w[5]+2*w[14]-4*w[15]+2*w[16]-4*w[17];

wtilde[p20[5]] = -2*w[4]+4*w[5]-2*w[14]-2*w[15]-2*w[16]-2*w[17];

wtilde[p20[6]] = +4*w[6]-2*w[7]-4*w[12]+2*w[13]+2*w[18]-4*w[19];

wtilde[p20[7]] = -2*w[6]+4*w[7]-2*w[12]-2*w[13]+4*w[18]-2*w[19];

wtilde[p20[8]] = +4*w[8]-2*w[9]+2*w[12]-4*w[13]+2*w[16]-4*w[17];

wtilde[p20[9]] = -2*w[8]+4*w[9]-2*w[12]-2*w[13]+4*w[16]-2*w[17];

wtilde[p20[10]] = +4*w[10]-2*w[11]+2*w[12]-4*w[13]+2*w[14]-4*w[15];

wtilde[p20[11]] = -2*w[10]+4*w[11]+4*w[12]-2*w[13]+4*w[14]-2*w[15];

wtilde[p20[12]] = +8*w[12]-4*w[13];

wtilde[p20[13]] = -4*w[12]+8*w[13];

wtilde[p20[14]] = +8*w[14]-4*w[15];

wtilde[p20[15]] = -4*w[14]+8*w[15];

wtilde[p20[16]] = +8*w[16]-4*w[17];

wtilde[p20[17]] = -4*w[16]+8*w[17];

wtilde[p20[18]] = +8*w[18]-4*w[19];

wtilde[p20[19]] = -4*w[18]+8*w[19];

4.2 The interpolation operator

Duality of the basis functions with the dofs is needed in FreeFem++ to provide an interpo-
lation operator onto a desired FE space of a function given by its analytical expression (or
of a function belonging to another FE space). Indeed, if we define for a (vector) function u
its finite element approximation uh = Πh(u) using the interpolation operator

Πh : H(curl, T )→W 1
h,r(T ), u 7→ uh =

ndofs∑
i=1

ciw̃i, with ci := ξi(u), (9)

we have that, if the duality property ξj(w̃i) = δij holds, then ξj(uh) =
∑ndofs

i=1 ciξj(w̃i) = cj .
The interpolant coefficients ci = ξi(u) are computed in FreeFem++ with suitable quadrature
formulas (on edges, faces or volumes) to approximate the values of the dofs in Definition 3.2
applied to u.

Now, denote by g the whole integrand inside the dof expression, by nQptsi the number of
quadrature points of the suitable quadrature formula (on a segment, triangle or tetrahedron)
to compute the integral (of precision high enough so that the integral is computed exactly
when the dof is applied to a basis function), and by xp, ap, 1 ≤ p ≤ nQFi

the quadrature
points and their weights. Then we have

ci = ξi(u) =

nQFi∑
p=1

ap g(xp) =

nQFi∑
p=1

ap

d∑
j=1

βj(xp)uj(xp), (10)

where for the second equality we have factorized g(xp) in order to put in evidence the d
components of u, denoted by uj , 1 ≤ j ≤ d (see the paragraph below).

Therefore, by substituting the expression of the coefficients (10) in the interpolation
operator definition (9), we have the following expression of the interpolation operator

Πh(u) =

ndofs∑
i=1

nQFi∑
p=1

d∑
j=1

ap βj(xp)uj(xp) w̃i =

nind∑
`=1

α` uj`(xp`) w̃i` , (11)

where we have set α` equals each ap βj(xp) for the right triple (i, p, j) = (i`, p`, j`). Indeed,
a FreeFem++ plugin to introduce a new finite element (represented with a C++ class)
should implement (11) by specifying the quadrature points, the indices i` (dof indices), p`
(quadrature point indices), j` (component indices), which do not depend on the simplex
and are defined in the class constructor, and the coefficients α`, which can depend on the
simplex (if so, which is in particular the edge elements case, the α` are defined with the
class function set).
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4.2.1 Interpolation operator for d = 3, r = 2

We report here the code (extracted from the plugin Element Mixte3d.cpp mentioned before)
defining first the indices of (11) for the Edge13d finite element, i.e. for d = 3, r = 2. There
QFe, QFf are the edge, resp. face, quadrature formulas, and ne=6, nf=4, are the number of
edges, resp. faces, of the simplex (tetrahedron); we have nind = d·QFe.n·2 ne+d·QFf.n·2 nf.
Note that in the code the numberings start from 0, and no more from 1.

int i=0, p=0, e=0; // i is l

for(e=0; e<(Element::ne)*2; e++) // 12 edge dofs

{

if (e%2==1) {p = p-QFe.n;}

// if true, the quadrature pts are the ones of the previous dof (same edge)

for(int q=0; q<QFe.n; ++q,++p) // 2 edge quadrature pts

for (int c=0; c<3; c++,i++) // 3 components

{

this->pInterpolation[i]=p; // p_l

this->cInterpolation[i]=c; // j_l

this->dofInterpolation[i]=e; // i_l

this->coefInterpolation[i]=0.; // alfa_l (filled with the function set)

}

}

for(int f=0; f<(Element::nf)*2; f++) // 8 face dofs

{

if (f%2==1) {p = p-QFf.n;}

// if true, the quadrature pts are the ones of the previous dof (same face)

for(int q=0; q<QFf.n; ++q,++p) // 3 face quadrature pts

for (int c=0; c<3; c++,i++) // 3 components

{

this->pInterpolation[i]=p; // p_l

this->cInterpolation[i]=c; // j_l

this->dofInterpolation[i]=e+f; // i_l

this->coefInterpolation[i]=0.; // alfa_l (filled with the function set)

}

}

Then, the coefficients α` are defined as follows. We start by writing (10) for one edge-type
dof, with e = {n1, n2}:

ci = ξi(u) =
1

|e|

∫
e

(u · te)λn1
=

QFe.n∑
p=1

ap (u(xp) · te)λn1
(xp)

=

QFe.n∑
p=1

ap

d∑
j=1

uj(xp)(xn2 j − xn1 j)λn1
(xp)

so βj(xp) = (xn2 j − xn1 j)λn1
(xp) and α` = ap` βj`(xp`) = (xn2 j`

− xn1 j`
) ap` λn1

(xp`).
Similarly for one face-type dof, with f = {n1, n2, n3}, e = {n1, n2}:

ci = ξi(u) =
1

|f |

∫
f

(u · te) =

QFf.n∑
p=1

ap (u(xp) · te) =

QFf.n∑
p=1

ap

d∑
j=1

uj(xp)(xn2 j − xn1 j)

so βj(xp) = (xn2 j − xn1 j) and α` = ap` βj`(xp`) = (xn2 j`
− xn1 j`

) ap` . The code that
generalizes this calculations for all the dofs is the following, extracted from the function set

of the plugin (note that also here we have to pay particular attention to the orientation and
choice issues).

int i=0, p=0;

for(int ee=0; ee<Element::ne; ee++) // loop on the edges

{

R3 E=K.Edge(ee);

int eo = K.EdgeOrientation(ee);

if(!eo) E=-E;

for(int edof=0; edof<2; edof++) // 2 dofs for each edge

{
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if (edof==1) {p = p-QFe.n;}

for(int q=0; q<QFe.n; ++q,++p)

{

double ll=QFe[q].x; // value of lambda_0 or lambda_1

if( (edof+eo) == 1 ) ll = 1-ll;

for(int c=0; c<3; c++,i++)

{

M.coef[i] = E[c]*QFe[q].a*ll;

}

}

}

}

for(int ff=0; ff<Element::nf; ff++) // loop on the faces

{

const Element::Vertex * fV[3] = {& K.at(Element::nvface[ff][0]), ...

// (one unique line with the following)

... & K.at(Element::nvface[ff][1]), & K.at(Element::nvface[ff][2])};

int i0=0, i1=1, i2=2;

if(fV[i0]>fV[i1]) Exchange(i0,i1);

if(fV[i1]>fV[i2]) { Exchange(i1,i2);

if(fV[i0]>fV[i1]) Exchange(i0,i1); }

// now local numbers in the tetrahedron:

i0 = Element::nvface[ff][i0], i1 = Element::nvface[ff][i1], ...

... i2 = Element::nvface[ff][i2];

for(int fdof=0; fdof<2; ++fdof) // 2 dofs for each face

{

int ie0=i0, ie1 = fdof==0? i1 : i2;

// edge for the face dof (its endpoints local numbers)

R3 E(K[ie0],K[ie1]);

if (fdof==1) {p = p-QFf.n;}

for(int q=0; q<QFf.n; ++q,++p) // loop on the 3 face quadrature pts

for (int c=0; c<3; c++,i++) // loop on the 3 components

{

M.coef[i] = E[c]*QFf[q].a;

}

}

}

Example 2 (Using the new FEs in a FreeFem++ script). The edge elements in 3d of
degree 2, 3 can be used (since FreeFem++ version 3.44) by loading in the edp script the
plugin (load "Element Mixte3d"), and using the keywords Edge13d, Edge23d respectively.
The edge elements of the lowest degree 1 were already available and called Edge03d. After
generating a tetrahedral mesh Th, complex vector functionx E, v in, e.g., the Edge03d space
on Th are declared with the commands:

fespace Vh(Th,Edge03d); Vh<complex> [Ex,Ey,Ez], [vx,vy,vz];

Then the weak formulation (4) of the problem is naturally transcribed as:

macro Curl(ux,uy,uz) [dy(uz)-dz(uy),dz(ux)-dx(uz),dx(uy)-dy(ux)] // EOM

macro Nvec(ux,uy,uz) [uy*N.z-uz*N.y,uz*N.x-ux*N.z,ux*N.y-uy*N.x] // EOM

problem waveguide([Ex,Ey,Ez], [vx,vy,vz], solver=sparsesolver) =

int3d(Th)(Curl(Ex,Ey,Ez)’*Curl(vx,vy,vz))

- int3d(Th)(gamma^2*[Ex,Ey,Ez]’*[vx,vy,vz])

+ int2d(Th,in,out)(1i*eta*Nvec(Ex,Ey,Ez)’*Nvec(vx,vy,vz))

- int2d(Th,in)([vx,vy,vz]’*[Gix,Giy,Giz])

+ on(guide,Ex=0,Ey=0,Ez=0);

See more details in the example waveguide.edp available in examples++-load folder of
every FreeFem++ distribution. In FreeFem++ the interpolation operator is simply called
with the = symbol: for example one can define analytical functions func f1 = 1+x+2*y+3*z;

func f2 = -1-x-2*y+2*z; func f3 = 2-2*x+y-2*z; and call [Ex,Ey,Ez]=[f1,f2,f3];.
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5 Overlapping Schwarz preconditioners

As shown numerically in [3], the matrix of the linear system resulting from the described
high order discretization is ill conditioned. So, when using iterative solvers (GMRES in our
case), preconditioning becomes necessary, and here we choose overlapping Schwarz domain
decomposition preconditioners.

Consider a decomposition of the domain Ω into Nsub overlapping subdomains Ωs that
consist of a union of simplices of the mesh Th. In order to describe the matrices appearing
in the algebraic expression of the preconditioners, let N be an ordered set of the degrees
of freedom of the whole domain, and let N =

⋃Nsub

s=1 Ns be its decomposition into the (non
disjoint) ordered subsets corresponding to the different (overlapping) subdomains Ωs: a
degree of freedom belongs to Ns if its support (edge, face or volume) is contained in Ωs.
For edge finite elements, it is important to ensure that the orientation of the degrees of
freedom is the same in the domain and in the subdomains. Define the matrix Rs as the
restriction matrix from Ω to the subdomain Ωs: it is a #Ns ×#N Boolean matrix, whose
(i, j) entry equals 1 if the i-th degree of freedom in Ns is the j-th one in N . Note that the
extension matrix from the subdomain Ωs to Ω is given by RTs . To deal with the unknowns
that belong to the overlap between subdomains, define for each subdomain a #Ns ×#Ns
diagonal matrix Ds that gives a discrete partition of unity, i.e.

Nsub∑
s=1

RTs DsRs = I.

Then the Optimized Restricted Additive Schwarz (ORAS) preconditioner can be expressed
as

M−1
ORAS =

Nsub∑
s=1

RTs DsA
−1
s Rs, (12)

where the matrices As are the local matrices of the subproblems with impedance boundary
conditions (∇×E)×n+iω̃n× (E×n) as transmission conditions at the interfaces between
subdomains (note that in this section the term ‘local’ refers to a subdomain and not to a
mesh simplex). These local matrices stem from the discretization of the considered Maxwell’s
equation by high order finite elements introduced in the previous sections. While the term
‘restricted’ refers to the presence of the partition of unity matrices Ds, the term ‘optimized’
refers to the use of impedance boundary conditions (with parameter η = ω̃ in (3)) as
transmission conditions, proposed by Després in [20]. The algebraic formulation of optimized
Schwarz methods, of the type of (12), was introduced in [31].

The implementation of the partition of unity in FreeFem++ is described in [32]: suit-

able piecewise linear functions χs giving a continuous partition of unity (
∑Nsub

s=1 χs = 1) are
interpolated at the barycenters of the support (edge, face, volume) of each dof of the (high
order) edge finite elements. This interpolation is obtained thanks to an auxiliary FreeFem++
scalar FE space (Edge03ds0, Edge13ds0, Edge23ds0) that has only the interpolation op-
erator and no basis functions, available in the plugin Element Mixte3d mentioned before.
When impedance conditions are chosen as transmission conditions at the interfaces, it is
essential that not only the function χs but also its derivative are equal to zero on the border
of the subdomain Ωs. Indeed, if this property is satisfied, the continuous version of the
ORAS algorithm is equivalent to P. L. Lions’ algorithm (see [33] §2.3.2).

6 Numerical experiments

We validate the ORAS preconditioner (12) for different values of physical and numerical
parameters, and compare it with a symmetric variant without the partition of unity (called
Optimized Additive Schwarz):

M−1
OAS =

Nsub∑
s=1

RTs A
−1
s Rs.



14 M. Bonazzoli, V. Dolean, F. Hecht, F. Rapetti

Ω1

Ω2

Ω3
δovr

Figure 5: The stripwise decomposition of the two-dimensional domain.

k Ndofs NiterNp Niter max|λ− (1, 0)| #{λ ∈ C \ D̄1} #{λ ∈ ∂D1}
0 282 179 5(10) 1.04e−1(1.38e+1) 0(4) 0(12)
1 884 559 6(15) 1.05e−1(1.63e+1) 0(8) 0(40)
2 1806 1138 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
3 3048 1946 6(21) 1.05e−1(8.36e+2) 0(16) 0(144)
4 4610 2950 6(26) 1.05e−1(1.57e+3) 0(20) 0(220)

Table 1: Influence of the polynomial degree r = k + 1 on the convergence of ORAS(OAS)
preconditioner for ω = ω2, Nsub = 2, δovr = 2h.

The numerical experiments are performed for a waveguide configuration in 2d and then in
3d.

6.1 Results for the two-dimensional problem

We present the results obtained for a two-dimensional waveguide with c = 0.0502 m, b =
0.00254 m, with the physical parameters: ε = 8.85 · 10−12 F m−1, µ = 1.26 · 10−6 H m−1

and σ = 0.15 S m−1. We consider three angular frequencies ω1 = 16 GHz, ω2 = 32 GHz,
and ω3 = 64 GHz, varying the mesh size h according to the relation h2 · ω̃3 = 2 (in [34]
it was proved that this relation avoids pollution effects for the one-dimensional Helmholtz
equation).

Note that in 2d the function Eex = (0, e−iγx) verifies the equation, the metallic boundary
conditions on Γw, and the impedance boundary conditions on Γin, Γout with parameter η = ω̃
and gin = (iγ + iω̃)Eex and gout = (−iγ + iω̃)Eex; when σ = 0 we get gin = 2iω̃Eex and
gout = 0. The real part of the propagation constant −iγ gives the rate at which the
amplitude changes as the wave propagates, which corresponds to wave dissipation (note
that if σ > 0, <(−iγ) < 0, while if σ = 0, <(−iγ) = 0). A numerical study about the order
of (h- and r-) convergence with respect to the exact solution of the high order finite element
method can be found in [35].

Here we solve the linear system resulting from the finite element discretization with
GMRES (with a stopping criterion based on the relative residual and a tolerance of 10−6),
starting with a random initial guess, which ensures, unlike a zero initial guess, that all
frequencies are present in the error. We compare the ORAS and OAS preconditioners,
taking a stripwise subdomains decomposition, along the wave propagation, as shown in
Fig. 5.

To study the convergence of GMRES preconditioned by ORAS or OAS we vary first the
polynomial degree r = k + 1 (Table 1, Figs. 6–7), then the angular frequency ω (Table 2,
Figs. 8–9), the number of subdomains Nsub (Table 3, Figs. 10–11) and finally the overlap size
δovr (Table 4, Figs. 12–13). Here, δovr = 1h, 2h, 4h means that we consider a total overlap
between two subdomains of 1, 2, 4 mesh triangles along the horizontal direction (see Fig. 5).

In Tables 1–4, Ndofs is the total number of degrees of freedom, NiterNp is the number of
iterations necessary to attain the prescribed convergence for GMRES without any precon-
ditioner, and Niter is the number of iterations for GMRES preconditioned by ORAS (OAS).
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ω Ndofs NiterNp Niter max|λ− (1, 0)| #{λ ∈ C \ D̄1} #{λ ∈ ∂D1}
ω1 339 232 5(11) 2.46e−1(1.33e+1) 0(6) 0(45)
ω2 1806 1138 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
ω3 7335 4068 9(24) 3.03e−1(2.73e+1) 0(18) 0(123)

Table 2: Influence of the angular frequency ω on the convergence of ORAS(OAS) precondi-
tioner for k = 2, Nsub = 2, δovr = 2h.

Nsub Niter max|λ− (1, 0)| #{λ ∈ C \ D̄1} #{λ ∈ ∂D1}
2 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
4 10(27) 5.33e−1(1.96e+1) 0(38) 0(252)
8 19(49) 7.73e−1(1.96e+1) 0(87) 0(588)

Table 3: Influence of the number of subdomains Nsub on the convergence of ORAS(OAS)
preconditioner for k = 2, ω = ω2, δovr = 2h.

Moreover, denoting by

D1 = {z ∈ C : |z − z0| < 1}

the unit disk centered at z0 = (1, 0) in the complex plane, we measure also the maximum dis-
tance to (1, 0) of the eigenvalues λ of the preconditioned matrix, the number of eigenvalues
that have distance greater than 1, and the number of eigenvalues that have distance equal
to 1 (up to a tolerance of 10−10). This information is useful to characterize the convergence.
Indeed, if A is the matrix of the system to solve and M−1 is the domain decomposition
preconditioner, then I−M−1A is the iteration matrix of the domain decomposition method
used as an iterative solver. So, a measure of the convergence of the domain decomposition
solver would be to check whether the eigenvalues of the preconditioned matrix M−1A are
contained in D1. When the domain decomposition method is used, like here, as a precondi-
tioner, the distribution of the spectrum remains a good indicator of the convergence. Note
that the matrix of the linear system doesn’t change when Nsub or δovr vary, therefore in
Tables 3–4 (where k = 2, ω = ω2) we don’t report Ndofs = 1806 and NiterNp = 1138 again.
In all Tables 1–4, we don’t mention the condition number of the preconditioned matrix:
indeed, no convergence rate estimates in terms of the condition number of the matrix, as
those we are used to with the conjugate gradient method, are available for the GMRES
method.

Figs. 6, 8, 10, 12, respectively Figs. 7, 9, 11, 13, show the whole spectrum in the com-
plex plane of the matrix preconditioned by ORAS, respectively by OAS (note that many
eigenvalues are multiple), together with ∂D1.

Looking at the tables and figures, we can see that the non preconditioned GMRES
method is very slow, and the ORAS preconditioner gives much faster convergence than the
OAS preconditioner. As expected, the convergence becomes slower when ω or Nsub increase,
or when δovr decreases. In these tests, when varying k (which gives the polynomial degree
r = k + 1 of the FE basis functions), the number of iterations for convergence using the
ORAS preconditioner is equal to 5 for k = 0 and then it stays equal to 6 for k > 0; this is

δovr Niter max|λ− (1, 0)| #{λ ∈ C \ D̄1} #{λ ∈ ∂D1}
1h 10(20) 1.95e+1(1.96e+1) 3(12) 0(39)
2h 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
4h 5(14) 1.06e−1(1.96e+1) 0(12) 0(174)

Table 4: Influence of the overlap size δovr on the convergence of ORAS(OAS) preconditioner
for k = 2, ω = ω2, Nsub = 2.
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Figure 6: Influence of the polynomial degree r = k + 1 on the spectrum of the ORAS-
preconditioned matrix for ω = ω2, Nsub = 2, δovr = 2h.
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Figure 7: Influence of the polynomial degree r = k + 1 on the spectrum of the OAS-
preconditioned matrix for ω = ω2, Nsub = 2, δovr = 2h.



Explicit implementation strategy of high order edge FEs and Schwarz preconditioning 17

0 0.5 1 1.5 2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) ω = ω1

0 0.5 1 1.5 2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) ω = ω3

Figure 8: Influence of the angular frequency ω on the spectrum of the ORAS-preconditioned
matrix for k = 2, Nsub = 2, δovr = 2h.
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Figure 9: Influence of the angular frequency ω on the spectrum of the OAS-preconditioned
matrix for k = 2, Nsub = 2, δovr = 2h.
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Figure 10: Influence of the number of subdomains Nsub on the spectrum of the ORAS-
preconditioned matrix for k = 2, ω = ω2, δovr = 2h.
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Figure 11: Influence of the number of subdomains Nsub on the spectrum of the OAS-
preconditioned matrix for k = 2, ω = ω2, δovr = 2h.
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Figure 12: Influence of the overlap size δovr on the spectrum of the ORAS-preconditioned
matrix for k = 2, ω = ω2, Nsub = 2.
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Figure 13: Influence of the overlap size δovr on the spectrum of the OAS-preconditioned
matrix for k = 2, ω = ω2, Nsub = 2.



Explicit implementation strategy of high order edge FEs and Schwarz preconditioning 19

-10 -5 0 5 10

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Figure 14: The spectrum of the ORAS-preconditioned matrix for k = 2, ω = ω2, Nsub = 2,
δovr = 1h.

reflected by the corresponding spectra in Fig. 6, which indeed remain quite similar when k
varies.

Note also that, when using the ORAS preconditioner, for 2 subdomains the spectrum is
always well clustered inside the unit disk, except for the case with δovr = 1h (see Fig. 14), in
which 3 eigenvalues are outside with distances from (1, 0) equal to 19.5, 19.4, 14.4. This case
δovr = 1h corresponds to adding a layer of simplices just to one of the two non overlapping
subdomains to obtain the overlapping decomposition; hence it appears necessary to add at
least one layer from both subdomains. Then we see that for 4 and 8 subdomains the spectrum
becomes less well clustered. With the OAS preconditioner there are always eigenvalues
outside the unit disk. For all the considered cases, we see that the less clustered the spectrum,
the slower the convergence.

6.2 Results for the three-dimensional problem

We complete the presentation showing some results for the full 3d simulation, for a waveguide
of dimensions c = 0.1004 m, b = 0.00508 m, and a = 0.01016 m. The physical parameters
are: ε = 8.85 · 10−12 F m−1, µ = 1.26 · 10−6 H m−1 and σ = 0.15 S m−1 or σ = 0 S m−1.
We take a stripwise subdomains decomposition along the wave propagation, with δovr =
2h; however, note that in FreeFem++ very general subdomains decompositions can be
considered.

In 3d, if σ = 0 there is an exact solution given by the Transverse Electric (TE) modes:

ETEx = 0,

ETEy = −Cmπ
a

sin
(mπz

a

)
cos
(nπy

b

)
e−iβx,

ETEz = Cnπ
b

cos
(mπz

a

)
sin
(nπy

b

)
e−iβx, m, n ∈ N.

The real constant β is linked to the waveguide dimensions a, b by the so called dispersion

relation
(
mπ
a

)2
+
(
nπ
b

)2
= ω̃2−β2, and we choose C = iωµ/(ω̃2−β2). The field ETE satisfies

the metallic boundary conditions on Γw and the impedance boundary conditions on Γin, Γout

with parameter η = β and gin = (iβ+iβ)ETE = 2iβETE and gout = (−iβ+iβ)ETE = 0.
Since the propagation constant in 3d is β and no more ω̃, we compute the mesh size h

using the relation h2 · β3 = 1, taking β = ωβ
√
µε, with ωβ = 32 GHz. Then the dispersion

relation gives ω̃ =
√
β2 + (mπ/a)2 + (nπ/b)2 (where we choose m = 1, n = 0), and we get

ω = ω̃/
√
µε.

Again, the linear system is solved with preconditioned GMRES, with a stopping criterion
based on the relative residual and a tolerance of 10−6, starting with a random initial guess.
To apply the preconditioner, the local problems in each subdomain of matrices As are solved
with the direct solver MUMPS [36].
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k Ndofs Niter Nsub Ndofs Niter

0 62283 8(40) 2 324654 8(70)
1 324654 8(70) 4 324654 11(106)
2 930969 8(99) 8 324654 17(168)

Table 5: Results in 3d, σ = 0.15 S m−1: influence of the polynomial degree r = k + 1
(for Nsub = 2), and of the number of subdomains Nsub (for k = 1), on the convergence of
ORAS(OAS) preconditioner (β = ωβ

√
µε with ωβ = 32 GHz, δovr = 2h).

k Ndofs Niter Nsub Ndofs Niter

0 62283 7(40) 2 324654 8(67)
1 324654 8(67) 4 324654 13(114)
2 930969 8(97) 8 324654 23(201)

Table 6: Results in 3d, σ = 0 S m−1: influence of the polynomial degree r = k + 1 (for
Nsub = 2), and of the number of subdomains Nsub (for k = 1), on the convergence of
ORAS(OAS) preconditioner (β = ωβ

√
µε with ωβ = 32 GHz, δovr = 2h).

In Tables 5, 6 we show the number of iterations for convergence, for the problem with
σ = 0.15 S m−1 and σ = 0 S m−1 respectively, varying first the polynomial degree r = k + 1
(for Nsub = 2), and then the number of subdomains Nsub (for k = 1). Like in the 2d case,
the number of iterations using the ORAS preconditioner does not vary with the polynomial
degree of the FE basis functions, while using the OAS preconditioner it varies and is much
higher. Again, the convergence becomes slower when the number of subdomains increases,
both with ORAS and OAS. We see that for more than 2 subdomains the number of iterations
for the non dissipative problem (σ = 0) is higher than for the problem with σ = 0.15 S m−1.

In Figure 15 we plot the norm of the real part of the solution, which decreases as the
wave propagates since there σ = 0.15 S m−1 is different from zero.

7 Conclusion

We have adopted a friendly definition of high order edge elements generators and degrees of
freedom: both in 2d and 3d their expression is rather simple, and the generators are strictly
connected with the degrees of freedom. Their presentation is enriched with illustrative
examples, and an operational strategy of implementation of these elements is described in
detail. The elements in 3d of polynomial degree 1, 2, 3 are available in FreeFem++ (since
version 3.44), loading the plugin load "Element Mixte3d" and building the finite element
space fespace with the keywords Edge03d, Edge13d, Edge23d respectively.

Numerical experiments have shown that Schwarz preconditioning significantly improves
GMRES convergence for different values of physical and numerical parameters, and that the
ORAS preconditioner always performs much better than the OAS preconditioner. Indeed,
the only advantage of the OAS method is to preserve symmetry for symmetric problems:
that is why it should be used only for symmetric positive definite matrices as a precondi-
tioner for the conjugate gradient method. Moreover, in all the considered test cases, the
number of iterations for convergence using the ORAS preconditioner does not vary when
the polynomial degree of the adopted high order finite elements increases. We have also
seen that it is necessary to take an overlap of at least one layer of simplices from both sub-
domains of a neighbors pair. All these convergence qualities are reflected by the spectrum
of the preconditioned matrix.

For higher order discretizations the computational cost per iteration grows since matri-
ces become very large, therefore a parallel implementation as the one of HPDDM [37] (a
high-performance unified framework for domain decomposition methods which is interfaced
with FreeFem++) should be considered for large scale problems, as in [25]. A two-level
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Figure 15: The norm of the real part of the solution for σ = 0.15 S m−1, with two sections
of the waveguide.
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preconditioner via a coarse space correction should be designed for Maxwell’s equations in
order to fix the dependence on the number of subdomains or on the frequency of the iteration
count. Note that in literature very few convergence theory results are available for domain
decomposition methods applied to indefinite wave propagation problems. For the Helmholtz
equation with absorption, rigorous convergence estimates have been recently presented in
[38] for the two-level Additive Schwarz preconditioner, and their extension to the Maxwell
case is work in progress.
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