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OVERLAPPING SCHWARZ PRECONDITIONERS FOR HIGH
ORDER EDGE FINITE ELEMENTS: APPLICATION TO THE

TIME-HARMONIC MAXWELL’S EQUATIONS∗

M. BONAZZOLI† , V. DOLEAN‡ , F. HECHT§ , AND F. RAPETTI†

Abstract. Developing high-speed microwave field measurement systems for wireless, medical or
engineering industries is a challenging task. These systems generally rely on high frequency (from 1 to
60GHz) electromagnetic wave propagation in waveguides. High order discretizations of PDEs are well
suited for wave propagation since they can provide a highly accurate solution with very low dispersion
and dissipation errors. However, the resulting algebraic linear systems can be ill conditioned, so that
preconditioning becomes mandatory. In this work, suitable domain decomposition preconditioners
for the solution of linear systems resulting from high order edge element discretizations of the time-
harmonic Maxwell’s equations are described, and validated numerically on 2d and 3d waveguide
configurations. The implementation issue of high order edge elements is also discussed in detail.

Key words. High order finite elements, edge elements, Schwarz preconditioners, time-harmonic
Maxwell’s equations.

AMS subject classifications. 65N55, 65N35, 65F10

1. Introduction. The development of a robust and accurate numerical inver-
sion methodology for microwave imaging is based on three main research areas, often
disjoint: optimization, inverse problems and numerical models for the solution of the
direct problem modeled by Maxwell’s equations. The latter implies the mastery of
approximation and solution methods (domain decomposition parallel solvers, parallel
computing). The precise simulation of the direct problem in the case of a complex
and strongly heterogeneous environment in frequency domain is a challenge in itself.
Overall, these features motivate the use of finite element type discretization meth-
ods based on high order approximations. After the discretization step, we get very
large algebraic systems of equations. To deal with this aspect, parallel computing is
mandatory and with it, domain decomposition methods [14].

The earliest domain decomposition method for the time-harmonic Maxwell’s equa-
tions was proposed by Després in [9]. Further improvements were proposed by Collino
[8] using modified, more efficient Robin transmission conditions at the interfaces be-
tween subdomains. Over the last decade, a new class of overlapping Schwarz methods
was developed for scalar partial differential equations, namely the optimized Schwarz
methods. These methods are based on a classical overlapping domain decomposi-
tion, but they use more effective transmission conditions than the classical Dirichlet
conditions at the interfaces between subdomains [13]. We can distinguish two basic
formulations for Maxwell’s equations: the first order formulation, for which complete
optimized results are known also in the case of conductive medium [17], and the second
order (or curl-curl) formulation, with partial optimization results obtained in various
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works. It has been shown lately that the convergence factors and the optimization
process for the two formulations are the same [12]. For the Schwarz algorithms solv-
ing the time-harmonic Maxwell’s equations promising numerical results have been
obtained for standard low order finite volume and finite element methods [15]. All
previous methods can be used both as iterative solvers (although not converging for
all frequencies present in the error), but more frequently as preconditioners for a
Krylov method. As a general rule, it is widely recognized that domain decomposi-
tion methods or preconditioners are key in solving efficiently Maxwell’s equations in
time-harmonic regime.

The development of Schwarz algorithms and preconditioners in the framework
of high order finite element methods is still a difficult issue especially in the three-
dimensional case. In this work we propose Schwarz preconditioners based on impedance
transmission conditions for the high order discretization of the curl-curl formulation of
Maxwell’s equations. With Maxwell’s equations, finite element discretization methods
have to be able to represent a field from a finite number of degrees of freedom (dofs)
and the nature of dofs (circulations, fluxes, etc.) associates them with geometrical
mesh elements other than nodes, such as edges or faces. Indeed, one needs to recog-
nize that different physical quantities have different properties and must be treated
accordingly. Whitney finite elements are thus generally adopted [7, 24]. To obtain a
more accurate reconstruction of the computed field at a fixed number of unknowns,
we need to adopt a high order version of Whitney finite elements, as those recently
developed in [29, 30] (for other possible high order finite element bases see for example
[1, 31, 23, 21, 2]).

The paper is organized as follows. In Section 2 we introduce the model time-
harmonic problem and its variational formulation. In Section 3 we present its high
order edge element discretization with particular attention to the implementation of
these finite elements. The overlapping Schwarz preconditioners we used are described
in Section 4, together with several numerical results about the convergence of the
preconditioned iterative method solving the two-dimensional problem. Section 5 closes
the presentation with the results in the three-dimensional case.

2. Physical problem and its weak formulation. Waveguides are used to
transfer electromagnetic power efficiently from one point in space, where an antenna
is located, to another, where electronic components treat the in/out information.
Rectangular waveguides, which are considered here, are often used to transfer large
amounts of microwave power at frequencies greater than 2 GHz. To simulate the elec-
tromagnetic wave propagation in such waveguide structures, we work in the frequency
domain, thus restricting the analysis to time-harmonic electromagnetic field varying
with an angular frequency ω > 0. For all times t ∈ R, we consider the representation
of the electric field E and the magnetic field H as

E(x, t) = <(E(x)eiωt), H(x, t) = <(H(x)eiωt),

where E(x), H(x) are the complex amplitudes, for all x ∈ D, D ⊂ R3 being the
considered physical domain. The mathematical model is thus given by the time-
harmonic Maxwell’s equations:

∇×H = iωεσE, ∇×E = −iωµH

where µ is the magnetic permeability and εσ the electric permittivity of the considered
medium inD. To include dissipative effects, we work with a complex valued εσ, related
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Fig. 2.1: Rectangular waveguide configuration for 3d (left) and 2d (rigth) problems
with wave propagation in the x-direction. The physical domain D is in thin line, with
dashed style for those boundaries that should be extended to infinity. The computa-
tional domain Ω is in thick line, with dashed style for those boundaries where suitable
non reflecting conditions are imposed. These latter are indeed fictitious boundaries
of Ω which are introduced to bound the domain for the numerical simulation of wave
propagation in unbounded media.

to the dissipation-free electric permittivity ε and the electric conductivity σ by the
relation εσ = ε − i σω . This assumption holds in the regions of D where the current
density J is of conductive type, that is, J and E are related by Ohm’s law J = σE.
Both ε and µ are supposed to be positive, bounded functions. Expressing Maxwell’s
equations in terms of the electric field and supposing that µ is constant, we obtain

∇× (∇×E)− γ2E = 0, (2.1)

where the (complex) constant γ is related to the physical parameters as follows

γ =
√
ω2µε− iωµσ = ω

√
µεσ, εσ = ε− i

σ

ω
.

Notice that if σ = 0, we have γ = ω̃, ω̃ = ω
√
µε being the wavenumber.

Equation (2.1) is to be solved in a suitable bounded section Ω of the physical
domain D, as shown in Fig. 2.1. In the 3d case, the physical domain D ⊂ R3 is an
infinite ‘parallelepiped’ parallel to the x-direction and the computational domain is
a bounded section, say Ω = (0, X) × (0, Y) × (0, Z) = (0, c) × (0, b) × (0, a) of D. In
the 2d case, the physical domain D ⊂ R3 is the space contained between two infinite
parallel metallic plates, say y = 0, y = b, and all physical parameters µ, σ, ε have
to be supposed invariant in the z-direction. The computational domain in 2d is a
bounded section, say Ω = (0, X) × (0, Y) = (0, c) × (0, b), of D. In both 2d and 3d
cases, the wave propagates in the x-direction within the domain.

Let n be the unit outward normal to ∂Ω. We solve the boundary value problem
given by equation (2.1), with metallic boundary conditions

E× n = 0, on Γw,

on the waveguide perfectly conducting walls Γw = {x ∈ ∂Ω, n(x) · ex = 0}, with
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ex = (1, 0, 0)t, and impedance boundary conditions

(∇×E)× n + iξn× (E× n) = gin, on Γin, ξ ∈ R>0,

(∇×E)× n + iξn× (E× n) = gout, on Γout,

at the waveguide entrance Γin = {x ∈ ∂Ω, n(x) · ex < 0}, and exit Γout = {x ∈
∂Ω, n(x) ·ex > 0}. The vectors gin, gout depend on the incident wave. On one hand,
impedance conditions on the artificial boundaries Γin, Γout are defined to let outgoing
waves pass through Ω unaffected; they mathematically translate the fact that Ω is a
truncated part of an infinite domain D. On the other hand, they simply model the
fact that the waveguide is connected to electronic components such as co-axial cables
or antennas.

In 2d the function Eex = (0, e−iγx) verifies the equation, the metallic boundary
conditions on Γw, and the impedance boundary conditions on Γin, Γout with parameter
ξ = ω̃ and gin = (iγ + iω̃)Eex and gout = (−iγ + iω̃)Eex; when σ = 0 we get
gin = 2iω̃Eex and gout = 0. The real part of the propagation constant −iγ gives
the rate at which the amplitude changes as the wave propagates, thus indications on
wave dissipation (notice that if σ > 0, <(−iγ) < 0, while if σ = 0, <(−iγ) = 0).

In 3d, if σ = 0 we consider the exact solution given by the Transverse Electric
(TE) modes, with m,n ∈ N:

ETEx = 0,

ETEy = −Cmπ
a

sin
(mπz

a

)
cos
(nπy

b

)
e−iβx,

ETEz = Cnπ
b

cos
(mπz

a

)
sin
(nπy

b

)
e−iβx.

The real constant β is linked to the waveguide dimensions a, b by the so called disper-

sion relation
(
mπ
a

)2
+
(
nπ
b

)2
= ω̃2 − β2, and we choose C = iωµ/(ω̃2 − β2). The field

ETE satisfies the metallic boundary conditions on Γw and the impedance boundary
conditions on Γin, Γout with parameter ξ = β and gin = (iβ + iβ)ETE = 2iβETE

and gout = (−iβ + iβ)ETE = 0.
To cast the continuous problem (2.1) with metallic (resp. impedance) boundary

conditions on Γw (resp. Γin, Γout) in the weak form, one has to multiply (2.1) by
a test function v of a suitable functional space V and integrate by parts over the
computational domain Ω. More precisely, the weak problem reads: find E ∈ V such
that∫

Ω

[
(∇×E) · (∇× v)− γ2E · v

]
+

∫
Γin∪Γout

iξ(E× n) · (v × n)

=

∫
Γin

gin · v +

∫
Γout

gout · v ∀v ∈ V,

with V = {v ∈ H(curl,Ω),v×n = 0 on Γw}, where H(curl,Ω) is the space of square
integrable functions whose curl is also square integrable. For a detailed discussion
about existence and uniqueness of solutions we refer to [27].

3. High order edge finite elements. For a so-called compatible finite ele-
ment (FE) discretization of the considered weak problem we need to introduce suit-
able discrete equivalents of the computational domain Ω̄ and of the functional space
H(curl,Ω) where the mathematical unknown field lives. For the computational do-
main, complex interfaces where physical parameters, such as σ or ε, can jump, are
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simpler to accommodate if a simplicial (triangular in 2d, tetrahedral in 3d) mesh Th
is considered in Ω̄ (h denotes the maximal diameter of simplices in Th). The unknown
E, together with the functional operators on it, have meaningful discrete equivalents
if we work in the curl-conforming finite dimensional subspace Vh ⊂ H(curl,Ω) of
Nédélec edge finite elements [28]. For a simplex T ∈ Th, the local lowest order basis
functions for the Nédélec curl-conforming space are associated with the oriented edges
e = {ni, nj} of T as follows

we = λni∇λnj − λnj∇λni , (3.1)

where the λn` are the barycentric coordinates of a point x ∈ T with respect to the
node n` of T of Cartesian coordinates x`. The degrees of freedom (dofs) over T are
defined as the functionals

ξe : w 7→ 1

|e|

∫
e

w · te, ∀ e ∈ E(T ),

where te = xj − xi is the tangent vector to the edge e, |e| = |te| the length of e and
E(T ) the set of edges of T . At the lowest order, the basis functions are in duality
with the dofs, that is ξe(w

e′) = 1, resp. 0, if e = e′, resp. if e 6= e′. As a consequence,
the coefficients that define the Galerkin projection Eh of the field E onto Vh are the
circulations of Eh along the oriented edges e of the simplicial mesh Th: locally, in
each T ∈ Th, we have

E(x) ≈ Eh(x) =
∑

e∈E(T )

cew
e(x), ∀x ∈ T, ce =

1

|e|

∫
e

Eh · te.

In the lowest order case, the approximation error verifies ||E − Eh||∗ = O(h), where
||.||∗ is the H(curl,Ω)-norm. There are several reasons to rely on edge elements
rather than on other FE discretizations of H(curl,Ω) [5]. By construction, edge
elements guarantee the continuity of the tangential components across inter-element
interfaces, they thus fit the continuity properties of the electric field. This is also due
to the close relationship between the edge element basis functions we and Whitney
1-forms [7], those differential forms that can be used to describe the electric field in
a more geometrical mathematical formulation of Maxwell’s equations. In addition,
for propagation problems, edge elements are known to avoid the pollution of the
numerical solution by spurious modes [6], [3].

High order curl-conforming finite elements of Nédélec type have become estab-
lished techniques in computational electromagnetism. Their popularity for wave prop-
agation problems is due to the fact that they are characterized by low numerical dis-
persion and dissipation errors. Moreover, at a fixed number of dofs, their numerical
accuracy is higher.

3.1. Local definition of high order edge elements. We adopt here the high
order generators of Nédélec elements presented in [29],[30]: the definition of these
generators is rather simple since it only involves the barycentric coordinates of the
simplex. To state the definition and further properties, we need to introduce multi-
index notations. A multi-index is an array k = (k1, . . . , kν) of ν integers ki ≥ 0, and
its weight k is

∑ν
i=1 ki. The set of multi-indices k with ν components and of weight

k is denoted I(ν, k). If d = 2, 3 is the ambient space dimension, we consider ν ≤ d+ 1
and, given k ∈ I(ν, k), we set λk =

∏ν
i=1 (λni)

ki , where the ni are ν nodes of the
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d+ 1 nodes of T . Now, in the generators definition we take ν = d+ 1 and k = r − 1,
with r the polynomial degree of the generators.

Definition 3.1 (Generators). The generators for Nédélec edge element spaces
W 1
h,r(T ) of degree r ≥ 1 in a simplex T ∈ Th are the λkwe, with k ∈ I(d + 1, k),

k = r − 1 and e ∈ E(T ). The we are the low order edge basis functions (3.1) (notice
that the polynomial degree of the we is r = 1 and they are obtained with k = 0).

In Section 1.2 of [28] W 1
h,r(T )-unisolvent dofs are presented, for any r ≥ 1 (the

space W 1
h,r(T ) is indeed a discrete counterpart of H(curl, T )). By relying on the

generators introduced in Definition 3.1, the functionals in [28] can be recast in a new
more friendly form as follows (see details in [4], which are inspired by [27]).

Definition 3.2 (Degrees of freedom). For r ≥ 1, d = 3, the functionals

ξe : w 7→ 1

|e|

∫
e

(w · te) q, ∀ q ∈ Pr−1(e), ∀ e ∈ E(T ), (3.2)

ξf : w 7→ 1

|f |

∫
f

(w · tf,i) q, ∀ q ∈ Pr−2(f), ∀ f ∈ F(T ), (3.3)

tf,i two independent sides of f, i = 1, 2,

ξT : w 7→ 1

|T |

∫
T

(w · tT,i) q, ∀ q ∈ Pr−3(T ), (3.4)

tT,i three independent sides of T, i = 1, 2, 3,

with F(T ) the set of faces of T , are the dofs for a function w ∈ W 1
h,r(T ). The norm

of the vectors te, tf,i, tT,i is the length of the associated edge. We say that e, f, T are
the supports of the dofs ξe, ξf , ξT .

Notice that for d = 2, the dofs are given only by (3.2) and (3.3) substituting f
with the triangle T ; similarly, in the following, when d = 2, what concerns volumes
should not be taken into account and what concerns faces f actually concerns the
triangle T .

Remark 3.3. To make it easier the computation of dofs, a convenient choice for
the polynomials q spanning the polynomial spaces over simplices e, f, T that appear in
Definition 3.2 is given by suitable products of the barycentric coordinates associated
with the nodes of the considered simplex. The space Pρ(S) of polynomials of degree
≤ ρ over a p-simplex S (i.e. a simplex of dimension 1 ≤ p ≤ d) can be generated by

the products λk =
∏p+1
i=1 (λni)

ki , with k ∈ I(p+ 1, ρ) and ni being the nodes of S.
The classification of dofs into edge-type, face-type, volume-type dofs can be done

also for generators: volume-type generators contain (inside λk or we) the barycentric
coordinates w.r.t. all the nodes of a tetrahedron T , face-type generators contain the
ones w.r.t. all and only the nodes of a face f , edge-type generators contain the ones
w.r.t. only the nodes of an edge e. Notice that face-type (resp. volume-type) generators
appear for r > 1 (resp. r > 2) (and the same happens for face-type and volume-type
dofs). See the explicit list of generators for the case d = 3, r = 2 in Example 3.1. It
turns out that dofs ξe are 0 on face-type and volume-type generators, and dofs ξf are
0 on volume-type generators.

For the high order case (r > 1), the fields λkwe in Definition 3.1 are generators for
W 1
h,r(T ), but some of the face-type or volume-type generators are linearly dependent.

The selection of generators that constitute an actual basis of W 1
h,r(T ) can be guided by

the dofs in Definition 3.2. More precisely, as face-type (resp. volume-type) generators
keep the ones associated with the two (resp. three) edges e chosen as the two sides
tf,1, tf,2 (resp. three sides tT,1, tT,2, tT,3) of face-type dofs (3.3) (resp. volume-type
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Fig. 3.1: For the tetrahedron in the figure, the edges are e1 = {1, 2}, e2 = {1, 3},
e3 = {1, 4}, e4 = {2, 3}, e5 = {2, 4}, e6 = {3, 4}, the faces are f1 = {2, 3, 4},
f2 = {1, 3, 4}, f3 = {1, 2, 4}, f4 = {1, 2, 3} (notice that the face fi is the one opposite
the node i).

dofs (3.4)). A convenient choice of sides is described in Subsection 3.2 and is the one
adopted in Example 3.1. One can check that the total number of dofs ξe, ξf , ξT in a
simplex T is equal to dim(W 1

h,r(T )) = (r + d)(r + d− 1) · · · (r + 2)r/(d− 1)!.

The considered basis functions are not in duality with the dofs in Definition 3.2
when r > 1, namely, the matrix V with entries the weights Vij = ξi(wj), 1 ≤ i, j ≤
dim(W 1

h,r(T )) after a suitable renumbering of dofs, is not the identity matrix for
r > 1. Duality can be re-established, if necessary, by considering, as basis functions,
linear combinations of the previous basis functions with coefficients given by the
entries of V −1 (see [4]). Notice that V (and then V −1) does not depend on the
metric of the simplex T for which its entries are calculated. Indeed, first of all notice
that dofs in Definition 3.2 are conveniently normalized. Moreover, the ξi(wj) are

integrals of two addends of the type λk
′∇λni · te (here λk

′
gathers the products

of barycentric coordinates appearing in the basis functions and in q, and te stands
also for tf,i, tT,i). Now, we have ∇λni · te = −1 if ni is the first node of e, +1
if it is its second node, 0 if it isn’t a node of e; so, in the end, only terms of the
type λk

′
survive in the integral and the value of ξi(wj) can be calculated using the

‘magic formula’ (it is a classical result, see for instance [29]): if S is a p-simplex,
1
|S|
∫
S

∏p+1
i=1 (λni)

ki = p!(
∏p+1
i=1 ki!)/(p +

∑p+1
i=1 ki)!. This value is clearly independent

of the metric of T . Moreover, the entries of V −1 turn out to be integer numbers. See
Example 3.1 for the case d = 3, r = 2.

Duality is needed for instance in FreeFem++, a free domain specific language
(DSL) specialized for solving boundary value problems with variational methods [22].
Several FE spaces are available in FreeFem++, such as Nédélec edge elements of degree
1 of equation (3.1): after generating a tetrahedral mesh Th, a complex vector function
E in that space is simply declared with the commands fespace Vh(Th,Edge03d);

Vh<complex> [Ex,Ey,Ez];. The user can also add new finite elements, provided that
the duality property is satisfied. For instance we implemented the edge elements
in 3d of degree 2, 3, which can be used, since FreeFem++ version 3.44, loading the
plugin load "Element Mixte3d" and substituting Edge03d with Edge13d, Edge23d
respectively. A powerful tool of FreeFem++ is the interpolation of a function given
by its analytical expression, or a function of a certain FE space, onto a desired FE
space. It is this interpolation operator that requires duality.

Example 3.1 (d = 3, r = 2). If the edges and the faces of a tetrahedron
are numbered as in Fig. 3.1, the basis functions are wj = λαjw

eβj , 1 ≤ j ≤ 20,
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where the 12 edge-type basis functions have (αj)
12
j=1 = (1, 2, 1, 3, 1, 4, 2, 3, 2, 4, 3, 4)

and (βj)
12
j=1 = (1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6), and the 8 face-type basis functions have

(αj)
20
j=13 = (4, 3, 4, 3, 4, 2, 3, 2) and (βj)

20
j=13 = (4, 5, 2, 3, 1, 3, 1, 2). In order to get

a basis, i.e. a set of linearly independent generators, we have chosen to eliminate the
(face-type) generators w21 = λ2w

e6 , w22 = λ1w
e6 , w23 = λ1w

e5 , w24 = λ1w
e4 . The

corresponding edge-type dofs are:

ξ1 : w 7→ 1

|e1|

∫
e1

(w · te1)λ1, ξ2 : w 7→ 1

|e1|

∫
e1

(w · te1)λ2, . . .

ξ11 : w 7→ 1

|e6|

∫
e6

(w · te6)λ3, ξ12 : w 7→ 1

|e6|

∫
e6

(w · te6)λ4,

and the face-type dofs are:

ξ13 : w 7→ 1

|f1|

∫
f1

(w · te4), ξ14 : w 7→ 1

|f1|

∫
f1

(w · te5), . . .

ξ19 : w 7→ 1

|f4|

∫
f4

(w · te1), ξ20 : w 7→ 1

|f4|

∫
f4

(w · te2).

For this ordering and choice of generators and dofs, the ‘dualizing’ matrix V −1 is

V −1 =



4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 4 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4 −2 2 −2 2 4 8 −4 0 0 0 0 0 0
0 0 0 0 0 0 2 −2 −4 −2 −4 −2 −4 8 0 0 0 0 0 0
0 0 −4 −2 2 −2 0 0 0 0 2 4 0 0 8 −4 0 0 0 0
0 0 2 −2 −4 −2 0 0 0 0 −4 −2 0 0 −4 8 0 0 0 0
−4 −2 0 0 2 −2 0 0 2 4 0 0 0 0 0 0 8 −4 0 0
2 −2 0 0 −4 −2 0 0 −4 −2 0 0 0 0 0 0 −4 8 0 0
−4 −2 2 −2 0 0 2 4 0 0 0 0 0 0 0 0 0 0 8 −4
2 −2 −4 −2 0 0 −4 −2 0 0 0 0 0 0 0 0 0 0 −4 8



3.2. Implementation of the global construction. The implementation of
edge finite elements is quite delicate. Indeed, basis functions and dofs are associated
with the oriented edges of mesh simplices: notice that the low order we and the
high order λkwe generators change sign if the orientation of the edge e is reversed.
Moreover, recall that for r > 1, in order to get a set of linearly independent generators,
we also have to choose 2 edges for each face f . Here we wish to construct basis
functions locally, i.e. in each simplex of Th, in such a way that the contributions
coming from simplices sharing edges or faces could be assembled properly inside the
global matrix of the FE discretization. For this purpose, it is essential to orient in
the same way edges shared by simplices and to choose the same 2 edges for faces
shared by adjacent tetrahedra. We have this need also to construct dofs giving the
coefficients for the interpolation operator if this latter required.

This need is satisfied using the global numbers of the mesh nodes (see Fig. 3.2).
More precisely, to orient the edges e of the basis functions and the vectors te, tf,i, i =
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Fig. 3.2: Orientation of edges (‘filled’ arrows) and choice of 2 edges (‘empty’ arrows)
of the face shared by two adjacent tetrahedra using the numbering of mesh nodes.

2

^

1

3

4

T
T

12

32

42

22

Fig. 3.3: Using global numbers to examine edges and faces, the ‘structure of orienta-
tion’ of T = {12, 32, 42, 22} is the one of T̂ = {1, 2, 3, 4} up to a rotation.

1, 2, tT,i, i = 1, 2, 3 of the dofs, we go from the node with the smallest global number
to the node with the biggest global number. Similarly, to choose 2 edges per face for
the face-type basis functions and dofs, we take the 2 edges going out from the node
with the smallest global number in the face (and the 1st edge goes to the node with
the 2nd smallest global number, the 2nd edge goes to the node with the biggest global
number in the face).

Moreover, when we want basis functions w̃j in duality with the dofs, a second
need should be satisfied: we wish to use for all mesh simplices T the ‘dualizing’
coefficients of the matrix V̂ −1 calculated, once for all, for the reference simplex T̂
with a certain choice of orientation and choice of edges (recall that V −1 already does
not depend on the metric of the simplex for which it is calculated). To be allowed
to do this, it is sufficient to use the nodes global numbers to decide the order in
which the non dual wj (from which we start to then get the w̃j) are constructed
locally on T . More precisely, for the edge-type (resp. face-type) basis functions the
edges (resp. faces) are examined in the order written in the caption of Fig. 3.1, but
replacing the nodes numbers 1, 2, 3, 4 with the increasing global numbers of the nodes
of T : the 1st examined edge is from the node with the 1st smallest global number to
the one with the 2nd smallest global number, the 2nd examined edge is from the node
with the 1st smallest global number to the one with the 3rd smallest global number,
and so on, then the 1st examined face is the one opposite the node with the smallest
global number, and so on. Indeed, in this way the first need is respected and the
‘structure of orientation’ of T is the one of T̂ up to a rotation (see Fig. 3.3): then we
are allowed to use the coefficients of V̂ −1 for the linear combinations giving the w̃j .

Notice that in 3d (resp. in 2d), to assemble the global linear system matrix, it is
not essential which volume-type (resp. face-type) generators are chosen since they are
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not shared between tetrahedra (resp. triangles). On the contrary, also this choice is
important when we want to use for all mesh simplices the coefficients of V̂ −1 calculated
for a simplex with a certain choice of orientation and choice of edges.

Example 3.2 (Implementation). To implement the strategy described to con-
struct locally the basis functions w̃j, two permutations can be used. First, to con-
struct the non dual wj, we define a permutation pd+1 of d + 1 elements as follows:
pd+1[i] is the local number (it takes values among 1, . . . , d + 1) of the node with the
i-th smallest global number in the simplex T , so we can say that pd+1 is the permuta-
tion for which the nodes of T are listed with increasing global number. For instance,
for the tetrahedron T = {12, 32, 42, 22} in Fig. 3.3, we have p4 = {1, 4, 2, 3}. So,
in the first step of construction of the wj, we replace each λi appearing in their
expression with λpd+1[i]. Then, in the second step of construction of the w̃j as lin-
ear combinations of the wj, we use a permutation Pndofs

of ndofs = dim(W 1
h,r(T ))

elements to go back to the local order of edges and faces. For instance for the tetra-
hedron T = {12, 32, 42, 22}, the order in which edges are examined in the first step is
{{12, 22}, {12, 32}, {12, 42}, {22, 32}, {22, 42}, {32, 42}}, while the local order of edges
would be {{12, 32}, {12, 42}, {12, 22}, {32, 42}, {22, 32}, {22, 42}} (the local order is
given by how the nodes of T are listed); similarly, the order in which faces are exam-
ined in the first step is {{22, 32, 42}, {12, 32, 42}, {12, 22, 42}, {12, 22, 32}}, while the
local order of faces would be {{22, 32, 42}, {12, 22, 42}, {12, 22, 32}, {12, 32, 42}}. So
for this tetrahedron, if r = 2 (for which there are 2 basis functions for each edge and
2 basis functions for each face, 20 basis functions in total listed in Example 3.1), we
have

P20 = {5, 6, 1, 2, 3, 4, 9, 10, 11, 12, 7, 8; 13, 14, 19, 20, 15, 16, 17, 18},

(notice that inside each edge or face the 2 related dofs remain ordered according to the
global numbers). Now, we save the linear combinations of the w`, with coefficients
given by the j-th column of V̂ −1, in the final dual basis functions w̃P20[j].

4. Overlapping Schwarz preconditioners. As shown numerically in [29], the
matrix of the linear system resulting from the described high order discretization is
ill conditioned. Therefore, we use and compare two domain decomposition precondi-
tioners, Restricted Additive Schwarz (RAS) and Additive Schwarz (AS):

M−1
RAS =

Nsub∑
s=1

R̃Ts A
−1
s Rs, M−1

AS =

Nsub∑
s=1

RTs A
−1
s Rs,

where Nsub is the number of overlapping subdomains Ωs into which the domain Ω is
decomposed. In this paper, the matrices As are the local matrices of the subproblems
with impedance boundary conditions (∇× E) × n + iω̃n × (E × n) as transmission
conditions at the interfaces between subdomains. Notice that in this section the term
‘local’ refers to a subdomain and not to a mesh simplex.

In order to describe the matrices Rs, R̃s, let N be an ordered set of the degrees of
freedom of the whole domain and letN =

⋃Nsub

s=1 Ns be its decomposition into the (non
disjoint) ordered subsets corresponding to the different (overlapping) subdomains Ωs:
a degree of freedom belongs to Ns if its support is contained in Ωs. The matrix Rs
is the restriction matrix from Ω to the subdomain Ωs: it is a #Ns × #N Boolean
matrix and its (i, j) entry is equal to 1 if the i-th degree of freedom in Ns is the j-th
one in N . Notice that RTs is then the extension matrix from the subdomain Ωs to Ω.

The matrix R̃s is a #Ns ×#N restriction matrix like Rs, but with some of the unit
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Ω

Ω 1

∼
Ω 2

1Ω
2Ω

1 5 9 13

3 7 11 15
2 6 10 14

17

4 8 12 16

∼

1

Ω 1

1 5 9

3 7 11
2 6 10

4 8 12

Ω
13

∼

13

2

∼

Ω
2

1 5 9

3 7 11
2 6 10

4 8 12

Ω

Fig. 4.1: Edges numbering for a domain Ω decomposed into two overlapping sub-
domains Ω1, Ω2 (above), and edges numbering for Ω1 and Ω2 (below). The non

overlapping decomposition into Ω̃1, Ω̃2 is used to construct the matrices R̃1, R̃2.

entries corresponding to the overlap replaced by zeros: this would correspond to a de-
composition into non overlapping subdomains Ω̃s ⊂ Ωs (completely non overlapping,

not even on their border) (see [19]). This way
∑Nsub

s=1 R̃Ts Rs = I, that is the matrices

R̃s give a discrete partition of unity (which is made only of 1 and 0).

As an illustration, we write explicitly the restriction matrices Rs, R̃s for the simple
case shown in Fig. 4.1. The domain Ω is decomposed into two overlapping subdomains
Ω1, Ω2, and edge finite elements of degree r = 1 are considered: the degrees of freedom
are in correspondence with the edges of the mesh, so their order inside N , N1, N2 is
given by the edges numbering of the figure. Here, since #N1 = #N2 = 13, #N = 17,
all restriction matrices have dimension 13× 17. The matrices R̃1, R̃2 are constructed
using the non overlapping subdomains Ω̃1, Ω̃2 shown in the figure (notice that the

edge 11 of Ω is contained in Ω̃2 and not in Ω̃1). In the matrices below, if an entry is

empty it should be equal to 0, and the bold zeros in R̃1, R̃2 are the zeros that replace
unit entries in R1, R2:

R1 =



1
1

1
1

1
1

1
1

1
1

1
1

0 0 1 0 0


, R2 =



0 0 0 0 1
1

1
1

1
1

1
1

1
1

1
1

1


,
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1

Ω
2

Ω
3

ovr
δ

Ω

Fig. 4.2: The stripwise decomposition of the two-dimensional domain.

k Ndofs NiterNp Niter max|λ− (1, 0)| #{λ ∈ C \ D̄1} #{λ ∈ ∂D1}
0 282 179 5(10) 1.04e−1(1.38e+1) 0(4) 0(12)
1 884 559 6(15) 1.05e−1(1.63e+1) 0(8) 0(40)
2 1806 1138 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
3 3048 1946 6(21) 1.05e−1(8.36e+2) 0(16) 0(144)
4 4610 2950 6(26) 1.05e−1(1.57e+3) 0(20) 0(220)

Table 4.1: Influence of the polynomial degree r = k+1 on the convergence of RAS(AS)
preconditioner for ω = ω2, Nsub = 2, δovr = 2h.

R̃1 =



1
1

1
1

1
1

1
1

0
0

0
0

0 0 0 0 0


, R̃2 =



0 0 0 0 0
0

0
0

1
1

1
1

1
1

1
1

1


.

4.1. Numerical results. We validate the preconditioners just described for a
two-dimensional waveguide with c = 0.0502 m, b = 0.00254 m, with the physical
parameters: ε = 8.85 · 10−12 F m−1, µ = 1.26 · 10−6 H m−1 and σ = 0.15 S m−1. We
consider three angular frequencies ω1 = 16 GHz, ω2 = 32 GHz, and ω3 = 64 GHz,
varying the mesh size h according to the relation h2 · ω̃3 = 2 (in [25] it was proved
that this relation avoids pollution effects for the one-dimensional Helmholtz equation).

We solve the linear system resulting from the finite element discretization with
(MATLAB) GMRES (with a tolerance of 10−6), starting with a random initial guess,
which ensures, unlike a zero initial guess, that all frequencies are present in the er-
ror. We compare the RAS and AS preconditioners, taking a stripwise subdomains
decomposition, along the wave propagation, as shown in Fig. 4.2.

To study the convergence of GMRES preconditioned by RAS or AS we vary
first the polynomial degree r = k + 1 (Table 4.1, Figs. 4.3–4.4, Fig. 4.12), then the
angular frequency ω (Table 4.2, Figs. 4.5–4.6, Fig. 4.13), the number of subdomains
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ω Ndofs NiterNp Niter max|λ− (1, 0)| #{λ ∈ C \ D̄1} #{λ ∈ ∂D1}
ω1 339 232 5(11) 2.46e−1(1.33e+1) 0(6) 0(45)
ω2 1806 1138 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
ω3 7335 4068 9(24) 3.03e−1(2.73e+1) 0(18) 0(123)

Table 4.2: Influence of the angular frequency ω on the convergence of RAS(AS)
preconditioner for k = 2, Nsub = 2, δovr = 2h.

Nsub Niter max|λ− (1, 0)| #{λ ∈ C \ D̄1} #{λ ∈ ∂D1}
2 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
4 10(27) 5.33e−1(1.96e+1) 0(38) 0(252)
8 19(49) 7.73e−1(1.96e+1) 0(87) 0(588)

Table 4.3: Influence of the number of subdomainsNsub on the convergence of RAS(AS)
preconditioner for k = 2, ω = ω2, δovr = 2h.

Nsub (Table 4.3, Figs. 4.7–4.8, Fig. 4.14) and finally the overlap size δovr (Table 4.4,
Figs. 4.9–4.10, Fig. 4.15). Here, δovr = 1h, 2h, 4h means that we consider an overlap
between two subdomains of 1, 2, 4 mesh triangles along the horizontal direction.

In Tables 4.1–4.4, Ndofs is the total number of degrees of freedom, NiterNp is
the number of iterations necessary to attain the prescribed convergence for GMRES
without any preconditioner, and Niter is the number of iterations for GMRES precon-
ditioned by RAS (AS). Moreover, denoting by

D1 = {z ∈ C : |z − z0| < 1}

the unit disk centered at z0 = (1, 0) in the complex plane, we measure also the
maximum distance to (1, 0) of the eigenvalues λ of the preconditioned matrix, the
number of eigenvalues that have distance greater than 1, and the number of eigenvalues
that have distance equal to 1 (up to a tolerance of 10−10). This information is useful
to characterize the convergence. Indeed, if A is the matrix of the system to solve and
M−1 is the domain decomposition preconditioner, then I −M−1A is the iteration
matrix of the domain decomposition method used as an iterative solver. So, a measure
of the convergence of the domain decomposition solver would be to check whether
the eigenvalues of the preconditioned matrix M−1A are contained in D1. When the
domain decomposition method is used, like here, as a preconditioner, the distribution
of the spectrum remains a good indicator of the convergence. Note that the matrix of
the linear system doesn’t change when Nsub or δovr vary, therefore in Tables 4.3–4.4
(where k = 2, ω = ω2) we don’t report Ndofs = 1806 and NiterNp = 1155 again. In all
Tables 4.1–4.4, we don’t mention the condition number of the preconditioned matrix:
indeed, no convergence rate estimates in terms of the condition number of the matrix
(which is not positive definite), as those we are used to with the conjugate gradient
method, are available for the GMRES method.

Figs. 4.3, 4.5, 4.7, 4.9, respectively Figs. 4.4, 4.6, 4.8, 4.10, show the whole spec-
trum in the complex plane of the matrix preconditioned by RAS, respectively by AS
(notice that many eigenvalues are multiple), together with ∂D1. Figs. 4.12–4.15 show
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δovr Niter max|λ− (1, 0)| #{λ ∈ C \ D̄1} #{λ ∈ ∂D1}
1h 10(20) 1.95e+1(1.96e+1) 3(12) 0(39)
2h 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
4h 5(14) 1.06e−1(1.96e+1) 0(12) 0(174)

Table 4.4: Influence of the overlap size δovr on the convergence of RAS(AS) precon-
ditioner for k = 2, ω = ω2, Nsub = 2.
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Fig. 4.3: Influence of the polynomial degree r = k + 1 on the spectrum of the RAS-
preconditioned matrix for ω = ω2, Nsub = 2, δovr = 2h.

the evolution of the relative residual during the iterations of GMRES preconditioned
with RAS (left) and AS (right).

Looking at the tables and figures, we can see that the non preconditioned GMRES
method is very slow, and the RAS preconditioner gives much faster convergence than
the AS preconditioner. Moreover, the convergence becomes slower when k, ω or Nsub

increase, or when δovr decreases; actually, when varying k, the number of iterations
for convergence using the RAS preconditioner is equal to 5 for k = 0 and then it stays
equal to 6 for k > 0.

Notice also that for 2 subdomains the spectrum is well clustered inside the unit
disk when using the RAS preconditioner, except for the case with δovr = 1h (see
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Fig. 4.4: Influence of the polynomial degree r = k + 1 on the spectrum of the AS-
preconditioned matrix for ω = ω2, Nsub = 2, δovr = 2h.
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Fig. 4.5: Influence of the angular frequency ω on the spectrum of the RAS-
preconditioned matrix for k = 2, Nsub = 2, δovr = 2h.
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Fig. 4.6: Influence of the angular frequency ω on the spectrum of the AS-
preconditioned matrix for k = 2, Nsub = 2, δovr = 2h.
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Fig. 4.7: Influence of the number of subdomains Nsub on the spectrum of the RAS-
preconditioned matrix for k = 2, ω = ω2, δovr = 2h.

Fig. 4.11), in which 3 eigenvalues are outside with distances from (1, 0) equal to
19.5, 19.4, 14.4. Then, for 4 and 8 subdomains the spectrum is not so well clustered.
With the AS preconditioner there are always eigenvalues outside the unit disk. For
all the considered cases, the less clustered the spectrum, the slower the convergence.

5. A three-dimensional example. We complete the presentation showing
some results for the 3d case. Again the physical parameters are: ε = 8.85·10−12 F m−1,
µ = 1.26·10−6 H m−1 and σ = 0.15 S m−1; the waveguide dimensions are c = 0.0502 m,
b = 0.00254 m, and a = 0.00508 m and we take a stripwise subdomains decomposition
along the wave propagation, with δovr = 2h. Since the propagation constant in 3d
is β (see Section 2) and no more ω̃, we compute the mesh size h using the relation
h2 · β3 = 1, taking β = ωβ

√
µε, with ωβ = 32 GHz. Then the dispersion relation

gives ω̃ =
√
β2 + (mπ/a)2 + (nπ/b)2 (where we choose m = 1, n = 0), and we get

ω = ω̃/
√
µε.

Here, the global linear system matrix and right-hand side, and all the matrices
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Fig. 4.8: Influence of the number of subdomains Nsub on the spectrum of the AS-
preconditioned matrix for k = 2, ω = ω2, δovr = 2h.

0 0.5 1 1.5 2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) δovr = 2h

0 0.5 1 1.5 2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) δovr = 4h

Fig. 4.9: Influence of the overlap size δovr on the spectrum of the RAS-preconditioned
matrix for k = 2, ω = ω2, Nsub = 2.

appearing in RAS and AS preconditioners are built in a FreeFem++ script, and the
form of RAS preconditioner is slightly different:

M−1
RAS =

Nsub∑
s=1

RTs DsA
−1
s Rs,

where the #Ns×#Ns diagonal matrices Ds give the discrete partition of unity (here
they may contain entries different from 1 and 0). The implementation of this partition
of unity is inspired by the one of HPDDM [26], a high-performance unified framework
for domain decomposition methods which is interfaced with FreeFem++; the partition
of unity is then adapted for high order edge elements. Like in the 2d case, the linear
system is then solved with the preconditioned MATLAB GMRES, with a tolerance
of 10−6 and starting with a random initial guess.

In Table 5.1 we show the number of iterations for convergence varying first the
polynomial degree r = k+1 (for Nsub = 2), and then the number of subdomains Nsub
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Fig. 4.10: Influence of the overlap size δovr on the spectrum of the AS-preconditioned
matrix for k = 2, ω = ω2, Nsub = 2.
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Fig. 4.11: The spectrum of the RAS-preconditioned matrix for k = 2, ω = ω2,
Nsub = 2, δovr = 1h.
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Fig. 4.13: Convergence history of GMRES preconditioned with RAS (left) and AS
(right), for different angular frequencies ω (k = 2, Nsub = 2, δovr = 2h).
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Fig. 4.14: Convergence history of GMRES preconditioned with RAS (left) and AS
(right), for different numbers of subdomains Nsub (k = 2, ω = ω2, δovr = 2h).
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Fig. 4.15: Convergence history of GMRES preconditioned with RAS (left) and AS
(right), for different overlap sizes δovr (k = 2, ω = ω2, Nsub = 2).
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k Ndofs Niter Nsub Ndofs Niter

0 8687 8(30) 2 43654 9(55)
1 43654 9(55) 4 43654 12(70)
2 123045 9(78) 8 43654 20(100)

Table 5.1: Results in 3d: influence of the polynomial degree r = k+ 1 (for Nsub = 2),
and of the number of subdomains Nsub (for k = 1), on the convergence of RAS(AS)
preconditioner (β = ωβ

√
µε with ωβ = 32 GHz, δovr = 2h).

(for k = 1). Like in the 2d case, the number of iterations using the RAS preconditioner
does not vary with the polynomial degree of the FE basis functions, while using the AS
preconditioner it varies and is much higher. Again, the convergence becomes slower
when the number of subdomains increases, both with RAS and AS.

In Figure 5.1 we plot the amplitude of the real part of the solution, which decreases
as the wave propagates since σ = 0.15 S m−1 is different from zero.

6. Conclusion. We have adopted a friendly definition of high order edge el-
ements generators and degrees of freedom: both in 2d and 3d their expression is
rather simple, and the generators are strictly connected with the degrees of freedom.
Their presentation is enriched with illustrative examples, and an operational strategy
of implementation of these elements is described in detail. The elements in 3d of
polynomial degree 1, 2, 3 are available in FreeFem++ (since version 3.44), loading the
plugin load "Element Mixte3d" and building the finite element space fespace with
the keywords Edge03d, Edge13d, Edge23d respectively.

Numerical experiments have shown that Schwarz preconditioning significantly im-
proves GMRES convergence for different values of physical and numerical parameters,
and that the RAS preconditioner always performs much better than the AS precon-
ditioner. Indeed, the only advantage of the AS method is to preserve symmetry for
symmetric problems: that is why it should be used only for symmetric positive def-
inite matrices as a preconditioner for the conjugate gradient method. Moreover, in
all the considered test cases, the number of iterations for convergence using the RAS
preconditioner does not vary when the polynomial degree of the adopted high order
finite elements increases.

However the computational cost per iteration grows since matrices become very
large, therefore a parallel implementation should be considered. A two-level precon-
ditioner via a coarse space correction should be designed for Maxwell’s equations in
order to fix the dependence on the number of subdomains of the iteration count.
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