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Abstract

This paper considers the optimal scaling problem for high-dimensional random walk
Metropolis algorithms for densities which are differentiable in Lp mean but which may be
irregular at some points (like the Laplace density for example) and / or are supported on
an interval. Our main result is the weak convergence of the Markov chain (appropriately
rescaled in time and space) to a Langevin diffusion process as the dimension d goes to
infinity. Because the log-density might be non-differentiable, the limiting diffusion could
be singular. The scaling limit is established under assumptions which are much weaker
than the one used in the original derivation of [6]. This result has important practical
implications for the use of random walk Metropolis algorithms in Bayesian frameworks
based on sparsity inducing priors.

1 Introduction

A wealth of contributions have been devoted to the study of the behaviour of high-dimensional
Markov chains. One of the most powerful approaches for that purpose is the scaling analysis,
introduced by [6]. Assume that the target distribution has a density with respect to the d-
dimensional Lebesgue measure given by:

πd(xd) =

d∏
i=1

π(xdi ) . (1)

The Random Walk Metropolis-Hastings (RWM) updating scheme was first applied in [4] and
proceeds as follows. Given the current state Xd

k , a new value Y dk+1 = (Y dk+1,i)
d
i=1 is obtained by

moving independently each coordinate, i.e. Y dk+1,i = Xd
k,i + `d−1/2Zdk+1 where ` > 0 is a scaling

factor and (Zk)k≥1 is a sequence of independent and identically distributed (i. i.d.) Gaussian
random variables. Here ` governs the overall size of the proposed jump and plays a crucial
role in determining the efficiency of the algorithm. The proposal is then accepted or rejected
according to the acceptance probability α(Xd

k , Y
d
k+1) where α(xd, yd) = 1 ∧ πd(yd)/πd(xd). If

the proposed value is accepted it becomes the next current value, otherwise the current value is
left unchanged:

Xd
k+1 = Xd

k + `d−1/2Zdk+11Adk+1
, (2)

Adk+1 =

{
Uk+1 ≤

d∏
i=1

π(Xd
k,i + `d−1/2Zdk+1,i)/π(Xd

k,i)

}
, (3)
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where (Uk)k≥1 of i. i.d. uniform random variables on [0, 1] independent of (Zk)k≥1.

Under certain regularity assumptions on π, it has been proved in [6] that if the Xd
0 is

distributed under the stationary distribution πd, then each component of (Xd
k )k≥0 appropriately

rescaled in time converges weakly to a Langevin diffusion process with invariant distribution π
as d→ +∞.

This result allows to compute the asymptotic mean acceptance rate and to derive a practical
rule to tune the factor `. It is shown in [6] that the speed of the limiting diffusion has a function
of ` has a unique maximum. The corresponding mean acceptance rate in stationarity is equal
to 0.234.

These results have been derived for target distributions of the form (1) where π(x) ∝
exp(−V (x)) where V is three-times continuously differentiable. Therefore, they do not cover the
cases where the target density is continuous but not smooth, for example the Laplace distribu-
tion which plays a key role as a sparsity-inducing prior in high-dimensional Bayesian inference.

The aim of this paper is to extend the scaling results for the RWM algorithm introduced in the
seminal paper [6, Theorem 3] to densities which are absolutely continuous densities differentiable
in Lp mean (DLM) for some p ≥ 2 but can be either non-differentiable at some points or are
supported on an interval. As shown in [3, Section 17.3], differentiability of the square root of
the density in L2 norm implies a quadratic approximation property for the log-likelihood known
as local asymptotic normality. As shown below, the DLM permits the quadratic expansion of
the log-likelihood without paying the twice-differentiability price usually demanded by such a
Taylor expansion (such expansion of the log-likelihood plays a key role in [6]).

The paper is organised as follows. In Section 2 the target density π is assumed to be positive
on R. Theorem 2 proves that under the DLM assumption of this paper, the average acceptance
rate and the expected square jump distance are the same as in [6]. Theorem 3 shows that under
the same assumptions the rescaled in time Markov chain produced by the RWM algorithm
converges weakly to a Langevin diffusion. We show that these results may be applied to a
density of the form π(x) ∝ exp(−λ |x| + U(x)), where λ ≥ 0 and U is a smooth function. In
Section 3, we focus on the case where π is supported only on an open interval of R. Under
appropriate assumptions, Theorem 4 and Theorem 5 show that the same asymptotic results
(limiting average acceptance rate and limiting Langevin diffusion associated with π) hold. We
apply our results to Gamma and Beta distributions. The proofs are postponed to Section 4 and
Section 5.

2 Positive Target density on R
The key of the proof of our main result will be to show that the acceptance ratio and the
expected square jump distance converge to a finite and non trivial limit. In the original proof
of [6], the density of the product form (1) with

π(x) ∝ exp(−V (x)) (4)

is three-times continuously differentiable and the acceptance ratio is expanded using the usual
pointwise Taylor formula. More precisely, the log-ratio of the density evaluated at the proposed
value and at the current state is given by

∑d
i=1 ∆V di where

∆V di = V
(
Xd
i

)
− V

(
Xd
i + `d−1/2Zdi

)
, (5)

and where Xd is distributed according to πd and Zd is a d-dimensional standard Gaussian ran-
dom variable independent of X. Heuristically, the two leading terms are `d−1/2

∑d
i=1 V̇ (Xd

i )Zdi
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and `2d−1
∑d
i=1 V̈ (Xd

i )(Zdi )2/2, where V̇ and V̈ are the first and second derivatives of V , respec-
tively. By the central limit theorem, this expression converges in distribution to a zero-mean
Gaussian random variable with variance `2I where

I =

∫
R
V̇ 2(x)π(x)dx . (6)

Note that I is the Fisher information associated with the translation model θ 7→ π(x + θ)
evaluated at θ = 0. Under appropriate technical conditions, the second term converges almost
surely to −`2I/2. Assuming that these limits exist, the acceptance ratio in the RWM algorithm
converges to E[1∧exp(Z)] where Z is a Gaussian random variable with mean −`2I/2 and variance
`2I; elementary computations show that E[1 ∧ exp(Z)] = 2Φ(−`/2

√
I), where Φ stands for the

cumulative distribution function of a standard normal distribution.
For t ≥ 0, denote by Y dt the linear interpolation of the Markov chain (Xd

k )k≥0 after time
rescaling:

Y dt = (dd te − d t)Xd
bd tc + (d t− bd tc)Xd

dd te (7)

= Xd
bd tc + (d t− bd tc) `d−1/2Zddd te1Addd te

, (8)

where b·c and d·e denote the lower and the upper integer part functions. Note that for all k ≥ 0,
Y dk/d = Xd

k . Denote by (Bt, t ≥ 0) the standard Brownian motion.

Theorem 1 ([6]). Suppose that the target πd and the proposal distribution are given by (1)-(4)
and (2) respectively. Assume that

(i) V is twice continuously differentiable and V̇ is Lipshitz continuous ;

(ii) E[(V̇ (X))8] <∞ and E[(V̈ (X))4] <∞ where X is distributed according to π.

Then (Y dt,1, t ≥ 0), where Y dt,1 is the first component of the vector Y dt defined in (7), converges
weakly in the Wiener space (equipped with the uniform topology) to the Langevin diffusion

dYt =
√
h(`)dBt −

1

2
h(`)V̇ (Yt)dt , (9)

where Y0 is distributed according to π, h(`) is given by

h(`) = 2`2Φ

(
− `

2

√
I

)
, (10)

and I is defined in (6).

Whereas V is assumed to be twice continuously differentiable, the dual representation of the
Fisher information −E[V̈ (X)] = E[(V̇ (X))2] = I allows us to remove in the statement of the
theorem all mention to the second derivative of V , which hints that two derivatives might not
really be required. For all θ, x ∈ R, define

ξθ(x) =
√
π(x+ θ) , (11)

For p ≥ 1, denote ‖f‖pπ,p =
∫
|f(x)|pπ(x)dx. Consider the following assumptions:

H1. There exists a measurable function V̇ : R→ R such that:

3
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(i) There exist p > 4, C > 0 and β > 1 such that for all θ ∈ R,∥∥∥V (·+ θ)− V (·)− θV̇ (·)
∥∥∥
π,p
≤ C|θ|β .

(ii) The function V̇ satisfies
∥∥∥V̇ ∥∥∥

π,6
< +∞.

Lemma 1. Assume H1. Then, the family of densities θ → π(·+θ) is Differentiable in Quadratic
Mean (DQM) at θ = 0 with derivative V̇ , i.e. there exists C > 0 such that for all θ ∈ R,(∫

R

(
ξθ(x)− ξ0(x) + θV̇ (x)ξ0(x)/2

)2

dx

)1/2

≤ C|θ|β ,

where ξθ is given by (11).

Proof. The proof is postponed to Section 4.1.

The first step in the proof is to show that the acceptance ratio P
(
Ad1
)

= E(1∧exp{
∑d
i=1 ∆V di }),

and the expected square jump distance E[(Zd1 )2{1∧ exp(
∑d
i=1 ∆V di )}] both converge to a finite

value. To that purpose, we consider

Ed(q) = E

[(
Zd1
)q ∣∣∣∣∣1 ∧ exp

(
d∑
i=1

∆V di

)
− 1 ∧ exp(υd)

∣∣∣∣∣
]
,

where ∆V di is given by (5),

υd = −`d−1/2Zd1 V̇ (Xd
1 ) +

d∑
i=2

bd(Xd
i , Z

d
i ) (12)

bd(x, z) = − `z√
d
V̇ (x) + E

[
2ζd(Xd

1 , Z
d
1 )
]
− `2

4d
V̇ 2(x) , (13)

ζd(x, z) = exp
{(
V (x)− V

(
x+ `d−1/2z

))
/2
}
− 1 . (14)

Proposition 1. Assume H1 holds. Let Xd be a random variable distributed according to πd

and Zd be a zero-mean standard Gaussian random variable, independent of Xd. Then, for any
q ≥ 0, limd→+∞ Ed(q) = 0.

Proof. The proof is postponed to Section 4.2.

Proposition 1 shows that it is enough to consider υd to analyse the asymptotic behaviour
of the acceptance ratio and the expected square jump distance as d → +∞. By the central
limit theorem, the term −`

∑d
i=2(Zdi /

√
d)V̇ (Xd

i ) in (12) converges in distribution to a zero-
mean Gaussian random variable with variance `2I, where I is defined in (6). By Lemma 4
(Section 4.3), the second term, which is dE

[
2ζd(Xd

1 , Z
d
1 )
]

= −dE
[
(ζd(Xd

1 , Z
d
1 ))2

]
converges to

−`2I/4. The last term converges in probability to −`2I/4. Therefore, the two last terms plays a
similar role in the expansion of the acceptance ratio as the second derivative of V in the regular
case.

Theorem 2. Assume H1 holds. Then, limd→+∞ P
[
Ad1
]

= a(`), where a(`) = 2Φ(−
√
I`/2).

Proof. The proof is postponed to Section 4.3.
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The second result of this paper is that the sequence {(Y dt,1)t≥0, d ∈ N?} defined by (7)
converges weakly to a Langevin diffusion. Let (µd)d≥1 be the sequence of distributions of
{(Y dt,1)t≥0, d ∈ N?}.

Proposition 2. Assume H1 holds. Then, the sequence (µd)d≥1 is tight in W.

Proof. The proof is adapted from [2]; it is postponed to Section 4.4.

By the Prohorov theorem, the tightness of (µd)d≥1 implies that this sequence has a weak
limit point. We now prove that any limit point is the law of a solution to (9). For that purpose,
we use the equivalence between the weak formulation of stochastic differential equations and
martingale problems. The generator L of the Langevin diffusion (9) is given, for all φ ∈ C2

c (R,R),
by

Lφ(x) =
h(`)

2

(
−V̇ (x)φ̇(x) + φ̈(x)

)
, (15)

where for k ∈ N and I an open subset of R, Ckc (I,R) is the space of k-times differentiable func-
tions with compact support, endowed with the topology of uniform convergence of all derivatives
up to order k. We set C∞c (I,R) =

⋂∞
k=0 C

k
c (I,R) and W = C(R+,R). The canonical process is

denoted by (Wt)t≥0 and (Bt)t≥0 is the associated filtration. For any probability measure µ on
W, the expectation with respect to µ is denoted by Eµ. A probability measure µ on W is said
to solve the martingale problem associated with (9) if the pushforward of µ by W0 is π and if
for all φ ∈ C∞c (R,R), the process(

φ(Wt)− φ(W0)−
∫ t

0

Lφ(Wu)du

)
t≥0

is a martingale with respect to µ and the filtration (Bt)t≥0, i.e. if for all s, t ∈ R+, s ≤ t, µ−a.s.

Eµ
[
φ(Wt)− φ(W0)−

∫ t

0

Lφ(Wu)du

∣∣∣∣Bs

]
= φ(Ws)− φ(W0)−

∫ s

0

Lφ(Wu)ds .

H2. The function V̇ is continuous on R except on a Lebesgue-negligible set DV̇ and is bounded
on all compact sets of R.

If V̇ satisfies H2, [7, Lemma 1.9, Theorem 20.1 Chapter 5] show that any solution to the
martingale problem associated with (9) coincides with the law of a solution to the SDE (9),
and conversely. Therefore, uniqueness in law of weak solutions to (9) implies uniqueness of the
solution of the martingale problem.

Proposition 3. Assume H2 holds. Assume also that for all φ ∈ C∞c (R,R), m ∈ N∗, g : Rm →
R bounded and continuous, and 0 ≤ t1 ≤ · · · ≤ tm ≤ s ≤ t:

lim
d→+∞

Eµd
[(
φ (Wt)− φ (Ws)−

∫ t

s

Lφ (Wu) du

)
g (Wt1 , . . . ,Wtm)

]
= 0 . (16)

Then, every limit point of the sequence of probability measures (µd)d≥1 on W is a solution to
the martingale problem associated with (9).

Proof. The proof is postponed to Section 4.5.

Theorem 3. Assume H1 and H2 hold. Assume also that (9) has a unique weak solution. Then,{
(Y dt,1)t≥0, d ∈ N∗

}
converges weakly to the solution (Yt)t≥0 of the Langevin equation defined by

(9). Furthermore, h(`) is maximized at the unique value of ` for which a(`) = 0.234, where a is
defined in Theorem 2.
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Proof. The proof is postponed to Section 4.6.

Example 1 (Bayesian Lasso). We apply the results obtained above to a target density π on R
given by x 7→ e−V (x)/

∫
R e−V (y)dy where V is given by

V : x 7→ U(x) + λ |x| ,

where λ ≥ 0 and U is twice continuously differentiable with bounded second derivative. Further-
more,

∫
R |x|

6
e−V (x)dx < +∞. Define V̇ : x 7→ U ′(x) + λ sign(x), with sign(x) = −1 if x ≤ 0

and sign(x) = 1 otherwise. We first check that H1(i) holds. Note that for all x, y ∈ R,

||x+ y| − |x| − sign(x)y| ≤ 2|y|1R+
(|y| − |x|) , (17)

which implies that, for any p ≥ 1, there exists Cp such that∥∥∥V (·+ θ)− V (·)− θV̇ (·)
∥∥∥
π,p
≤ ‖U(·+ θ)− U(·)− θU ′(·)‖π,p + λ ‖|·+ θ| − |·| − θ sign(·)‖π,p

≤ ‖U ′′‖∞ θ2 + 2 |θ|λ{π([−θ, θ])}1/p ≤ C |θ|p+1/p ∨ |θ|2 .

Assumptions H1(ii) and H2 are easy to check. The uniqueness in law of (9) is established in
[1, Theorem 4.5 (i)]. Therefore, Theorem 3 can be applied.

3 Target density supported on an interval of R
We now extend our results to densities supported by a open interval I ⊂ R :

π(x) ∝ exp(−V (x))1I(x) ,

where V : I → R is a measurable function. Note that by convention V (x) = −∞ for all x /∈ I.
Denote by I the closure of I in R. The results of Section 2 cannot be directly used in such a
case, as π is no longer positive on R. Consider the following assumption.

G1. There exists a measurable function V̇ : I → R and r > 1 such that:

(i) There exist p > 4, C > 0 and β > 1 such that for all θ ∈ R,∥∥∥{V (·+ θ)− V (·)}1I(·+ rθ)1I(·+ (1− r)θ)− θV̇ (·)
∥∥∥
π,p
≤ C|θ|β ,

with the convention 0×∞ = 0.

(ii) The function V̇ satisfies ‖V̇ ‖π,6 < +∞.

(iii) There exist γ ≥ 6 and C > 0 such that, for all θ ∈ R,∫
R
1Ic(x+ θ)π(x)dx ≤ C|θ|γ .

As an important consequence of G1(iii), if X is distributed according to π and is independent
of the standard random variable Z, there exists a constant C such that

P
(
X + `d−1/2Z ∈ Ic

)
≤ Cd−γ/2 . (18)
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Theorem 4. Assume G1 holds. Then, limd→+∞ P
[
Ad1
]

= a(`), where a(`) = 2Φ(−
√
I`/2).

Proof. The proof is postponed to Section 5.1.

We now established the weak convergence of the sequence {(Y dt,1)t≥0, d ∈ N?}, following the
same steps as for the proof of Theorem 3. Denote for all d ≥ 1, µd the law of the process
(Y dt,1)t≥0.

Proposition 4. Assume G1 holds. Then, the sequence (µd)d≥1 is tight in W.

Proof. The proof is postponed to Section 5.2.

Contrary to the case where π is positive on R, we do not assume that V̇ is bounded on all
compact sets of R. Therefore, we consider the local martingale problem associated with (9): with
the notations of Section 2, a probability measure µ on W is said to solve the local martingale
problem associated with (9) if the pushforward of µ by W0 is π and if for all ψ ∈ C∞(R,R), the
process (

ψ(Wt)− ψ(W0)−
∫ t

0

Lψ(Wu)du

)
t≥0

is a local martingale with respect to µ and the filtration (Bt)t≥0. By [1, Theorem 1.27], any
solution to the local martingale problem associated with (9) coincides with the law of a solution
to the SDE (9) and conversely. If (9) admits a unique solution in law, this law is the unique
solution to the local martingale problem associated with (9). We first prove that any limit point
µ of (µd)d≥1 is a solution to the local martingale problem associated with (9).

G2. The function V̇ is continuous on I except on a null-set DV̇ , with respect to the Lebesgue
measure, and is bounded on all compact sets of I.

This condition does not preclude that V̇ is unbounded at the boundary of I.

Proposition 5. Assume G1 and G2 hold. Assume also that for all φ ∈ C∞c (I,R), m ∈ N∗,
g : Rm → R bounded and continuous, and 0 ≤ t1 ≤ · · · ≤ tm ≤ s ≤ t:

lim
d→+∞

Eµd
[(
φ (Wt)− φ (Ws)−

∫ t

s

Lφ (Wu) du

)
g (Wt1 , . . . ,Wtm)

]
= 0 . (19)

Then, every limit point of the sequence of probability measures (µd)d≥1 on W is a solution to
the local martingale problem associated with (9).

Proof. The proof is postponed to Section 5.3.

Theorem 5. Assume G1 and G2 hold. Assume also that (9) has a unique weak solution. Then,{
(Y dt,1)t≥0, d ∈ N∗

}
converges weakly to the solution (Yt)t≥0 of the Langevin equation defined by

(9). Furthermore, h(`) is maximized at the unique value of ` for which a(`) = 0.234, where a is
defined in Theorem 2.

Proof. The proof is along the same lines as the proof of Theorem 3 and is postponed to Sec-
tion 5.4.

The conditions for uniqueness in law of singular one-dimensional stochastic differential equa-
tions are given in [1]. These conditions are rather involved and difficult to summarize in full
generality. We rather illustrate Theorem 5 by two examples.
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Example 2 (Application to the Gamma distribution). Define the class of the generalized
Gamma distributions as the family of densities on R given by

πγ : x 7→ xa1−1 exp(−xa2)1R?+(x)
/∫

R?+
ya1−1 exp(−ya2)dy ,

with two parameters a1 > 6 and a2 > 0. Note that in this case I = R?+, for all x ∈ I,

Vγ : x 7→ xa2 − (a1 − 1) log x and V̇γ : x 7→ a2x
a2−1 − (a1 − 1)/x. We check that G1 holds with

r = 3/2. First, we show that G1(i) holds with p = 5. Write for all θ ∈ R and x ∈ I,

{Vγ(x+ θ)− Vγ(x)}1I(x+ (1− r)θ)1I(x+ rθ)− θV̇γ(x) = E1 + E2 + E3 ,

where

E1 = θV̇γ(x) {1I(x− θ/2)1I(x+ 3θ/2)− 1} ,
E2 = (1− a1) {log(1 + θ/x)− θ/x}1I(x− θ/2)1I(x+ 3θ/2) ,

E3 = ((x+ θ)a2 − xa2 − a2θx
a2−1)1I(x− θ/2)1I(x+ 3θ/2) .

It is enough to prove that there exists q > 5 such that for all i ∈ {1, 2, 3},
∫
I |Ei|

5
πγ(x)dx ≤ C|θ|q.

The result is proved for θ < 0 (the proof for θ > 0 follows the same lines). For all θ ∈ R using
a1 > 6,∫

R∗+
|E1|5 πγ(x)dx ≤ C|θ|5

∫ 3|θ|/2

0

{
1/x5 + x5(a2−1)

}
xa1−1e−x

a2
dx ,

≤ C|θ|a1

(∫ 3/2

0

xa1−6e−(|θ|x)a2 dx+ |θ|5a2

∫ 3/2

0

x5(a2−1)+a1−1e−(|θ|x)a2 dx

)
,

≤ C(|θ|a1 + |θ|5a2+a1) . (20)

On the other hand, as for all x > −1, x/(x+ 1) ≤ log(1 + x) ≤ x, for all θ < 0, and x ≥ 3|θ|/2,

|log(1 + θ/x)− θ/x| ≤ |θ|2

x2(1 + θ/x)
≤ 3|θ|2/x2 ,

where the last inequality come from |θ|/x ≤ 2/3. Then, it yields∫
R∗+
|E2(x)|5 πγ(x)dx ≤ C|θ|10

(∫ 1

3|θ|/2
xa1−11e−x

a2
dx+

∫ +∞

1

xa1−11e−x
a2

dx

)
,

≤ C(|θ|a1 + |θ|10) . (21)

For the last term, for all θ < 0 and all x ≥ 3|θ|/2, using a Taylor expansion of x 7→ xa2 , there
exists ζ ∈ [x+ θ, x] such that∣∣(x+ θ)a2 − xa2 − a2θx

a2−1
∣∣ ≤ C|θ|2|ζ|a2−2 ≤ C|θ|2 |x|a2−2

.

Then,∫
R∗+
|E3(x)|5 πγ(x)dx ≤ C|θ|10

∫ +∞

3|θ|/2
x5(a2−2)+a1−1e−x

a2
dx ≤ C(|θ|5a2+a1 + |θ|10) . (22)

8



Durmus et al. Optimal scaling under Lp mean differentiability

Combining (20), (21),(22) and using that a1 > 6 concludes the proof of G1(i) for p = 5. The
proof of G1(ii) follows from∫

R∗+
|V̇γ(x)|6πγ(x)dx ≤ C

(∫
R∗+
xa1−1+6(a2−1)e−x

a2
dx+

∫
R∗+
xa1−7e−x

a2
dx

)
<∞

and G1(iii) follows from
∫
R 1Ic(x + θ)πγ(x)dx ≤ C|θ|a1 . Now consider the Langevin equation

associated with πγ given by dYt = −V̇γ(Yt)dt+
√

2dBt with initial distribution πγ . This stochastic
differential equation has 0 as singular point, which has right type 3 according to the terminology
of [1]. On the other hand ∞ has type A and the existence and uniqueness in law for the SDE
follows from [1, Theorem 4.6 (viii)]. Since G2 is straightforward, Theorem 5 can be applied.

Example 3 (Application to the Beta distribution). Consider now the case of the Beta distri-
butions πβ with density x 7→ xa1−1(1− x)a2−11(0,1)(x) with a1, a2 > 6. Here I = (0, 1) and the
log-density Vβ and its derivative on I are defined by Vβ(x) = −(a1− 1) log x− (a2− 1) log(1−x)

and V̇β(x) = −(a1 − 1)/x − (a2 − 1)/(1 − x). Along the same lines as above, πβ satisfies G1
and G2. Hence Theorem 4 can be applied if we establish the uniqueness in law for the Langevin
equation associated with πβ defined by dYt = −V̇β(Yt)dt+

√
2dBt with initial distribution πβ. In

the terminology of [1], 0 has right type 3 and 1 has left type 3. Therefore by [1, Theorem 2.16
(i), (ii)], the SDE has a global unique weak solution. To illustrate our findings, consider the
Beta distribution with parameters a1 = 10 and a2 = 10. Define the expected square distance by

ESJDd(`) = E
[∥∥Xd

1 −Xd
0

∥∥2
]

where Xd
0 has distribution πd

β
and Xd

1 is the first iterate of the

Markov chain defined by the Random Walk Metropolis algorithm given in (2). By Theorem 4
and Theorem 5, we have limd→+∞ ESJDd(`) = h(`) = `2a(`). Figure 1 displays an empirical
estimation for the ESJDd for dimensions d = 10, 50, 100 as a function of the empirical mean
acceptance rate. We can observe that as expected, the ESJDd converges to some limit function
as d goes infinity, and this function has a maximum for a mean acceptance probability around
0.23.

4 Proofs of Section 2

For any real random variable Y and any p ≥ 1, let ‖Y ‖p := E[|Y |p]1/p.

4.1 Proof of Lemma 1

Let ∆θV (x) = V (x)− V (x+ θ). By definition of ξθ and π,(
ξθ(x)− ξ0(x) + θV̇ (x)ξ0(x)/2

)2

≤ 2 {Aθ(x) +Bθ(x)}π(x) ,

where

Aθ(x) = (exp(∆θV (x)/2)− 1−∆θV (x)/2)
2
,

Bθ(x) =
(

∆θV (x) + θV̇ (x)
)2

/4.

9
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Figure 1: Expected square jumped distance for the beta distribution with parameters a1 = 10
and a2 = 10 as a function of the mean acceptance rate for d = 10, 50, 100.

By H1(i), ‖Bθ‖π,p ≤ C|θ|β . For Aθ, note that for all x ∈ R, (exp(x)−1−x)2 ≤ 2x4(exp(2x)+1).
Then, ∫

R
Aθ(x)π(x)dx ≤ C

∫
R

∆θV (x)4
(

1 + e∆θV (x)
)
π(x)dx

≤ C
∫
R

(
∆θV (x)4 + ∆−θV (x)4

)
π(x)dx .

The proof is completed writing (the same inequality holds for ∆−θV ):∫
R

∆θV (x)4π(x)dx ≤ C
[∫

R

(
∆θV (x)− θV̇ (x)

)4

π(x)dx+ θ4

∫
R
V̇ 4(x)π(x)dx

]
and using H1(i)-(ii).

4.2 Proof of Proposition 1

Define

R(x) =

∫ x

0

(x− u)2

(1 + u)3
du . (23)

R is the remainder term of the Taylor expansion of x 7→ log(1 + x):

log(1 + x) = x− x2/2 +R(x) . (24)

We preface the proof by the following Lemma.

Lemma 2. Assume H1 holds. Then, if X is a random variable distributed according to π and
Z is a standard Gaussian random variable independent of X,

10
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(i) limd→+∞ d
∥∥∥ζd(X,Z) + `ZV̇ (X)/(2

√
d)
∥∥∥2

2
= 0.

(ii) limd→+∞
√
d
∥∥∥V (X)− V (X + `Z/

√
d) + `ZV̇ (X)/

√
d
∥∥∥
p

= 0.

(iii) limd→∞ d
∥∥R (ζd(X,Z)

)∥∥
1

= 0,

where ζd is given by (14).

Proof. Using the definitions (11) and (14) of ζd and ξθ ,

ζd(x, z) = ξ`zd−1/2(x)/ξ0(x)− 1 . (25)

(i) The proof follows from Lemma 1 using that β > 1:∥∥∥ζd(X,Z) + `ZV̇ (X)/(2
√
d)
∥∥∥2

2
≤ C`2βd−βE

[
|Z|2β

]
.

(ii) Using H1(i), we get that∥∥∥V (X)− V (X + `Z/
√
d) + `ZV̇ (X)/

√
d
∥∥∥p
p
≤ C`βpd−βp/2E

[
|Z|βp

]
and the proof follows since β > 1.

(iii) Note that for all x > 0, u ∈ [0, x], |(x−u)(1+u)−1| ≤ |x|, and the same inequality holds
for x ∈ (−1, 0] and u ∈ [x, 0]. Then by (23) and (24), for all x > −1, |R(x)| ≤ x2 |log(1 + x)|.
Then by (50), setting Ψd(x, z) = R(ζd(x, z))

|Ψd(x, z)| ≤ (ξ`zd−1/2(x)/ξ0(x)− 1)
2
∣∣∣V (x+ `zd−1/2)− V (x)

∣∣∣ /2 .
Since for all x ∈ R, | exp(x)− 1| ≤ |x|(exp(x) + 1), this yields,

|Ψd(x, z)| ≤ 4−1
∣∣∣V (x+ `zd−1/2)− V (x)

∣∣∣3 (exp
(
V (x)− V (x+ `zd−1/2)

)
+ 1
)
,

which implies that∫
R
|Ψd(x, z)|π(x)dx ≤ 4−1

∫
R

∣∣∣V (x+ `zd−1/2)− V (x)
∣∣∣3 {π(x) + π(x+ `zd−1/2)}dx .

By Hölder’s inequality and using H1(i),∫
R
|Ψd(x, z)|π(x)dx ≤ C

(∣∣∣`zd−1/2
∣∣∣3(∫

R

∣∣∣V̇ (x)
∣∣∣4 π(x)dx

)3/4

+
∣∣∣`zd−1/2

∣∣∣3β) .

The proof follows from H1(ii) since β > 1.

For all d ≥ 1, let Xd be distributed according to πd, and Zd be d-dimensional Gaussian
random variable independent of Xd, set

Jd =

∥∥∥∥∥
d∑
i=2

{
∆V di − bd(Xd

i , Z
d
i )
}∥∥∥∥∥

1

,

where ∆V di and bd are defined in (5) and (13), respectively.

11
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Lemma 3. limd→+∞ Jd = 0.

Proof. Noting that ∆V di = 2 log
(
1 + ζd

(
Xd
i , Z

d
i

))
and using (24), we get

Jd ≤
3∑
i=1

Jdi =

∥∥∥∥∥
d∑
i=2

2ζd
(
Xd
i , Z

d
i

)
+
`Zdi√
d
V̇ (Xd

i )− E
[
2ζd(Xd

i , Z
d
i )
]∥∥∥∥∥

1

+

∥∥∥∥∥
d∑
i=2

ζd
(
Xd
i , Z

d
i

)2 − `2

4d
V̇ 2(Xd

i )

∥∥∥∥∥
1

+ 2

∥∥∥∥∥
d∑
i=2

R
(
ζd
(
Xd
i , Z

d
i

))∥∥∥∥∥
1

,

where R is defined by (23). By Lemma 2(i), the first term goes to 0 as d goes to +∞ since

Jd1 ≤
√
d

∥∥∥∥2ζd
(
Xd

1 , Z
d
1

)
+
`Zd1√
d
V̇ (Xd

1 )

∥∥∥∥
2

.

Consider now Jd2. We use the following decomposition for all 2 ≤ i ≤ d,

ζd(Xd
i , Z

d
i )2 − `2

4d
V̇ 2(Xd

i ) =

(
ζd(Xd

i , Z
d
i ) +

`

2
√
d
Zdi V̇ (Xd

i )

)2

− `√
d
Zdi V̇ (Xd

i )

(
ζd(Xd

i , Z
d
i ) +

`

2
√
d
Zdi V̇ (Xd

i )

)
+
`2

4d

{
(Zdi )2 − 1

}
V̇ 2(Xd

i ) .

Then,

Jd2 ≤ d
∥∥∥∥ζd(Xd

1 , Z
d
1 ) +

`

2
√
d
Zd1 V̇ (Xd

1 )

∥∥∥∥2

2

+
`2

4d

∥∥∥∥∥
d∑
i=2

V̇ 2(Xd
i )
{

(Zdi )2 − 1
}∥∥∥∥∥

1

+ `
√
d

∥∥∥∥V̇ (Xd
1 )Zd1

(
ζd(Xd

1 , Z
d
1 ) +

`

2
√
d
Zd1 V̇ (Xd

1 )

)∥∥∥∥
1

.

Using H1(ii), Lemma 2(i) and the Cauchy-Schwarz inequality show that the first and the last
term converge to zero. For the second term note that E

[
(Zdi )2 − 1

]
= 0 so that

d−1

∥∥∥∥∥
d∑
i=2

V̇ 2(Xd
i )
{

(Zdi )2 − 1
}∥∥∥∥∥

1

≤ d−1/2 Var
[
V̇ 2(Xd

1 )
{

(Zd1 )2 − 1
}]1/2

→ 0 .

Finally, limd→∞ Jd3 = 0 by (24) and Lemma 2(iii).

Proof of Proposition 1. Let q > 0 and Λd = −`d−1/2Zd1 V̇ (Xd
1 ) +

∑d
i=2 ∆V di . By the triangle

inequality, Ed(q) ≤ Ed1(q) + Ed2(q) where

Ed1(q) = E

[(
Zd1
)q ∣∣∣∣∣1 ∧ exp

{
d∑
i=1

∆V di

}
− 1 ∧ exp

{
Λd
}∣∣∣∣∣
]
,

Ed2(q) = E
[(
Zd1
)q ∣∣1 ∧ exp

{
Λd
}
− 1 ∧ exp

{
υd
}∣∣] .

Since t 7→ 1 ∧ et is 1-Lipschitz, by the Cauchy-Schwarz inequality we get

Ed1(q) ≤
∥∥Zd1∥∥q2q ∥∥∥∆V d1 + `d−1/2Zd1 V̇ (Xd

1 )
∥∥∥

2
.

By Lemma 2(ii), Ed1(q) goes to 0 as d goes to +∞. Consider now Ed2(q). Using again that
t 7→ 1 ∧ et is 1-Lipschitz and Lemma 3, Ed2(q) goes to 0.

12
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4.3 Proof of Theorem 2

Following [2], we introduce the function G defined on R+ × R by:

G(a, b) =


exp

(
a−b

2

)
Φ
(

b
2
√
a
−
√
a
)

if a ∈ (0,+∞) ,

0 if a = +∞ ,
exp

(
− b

2

)
1{b>0} if a = 0 ,

(26)

where Φ is the cumulative distribution function of a standard normal variable, and Γ:

Γ(a, b) =


Φ
(
− b

2
√
a

)
+ exp

(
a−b

2

)
Φ
(

b
2
√
a
−
√
a
)

if a ∈ (0,+∞) ,
1
2 if a = +∞ ,

exp
(
− b+2

)
if a = 0 .

(27)

Note that G and Γ are bounded on R+ × R. G and Γ are used throughout Section 4.

Lemma 4. Assume H1 holds. For all d ∈ N∗, let Xd be a random variable distributed according
to πd and Zd be a standard Gaussian random variable in Rd, independent of X. Then,

lim
d→+∞

dE
[
2ζd(Xd

1 , Z
d
1 )
]

= −`
2

4
I ,

where I is defined in (6) and ζd in (14).

Proof. By (14),

dE
[
2ζd(Xd

1 , Z
d
1 )
]

= 2dE
[∫

R

√
π
(
x+ `d−1/2Zd1

)√
π (x)dx− 1

]
,

= −dE

[∫
R

(√
π
(
x+ `d−1/2 Zd1

)
−
√
π (x)

)2

dx

]
= −dE

[
{ζd(Xd

1 , Z
d
1 )}2

]
.

The proof is then completed by Lemma 2(i).

Proof of Theorem 2. By definition of Ad1, see (3),

P
[
Ad1
]

= E

[
1 ∧ exp

{
d∑
i=1

∆V di

}]
,

where ∆V di = V (Xd
0,i)− V (Xd

0,i + `d−1/2Zd1,i) and where Xd
0 is distributed according to πd and

independent of the standard d-dimensional Gaussian random variable Zd1 . Following the same
steps as in the proof of Proposition 1 yields:

lim
d→+∞

∣∣P [Ad1]− E
[
1 ∧ exp

{
Θd
}]∣∣ = 0 , (28)

where

Θd = −`d−1/2
d∑
i=1

Zd1,iV̇ (Xd
0,i)− `2

d∑
i=2

V̇ (Xd
0,i)

2/(4d) + 2(d− 1)E
[
ζd(Xd

0,1, Z
d
1,1)
]
.

13
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Conditional on Xd
0 , Θd is a one dimensional Gaussian random variable with mean µd and

variance σ2
d, defined by

µd = −`2
d∑
i=2

V̇ (Xd
0,i)

2/(4d) + 2(d− 1)E
[
ζd(Xd

0,1, Z
d
1,1)
]

σ2
d = `2d−1

d∑
i=1

V̇ (Xd
0,i)

2 .

Therefore, since for any G ∼ N (µ, σ2), E[1 ∧ exp(G)] = Φ(µ/σ) + exp(µ + σ2/2)Φ(−σ − µ/σ),
taking the expectation conditional on Xd

0 , we have

E
[
1 ∧ exp

{
Θd
}]

= E
[
Φ(µd/σd) + exp(µd + σ2

d/2)Φ(−σd − µd/σd)
]

= E
[
Γ(σ2

d,−2µd)
]
,

where the function Γ is defined in (27). By Lemma 4 and the law of large numbers, almost
surely, limd→+∞ µd = −`2I/2 and limd→+∞ σ2

d = `2I. Thus, as Γ is bounded, by Lebesgue’s
dominated convergence theorem:

lim
d→+∞

E
[
1 ∧ exp

{
Θd
}]

= 2Φ
(
−`
√
I/2
)
.

The proof is then completed by (28).

4.4 Proof of Proposition 2

By Kolmogorov’s criterion it is enough to prove that there exists a non-decreasing function
γ : R+ → R+ such that for all d ≥ 1 and all 0 ≤ s ≤ t,

E
[(
Y dt,1 − Y ds,1

)4] ≤ γ(t)(t− s)2 .

The inequality is straightforward for all 0 ≤ s ≤ t such that bdsc = bdtc. For all 0 ≤ s ≤ t such
that ddse ≤ bdtc,

Y dt,1 − Y ds,1 = Xd
bdtc,1 −X

d
ddse,1 +

dt− bdtc√
d

`Zdddte,11Adddte
+
ddse − ds√

d
`Zdddse,11Adddse

.

Then by the Hölder inequality,

E
[(
Y dt,1 − Y ds,1

)4] ≤ C ((t− s)2 + E
[(
Xd
bdtc,1 −X

d
ddse,1

)4
])

,

where we have used

(dt− bdtc)2

d2
+

(ddse − ds)2

d2
≤ (dt− ds)2 + (ddse − bdtc)2

d2
≤ 2(t− s)2 .

The proof is completed using Lemma 5.

Lemma 5. Assume H1. Then, there exists C > 0 such that, for all 0 ≤ k1 < k2,

E
[(
Xd
k2,1 −X

d
k1,1

)4] ≤ C 4∑
p=2

(k2 − k1)p

dp
.

14
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Proof. For all 0 ≤ k1 < k2,

E
[(
Xd
k2,1 −X

d
k1,1

)4]
=
`4

d2
E

( k2∑
k=k1+1

Zdk,1 −
k2∑

k=k1+1

Zdk,11(Adk)
c

)4
 .

Therefore by the Hölder inequality,

E
[(
Xd
k2,1 −X

d
k1,1

)4] ≤ 24`4

d2
(k2 − k1)2 +

8`4

d2
E

( k2∑
k=k1+1

Zdk,11(Adk)
c

)4
 . (29)

The second term can be written:

E

( k2∑
k=k1+1

Zdk,11(Adk)
c

)4
 =

∑
E

[
4∏
i=1

Zdmi,11(Admi)
c

]
,

where the sum is over all the quadruplets (mi)
4
i=1 satisfying mi ∈ {k1 + 1, . . . , k2}, i = 1, . . . , 4.

The expectation on the right hand side can be upper bounded depending on the cardinality of
{m1, . . . ,m4}. For all 1 ≤ j ≤ 4, define

Ij = {(m1, . . . ,m4) ∈ {k1 + 1, . . . , k2} ; #{m1, . . . ,m4} = j} . (30)

Let (m1,m2,m3,m4) ∈ {k1 + 1, . . . , k2}4 and (X̃d
k )k≥0 be defined as:

X̃d
0 = Xd

0 and X̃d
k+1 = X̃d

k + 1k/∈{m1−1,m2−1,m3−1,m4−1}
`√
d
Zdk+11Ãdk+1

,

with Ãdk+1 =
{
Uk+1 ≤ exp

(∑d
i=1 ∆Ṽ dk,i

)}
, where for all k ≥ 0 and all 1 ≤ i ≤ d, ∆Ṽk,i is

defined by

∆Ṽ dk,i = V
(
X̃d
k,i

)
− V

(
X̃d
k,i +

`√
d
Zdk+1,i

)
.

Note that on the event
⋂4
j=1

{
Admj

}c
, the two processes (Xk)k≥0 and (X̃k)k≥0 are equal. Let

F be the σ-field generated by
(
X̃d
k

)
k≥0

.

(a) #{m1, . . . ,m4} = 4, as the
{(
Umj , Z

d
mj ,1, . . . , Z

d
mj ,d

)}
1≤j≤4

are independent condition-

ally to F ,

E

 4∏
j=1

Zdmj ,11
(
Admj

)c
∣∣∣∣∣∣F
 =

4∏
j=1

E
[
Zdmj ,11

(
Ãdmj

)c
∣∣∣∣F] ,

=

4∏
j=1

E

[
Zdmj ,1ϕ

(
d∑
i=1

∆Ṽ dmj−1,i

)∣∣∣∣∣F
]
.

where ϕ(x) = (1− ex)+. Since the function ϕ is 1-Lipschitz, we get∣∣∣∣∣ϕ
(

d∑
i=1

∆Ṽ dmj−1,i

)
− ϕ

(
− `√

d
V̇ (X̃d

mj−1,1)Zdmj ,1 +

d∑
i=2

∆Ṽ dmj−1,i

)∣∣∣∣∣
≤
∣∣∣∣∆Ṽ dmj−1,1 +

`√
d
V̇ (X̃d

mj−1,1)Zdmj ,1

∣∣∣∣ .
15
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Then, ∣∣∣∣∣∣E
 4∏
j=1

Zdmj ,11
(
Admj

)c
∣∣∣∣∣∣ ≤ E

 4∏
j=1

{
Admj +Bdmj

} ,
where

Admj = E
[∣∣∣Zdmj ,1∣∣∣ ∣∣∣∣∆Ṽ dmj−1,1 +

`√
d
V̇ (X̃d

mj−1,1)Zdmj ,1

∣∣∣∣∣∣∣∣F] ,
Bdmj =

∣∣∣∣∣E
[
Zdmj ,1

(
1−exp

{
− `√

d
V̇ (X̃d

mj−1,1)Zdmj ,1 +

d∑
i=2

∆Ṽ dmj−1,i

})
+

∣∣∣∣∣F
]∣∣∣∣∣ .

By the inequality of arithmetic and geometric means and convex inequalities,∣∣∣∣∣∣E
 4∏
j=1

Zdmj ,11
(
Admj

)c
∣∣∣∣∣∣ ≤ 8E

 4∑
j=1

(
Admj

)4

+
(
Bdmj

)4

 .
By Lemma 2(ii) and the Hölder inequality, there exists C > 0 such that E

[(
Admj

)4
]
≤ Cd−2.

On the other hand, by [2, Lemma 6] since Zdmj ,1 is independent of F ,

Bdmj =

∣∣∣∣∣E
[
`√
d
V̇ (X̃d

mj−1,1)G

(
`2

d
V̇ (X̃d

mj−1,1)2,−2

d∑
i=2

∆Ṽ dmj−1,i

)∣∣∣∣∣F
]∣∣∣∣∣ ,

where the function G is defined in (26). By H1(ii) and since G is bounded, E[(Bdmj )
4] ≤ Cd−2.

Therefore |E[
∏4
j=1 Z

d
mj ,11(Admj )c ]| ≤ Cd−2, showing that

∑
(m1,m2,m3,m4)∈I4

∣∣∣∣∣E
[

4∏
i=1

Zdmi,11(Admi)
c

]∣∣∣∣∣ ≤ C

d2

(
k2 − k1

4

)
. (31)

(b) #{m1, . . . ,m4} = 3, as the
{(
Umj , Z

d
mj ,1, . . . , Z

d
mj ,d

)}
1≤j≤3

are independent condition-

ally to F ,∣∣∣∣∣∣E
(Zdm1,1

)2
1(Adm1

)
c

3∏
j=2

Zdmj ,11
(
Admj

)c
∣∣∣∣∣∣F
∣∣∣∣∣∣

≤ E
[(
Zdm1,1

)2∣∣∣F]
∣∣∣∣∣∣

3∏
j=2

E
[
Zdmj ,11

(
Ãdmj

)c
∣∣∣∣F]

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

3∏
j=2

E
[
Zdmj ,11

(
Ãdmj

)c
∣∣∣∣F]

∣∣∣∣∣∣ .
Then, following the same steps as above, and using Holder’s inequality yields∣∣∣∣∣∣E

 3∏
j=2

Zdmj ,11
(
Admj

)c
∣∣∣∣∣∣ ≤ CE

 3∑
j=2

(
Admj

)2

+
(
Bdmj

)2

 ≤ Cd−1

and ∑
(m1,m2,m3,m4)∈I3

∣∣∣∣∣E
[

4∏
i=1

Zdmi,11(Admi)
c

]∣∣∣∣∣ ≤ C

d

(
k2 − k1

3

)
≤ C

d
(k2 − k1)3 . (32)
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(c) If #{m1, . . . ,m4} = 2 two cases have to be considered:

E
[(
Zdm1,1

)2
1(Ãdm1

)
c

(
Zdm2,1

)2
1(Adm2

)
c

]
≤ E

[(
Zdm1,1

)2]E [(Zdm2,1

)2] ≤ 1 ,

E
[(
Zdm1,1

)3
1(Adm1

)
cZdm2,11(Adm2

)
c

]
≤ E

[∣∣Zdm1,1

∣∣3]E [∣∣Zdm2,1

∣∣] ≤ 4

π
.

This yields

∑
(m1,m2,m3,m4)∈I2

∣∣∣∣∣E
[

4∏
i=1

Zdmi,11(Admi)
c

]∣∣∣∣∣
≤
(

3 + 4 · 4

π

)
(k2 − k1)(k2 − k1 − 1) ≤ C(k2 − k1)2 . (33)

(d) If #{m1, . . . ,m4} = 1: E
[(
Zdmi,11(Admi)

c

)4
]
≤ E

[(
Zdm1,1

)4] ≤ 3, then

∑
(m1,m2,m3,m4)∈I1

∣∣∣∣∣E
[

4∏
i=1

Zdmi,11(Admi)
c

]∣∣∣∣∣ ≤ 3(k2 − k1) . (34)

The proof is completed by combining (29) with (53), (32), (33) and (34).

4.5 Proof of Proposition 3

We preface the proof by a preliminary lemma.

Lemma 6. Assume that H1 holds. Let µ be a limit point of the sequence of laws (µd)d≥1 of{
(Y dt,1)t≥0, d ∈ N∗

}
. Then for all t ≥ 0, the pushforward measure of µ by Wt is π.

Proof. By (7),

lim
d→+∞

E
[∣∣∣Y dt,1 −Xd

bdtc,1

∣∣∣] = 0 .

Since (µd)d≥1 converges weakly to µ, for all bounded Lipschitz function ψ : R→ R, Eµ[ψ(Wt)] =
limd→+∞ E[ψ(Y dt,1)] = limd→+∞ E[ψ(Xd

bdtc,1)]. The proof is completed upon noting that for all

d ∈ N∗ and all t ≥ 0, Xd
bdtc,1 is distributed according to π .

Proof of Proposition 3. Let µ be a limit point of (µd)d≥1. It is straightforward to show that
µ is a solution to the martingale problem associated with L if for all φ ∈ C∞c (R,R), m ∈ N∗,
g : Rm → R bounded and continuous, and 0 ≤ t1 ≤ · · · ≤ tm ≤ s ≤ t:

Eµ
[(
φ (Wt)− φ (Ws)−

∫ t

s

Lφ (Wu) du

)
g (Wt1 , . . . ,Wtm)

]
= 0 . (35)

Let φ ∈ C∞c (R,R), m ∈ N∗, g : Rm → R continuous and bounded, 0 ≤ t1 ≤ · · · ≤ tm ≤ s ≤ t
and WV̇ = {w ∈W|wu 6∈ DV̇ for almost every u ∈ [s, t]}. Note first that w ∈Wc

V̇
if and only

if
∫ t
s
1DV̇ (wu)du > 0. Therefore, by H2 and Fubini’s theorem:

Eµ
[∫ t

s

1DV̇ (Wu)du

]
=

∫ t

s

Eµ
[
1DV̇ (Wu)

]
du = 0 ,

17
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showing that µ(Wc
V̇

) = 0. We now prove that on WV̇ ,

Ψs,t : w 7→
{
φ(wt)− φ(ws)−

∫ t

s

Lφ(wu)du

}
g(wt1 , . . . , wtm) (36)

is continuous. It is clear that it is enough to show that w 7→
∫ t
s

Lφ(wu)du is continuous on WV̇ .
So let w ∈WV̇ and (wn)n≥0 be a sequence in W which converges to w in the uniform topology
on compact sets. Then by H2, for any u such that wu /∈ DV̇ , Lφ(wnu) converges to Lφ(wu) when
n goes to infinity and Lφ is bounded. Therefore by Lebesgue’s dominated convergence theorem,∫ t
s

Lφ(wnu)du converges to
∫ t
s

Lφ(wu)du. Hence, the map defined by (36) is continuous on WV̇ .
Since (µd)d≥1 converges weakly to µ, by (16):

µ (Ψs,t) = lim
d→+∞

µd (Ψs,t) = 0 ,

which is precisely (35).

4.6 Proof of Theorem 3

By Proposition 3, it is enough to check (16) to prove that µ is a solution to the martingale
problem. The core of the proof of Theorem 3 is Proposition 6, for which we need two technical
lemmata.

Lemma 7. Let X,Y and U be R-valued random variables and ε > 0. Assume that U is non-
negative and bounded by 1. Let g : R → R be a bounded function on R such that for all
(x, y) ∈ (−∞,−ε]2 ∪ [ε,+∞)

2
, |g(x)− g(y)| ≤ Cg |x− y|.

(i) For all a > 0,

E [U |g(X)− g(Y )|] ≤ CgE [U |X− Y |]
+ osc(g)

{
P [|X| ≤ ε] + a−1E [U |X− Y |] + P [ε < |X| < ε+ a]

}
,

where osc(g) = sup(g)− inf(g).

(ii) If there exist µ ∈ R and σ,CX ∈ R+ such that

sup
x∈R
|P [X ≤ x]− Φ((x− µ)/σ)| ≤ CX ,

then

E [U |g(X)− g(Y )|] ≤ CgE [U |X− Y |]

+ 2 osc(g)

{
CX +

√
2E [U |X− Y |] (2πσ2)−1/2 + ε(2πσ2)−1/2

}
.

Proof. (i) Consider the following decomposition

E [U |g(X)− g(Y)|] = E
[
U |(g(X)− g(Y))|1{(X,Y)∈(−∞,−ε]2}∪{(X,Y)∈[ε,+∞)2}

]
+ E

[
U |g(X)− g(Y)|

(
1{X∈[−ε,ε]} + 1({X<−ε}∩{Y≥−ε})∪({X>ε}∩{Y≤ε})

)]
.

18
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In addition, for all a > 0,

({X < −ε} ∩ {Y ≥ −ε}) ∪ ({X > ε} ∩ {Y ≤ ε})
⊂ {ε < |X| < ε+ a} ∪ ({|X| ≥ ε+ a} ∩ {|X− Y| ≥ a}) .

Then using that U ∈ [0, 1), we get

E [U |g(X)− g(Y)|] ≤ CgE [U |X− Y|] + osc(g)
(
P [|X| < ε+ a] + a−1E [U |X− Y|]

)
.

(ii) The result is straightforward if E [U |X− Y|] = 0. Assume E [U |X− Y|] > 0. Combining
the additional assumption and the previous result,

E [U |g(X)− g(Y)|] ≤ CgE [U |X− Y|]

+ osc(g)
{

2CX + 2(ε+ a)(2πσ2)−1/2 + a−1E [U |X− Y|]
}
.

As this result holds for all a > 0, the proof is concluded by setting a =
√
E [U |X− Y|] (2πσ2)1/2/2.

Lemma 8. Assume H1 holds. Let Xd be distributed according to πd and Zd be a d-dimensional
standard Gaussian random variable, independent of Xd. Then, limd→+∞ Ed = 0, where

Ed = E

[∣∣∣∣∣V̇ (Xd
1 )

{
G

(
`2

d
V̇ (Xd

1 )2, 2

d∑
i=2

∆V di

)
− G

(
`2

d
V̇ (Xd

1 )2, 2

d∑
i=2

bdi

)}∣∣∣∣∣
]
,

∆V di and bdi are resp. given by (5) and (13).

Proof. Set for all d ≥ 1, Ȳd =
∑d
i=2 ∆V di and X̄d =

∑d
i=2 b

d
i . By (26), ∂bG(a, b) = −G(a, b)/2 +

exp(−b2/8a)/(2
√

2πa). As G is bounded and x 7→ x exp(−x) is bounded on R+, we get
supa∈R+;|b|≥a1/4 ∂bG(a, b) < +∞. Therefore, there exists C ≥ 0 such that, for all a ∈ R+and

(b1, b2) ∈
(
−∞,−a1/4

)2 ∪ (a1/4,+∞
)2

,

|G(a, b1)− G(a, b2)| ≤ C |b1 − b2| . (37)

By definition of bdi (13), X̄d may be expressed as X̄d = σdS̄d + µd, where

µd = 2(d− 1)E
[
ζd(Xd

1 , Z
d
1 )
]
− `2(d− 1)

4d
E
[
V̇ (Xd

1 )2
]
,

σ2
d = `2E

[
V̇ (Xd

1 )2
]

+
`4

16d
E
[(
V̇ (Xd

1 )2 − E
[
V̇ (Xd

1 )2
])2
]
,

S̄d = (
√
dσd)

−1
d∑
i=2

βdi ,

βdi = −`Zdi V̇ (Xd
i )− `2

4
√
d

(
V̇ (Xd

i )2 − E
[
V̇ (Xd

i )2
])

.

By H1(ii) the Berry-Essen Theorem [5, Theorem 5.7] can be applied to S̄d. Then, there exists
a universal constant C such that for all d > 0,

sup
x∈R

∣∣∣∣∣P
[(

d

d− 1

)1/2

S̄d ≤ x

]
− Φ(x)

∣∣∣∣∣ ≤ C/√d .
19
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It follows that
sup
x∈R

∣∣P [X̄d ≤ x
]
− Φ((x− µd)/σ̃d)

∣∣ ≤ C/√d ,
where σ̃2

d = (d− 1)σ2
d/d. By this result and (37), Lemma 7 can be applied to obtain a constant

C ≥ 0, independent of d, such that:

E
[∣∣∣G (`2V̇ (Xd

1 )2/d, 2Ȳd

)
− G

(
`2V̇ (Xd

1 )2/d, 2X̄d

)∣∣∣ ∣∣Xd
1

]
≤ C

(
εd + d−1/2 +

√
2εd(2πσ̃2

d)−1/2 +

√
`|V̇ (Xd

1 )|/(2πd1/2σ̃2
d)

)
,

where εd = E
[∣∣X̄d − Ȳd

∣∣]. Using this result, we have

Ed ≤ C
{(

εd + d−1/2 +
√

2εd(2πσ̃2
d)−1/2

)
E
[
|V̇ (Xd

1 )|
]

+`1/2E
[
|V̇ (Xd

1 )|3/2
]

(2πd1/2σ̃2
d)−1/2

}
. (38)

By Lemma 3, εd goes to 0 as d goes to infinity, and by H1(ii) limd→+∞ σ2
d = `2E

[
V̇ (X)2

]
.

Combining these results with (38), it follows that Ed goes to 0 when d goes to infinity.

For all n ≥ 0, define Fdn = σ({Xd
k , k ≤ n}) and for all φ ∈ C∞c (R,R),

Md
n(φ) =

`√
d

n−1∑
k=0

φ′(Xd
k,1)

{
Zdk+1,11Adk+1

− E
[
Zdk+1,11Adk+1

∣∣∣Fdk]}
+
`2

2d

n−1∑
k=0

φ′′(Xd
k,1)

{
(Zdk+1,1)21Adk+1

− E
[

(Zdk+1,1)21Adk+1

∣∣∣Fdk]} . (39)

Proposition 6. Assume H1 and H2 hold. Then, for all s ≤ t and all φ ∈ C∞c (R,R),

lim
d→+∞

E
[∣∣∣∣φ(Y dt,1)− φ(Y ds,1)−

∫ t

s

Lφ(Y dr,1)dr −
(
Md
ddte(φ)−Md

ddse(φ)
)∣∣∣∣] = 0 .

Proof. First, since dY dr,1 = `
√
dZdddre,11Adddre

dr,

φ(Y dt,1)− φ(Y ds,1) = `
√
d

∫ t

s

φ′(Y dr,1)Zdddre,11Adddre
dr . (40)

As φ is C3, using (7) and a Taylor expansion, for all r ∈ [s, t] there exists χr ∈
[
Xd
bdrc,1, Y

d
r,1

]
such that:

φ′(Y dr,1) = φ′(Xd
bdrc,1) +

`√
d

(dr − bdrc)φ′′(Xd
bdrc,1)Zdddre,11Adddre

+
`2

2d
(dr − bdrc)2φ(3)(χr)

(
Zdddre,1

)2

1Adddre
.
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Plugging this expression into (40) yields:

φ(Y dt,1)− φ(Y ds,1) = `
√
d

∫ t

s

φ′(Xd
bdrc,1)Zdddre,11Adddre

dr

+ `2
∫ t

s

(dr − bdrc)φ′′(Xd
bdrc,1)(Zdddre,1)21Adddre

dr

+
`3

2
√
d

∫ t

s

(dr − bdrc)2φ(3)(χr)(Z
d
ddre,1)31Adddre

dr .

As φ(3) is bounded,

lim
d→+∞

E
[∣∣∣∣d−1/2

∫ t

s

(dr − bdrc)2φ(3)(χr)(Z
d
ddre,1)31Adddre

dr

∣∣∣∣] = 0 .

On the other hand, I =
∫ t
s
φ′′(Xd

bdrc,1)(dr − bdrc)(Zdddre,1)21Adddre
dr = I1 + I2 with

I1 =

∫ ddse/d
s

+

∫ t

bdtc/d
φ′′(Xd

bdrc,1)(dr − bdrc − 1/2)(Zdddre,1)21Adddre
dr

I2 =
1

2

∫ t

s

φ′′(Xd
bdrc,1)(Zdddre,1)21Adddre

dr .

Note that

I1 =
1

2d
(ddse − ds)(ds− bdsc)φ′′(Xd

bdsc,1)(Zdddse,1)21Adddse

+
1

2d
(ddte − dt)(dt− bdtc)φ′′(Xd

bdtc,1)(Zdddte,1)21Adddte

showing, as φ′′ is bounded, that limd→+∞ E[|I1|] = 0. Therefore,

lim
d→+∞

E
[∣∣φ(Y dt,1)− φ(Y ds,1)− Is,t

∣∣] = 0 ,

where

Is,t =

∫ t

s

{
`
√
dφ′(Xd

bdrc,1)Zdddre,1 + `2φ′′(Xd
bdrc,1)(Zdddre,1)2/2

}
1Adddre

dr .

Write

Is,t −
∫ t

s

Lφ(Y dr,1)dr −
(
Md
ddte(φ)−Md

ddse(φ)
)

= T d1 + T d2 + T d3 − T d4 + T d5 ,
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where

T d1 =

∫ t

s

φ′(Xd
bdrc,1)

(
`
√
d E

[
Zdddre,11Adddre

∣∣∣Fdbdrc]+
h(`)

2
V̇ (Xd

bdrc,1)

)
dr ,

T d2 =

∫ t

s

φ′′(Xd
bdrc,1)

(
`2

2
E
[
(Zdddre,1)21Adddre

∣∣∣Fdbdrc ]− h(`)

2

)
dr ,

T d3 =

∫ t

s

(
Lφ(Y dbdrc/d,1)− Lφ(Y dr,1)

)
dr ,

T d4 =
`(ddte − dt)√

d
φ′(Xd

bdtc,1)
(
Zdddte,11Adddte

− E
[
Zdddte,11Adddte

∣∣∣Fdbdtc ])
+
`2(ddte − dt)

2d
φ′′(Xd

bdtc,1)
(

(Zdddte,1)21Adddte
− E

[
(Zdddte,1)21Adddte

∣∣∣Fdbdtc ]) ,
T d5 =

`(ddse − ds)√
d

φ′(Xd
bdsc,1)

(
Zdddse,11Adddse

− E
[
Zdddse,11Adddse

∣∣∣Fdbdsc ])
+
`2(ddse − ds)

2d
φ′′(Xd

bdsc,1)
(

(Zdddse,1)21Adddse
− E

[
(Zdddse,1)21Adddse

∣∣∣Fdbdsc ]) .
It is now proved that for all 1 ≤ i ≤ 5, limd→+∞ E[|T di |] = 0. First, as φ′ and φ′′ are bounded,

E
[∣∣T d4 ∣∣+

∣∣T d5 ∣∣] ≤ Cd−1/2 . (41)

Denote for all r ∈ [s, t] and d ≥ 1,

∆V dr,i = V
(
Xd
bdrc,i

)
− V

(
Xd
bdrc,i + `d−1/2Zdddre,i

)
Ξdr = 1 ∧ exp

{
−`Zdddre,1V̇ (Xd

bdrc,1)/
√
d+

d∑
i=2

bdbdrc,i

}
,

Υd
r = 1 ∧ exp

{
−`Zdddre,1V̇ (Xd

bdrc,1)/
√
d+

d∑
i=2

∆V dr,i

}
,

where for all k, i ≥ 0, bdk,i = bd(Xd
k,i, Z

d
k+1,i), and for all x, z ∈ R, bd(x, y) is given by (13). By

the triangle inequality,

∣∣T d1 ∣∣ ≤ ∫ t

s

∣∣∣φ′(Xd
bdrc,1)

∣∣∣ (A1,r +A2,r +A3,r)dr , (42)

where

A1,r =
∣∣∣`√d E

[
Zdddre,1

(
1Adddre

−Υd
r

) ∣∣∣Fdbdrc ]∣∣∣ ,
A2,r =

∣∣∣`√d E
[
Zdddre,1

(
Υd
r − Ξdr

) ∣∣∣Fdbdrc ]∣∣∣ ,
A3,r =

∣∣∣`√d E
[
Zdddre,1Ξdr

∣∣∣Fdbdrc ]+ V̇ (Xd
bdrc,1)h(`)/2

∣∣∣ .
Since t 7→ 1 ∧ exp(t) is 1-Lipschitz, by Lemma 2(ii) E[

∣∣Ad1,r∣∣] goes to 0 as d → +∞ for almost

all r. So by the Fubini theorem, the first term in (42) goes to 0 as d → +∞. For Ad2,r, by [2,

22



Durmus et al. Optimal scaling under Lp mean differentiability

Lemma 6],

E
[∣∣Ad2,r∣∣] ≤ E

[∣∣∣∣∣`2V̇ (Xd
bdrc,1)

{
G

(
`2V̇ (Xd

bdrc,1)2

d
, 2

d∑
i=2

∆V dr,i

)

−G

(
`2V̇ (Xd

bdrc,1)2

d
, 2

d∑
i=2

bdbdrc,i

)}∣∣∣∣∣
]
,

where G is defined in (26). By Lemma 8, this expectation goes to zero when d goes to infinity.
Then by the Fubini theorem and the Lebesgue dominated convergence theorem, the second term
of (42) goes 0 as d→ +∞. For the last term, by [2, Lemma 6] again:

`
√
d E

[
Zdddre,1Ξdr

∣∣∣Fdbdrc ] = −`2V̇ (Xd
bdrc,1)

× G

(
`2

d

d∑
i=1

V̇ (Xd
bdrc,i)

2,
`2

2d

d∑
i=2

V̇ (Xd
bdrc,i)

2 − 4(d− 1)E
[
ζd(X,Z)

])
, (43)

where X is distributed according to π and Z is a standard Gaussian random variable independent
of X. As G is continuous on R+ × R \ {0, 0} (see [2, Lemma 2]), by H1(ii), Lemma 4 and the
law of large numbers, almost surely,

lim
d→+∞

`2G

(
`2

d

d∑
i=1

V̇ (Xd
bdrc,i)

2,
`2

2d

d∑
i=2

V̇ (Xd
bdrc,i)

2 − 4(d− 1)E
[
ζd(X,Z)

])
= `2G

(
`2E[V̇ (X)2], `2E[V̇ (X)2]

)
= h(`)/2 , (44)

where h(`) is defined in (10). Therefore by Fubini’s Theorem, (43) and Lebesgue’s dominated
convergence theorem, the last term of (42) goes to 0 as d goes to infinity. The proof for T d2
follows the same lines. By the triangle inequality,

∣∣T d2 ∣∣ ≤ ∣∣∣∣∫ t

s

φ′′(Xd
bdrc,1)(`2/2) E

[
(Zdddre,1)2

(
1Adddre

− Ξdr

) ∣∣∣Fdbdrc ] dr

∣∣∣∣
+

∣∣∣∣∫ t

s

φ′′(Xd
bdrc,1)

(
(`2/2) E

[
(Zdddre,1)2Ξdr

∣∣∣Fdbdrc ]− h(`)/2
)

dr

∣∣∣∣ . (45)

By Fubini’s Theorem, Lebesgue’s dominated convergence theorem and Proposition 1, the expec-
tation of the first term goes to zero when d goes to infinity. For the second term, by [2, Lemma
6 (A.5)],

(`2/2)E

[
(Zdddre,1)21 ∧ exp

{
−
`Zdddre,1√

d
V̇ (Xd

bdrc,1) +

d∑
i=2

bdbdrc,i

}∣∣∣Fdbdrc
]

= (B1 +B2 −B3)/2 , (46)
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where

B1 = `2Γ

(
`2

d

d∑
i=1

V̇ (Xd
bdrc,i)

2,
`2

2d

d∑
i=2

V̇ (Xd
bdrc,i)

2 − 4(d− 1)E
[
ζd(X,Z)

])
,

B2 =
`4V̇ (Xd

bdrc,1)2

d
G

(
`2

d

d∑
i=1

V̇ (Xd
bdrc,i)

2,
`2

2d

d∑
i=2

V̇ (Xd
bdrc,i)

2 − 4(d− 1)E
[
ζd(X,Z)

])
,

B3 =
`4V̇ (Xd

bdrc,1)2

d

(
2π`2

d∑
i=1

V̇ (Xd
bdrc,i)

2/d

)−1/2

× exp

−
[
−(d− 1)E[2ζd(X,Z)] + (`2/(4d))

∑d
i=2 V̇ (Xd

bdrc,i)
2
]2

2`2
∑d
i=1 V̇ (Xd

bdrc,i)
2/d

 ,

where Γ is defined in (27). As Γ is continuous on R+×R \ {0, 0} (see [2, Lemma 2]), by H1(ii),
Lemma 4 and the law of large numbers, almost surely,

lim
d→+∞

`2Γ

(
`2

d

d∑
i=1

V̇ (Xd
bdrc,i)

2,
`2

2d

d∑
i=2

V̇ (Xd
bdrc,i)

2 − 4(d− 1)E
[
ζd(X,Z)

])
= `2Γ

(
`2E[V̇ (X)2], `2E[V̇ (X)2]

)
= h(`) . (47)

By Lemma 4, by H1(ii) and the law of large numbers, almost surely,

lim
d→+∞

exp

−
[
−(d− 1)E[2ζd(X,Z)] + (`2/(4d))

∑d
i=2 V̇ (Xd

bdrc,i)
2
]2

2`2
∑d
i=1 V̇ (Xd

bdrc,i)
2/d


= exp

{
−`

2

8
E[V̇ (X)2]

}
.

Then, as G is bounded on R+ × R,

lim
d→+∞

E
[∣∣∣∣∫ t

s

φ′′(Xd
bdrc,1) (B2 −B3) dr

∣∣∣∣] = 0 . (48)

Therefore, by Fubini’s Theorem, (46), (47), (48) and Lebesgue’s dominated convergence theorem,
the second term of (45) goes to 0 as d goes to infinity. Write T d3 = (h(`)/2)(T d3,1 − T d3,2) where

T d3,1 =

∫ t

s

{
φ′′
(
Xd
bdrc,1

)
− φ′′

(
Y dr,1

)}
dr ,

T d3,2 =

∫ t

s

{
V̇
(
Xd
bdrc,1

)
φ′
(
Xd
bdrc,1

)
− V̇

(
Y dr,1

)
φ′
(
Y dr,1

)}
dr .

It is enough to show that E[
∣∣T d3,1∣∣] and E[

∣∣T d3,2∣∣] go to 0 when d goes to infinity to conclude the

proof. By (7) and the mean value theorem, for all r ∈ [s, t] there exists χr ∈
[
Xd
bdrc,1, Y

d
r,1

]
such

that
φ′′
(
Xd
bdrc,1

)
− φ′′

(
Y dr,1

)
= φ(3) (χr) (dr − bdrc)(`/

√
d)Zdddre,11Adddre

.
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Since φ(3) is bounded, it follows that limd→+∞ E[|T d3,1|] = 0. On the other hand,

T d3,2 =

∫ t

s

{
V̇
(
Xd
bdrc,1

)
− V̇

(
Y dr,1

)}
φ′
(
Xd
bdrc,1

)
dr

+

∫ t

s

{
φ′
(
Xd
bdrc,1

)
− φ′

(
Y dr,1

)}
V̇
(
Y dr,1

)
dr .

Since φ′ has a bounded support, by H2, Fubini’s theorem, and Lebesgue’s dominated convergence
theorem, the expectation of the absolute value of the first term goes to 0 as d goes to infinity.
The second term is dealt with following the same steps as for T d3,1 and using H1(ii).

Proof of Theorem 3. By Proposition 2, Proposition 3 and Proposition 6, it is enough to prove
that for all φ ∈ C∞c (R,R), p ≥ 1, all 0 ≤ t1 ≤ · · · ≤ tp ≤ s ≤ t and g : Rp → R bounded and
continuous function,

lim
d→+∞

E
[
(Md
ddte(φ)−Md

ddse(φ))g(Y dt1 , . . . , Y
d
tp)
]

= 0 ,

where for n ≥ 1, Md
n(φ) is defined in (39). But this result is straightforward taking successively

the conditional expectations with respect to Fk, for k = ddte , . . . , ddse.

5 Proofs of Section 3

5.1 Proof of Theorem 4

The proof of this theorem follows the same steps as the the proof of Theorem 2. Note that ξθ
and ξ0, given by (11), are well defined on I ∩ {x ∈ R | x+ rθ ∈ I}. Let the function υ : R2 → R
be defined for x, θ ∈ R by

υ(x, θ) = 1I(x+ rθ)1I(x+ (1− r)θ) . (49)

Lemma 9. Assume G1 holds. Then, there exists C > 0 such that for all θ ∈ R,(∫
I

(
{ξθ(x)− ξ0(x)} υ(x, θ) + θV̇ (x)ξ0(x)/2

)2

dx

)1/2

≤ C|θ|β .

Proof. The proof follows as Lemma 1 and is omitted.

Lemma 10. Assume that G1 holds. Let X be a random variable distributed according to π and
Z be a standard Gaussian random variable independent of X. Define

DI = {X + r`d−1/2Z ∈ I} ∩ {X + (1− r)`d−1/2Z ∈ I} .

Then,

(i) limd→+∞ d
∥∥∥1DIζd(X,Z) + `ZV̇ (X)/(2

√
d)
∥∥∥2

2
= 0.

(ii) Let p be given by G1(i). Then,

lim
d→+∞

√
d
∥∥∥1DI {V (X)− V (X + `Z/

√
d)
}

+ `ZV̇ (X)/
√
d
∥∥∥
p

= 0 .
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(iii) limd→∞ d
∥∥1DI (log(1 + ζd(X,Z))− ζd(X,Z) + [ζd]2(X,Z)/2

)∥∥
1

= 0,

where ζd is given by (14).

Proof. Note by definition of ζd and ξθ (11), for x ∈ I and x+ r`d−1/2z ∈ I,

ζd(x, z) = ξ`zd−1/2(x)/ξ0(x)− 1 . (50)

Using Lemma 9,∥∥∥1DIζd(X,Z) + `ZV̇ (X)/(2
√
d)
∥∥∥2

2

= E
[∫
I

(
υ(x, `Zd−1/2) {ξ`Zd−1/2(x)− ξ0(x)}+ `ZV̇ (x)ξ0(x)/(2

√
d)
)2

dx

]
≤ C`2βd−βE

[
|Z|2β

]
.

The proof of (i) is completed using β > 1. For (ii), write for all x ∈ I and x + `zd−1/2z ∈ I,
∆V (x, z) = V (x)− V (x+ `zd−1/2). By G1(i)∥∥∥1DI∆V (X,Z) + `ZV̇ (X)/

√
d
∥∥∥p
p

= E
[∫
I

(
υ(x, `Zd−1/2)∆V (X,Z) + `ZV̇ (x)/

√
d
)p
π(x)dx

]
≤ C`βpd−βp/2E

[
|Z|βp

]
and the proof of (ii) follows from β > 1. For (iii), note that for all x > 0, u ∈ [0, x], |(x−u)(1 +
u)−1| ≤ |x|, and the same inequality holds for x ∈ (−1, 0] and u ∈ [x, 0]. Then by (23) and (24),
for all x > −1, ∣∣log(1 + x)− x+ x2/2

∣∣ = |R(x)| ≤ x2 |log(1 + x)| .

Then by (50), for x ∈ I and x+ `d−1/2z ∈ I,∣∣log(1 + ζd(x, z))− ζd(x, z) + [ζd]2(x, z)/2
∣∣

≤ (ξ`zd−1/2(x)/ξ0(x)− 1)
2 |log(ξ`zd−1/2(x)/ξ0(x))| ,

≤ (ξ`zd−1/2(x)/ξ0(x)− 1)
2
∣∣∣V (x+ `zd−1/2)− V (x)

∣∣∣ /2 .
Since for all x ∈ R, | exp(x)− 1| ≤ |x|(exp(x) + 1), this yields,∣∣log(1 + ζd(x, z))− ζd(x, z) + [ζd]2(x, z)/2

∣∣
≤
∣∣∣V (x+ `zd−1/2)− V (x)

∣∣∣3 (exp
(
V (x)− V (x+ `zd−1/2)

)
+ 1
)
/4 .

Therefore,∫
I
υ(x, `zd−1/2)

∣∣log(1 + ζd(x, z))− ζd(x, z) + [ζd]2(x, z)/2
∣∣π(x)dx ≤ (I1 + I2)/4 ,

where

I1 =

∫
I
υ(x, `zd−1/2)

∣∣∣V (x+ `zd−1/2)− V (x)
∣∣∣3 π(x)dx

I2 =

∫
I
υ(x, `zd−1/2)

∣∣∣V (x+ `zd−1/2)− V (x)
∣∣∣3 π(x+ `zd−1/2)dx .
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By Hölder’s inequality, a change of variable and using G1(i),

I1 + I2 ≤ C

(∣∣∣`zd−1/2
∣∣∣3(∫

I

∣∣∣V̇ (x)
∣∣∣4 π(x)dx

)3/4

+
∣∣∣`zd−1/2

∣∣∣3β) .

The proof follows from G1(ii) and β > 1.

For ease of notation, write for all d ≥ 1 and i, j ∈ {1, . . . , d},

DdI,j =
{
Xd
j + r`d−1/2Zdj ∈ I

}
∩
{
Xd
j + (1− r)`d−1/2Zdj ∈ I

}
,

DdI,i:j =

j⋂
k=i

DdI,k . (51)

Lemma 11. Assume that G1 holds. For all d ≥ 1, let Xd be distributed according to πd, and
Zd be d-dimensional Gaussian random variable independent of Xd. Then, limd→+∞ JdI = 0
where

JdI =

∥∥∥∥∥1DdI,2:d
d∑
i=2

{(
∆V di +

`Zdi√
d
V̇ (Xd

i )

)
− 2E

[
1DdI,i

ζd(Xd
i , Z

d
i )
]

+
`2

4d
V̇ 2(Xd

i )

}∥∥∥∥∥
1

.

Proof. The proof follows the same lines as the proof of Lemma 3 and is omitted.

Define for all d ≥ 1,

EdI = E

[(
Zd1
)2 ∣∣∣∣∣1DdI,1:d1 ∧ exp

{
d∑
i=1

∆V di

}

−1 ∧ exp

{
−`d−1/2Zd1 V̇ (Xd

1 ) +

d∑
i=2

bdI(Xd
i , Z

d
i )

}∣∣∣∣∣
]
,

where ∆V di is given by (5), for all x ∈ I, z ∈ R,

bdI(x, z) = − `z√
d
V̇ (x) + 2E

[
1DdI,1

ζd(Xd
1 , Z

d
1 )
]
− `2

4d
V̇ 2(x) , (52)

and ζd is given by (14).

Proposition 7. Assume G1 holds. Let Xd be a random variable distributed according to πd and
Zd be a zero-mean standard Gaussian random variable, independent of X. Then limd→+∞ EdI =
0.

Proof. Let Λd = −`d−1/2Zd1 V̇ (Xd
1 ) +

∑d
i=2 ∆V di . By the triangle inequality, Ed ≤ Ed1 + Ed2 + Ed3

where

Ed1,I = E

[(
Zd1
)2
1DdI,1:d

∣∣∣∣∣1 ∧ exp

{
d∑
i=1

∆V di

}
− 1 ∧ exp

{
Λd
}∣∣∣∣∣
]
,

Ed2,I = E

[(
Zd1
)2
1DdI,2:d

∣∣∣∣∣1 ∧ exp
{

Λd
}
− 1 ∧ exp

{
−`d−1/2Zd1 V̇ (Xd

1 ) +

d∑
i=2

bd(Xd
i , Z

d
i )

}∣∣∣∣∣
]
,

Ed3,I = E

[(
Zd1
)2
1(DdI,2:d)

c1 ∧ exp

{
−`d−1/2Zd1 V̇ (Xd

1 ) +

d∑
i=2

bd(Xd
i , Z

d
i )

}]
,
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Since t 7→ 1 ∧ et is 1-Lipschitz, by the Cauchy-Schwarz inequality we get

Ed1,I ≤ E
[(
Zd1
)2
1DdI,1

∣∣∣∆V d1 + `d−1/2Zd1 V̇ (Xd
1 )
∣∣∣] ≤ ‖Zd1‖24 ∥∥∥1DdI,1∆V d1 + `d−1/2Zd1 V̇ (Xd

1 )
∥∥∥

2
.

By Lemma 2(ii), Ed1,I goes to 0 as d goes to +∞. Using again that t 7→ 1∧ et is 1-Lipschitz and

Lemma 11, Ed2,I goes to 0 as well. Note that, as Zd1 and 1(DdI,2:d)
c are independent, by (18),

Ed3,I ≤ dP
({
DdI,1

}c) ≤ Cd1−γ/2 .

Therefore, Ed3,I goes to 0 as d goes to +∞ by G1(iii).

Lemma 12. Assume G1 holds. For all d ∈ N∗, let Xd be a random variable distributed according
to πd and Zd be a standard Gaussian random variable in Rd, independent of X. Then,

lim
d→+∞

2dE
[
1DdI,1

ζd(Xd
1 , Z

d
1 )
]

= −`
2

4
I ,

where I is defined in (6) and ζd in (14).

Proof. Noting that for all θ ∈ R,∫
I
1I(x+ rθ)1I(x+ (1− r)θ)π(x+ θ)dx =

∫
I
1I(x+ (r− 1)θ)1I(x− rθ)π(x)dx .

the proof follows the same steps as the the proof of Lemma 4 and is omitted.

Proof of Theorem 4. The proof follows the same lines as the proof of Theorem 2 and is therefore
omitted.

5.2 Proof of Proposition 4

As for the proof of Proposition 2, the proof follows from Lemma 13.

Lemma 13. Assume G1. Then, there exists C > 0 such that, for all 0 ≤ k1 < k2,

E
[(
Xd
k2,1 −X

d
k1,1

)4] ≤ C 4∑
p=2

(k2 − k1)p

dp
.

Proof. We use the same decomposition of E[(Xd
k2,1
− Xd

k1,1
)4] as in the proof of Lemma 5 so

that we only need to upper bound the following term:

d−2E

( k2∑
k=k1+1

Zdk,11(Adk)
c

)4
 = d−2

∑
E

[
4∏
i=1

Zdmi,11(Admi)
c

]
,

where the sum is over all the quadruplets (mp)
4
p=1 satisfying mp ∈ {k1 +1, . . . , k2}, p = 1, . . . , 4.

Let (m1,m2,m3,m4) ∈ {k1 + 1, . . . , k2}4 and (X̃d
k )k≥0 be defined as:

X̃d
0 = Xd

0 and X̃d
k+1 = X̃d

k + 1k/∈{m1−1,m2−1,m3−1,m4−1}`d
−1/2Zdk+11Ãdk+1

,
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where for all k ≥ 0 and all 1 ≤ i ≤ d,

Ãdk+1 =

{
Uk+1 ≤ exp

(
d∑
i=1

∆Ṽ dk,i

)}
∆Ṽ dk,i = V

(
X̃d
k,i

)
− V

(
X̃d
k,i + `d−1/2Zdk+1,i

)
.

Define, for all k1 + 1 ≤ k ≤ k2, 1 ≤ i, j ≤ d,

D̃d,kI,j =
{
X̃d
k,j + r`d−1/2Zdk+1,j ∈ I

}
∩
{
X̃d
k,j + (1− r)`d−1/2Zdk+1,j ∈ I

}
,

D̃d,kI,i:j =

j⋂
`=i

D̃d,kI,` .

Note that by convention V (x) = −∞ for all x /∈ I, Ãdk+1 ⊂ D̃
d,k
I,1:d so that

(
Ãdk+1

)c
may

be written
(
Ãdk+1

)c
=
(
D̃d,kI,1:d

)c⋃((
Ãdk+1

)c
∩ D̃d,kI,1:d

)
. Let F be the σ-field generated by(

X̃d
k

)
k≥0

. Consider the case #{m1, . . . ,m4} = 4. The case #{m1, . . . ,m4} = 3 is dealt

with similarly and the two other cases follow the same lines as the proof of Lemma 13. As{(
Umj , Z

d
mj ,1, · · · , Z

d
mj ,d

)}
1≤j≤4

are independent conditionally to F ,

E

 4∏
j=1

Zdmj ,11
(
Admj

)c
∣∣∣∣∣∣F
 =

4∏
j=1

{
E
[
1(
D̃
d,mj−1
I,1:d

)cZdmj ,1
∣∣∣∣F]+ E

[
1
D̃
d,mj−1
I,1:d

1(
Ãdmj

)cZdmj ,1
∣∣∣∣F]} .

As Umj is independent of (Zdmj ,1, · · · , Z
d
mj ,d

) conditionally to F , the second term may be written:

E
[
1
D̃
d,mj−1
I,1:d

1(
Ãdmj

)cZdmj ,1
∣∣∣∣F] = E

[
1
D̃
d,mj−1
I,1:d

Zdmj ,1

(
1− exp

{
d∑
i=1

∆Ṽ dmj−1,i

})
+

∣∣∣∣∣F
]
.

Since the function x 7→ (1− ex)+ is 1-Lipschitz, on D̃d,mj−1

I,1:d∣∣∣∣∣
(

1− exp

{
d∑
i=1

∆Ṽ dmj−1,i

})
+

−Θmj

∣∣∣∣∣ ≤ ∣∣∣∆Ṽ dmj−1,1 + `d−1/2V̇ (X̃d
mj−1,1)Zdmj ,1

∣∣∣ ,
where Θmj = (1− exp{−`d−1/2V̇ (X̃d

mj−1,1)Zdmj ,1 +
∑d
i=2 ∆Ṽ dmj−1,i})+. Then,∣∣∣∣∣E

[
1
D̃
d,mj−1
I,1:d

Zdmj ,1

(
1− exp

{
d∑
i=1

∆Ṽ dmj−1,i

})
+

∣∣∣∣∣F
]∣∣∣∣∣ ≤ Admj +Bdmj ,

where

Admj = E
[∣∣∣Zdmj ,1∣∣∣ ∣∣∣∣1D̃d,mj−1

I,1
∆Ṽ dmj−1,1 + `d−1/2V̇ (X̃d

mj−1,1)Zdmj ,1

∣∣∣∣∣∣∣∣F] ,
Bdmj =

∣∣∣∣E [1D̃d,mj−1
I,2:d

Zdmj ,1Θmj

∣∣∣∣F]∣∣∣∣ .
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By Jensen inequality,∣∣∣∣∣∣E
 4∏
j=1

Zdmj ,11
(
Admj

)c
∣∣∣∣∣∣ ≤ E

 4∏
j=1

{
E
[
1(
D̃
d,mj−1
I,1:d

)c |Zdmj ,1|
∣∣∣∣F]+Admj +Bdmj

} ,
≤ CE

 4∑
j=1

E
[
1(
D̃
d,mj−1
I,1:d

)c |Zdmj ,1|4
∣∣∣∣F]+

(
Admj

)4

+
(
Bdmj

)4

 ,
By G1(iii) and Holder’s inequality applied with α = 1/(1− 2/γ) > 1, for all 1 ≤ j ≤ 4,

E
[
1(
D̃
d,mj−1
I,1:d

)c |Zdmj ,1|4
]
≤ E

[
1(
D̃
d,mj−1
I,1

)c |Zdmj ,1|4
]

+

d∑
i=2

E
[
1(
D̃
d,mj−1
I,i

)c
]
,

≤ E
[
|Zdmj ,1|

4α/(α−1)
](α−1)/α

d−γ/(2α) + d1−γ/2 ,

≤ Cd1−γ/2 .

By Lemma 10(ii) and the Holder’s inequality, there exists C > 0 such that E
[(
Admj

)4
]
≤ Cd−2.

On the other hand, by [2, Lemma 6] since Zdmj ,1 is independent of F ,

Bdmj =

∣∣∣∣∣E
[
1
D̃
d,mj−1
I,2:d

`d−1/2V̇ (X̃d
mj−1,1)G

(
`2d−1V̇ (X̃d

mj−1,1)2,−2

d∑
i=2

∆Ṽ dmj−1,i

)∣∣∣∣∣F
]∣∣∣∣∣ ,

where the function G is defined in (26). By G1(ii) and since G is bounded, E[(Bdmj )
4] ≤ Cd−2.

Since γ ≥ 6 in G1(iii), |E[
∏4
j=1 Z

d
mj ,11(Admj )c ]| ≤ Cd−2, showing that

∑
(m1,m2,m3,m4)∈I4

∣∣∣∣∣E
[

4∏
i=1

Zdmi,11(Admi)
c

]∣∣∣∣∣ ≤ Cd−2

(
k2 − k1

4

)
. (53)

5.3 Proof of Proposition 5

Lemma 14. Assume that G1 holds. Let µ be a limit point of the sequence of laws (µd)d≥1 of{
(Y dt,1)t≥0, d ∈ N∗

}
. Then for all t ≥ 0, the pushforward measure of µ by Wt is π.

Proof. The proof is the same as in Lemma 6 and is omitted.

We preface the proof by a lemma which provides a condition to verify that any limit point
µ of (µd)d≥1 is a solution to the local martingale problem associated with (9).

Lemma 15. Assume G1. Let µ be a limit point of the sequence (µd)d≥1. If for all φ ∈ C∞c (I,R),

the process (φ(Wt)−φ(W0)−
∫ t

0
Lφ(Wu)du)t≥0 is a martingale with respect to µ and the filtration

(Bt)t≥0, then µ solves the local martingale problem associated with (9).

30



Durmus et al. Optimal scaling under Lp mean differentiability

Proof. As for all t ≥ 0 and d ≥ 1, Y dt,1 ∈ I, for all d ≥ 1 µd(C(R+, I)) = 1. Since C(R+, I) is

closed in W, we have by the Portmanteau theorem, µ(C(R+, I)) = 1. Therefore, we only need

to prove that for all ψ ∈ C∞(I,R), the process (ψ(Wt) − ψ(W0) −
∫ t

0
Lψ(Wu)du)t≥0 is a local

martingale with respect to µ and the filtration (Bt)t≥0. Let ψ ∈ C∞(I,R).

Suppose first that for all $ ∈ C∞c (I,R), ($(Wt)−$(Wt)−
∫ t

0
L$(Wu)du)t≥0 is a martingale.

Then, consider the sequence of stopping time defined for k ≥ 1 by τk = inf{t ≥ 0 | |Wt| ≥ k}
and a sequence ($k)k≥0 in C∞c (I,R) satisfying:

1. for all k ≥ 1 and all x ∈ I ∩ [−k, k], $k(x) = ψ(x),

2. limk→+∞$k = ψ in C∞(I,R).

Since for all k ≥ 1,(
ψ(Wt∧τk)− ψ(W0)−

∫ t∧τk

0

Lψ(Wu)du

)
t≥0

=

(
$k(Wt∧τk)−$k(W0)−

∫ t∧τk

0

L$k(Wu)du

)
t≥0

and the sequence (τk)k≥1 goes to +∞ as k goes to +∞ almost surely, it follows that (ψ(Wt)−
ψ(W0)−

∫ t
0

Lψ(Wu)du)t≥0 is a local martingale with respect to µ and the filtration (Bt)t≥0. It

remains to show that for all $ ∈ C∞c (I,R), ($(Wt)−$(W0)−
∫ t

0
L$(Wu)du)t≥0 is a martingale

under the assumption of the proposition. We only need to prove that for all $ ∈ C∞c (I,R),
0 ≤ s ≤ t, m ∈ N∗, g : Rm → R bounded and continuous, and 0 ≤ t1 ≤ · · · ≤ tm ≤ s ≤ t:

Eµ
[(
$ (Wt)−$ (Ws)−

∫ t

s

L$ (Wu) du

)
g (Wt1 , . . . ,Wtm)

]
= 0 . (54)

Let (φk)k≥0 be a sequence of functions in C∞c (I,R) and converging to $ in C∞c (I,R). First
note that for all u ∈ [s, t], µ-almost everywhere,

lim
k→+∞

φk(Wu) = $(Wu) . (55)

By Lemma 14, for all u ∈ [s, t] the pushforward measure of µ by Wu has density π with respect
to the Lebesgue measure and µ-almost everywhere, limk→+∞ Lφk(Wu) = L$(Wu). On the
other hand, there exists C ≥ 0 such that for all k ≥ 0, |Lφk(Wu)| ≤ C(1 + |V̇ (Wu)|). Then,

Eµ
[∫ t

s

(
1 + |V̇ (Wu)|

)
du

]
≤ (t− s) +

∫ t

s

Eµ
[
|V̇ (Wu)|

]
du

≤ (t− s)
(

1 +

∫
I
|V̇ (x)|π(x)dx

)
.

Therefore, µ-almost everywhere by G1(ii) and the Lebesgue dominated convergence theorem,
we get

lim
k→+∞

∫ t

s

Lφk(Wu)du =

∫ t

s

L$(Wu)du . (56)

Therefore, (54) follows from (55) and (56), using again the Lebesgue dominated convergence
theorem and G1(ii).
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Proof of Proposition 5. Let µ be a limit point of (µd)d≥1. By Lemma 15, we only need to prove

that for all φ ∈ C∞c (I,R), the process (φ(Wt)− φ(W0)−
∫ t

0
Lφ(Wu)du)t≥0 is a martingale with

respect to µ and the filtration (Bt)t≥0. Then, the proof follows the same line as the proof of
Proposition 3 and is omitted.

5.4 Proof of Theorem 5

Lemma 16. Assume G1 holds. Let Xd be distributed according to πd and Zd be a d-dimensional
standard Gaussian random variable, independent of Xd. Then, limd→+∞ Ed = 0, where

Ed = E
[∣∣∣V̇ (Xd

1 )1DdI,2:d

{
G
(
`2V̇ (Xd

1 )2/d, 2Ȳd

)
− G

(
`2V̇ (Xd

1 )2/d, 2X̄d

)}∣∣∣] ,
where Ȳd =

∑d
i=2 ∆V di , ∆V di and DdI,2:d are given by (5) and (51) and X̄d =

∑d
i=2 b

d
I,i, b

d
I,i =

bdI(Xd
i , Z

d
i ) with bdI given by (52).

Proof. Set for all d ≥ 1, Ȳd =
∑d
i=2 ∆V di and X̄d =

∑d
i=2 b

d
I,i. By definition of bdI (52), X̄d may

be expressed as X̄d = σdS̄d + µd, where

µd = 2(d− 1)E
[
1DdI,1

ζd(Xd
1 , Z

d
1 )
]
− `2(d− 1)

4d
E
[
V̇ (Xd

1 )2
]
,

σ2
d = `2E

[
V̇ (Xd

1 )2
]

+
`4

16d
E
[(
V̇ (Xd

1 )2 − E
[
V̇ (Xd

1 )2
])2
]
,

S̄d = (
√
dσd)

−1
d∑
i=2

βdi ,

βdi = −`Zdi V̇ (Xd
i )− `2

4
√
d

(
V̇ (Xd

i )2 − E
[
V̇ (Xd

i )2
])

.

By G1(ii) the Berry-Essen Theorem [5, Theorem 5.7] can be applied to S̄d. Then, there exists
a universal constant C such that for all d > 0,

sup
x∈R

∣∣∣∣∣P
[√

d

d− 1
S̄d ≤ x

]
− Φ(x)

∣∣∣∣∣ ≤ C/√d .
It follows, with σ̃2

d = (d− 1)σ2
d/d, that

sup
x∈R

∣∣P [X̄d ≤ x
]
− Φ((x− µd)/σ̃d)

∣∣ ≤ C/√d .
By this result and (37), Lemma 7 can be applied to obtain a constant C ≥ 0, independent of d,
such that:

E
[
1DdI,2:d

∣∣∣G (`2V̇ (Xd
1 )2/d, 2Ȳd

)
− G

(
`2V̇ (Xd

1 )2/d, 2X̄d

) ∣∣Xd
1

∣∣∣]
≤ C

(
E
[
1DdI,2:d

∣∣X̄d − Ȳd
∣∣]+ d−1/2 +

√
2E
[
1DdI,2:d

∣∣X̄d − Ȳd
∣∣] (2πσ̃2

d)−1/2

+

√
`|V̇ (Xd

1 )|/(2πd1/2σ̃2
d)

)
.
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Using this result, we have

Ed ≤ C
{
`1/2E

[
|V̇ (Xd

1 )|3/2
]

(2πd1/2σ̃2
d)−1/2 + E

[
|V̇ (Xd

1 )|
]

(57)

×

(
E
[
1DdI,2:d

∣∣X̄d − Ȳd
∣∣]+ d−1/2 +

√
2E
[
1DdI,2:d

∣∣X̄d − Ȳd
∣∣] (2πσ̃2

d)−1/2

)}
.

By Lemma 11, E[1DdI,2:d |X̄d − Ȳd|] goes to 0 as d goes to infinity, and by G1(ii) limd→+∞ σ̃2
d =

`2E
[
V̇ (X)2

]
. Combining these results with (57), it follows that Ed goes to 0 when d goes to

infinity.

For all n ≥ 0, define Fdn = σ({Xd
k , k ≤ n}) and for all φ ∈ C∞c (R,R),

Md
n(φ) =

`√
d

n−1∑
k=0

φ′(Xd
k,1)

{
Zdk+1,11Adk+1

− E
[
Zdk+1,11Adk+1

∣∣∣Fdk]}
+
`2

2d

n−1∑
k=0

φ′′(Xd
k,1)

{
(Zdk+1,1)21Adk+1

− E
[

(Zdk+1,1)21Adk+1

∣∣∣Fdk]} . (58)

Proposition 8. Assume G1 and G2 hold. Then, for all s ≤ t and all φ ∈ C∞c (R,R),

lim
d→+∞

E
[∣∣∣∣φ(Y dt,1)− φ(Y ds,1)−

∫ t

s

Lφ(Y dr,1)dr −
(
Md
ddte(φ)−Md

ddse(φ)
)∣∣∣∣] = 0 .

Proof. Using the same decomposition as in the proof of Proposition 6, we only need to prove
that for all 1 ≤ i ≤ 5, limd→+∞ E[|T di |] = 0, where

T d1 =

∫ t

s

φ′(Xd
bdrc,1)

(
`
√
d E

[
Zdddre,11Adddre

∣∣∣Fdbdrc]+
h(`)

2
V̇ (Xd

bdrc,1)

)
dr ,

T d2 =

∫ t

s

φ′′(Xd
bdrc,1)

(
`2

2
E
[
(Zdddre,1)21Adddre

∣∣∣Fdbdrc ]− h(`)

2

)
dr ,

T d3 =

∫ t

s

(
Lφ(Y dbdrc/d,1)− Lφ(Y dr,1)

)
dr ,

T d4 =
`(ddte − dt)√

d
φ′(Xd

bdtc,1)
(
Zdddte,11Adddte

− E
[
Zdddte,11Adddte

∣∣∣Fdbdtc ])
+
`2(ddte − dt)

2d
φ′′(Xd

bdtc,1)
(

(Zdddte,1)21Adddte
− E

[
(Zdddte,1)21Adddte

∣∣∣Fdbdtc ]) ,
T d5 =

`(ddse − ds)√
d

φ′(Xd
bdsc,1)

(
Zdddse,11Adddse

− E
[
Zdddse,11Adddse

∣∣∣Fdbdsc ])
+
`2(ddse − ds)

2d
φ′′(Xd

bdsc,1)
(

(Zdddse,1)21Adddse
− E

[
(Zdddse,1)21Adddse

∣∣∣Fdbdsc ]) .
First, as φ′ and φ′′ are bounded, E

[∣∣T d4 ∣∣+
∣∣T d5 ∣∣] ≤ Cd−1/2. Denote for all r ∈ [s, t] and d ≥ 1,

∆V dr,i = V
(
Xd
bdrc,i

)
− V

(
Xd
bdrc,i + `d−1/2Zdddre,i

)
Ξdr = 1 ∧ exp

{
−`Zdddre,1V̇ (Xd

bdrc,1)/
√
d+

d∑
i=2

b
d,bdrc
I,i

}
,
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where for all k, i ≥ 0, bd,kI,i = bdI(Xd
k,i, Z

d
k+1,i), and for all x, z ∈ R, bdI(x, y) is given by (52). For

all k ≥ 0, 1 ≤ i, j ≤ d, define

Dd,kI,j =
{
Xd
k,j + r`d−1/2Zdk+1,j ∈ I

}
∩
{
Xd
k,j + (1− r)`d−1/2Zdk+1,j ∈ I

}
Dd,kI,i:j =

j⋂
`=i

Dd,kI,` .

By the triangle inequality,

|T1| ≤
∫ t

s

∣∣∣φ′(Xd
bdrc,1)

∣∣∣ (A1,r +A2,r +A3,r +A4,r)dr , (59)

where

Πd
r = 1 ∧ exp

{
−`d−1/2Zdddre,1V̇ (Xd

bdrc,1) +

d∑
i=2

∆V dr,i

}
,

A1,r =
∣∣∣`√dE [Zdddre,1 (1Adddre − 1Dd,bdrcI,1:d

Πd
r

) ∣∣∣Fdbdrc ]∣∣∣ ,
A2,r =

∣∣∣`√d E
[
Zdddre,11Dd,bdrcI,1:d

(
Πd
r − Ξdr

) ∣∣∣Fdbdrc ]∣∣∣ ,
A3,r =

∣∣∣∣`√d E
[
Zdddre,11

(
Dd,bdrcI,1:d

)cΞdr
∣∣∣Fdbdrc ]∣∣∣∣ ,

A4,r =
∣∣∣`√d E

[
Zdddre,1Ξdr

∣∣∣Fdbdrc ]+ V̇ (Xd
bdrc,1)h(`)/2

∣∣∣ .
Since t 7→ 1 ∧ exp(t) is 1-Lipschitz,

E
[∣∣Ad1,r∣∣] ≤ `√dE [1Dd,bdrcI,1:d

∣∣∣Zdddre,1∣∣∣ ∣∣∣∆V dr,1 − `d−1/2Zdddre,1V̇ (Xd
bdrc,1)

∣∣∣] ,
≤ `
√
dE
[
1Dd,bdrcI,1

∣∣∣Zdddre,1∣∣∣ ∣∣∣∆V dr,1 − `d−1/2Zdddre,1V̇ (Xd
bdrc,1)

∣∣∣] ,
≤ `
√
dE
[∣∣∣Zdddre,1∣∣∣ ∣∣∣1Dd,bdrcI,1

∆V dr,1 − `d−1/2Zdddre,1V̇ (Xd
bdrc,1)

∣∣∣]
and E[

∣∣Ad1,r∣∣] goes to 0 as d→ +∞ for almost all r by Lemma 10(ii). So by the Fubini theorem,

the first term in (59) goes to 0 as d→ +∞. For Ad2,r, note that

A2,r ≤
∣∣∣`√d E

[
Zdddre,11Dd,bdrcI,2:d

(
Πd
r − Ξdr

) ∣∣∣Fdbdrc ]∣∣∣ .
Then, by [2, Lemma 6],

E
[∣∣Ad2,r∣∣] ≤ E

[∣∣∣∣∣`2V̇ (Xd
bdrc,1)1Dd,bdrcI,2:d

{
G

(
`2V̇ (Xd

bdrc,1)2

d
, 2

d∑
i=2

∆V dr,i

)

−G

(
`2V̇ (Xd

bdrc,1)2

d
, 2

d∑
i=2

b
d,bdrc
I,i

)}∣∣∣∣∣
]
,

where G is defined in (26). By Lemma 16, this expectation goes to zero when d goes to infinity.
Then by the Fubini theorem and the Lebesgue dominated convergence theorem, the second term
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of (59) goes 0 as d→ +∞. On the other hand, by G1(iii) and Holder’s inequality applied with
α = 1/(1− 2/γ) > 1, for all 1 ≤ j ≤ 4,

E
[∣∣Ad3,r∣∣] ≤ `√d

(
E
[∣∣∣Zdddre,1∣∣∣1(

Dd,bdrcI,1

)c
]

+

d∑
i=2

E
[
1(
Dd,bdrcI,i

)c
])

,

≤ `
√
d

(
E
[
|Zdmj ,1|

α/(α−1)
](α−1)/α

d−γ/(2α) + d1−γ/2
)
≤ Cd3/2−γ/2

and E[
∣∣Ad3,r∣∣] goes to 0 as d→ +∞ for almost all r. Define

V̄d,1 =

d∑
i=1

V̇ (Xd
bdrc,i)

2 and V̄d,2 = V̄d,1 − V̇ (Xd
bdrc,1)2 .

For the last term, by [2, Lemma 6]:

`
√
d E

[
Zdddre,1Ξdr

∣∣∣Fdbdrc ] = −`2V̇ (Xd
bdrc,1)

× G
(
`2

d
V̄d,1,

{
`2

2d
V̄d,2 − 4(d− 1)E

[
1DIζ

d(X,Z)
]})

, (60)

where DI =
{
X + `d−1/2Z ∈ I

}
, X is distributed according to π and Z is a standard Gaussian

random variable independent of X. As G is continuous on R+ × R \ {0, 0} (see [2, Lemma 2]),
by G1(ii), Lemma 12 and the law of large numbers, almost surely,

lim
d→+∞

`2G
(
`2V̄d,1/d, `

2V̄d,2/(2d)− 4(d− 1)E
[
1DIζ

d(X,Z)
])

= `2G
(
`2E[V̇ (X)2], `2E[V̇ (X)2]

)
= h(`)/2 , (61)

where h(`) is defined in (10). Therefore by Fubini’s Theorem, (60) and Lebesgue’s dominated
convergence theorem, the last term of (59) goes to 0 as d goes to infinity. The proof for T d2
follows the same lines. By the triangle inequality,

∣∣T d2 ∣∣ ≤ ∣∣∣∣∫ t

s

φ′′(Xd
bdrc,1)(`2/2) E

[
(Zdddre,1)2

(
1Adddre

− Ξdr

) ∣∣∣Fdbdrc ] dr

∣∣∣∣
+

∣∣∣∣∫ t

s

φ′′(Xd
bdrc,1)

(
(`2/2) E

[
(Zdddre,1)2Ξdr

∣∣∣Fdbdrc ]− h(`)/2
)

dr

∣∣∣∣ . (62)

By Fubini’s Theorem, Lebesgue’s dominated convergence theorem and Proposition 7, the expec-
tation of the first term goes to zero when d goes to infinity. For the second term, by [2, Lemma
6 (A.5)],

(`2/2)E

[
(Zdddre,1)21 ∧ exp

{
−
`Zdddre,1√

d
V̇ (Xd

bdrc,1) +

d∑
i=2

b
d,bdrc
I,i

}∣∣∣Fdbdrc
]

= (B1 +B2 −B3)/2 , (63)
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where

B1 = `2Γ
(
`2V̄d,1/d, `

2V̄d,2/(2d)− 4(d− 1)E
[
1DIζ

d(X,Z)
])
,

B2 =
`4V̇ (Xd

bdrc,1)2

d
G
(
`2V̄d,1/d, `

2V̄d,2/(2d)− 4(d− 1)E
[
1DIζ

d(X,Z)
])
,

B3 =
`4V̇ (Xd

bdrc,1)2

d

(
2π`2V̄d,1/d

)−1/2

× exp

{
−
[
−2(d− 1)E[1DIζ

d(X,Z)] + (`2/(4d))V̄d,2
]2

2`2V̄d,1/d

}
,

where Γ is defined in (27). As Γ is continuous on R+×R \ {0, 0} (see [2, Lemma 2]), by G1(ii),
Lemma 12 and the law of large numbers, almost surely,

lim
d→+∞

`2Γ
(
`2V̄d,1/d,

{
`2V̄d,2/(2d)− 4(d− 1)E

[
1DIζ

d(X,Z)
]})

= `2Γ
(
`2E[V̇ (X)2], `2E[V̇ (X)2]

)
= h(`) . (64)

By Lemma 12, by G1(ii) and the law of large numbers, almost surely,

lim
d→+∞

exp

{
−
[
−2(d− 1)E[1DIζ

d(X,Z)] + (`2/(4d))V̄d,2
]2

2`2V̄d,1/d

}
= exp

{
−`

2

8
E[V̇ (X)2]

}
.

Then, as G is bounded on R+ × R,

lim
d→+∞

E
[∣∣∣∣∫ t

s

φ′′(Xd
bdrc,1) (B2 −B3) dr

∣∣∣∣] = 0 . (65)

Therefore, by Fubini’s Theorem, (63), (64), (65) and Lebesgue’s dominated convergence theorem,
the second term of (62) goes to 0 as d goes to infinity. The proof for T d3 follows exactly the
same lines as the proof of Proposition 6.

Proof of Theorem 5. Using Proposition 4, Proposition 5 and Proposition 8, the proof follows
the same lines as the proof of Theorem 3.

Acknowledgment

The work of A.D. and E.M. is supported by the Agence Nationale de la Recherche, under grant
ANR-14-CE23-0012 (COSMOS).

References

[1] A. S. Cherny and H.-J. Engelbert. Singular stochastic differential equations, volume 1858 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2005.

[2] B. Jourdain, T. Lelievre, and B. Miasojedow. Optimal scaling for the transient phase of the
random walk Metropolis algorithm: the mean-field limit. The annals of Applied Probability,
2015.

36



Durmus et al. Optimal scaling under Lp mean differentiability

[3] L. Le Cam. Asymptotic Methods in Statistical Decision Theory. Springer Series in Statistics.
Springer-Verlag New York, New York, 1986.

[4] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, and A.H. Teller. Equations of state
calculations by fast computing machine. J. Chem. Phys., 21:1087–1091, 1953.

[5] V.V. Petrov. Limit theorems of probability theory, volume 4 of Oxford Studies in Probability.
The Clarendon Press, Oxford University Press, New York, 1995. Sequences of independent
random variables, Oxford Science Publications.

[6] G.O. Roberts, A. Gelman, and W.R. Gilks. Weak convergence and optimal scaling of random
walk Metropolis algorithms. The Annals of Applied Probability, 7(1):110–120, 1997.

[7] L.C.G. Rogers and D. Williams. Diffusions, Markov processes and martingales. Vol 2: Ito
calculus. Cambridge University press, 2000.

37


	Introduction
	Positive Target density on R
	Target density supported on an interval of R
	Proofs of sec:R
	Proof of lem:DQM
	Proof of lem:approxratio
	Proof of theo:resultacceptancerateRWM
	Proof of prop:tight
	Proof of propo:reductionmartingaleproblem
	Proof of theo:diffusionlimitRMW

	Proofs of sec:I
	Proof of theo:resultacceptancerateRWM:G
	Proof of prop:tight:G
	Proof of propo:reductionmartingaleproblem:G
	Proof of theo:diffusionlimitRMW:G


