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Abstract

Insider trading consists in having an additional information, un-
known from the common investor, and using it on the financial mar-
ket. Mathematical modeling can study such behaviors, by modeling
this additional information within the market, and comparing the in-
vestment strategies of an insider trader and a non informed investor.
Research on this subject has already been carried out by A. Grorud
and M. Pontier since 1996 (see [8], [9], [10] et [12]), studying the prob-
lem in a wealth optimization point of view. This work focuses more on
option hedging problems. We have chosen to study wealth equations as
backward stochastic differential equations (BSDE), and we use Jeulin’s
method of enlargement of filtration (see [6]) to model the information
of our insider trader. We will try to compare the strategies of an in-
sider trader and a non insider one. Different models are studied: at
first prices are driven only by a Brownian motion, and in a second part,
we add jump processes (Poisson point processes) to the model.

Keywords: Enlargement of filtration, BSDE, option hedging, insider trad-
ing, asymmetric information, martingale representation.
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1 Mathematical Model

Let W be a standard d-dimensional Brownian motion, and (Ω, (Ft)0≤t≤T , P )
a filtered probability space, with Ω = C([0, T ];Rd) and (Ft)t∈[0,T ] the natural
filtration of Brownian motion Wt. We consider a financial market with k
risky assets, whose prices are driven by:

Si
t = Si

0 +
∫ t

0
Si

sb
i
sds +

∫ t

0
Si

s(σ
i
s, dWs) , 0 ≤ t ≤ T, (1)

and a bond (or riskless asset) evolving as: S0
t = 1 +

∫ t
0 S0

srsds. Parameters
b, σ, r are supposed to be bounded on [0, T ], F-adapted, and take values
respectively on Rd,Rd×k,R. Matrix σt is invertible dt⊗ dP -a.s. This is the
usual conditions to have a complete market. A financial agent has a positive
F0-measurable initial wealth X0 at time t = 0 (X0 constant a.s. as F0 is
trivial). His consumption c is a nonnegative Y-adapted process verifying∫ T
0 csds < ∞,P -a.s. He gets θi parts of ith asset. His wealth at time t is

Xt =
∑k

i=0 θi
tS

i
t . We consider the standard self-financing hypothesis:

dXt =
k∑

i=0

θi
tdSi

t − ctdt (2)

It means that the consumption is only financed with the profits realized by
the portfolio, and not by outside benefits. Then, the wealth of the agent
satisfies the following equation:

dXt = θ0
t S

0
t rtdt +

k∑
i=1

θi
tS

i
tb

i
tdt +

k∑
i=1

θi
tS

i
t(σ

i
t, dWt)− ctdt (3)

Then, we denote by πi
t = θi

tS
i
t the amount of wealth invested in the ith asset

for i = 1, ..., k, and we notice that θ0
t S

0
t = Xt −

∑k
1 πi

t. We denote also by
πt = (πi

t, i = 1, .., k) the portfolio (or strategy), and so the total wealth can
be written as a solution of a stochastic differential equation:

dXt = (Xtrt − ct)dt + (πt, bt − rt1)dt + (πt, σtdWt) , X0 ∈ L0(F0) (4)

where 1 is the vector with all coordinates equal to 1. The previous line can
also be rewritten by integrating from t to T :

XT −Xt =
∫ T

t
(Xsrs − cs)ds +

∫ T

t
(πs, bs − rs1)ds +

∫ T

t
(πs, σsdWs) a.s.

(5)
so:

Xt = XT −
∫ T

t
[(Xsrs − cs) + (πs, bs − rs1)]︸ ︷︷ ︸

−f(s,Xs,Zs)

ds−
∫ T

t
(σ∗sπs︸︷︷︸

Zs

, dWs) a.s. (6)
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It is the form under which we will study the wealth process, as a solution of
a backward stochastic differential equation. We consider an option-hedging
problem, represented by a pay-off ξ, to be reached at maturity T . As a
transcription, we have a problem of portfolio duplication: we look for the
initial wealth X0 and the portfolio π such that XT = ξ. The reason why
BSDEs are interesting in our case is that they allow us to model such a
problem of option hedging with a unique equation (see El Karoui, Peng and
Quenez [7]).
BSDEs are stochastic differential equations of the form:

Xt = ξ +
∫ T

t
f(s,Xs, Zs)ds−

∫ T

t
(Zs, dWs) , ∀0 ≤ t ≤ T (7)

• ξ ∈ L2(Ω) is the final wealth, a goal to reach,

• f : Ω× [0, T ]×Rk ×Rk×d −→ Rk is a drift function,

• Xt is the total wealth of the portfolio at time t

• Zt represents the portfolio investments at time t

One of the fundamental results about BSDEs is a theorem given by E.Pardoux
(see [19]), which gives the existence and uniqueness of the solution of a BSDE
under some Lipschitz hypotheses on the drift function.

Theorem 1.1 (Pardoux I) Suppose f(., y, z) is F-prog. measurable, and

1. ∃φ : R+ → R+ increasing such that
|f(t, y, 0)| ≤ |f(t, 0, 0)|+ φ(|y|),∀t, y a.s.

2. EP (
∫ T
0 |f(t, 0, 0)|2) < ∞

3. f is globally Lipschitz w.r.t. z and continuous w.r.t. y

4. 〈y − y′, f(t, y, z)− f(t, y′, z)〉 ≤ µ|y − y′|2,∀t, y, y′, z, a.s.

Then the BSDE has a unique solution (X, Z) such that EP

∫ T
0 ‖ Zt ‖2 dt < ∞

From now on, we suppose that the financial agent is an insider trader: he
has an additional information compare to the standard normally informed
investor. To model it, we use the method of enlargement of filtration. We
will suppose in all this paper that r = 0, which means that we don’t have
interest rates, because we will only consider small investors, who do not
influence interest rates. In this model, we introduce an insider, who has
an information at time 0 denoted by L ∈ FT ′ . L is FT ′-measurable, which
means that it will be public at time T ′. To model the insider space, we

3



enlarge the initial filtration with L, in order to obtain the filtration of the
insider trader probability space:

Yt =
⋂
s>t

(Ft ∨ σ(L)) (8)

Since the discounted asset prices are martingales in the initial probability
space under a risk-neutral probability, it would be interesting and natural
that they still have similar properties in the larger space. So the main prob-
lem is under which condition do we have the following useful property:

Hypothesis 1 (H’) If (Mt)0≤t≤T ′ is a given (Ft, P )-martingale (or semi-
martingale), then (Mt) is a (Yt, P )-semi-martingale.

This problem has been developed by Jeulin [6] and Yor, and by Jacod [13],
who shows that this assertion is true under the following hypothesis:

Hypothesis 2 (H′′) The conditional probability law of L knowing Ft is ab-
solutely continuous with respect to the probability law of L, ∀t < T ′.

Remark: if L is FT ′-measurable, and if its conditional probability law given
FT ′ (δL) is absolutely continuous with respect to the distribution of L, it
implies that σ(L) is atomic (see for a deeper study Meyer [17]). But this is
not the case in this article, because we will suppose L ∈ FT ′ and a terminal
point of view of our problem T < T ′.
Under hypothesis (H′′), Jacod gives the expected decomposition: one split a
(Ft, P )-martingale (the Brownian motion Wt in our example) into a (Yt, P )-
martingale part and a finite variation part as Wt = Bt +

∫ t
0 lsds where Bt

is a (Yt, P )-martingale (a (Y, P )-Brownian motion in case of Wt Brownian
motion), and l is Y-adapted. This property is also verified under a stronger
hypothesis, for which we have stronger results, and which has been developed
by Amendinger [1], Jeulin [6], Grorud and Pontier [10] :

Hypothesis 3 (H3) There exists a probability Q equivalent to P under
which Ft and σ(L) are independent, ∀t < T .

Among the remarkable consequences of this hypothesis, we can notice that
Wt is a (Y, Q)-Brownian motion. This article will successively study the ex-
istence and uniqueness of the BSDE on the enlarged probability space under
(H3) and under (H′′).
Remark: Before the study of hypothesis (H′), (H′′) and (H3), Bremaud
and Yor [5] studied hypothesis (H) under which (F , P )-(local) martingales
are still (Y, P )-(local) martingales. This hypothesis is not currently used in
insider models with initial enlargement of filtrations. In the case of initial
enlargement, (H3) implies (H). In fact, (H3) implies the existence of a prob-
ability Q under which (H) is verified (see also Amendinger [2]). Conversely,
it is easy to prove that if (H) is true under P , and if F0 is trivial, then (H3)
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is true. In a practical and financial sense, it means that it is not realistic
to consider that the "natural" probability makes the information and the
market independent. Nevertheless, hypothesis (H) appears to be relevant
and useful in default risk models and progressive enlargement of filtrations.

2 BSDE under hypothesis (H3)

2.1 Existence and Uniqueness Theorem

Let (H3) be verified. We denote by Q the new probability. As (H3) can
not hold until T exactly, but only for t < T , we chose L ∈ FT ′ and we
consider a problem of maturity T < T ′. So we can enlarge our filtration
until T . We suppose also that the BSDE with parameter (ξ, f) has a unique
solution in the non insider space: we will suppose that the hypotheses of
Pardoux’s existence Theorem 1.1 are verified. To simplify the proof, we will
even suppose that f is globally Lipschitz with respect to y and z. For the
non insider investor, the initial BSDE is verified:{

Xt = ξ +
∫ T
t f(s,Xs, Zs)ds−

∫ T
t (Zs, dWs) , ∀0 ≤ t ≤ T

(Ω, (Ft)0≤t≤T , P ), ξ ∈ L2(Ω,FT , P )
(9)

As (Wt)0≤t≤T is still a Brownian motion under ((Yt)0≤t≤T , Q) thanks to
hypothesis (H3) (cf Jacod [13]), the equation becomes in the insider space:{

X̃t = ξ +
∫ T
t f(s, X̃s, Z̃s)ds−

∫ T
t (Z̃s, dWs) , ∀0 ≤ t ≤ T

(Ω, (Yt)0≤t≤T , Q), ξ ∈ L2(Ω,YT , Q)

where a solution (X̃, Z̃) is a couple of (Y)-adapted processes. We also sup-
pose that ξ ∈ L2(Ω,YT , Q), such that the problem is correctly given in the
insider space. We have then the following result:

Theorem 2.1 Under hypothesis of Theorem 1.1, and if EQ(
∫ T
0 |f(t, 0, 0)|2dt) <

∞ then the backward equation has a unique solution in the insider space.

Proof: The hypotheses of Pardoux’s Theorem 1.1 can be checked. The
filtration is not the natural filtration of the Brownian motion any more. We
will have to cope with this problem. f(., y, z) is Ft-progressively measurable
∀y, z and Ft ⊂ Yt, so f(., y, z) is Yt-progressively measurable. Moreover, as
P ∼ Q the P -null sets are the same as the Q-null sets. So we still have
point 1, 3 and 4 Q-a.s. For point 2, under new probability Q, the expected
value is not finite any more, so we have to suppose this point true in the
hypotheses of Theorem 2.1. The last problem we have to cope with is the
new filtration which is not any more the natural Brownian filtration. This
is annoying because the proof of Pardoux’s Theorem 1.1 uses Itô martingale
representation theorem, which supposes that the filtration is the natural
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Brownian filtration. Nevertheless, as the new filtration Y is generated by L
and by the Brownian motion, we still have a martingale representation result
in the case of a filtration generated by the Brownian motion and H0 an initial
σ-algebra (see [14] Theorem III.4.33 p.189). And so Pardoux’s proof can be
adapted to our case. To simplify our proof, we suppose f globally Lipschitz
in y.
Let B2 = (M2(0, T ))k × (M2(0, T ))k×d. We will define a function Φ : B2 →
B2 such that (X, Z) ∈ B2 is a solution of the BSDE if it is a fixed point of
Φ. Let (U, V ) ∈ B2, and (X, Z) = Φ(U, V ) with:

Xt = EQ

[
ξ +

∫ T

t
f(s, Us, Vs)ds

∣∣∣∣Yt

]
, 0 ≤ t ≤ T , XT = ξ.

Then {Zt, 0 ≤ t ≤ T} is obtained by using Jacod and Shiryaev [14] general-
ized martingale representation theorem, applied to the martingale EQ

[
ξ +

∫ T
0 f(s, Us, Vs)ds|Yt

]
t∈[0,T ]

.

So we obtain:

ξ +
∫ T

0
f(s, Us, Vs)ds = EQ

(
ξ +

∫ T

0
f(s, Us, Vs)ds

∣∣∣∣σ(L)
)

+
∫ T

0
(Zs, dBs)

In this last equality, conditional expectation is taken with respect to Yt and
so ∀t ≤ T :

Xt +
∫ t

0
f(s, Us, Vs)ds = X0 +

∫ t

0
(Zs, dBs)

Which implies X0 = ξ +
∫ T

0
f(s, Us, Vs)ds−

∫ T

0
(Zs, dBs)

and consequently Xt = ξ +
∫ T

t
f(s, Us, Vs)ds−

∫ T

t
(Zs, dBs) (10)

This proves that (X, Z) ∈ B2 is solution of the BSDE if it is a fixed point of Φ.
As f is globally Lipschitz with respect to U, V and using Davis-Burkholder-
Gundy’s inequality, we deduce:

EQ

(
sup

0≤t≤T
|XT |2

)
< ∞

consequently {
∫ t
0 (Xs, ZsdBs), 0 ≤ t ≤ T} is a martingale.

Let (U, V ), (U ′, V ′) ∈ B2, (X, Z) = Φ(U, V ), (X ′, Z ′) = Φ(U ′, V ′),
(Ū , V̄ ) = (U − U ′, V − V ′) and (X̄, Z̄) = (X −X ′, Z − Z ′).
Then, from Itô formula, ∀γ ∈ R, we have:

eγtEQ|X̄t|2 + EQ

∫ T
t eγs(γ|X̄s|2+ ‖ Z̄s ‖2)ds

≤ 2KEQ

∫ T
t eγs|X̄s|(|Ūs|+ ‖ V̄s ‖)ds

≤ 4K2EQ

∫ T
t eγs|X̄s|2ds + 1

2EQ

∫ T
t eγs(|Ūs|2+ ‖ V̄s ‖2)ds

(11)
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We chose γ = 1 + 4K2, and obtain:

EQ

∫ T

0
eγt(|X̄t|2+ ‖ Z̄t ‖2)dt ≤ 1

2
EQ

∫ T

0
eγt(|Ūt|2+ ‖ V̄t ‖2)dt (12)

Then Φ is a strict contraction on B2 with norm
|||(X, Z)|||γ = (EQ

∫ T
0 eγt(|Xt|2+ ‖ Zt ‖2)dt)

1
2 .

We deduce that Φ has a unique fixed point and we conclude that the BSDE
has a unique solution.

�

2.2 Comparison of the solutions

We first look at an intuitive example. Suppose L = ST : the agent knows
the final price (he deduces it for instance from an information on a former
financial operation, as a takeover). Suppose also that he wants to hedge a
digital option 1ST≤K . The insider will then have two possible investments:
invest on the risky asset if ST ≤ K, or doing nothing otherwise. He has
obviously a different strategy from the non insider agent. Moreover, in this
special case, there is an arbitrage opportunity.
In the general case, it is not so easy to determine whether the insider will
have a different investment strategy from the non insider or not, especially
when information is at time T ′ > T . So we have two questions: will the
insider invest differently from the non insider? Is there an arbitrage in the
insider space? Answering these questions can give us other clues: is the
information relevant? Is it useful? Moreover, when the insider has a very
different strategy from the non insider, it will be possible to detect the former
through statistical tests. This could be useful for market fraud detection
agencies, as the French A.M.F. We can recall that in a wealth optimization
point of view (see Grorud and Pontier [9]), the insider will immediately
have a completely different strategy from the non insider. Is it the same
in our hedging problem? We compare first the strategies of the two agents
(comparison of the solutions of the two BSDE’s), before studying viability
and completeness of the insider market.

Corollary 2.1 Suppose that ξ ∈ L2(Ω,YT , Q) ∩ L2(Ω,FT , P ), so that the
financial problem has a sense in the insider space as in the non insider space.
We denote by (X, Z) and (X ′, Z ′) the solutions of the two BSDE’s. Then,
if EQ

∫ T
0 ‖ Zt ‖2 dt < ∞, the solution of the insider’s BSDE is the same as

the non insider’s one: (X, Z) = (X ′, Z ′).

Proof: according to Theorem 2.1, in the insider space (Ω, (Yt)0≤t≤T , Q) the
BSDE has a unique solution (X ′

t, Z
′
t). But the non insider BSDE solution

(Xt, Zt) is (Ft)0≤t≤T -progressively measurable, and so is it with respect to
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(Yt)0≤t≤T . As the BSDE is the same in both spaces, we have

Xt = ξ +
∫ T

t
f(s,Xs, Zs)ds−

∫ T

t
(Zs, dBs)

So (Xt, Zt) is a solution of the insider BSDE. As EQ

∫ T
0 ‖ Zt ‖2 dt < ∞, we

conclude that it is the unique solution of the insider BSDE. �
Remarks: Intuitively, as L ∈ (FT ′), T < T ′ and L ⊥ ξ, from hypothesis
(H3), we can understand that if under Q the objective is independent from
the insider information, he will not have a different strategy, as soon as this
strategy is admissible in the insider space. In a certain sense, the informa-
tion is useless. In this case, there is no arbitrage opportunity, and the insider
market is viable. We have a hedging problem in a complete initial market,
so there exists a price for the option, and a strategy for hedging the risk.
What is the use of the information? Either to create an arbitrage, which is
impossible under (H3) (see next paragraph), or to propose a different price
for the option in the market. But then two problems appear: first, who
would buy such an option? and second, proposing a different price from the
market means exhibiting the fact that we have an information... which is
uninteresting from the insider point of view considering that using the infor-
mation is a fraud.

2.3 Viability and completeness of the insider market

We try to translate our results in term of viability and completeness of the
market. The main point is to know if there is an arbitrage opportunity, and
if the insider market is complete.

Theorem 2.2 Suppose that the insider market is viable, and let Q∗ be a
risk-neutral probability. If ξ ∈ L2(F , P ) ∩ L2(Y, Q), then EP ∗(ξ) = EQ∗(ξ).
So the information does not create any arbitrage opportunity: prices are the
same in both spaces.

Proof: By a Girsanov transformation, risk-neutral probabilities allows us to
remove drift in price processes, keeping volatility. So in the insider space as
in the non insider space, we obtain dSt = St(σt, dWt) where Wt is a (F , P )
and a (Y, Q)-Brownian motion. Then price processes under the two risk
neutral probabilities follow the same diffusion processes, and prices on both
markets are the same. �
In general, the insider market is incomplete, but has a particular property:

Theorem 2.3 Let R1 and R2 be two risk neutral probabilities in the insider
space. Let Y ∈ L1

R1
(Q)∩L1

R2
(Q), then prices are equal: ER1(Y ) = ER2(Y ).
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proof: See Grorud [8]. �
The insider market may have several risk neutral probabilities. It is not
necessarily complete, nevertheless it is always "pseudo-complete", in the
sense that all prices calculated under different risk neutral probabilities are
the same. It could be interpreted by the fact that prices in the insider market
will only depend on information L and on the non insider market: as the
non insider has a unique risk neutral probability, there is only one price in
the insider market.
Finally, following Amendinger [2] and Grorud and Pontier [10] we have the
following result:

Theorem 2.4 Under (H3), if the non insider market is viable, then the
insider market is also viable. Financially speaking the information L does
not create any arbitrage opportunity.

On the other hand, completeness of the non insider market does not necessar-
ily imply completeness of the insider market. The enlarged space may have
several risk neutral probabilities, but which will have property of pseudo-
completeness of Theorem (2.3).

3 BSDE under hypothesis (H′′)

3.1 Existence and Uniqueness Theorem

In this section (H′′) is supposed to hold: the conditional probability law of
L knowing Ft is absolutely continuous with respect to the law of L, ∀t ≤ T .
We still take L ∈ FT ′ , T < T ′. Let’s recall the non insider BSDE:{

Xt = ξ +
∫ T
t f(s,Xs, Zs)ds−

∫ T
t (Zs, dWs) , ∀0 ≤ t ≤ T

(Ω, (Ft)0≤t≤T , P )
(13)

(H′) holds, say every (Ft, P )-martingale (Mt)0≤t≤T is a (Yt, P )-semi-martingale.
So the Brownian motion Wt can be written: Wt = Bt +

∫ t
0 lsds where Bt is a

(Y, P )-Brownian motion and l is a Y-adapted process. We deduce the new
backward equation in the insider space:{

Xt = ξ +
∫ T
t [f(s,Xs, Zs)− (Zs, ls)] ds−

∫ T
t (Zs, dBs) , ∀0 ≤ t ≤ T

(Ω, (Yt)0≤t≤T , P )
(14)

If we take ξ ∈ L1(Ω,YT , P ) in the insider space, we have a new BSDE with
a new drift, deduced from the previous drift according to the formula:

g(ω, t, y, z) = f(ω, t, y, z)− (z, l(ω, t)).

Let’s consider Pardoux’s existence and uniqueness Theorem 1.1. The filtra-
tion is not generated by the Brownian motion any more. So we don’t have
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any martingale representation theorem. f(., y, z) and lt are Yt-progressively
measurable, so the new drift g(., y, z) is Yt-progressively measurable. As
g(t, y, 0) = f(t, y, 0), the condition on f stands also on g, so |g(t, y, 0)| ≤
|g(t, 0, 0)| + φ(|y|), ∀y, z P -a.s. Identically, as g(t, 0, 0) = f(t, 0, 0) we still
have EP (

∫ T
0 |g(t, 0, 0)|2dt) < ∞. On the other hand, g is not globally Lips-

chitz, because:

|g(t, y, z)−g(t, y, z′)| = |f(t, y, z)−f(t, y, z′)+l(t)(z−z′)| ≤ (K+lt) ‖ z−z′ ‖

So if lt is a.s. bounded, then g is globally Lipschitz with respect to z, but if
lt is not bounded, this property does not hold. Moreover, as g(y) = f(y) +
constant, we still have < y− y′, g(t, y, z)− g(t, y′, z) >=< y− y′, f(t, y, z)−
f(t, y′, z) >≤ µ|y−y′|2. As f , g is also continuous with respect to y, ∀t, z a.s.
Finally, all conditions are verified for the enlarged BSDE in the insider space,
as soon as we suppose lt bounded. But we need a martingale representation
theorem. If lt is almost surely bounded, then EP (E(−l.B)) = 1, ∀t < T .
Then, according to proposition 4.2 of Grorud and Pontier [12], hypothesis
(H3) is verified. We are in the previous case : under hypothesis (H3), we
have a martingale representation theorem, and we can conclude similarly
to Theorem 2.1 (and without a change of probability). We obtained the
following result:

Theorem 3.1 Under (H ′′) and hypotheses of Theorem 1.1, if lt is a.s. bounded
in the enlarged space (Ω, (Yt)0≤t≤T , P ), then we deduce the existence and
uniqueness of the solution of the enlarged BSDE.

Remark: It will be useful to study what happens on examples for which l
is not bounded, and (H3) does not hold. But a problem is that we do not
know any example of L in a continuous model for which (H′′) holds but not
(H3). And if (H3) holds, we have the result of previous section, and the
problem is solved. This is the reason why it seems natural to introduce jump
processes into our model, in order to have examples of L for which we have
(H′′) but not (H3).

4 Introduction of Jump processes

4.1 Extended model

We add jump processes in the price dynamics studied in the previous section.
W is still a m-dimensional standard Brownian motion on (ΩW ,FW , PW ) and
(FW

t )t∈[0,T ] its completed natural filtration. We denote by (ΩN ,FN , PN )
another probability space where N = (N1, .., Nn) : ΩN → Rn is a n-
dimensional multivariate Poisson process, with intensity λt, t ∈ [0, T ]. We
denote by Mt = Nt−

∫ t
0 λsds the compensated multivariate Poisson process.

N is denoted as a vector (Nk)k=1,..,n of unidimensional multivariate Poisson
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processes with intensity (λk)k=1,..,n, FN
0 -measurable. FN is generated by

FN
0 and the jump times of N . So the global probability space is:

(Ω,F , (Ft)t∈[0,T ], P ) = (ΩW ×ΩN ,FW ⊗FN , (FW
t ⊗FN

t )t∈[0,T ], P
W ×PN ).

The market model still contains a bond and d = m + n risky assets whose
prices (Si

t)i=1,..,d follow a diffusion run by W and N :

dS0
t = S0

t rt , S0
0 = 1

dSi
t = Si

tb
i
tdt + Si

t(σ
i
t, dWt) + Si

t(ρ
i
t, dMt) , Si

0 = xi, i = 1, .., d.
(15)

We suppose the following, so that the market is viable and complete:

• b, r, σ, ρ are predictable and globally bounded processes,

• λ is a nonnegative F0-measurable process, which does not meet any
neighborhood of 0, ρi,k

t > −1, ∀i, k, t,

• Φ∗t Φt is uniformly elliptic, where Φt = [σtρt]

• Let θ = Φ−1(b− r1), then θk < λk, ∀k = 1, .., n.

We consider again an insider in this new market with jumps. The insider
still has information L ∈ L1(Ω,FT ′ , P ) taking its values in Rk, and the new
filtration on the insider space is Yt = ∩s>t(Fs ∨ σ(L)), ∀t ∈ [0, T ], T < T ′.
We have the same hypothesis on wealth process and investment strategy,
and we study self-financing strategies dXt =

∑d
i=0 θi

tdSi
t−ctdt, so the wealth

process of the trader on this market satisfies:

Xt = X0 +
∫ t

0
θ0

sS0
srsds−

∫ t

0
csds

+
∑d

i=1

[∫ t

0

(
θi

sS
i
sb

i
sds + θi

sS
i
s(σ

i
s, dWs) + θi

sS
i
s(ρ

i
s, dMs)

)]
As in the continuous model, we obtain the following BSDE for the wealth

process:

Xt = XT −
∫ T
t [(Xsrs − cs) + (πs, bs − rs1)]︸ ︷︷ ︸

−f(s,Xs,Zs,Us)

ds

−
∫ T
t (σ∗sπs︸︷︷︸

Zs

, dWs)−
∫ T
t (ρ∗sπs︸︷︷︸

Us

, dMs) a.s.

4.2 BSDE with jumps

In this model with jumps, and even in a more general model with Poisson
point processes (see further), Barles, Buckdahn and Pardoux [4] developed
an existence theorem for the solution of BSDEs with jumps. We denote by
B2 = S2 × L2

m(P )× L2
n(P ) where:

• S2 is the set of k-dimensional Ft-adapted càdlàg processes {Yt}0≤t≤T

such that ||Y ||S2 =‖ sup0≤t≤T |Yt| ‖L2(Ω)< ∞

11



• L2
m(P ) the set of all k × m-dimensional Ft-progressively measurable

processes {Zt}0≤t≤T such that ||Z||L2
m(P ) =

(
EP

∫ T
0 |Zt|2dt

) 1
2

< ∞

• L2
n(P ) the set of all k × n-dimensional Ft-progressively measurable

processes {Ut}0≤t≤T such that ||U ||L2
n(P ) =

(
EP

∫ T
0 |Ut|2dt

) 1
2

< ∞

We have the following theorem (see Barles et al. [4]):

Theorem 4.1 (Pardoux II)
Let ξ ∈ L2(Ω,FT , P )k and f : Ω× [0, T ]×Rk ×Rk×m ×Rk×n −→ Rk.
If f is measurable, if EP

∫ T
0 |ft(0, 0, 0)|2dt < ∞ and if ∃K such that:

|ft(y, z, u)−ft(y′, z′, u′)| ≤ K(|y−y′|+||z−z′||+||u−u′||),∀t ≤ T, y, y′, z, z′, u, u′

then there exists a unique triple (X, Z, U) ∈ B2 solution of the BSDE:

Xt = ξ +
∫ T

t
fs(Xs, Zs, Us)ds−

∫ T

t
(Zs, dWs)−

∫ T

t
(Us, dMs), 0 ≤ t ≤ T

Proof: The proof is the same as Pardoux’s Theorem 1.1 proof: constructing
a strict contraction and using a martingale representation theorem. �

4.3 Under hypothesis (H3)

Everything works globally as in the first part of the paper. More precisely:
• Existence and Uniqueness Theorem

Thanks to Jacod and Shiryaev ([14] Theorem III.4.34 p.189), Grorud ([8]
Theorem 3.1 p.648) shows a martingale representation theorem under (H3)
with jumps. With this martingale representation theorem, we can adapt the
proof of Pardoux’s Theorem (4.1), and as in the continuous case in section
2.1, we have the following result:

Theorem 4.2 Under hypothesis of Theorem 4.1 (so the initial BSDE has a
unique solution), for ξ ∈ L2(Ω,YT , Q) and if EQ

(∫ T
0 |ft(0, 0, 0)|2dt

)
< ∞

then the BSDE in the insider space has a unique solution (Xs, Zs, Us) ∈ B2.

• Comparison of solutions
We have a similar result as in section 2.2:

Proposition 4.1 For ξ ∈ L2(Ω,YT , Q) ∩ L2(Ω,FT , Q), we have:
if EQ

(∫ T
0 ‖ Zt ‖2

L2
m(Q) + ‖ Ut ‖2

L2
n(Q) dt

)
< ∞, then the solution of the en-

larged BSDE is the same as the solution of the initial BSDE: (X, Z, U) =
(X ′, Z ′, U ′).

• Viability and Completeness of the market
As in the continuous case, if the non insider market is viable, then the insider
market is also viable: there is no arbitrage opportunity (see Grorud [8]).
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4.4 Under hypothesis (H′′)

In this case, the new model becomes interesting, because now we have ex-
amples of L for which (H′′) holds but not (H3). We summarize the results
we have under this hypothesis before treating an example. We use Jacod’s
result on enlargement of filtration under (H′′) (see [13]), a bit different from
the result in the continuous model (see Grorud [8]).

Proposition 4.2 Under hypothesis (H′′), we have:

• If Qt is the conditional law of L knowing Ft, then there exists a mea-
surable version of the conditional density dQt : (ω, t, x) 7→ p(ω, t, x)
which is a martingale and can be written, ∀x ∈ R as:

p(t, x) = p(0, x) +
∫ t

0
(α(s, x), dWs) +

∫ t

0
(β(s, x), dMs)

where ∀x, s 7→ α(s, x) and s 7→ β(s, x) are F-predictable processes.
Moreover, ∀s < T ′, p(s, L) > 0 a.s.

• If Y is a martingale written as Yt = Y0 +
∫ t
0 (us, dWs) +

∫ t
0 (vs, dMs)

then d < Y, p(., x) >t=< α(., x), u >t dt+ < β(., x), v >t dt a.s. ∀t,
and:

Ȳt = Yt −
∫ t

0

(< α(., x), u >s + < Γ.β(., x), v >s)|x=L

p(s, L)
ds, 0 ≤ t ≤ T

is a (Y, P )-local martingale where Γ is the diagonal matrix of intensities
of N : d < M >s= Γsds

We denote by ls = α(s,L)
p(s,L) and µs = Γsβ(s,L)

p(s,L) . Then W̄t = Wt −
∫ t
0 lsds is a

(Y, P )-Brownian motion and if 1 + β(t,L)
p(t,L) ≥ 0 then M̄t = Mt −

∫ t
0 µsds is a

compensated Poisson process with intensity λt(1 + β(t,L)
p(t,L) ).

Then the wealth process can be written in term of a BSDE in the insider
space:

Xt = XT −
∫ T
t [(Xsrs − cs) + (πs, bs − rs1) + σ∗sπsls + ρ∗sπsµs]︸ ︷︷ ︸

−g(s,Xs,Zs,Us)

ds

−
∫ T
t (σ∗sπs︸︷︷︸

Zs

, dWs)−
∫ T
t (ρ∗sπs︸︷︷︸

Us

, dMs) a.s.

with a new drift g(s,Xs, Zs, Us) = f(s,Xs, Zs, Us)− lsZs − µsUs.
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4.5 Study of an example of L

For this example, let us take L = NT : the insider trader knows the number
of jumps at final time T . In order to simplify the problem, we will consider
a unidimensional process. The law of L is absolutely continuous with re-
spect to the counting measure on N. We obtain a measurable version of the
conditional density:

p(t, y) = exp
(
−
∫ T

t
λsds

)
(
∫ T
t λsds)y−Nt

(y −Nt)!
1[Nt;∞[(y).

Then it is clear that (H3) does not hold (non equivalence of the laws),
whereas (H′′) is verified (law absolutely continuous with respect to the law
of L). We give an explicit expression of β in Proposition 4.2:

β(s, y) = ky
sp(s−, y) with ky

t =
y −Nt−∫ T

t
λsds

−1 and so µt = λtk
L
t = λt

(
NT −Nt−∫ T

t
λsds

− 1

)

In the insider space, M̃t = Mt −
∫ t
0 λs

(
NT−Ns−∫ T

s λudu
− 1
)

ds is a Yt-martingale.

So N is a Y-Poisson process with intensity NT−Nt−
T−t ≥ 0, ∀t ≤ T with respect

to Y. Indeed we should enlarge the initial space until T ′. Brownian motion
does not change because the conditional density is represented only on the
Poisson process, because of the independence between Brownian motion and
Poisson process. In this case, the enlarged BSDE is:

XT = ξ+
∫ T

t

(
f(s,Xs, Zs, Us)− λs

(
NT −Ns−∫ T

s
λudu

− 1

))
ds−

∫ T

t

ZsdWs−
∫ T

0

UsdM̃s

The martingale representation theorem that stands in (Ω,F , P ) allows us
to find a solution to the enlarged BSDE, but we do not have any uniqueness
result in this case (µ is not bounded).

5 Introduction of a Poisson measure

Such a model is interesting to develop because its incompleteness allows us
to have hypothesis (H′′) without (H3).

5.1 The model

In our last section we introduce jump processes where jumps are continuous
in time and space, by using a Poisson measure. We consider a filtered prob-
ability space (Ω,F , (Ft)0≤t≤T , P ) with F the completed filtration generated
by both (Wt)t≥0 and (Nt)t≥0. (Wt)t≥0 is a standard m-dimensional Brownian
motion and (Nt)t≥0 a point process with random Poisson measure µ on R+×
E and compensator ν(dt, de) such that {µ̃([0, t]×A) = (µ− ν)([0, t]×A)}t≥0
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is a martingale ∀A ∈ E satisfying ν([0, t] × A) < ∞. E = Rl \ {0} with its
Borel σ-algebra E . We can write as Nt =

∫ t
0

∫
E µ(ds, de) the point process, so

dNt =
∫
E µ(dt, de). And we denote by Ñt = Nt−

∫ t
0

∫
E ν(ds, de) the compen-

sated process. We use an additional hypothesis on ν: ν(dt, de) = dtλ(de), λ
supposed to be a σ-finite measure on (E, E) that satisfies :

∫
E(1∨|e|2)λ(de) <

+∞.
Let H be a finite-dimensional linear space, and let

• L2
F ([0, 1];H) be the space of all (Ft)-adapted H-valued square inte-

grable processes

• L2
F ,P ([0, 1];H) be the space of (Ft)-predictable equivalent class ver-

sions.

As previously we consider a financial market with one bond and k risky
assets, in which asset prices are driven by the following stochastic differential
equation (t ∈ [0, T ], 1 ≤ i ≤ k) :

Si
t = Si

0 +
∫ t

0
Si

sb
i
sds +

∫ t

0
Si

s(σ
i
s, dWs) +

∫ t

0
Si

s−

∫
E

φi
s(e)µ(ds, de) (16)

where b, σ and φ are predictable and globally Lipschitz processes. We rewrite
the self-financing equation as a BSDE, and the wealth-investment process is
solution of:

Xt = XT −
∫ T

t

[(Xsrs − cs) + (πs, bs − rs1)]︸ ︷︷ ︸
−f(s,Xs,Zs)

ds−
∫ T

t

(σ∗sπs︸︷︷︸
Zs

, dWs)

−
∫ T

t

∫
E

(πs− , φ(s, e))︸ ︷︷ ︸
Us(e)

µ(ds, de) a.s. (17)

As in the previous parts, an insider trader has an information L ∈ L1(Ω,FT ′ , Rk)
on the future. Y is still the insider’s natural filtration. In both spaces, we
study again existence and uniqueness of the admissible wealth-portfolio pro-
cesses in order to cover a pay-off represented by ξ = XT .

5.2 Existence and uniqueness

We use here two main articles: Barles, Buckdahn and Pardoux [4], and Tang
and Li [23]. Let us first define several process spaces.
Let S2(F) be the set of all Ft-adapted cadlag k-dimensional processes square-
integrable {Yt}0≤t≤T such that ‖ Y ‖S2(F)=‖ sup0≤t≤T |Yt| ‖L2(Ω)< ∞.
Let L2(W ) be the set of all Ft-progressively measurable k × d-dimensional

processes {Zt}0≤t≤T such that ‖ Z ‖L2(W )=
(
EP

∫ T
0 |Zt|2dt

)1/2
< ∞.

Let L2(µ̃) be the set of all mappings U : Ω× [0, T ]×E → R that are P ⊗E-
measurable (P being the σ-algebra of Ft-predictable subsets of Ω × [0, T ])
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such that ‖ U ‖L2(µ̃)=
(
EP

∫ T
0

∫
E Ut(e)2ν(de, dt)

)1/2
< ∞.

Finally we define the functional space B2(F) = S2(F) × L2(W ) × L2(µ̃).
Then we have the following result:

Theorem 5.1 (Barles et al. [4] Theorem 2.1, and Tang and Li [23] Lemma 2.4)
Let ξ ∈ (L2(Ω,FT , P ))k and let f : Ω×[0, T ]×Rk×Rk×d×L2(E, E , ν; Rk) →
Rk be a P ⊗ Bk ⊗ Bk×d × B(L2(E, E , ν; Rk))-measurable function satisfying:

∃K > 0, EP

∫ T

0
|ft(0, 0, 0)|2dt < K (18)

|ft(y, z, u)− ft(y′, z′, u′)| ≤ K
[
|y − y′|+ |z − z′|+ ‖ u− u′ ‖

]
Then there exists a unique triple (Y, Z, U) ∈ B2(F) solution of the BSDE:

Yt = ξ+
∫ T

t
fs(Ys, Zs, Us)ds−

∫ T

t
ZsdWs−

∫ T

t

∫
E

Us(e)µ̃(ds, de) , 0 ≤ t ≤ T

5.3 BSDE under (H3) : Adaptation of the Existence and
Uniqueness Theorem

Under hypothesis (H3), in this model with continuous random jumps, we
can also adapt the existence theorem, as in the standard model under the
same hypothesis on the drift. An insider with information L verifying (H3)
will have an admissible hedging strategy for an option with pay-off ξ. We
have the following theorem:

Theorem 5.2 Let ξ ∈ (L2(Ω,YT , Q))k and let f be a drift function verifying
hypothesis (18), and such that EQ

∫ T
0 |ft(0, 0, 0)|2dt < ∞. Then there exists

a unique triple (Y, Z, U) ∈ B2(Y) solution of the BSDE:

Yt = ξ +
∫ T

t
fs(Ys, Zs, Us)ds−

∫ T

t
ZsdWs −

∫ T

t

∫
E

Us(e)µ̃(ds, de)

We first prove an important lemma for this proof: a martingale representa-
tion theorem in our context, under (Y, Q) :

Lemma 5.1 Let H be a finite-dimensional space and Mt an H-valued (Yt)-
adapted square integrable martingale.
Then there exists Zi(.) ∈ L2(W ), i = 1, .., d and U(., .) ∈ L2(µ̃) such that

Mt = M0 +
∫ t

0
Zi

sdW i(s) +
∫ t

0

∫
E

U(s, e)µ̃(ds, de)

Proof of the Lemma: Ñ(ds, de) = N(ds, de)−λ(de)ds is a local martin-
gale. The couple (W,N) is a Brownian-Poisson process couple, and it is an
independent increment process (IIP) on space (F , P ). So (W,N) is the same
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Brownian-Poisson process IIP in the enlarged space (Y, Q), from hypothesis
(H3). Then, Jacod and Shiryaev ( [14] th. III.4.34) gives us the expected
martingale representation theorem for independent increment processes. �
We can now prove the theorem.
Proof of the theorem:
For all (Ȳ (.), Z̄(.), Ū(., .)) ∈ B2(Y), we know from the previous lemma that
there exists Zi(.) ∈ L2(W ), i = 1, .., d and U(., .) ∈ L2(µ̃) such that:

EYt
Q

[
YT +

∫ T

0
fs(Ȳs, Z̄s, Ūs)ds

]
= ξ +

∫ t

0
ZsdWs +

∫ t

0

∫
E

Us(e)µ̃(ds, de)

This implies:

ξ = YT +
∫ T

0
fs(Ȳs, Z̄s, Ūs)ds−

∫ T

0
ZsdWs −

∫ T

0

∫
E

Us(e)µ̃(ds, de)

We put Yt = EYt
Q

[
YT +

∫ T

t
fs(Ȳs, Z̄s, Ūs)ds

]
We verify then that for each triple (Ȳ (.), Z̄(.), Ū(., .)), the triple (Y (.), Z(.), U(., .))
is characterized by the following equation:

Yt = YT +
∫ T

t
fs(Ȳs, Z̄s, Ūs)ds−

∫ T

t
ZsdWs −

∫ T

t

∫
E

Us(e)µ̃(ds, de)

which implies:

Yt = Y0 −
∫ t

0
fs(Ȳs, Z̄s, Ūs)ds−

∫ t

0
ZsdWs −

∫ t

0

∫
E

Us(e)µ̃(ds, de)

The previous equation defines a mapping Λ : (Ȳ (.), Z̄(.), Ū(., .)) → (Y (.), Z(.), U(.)).
We introduce, for k := (Y (.), Z(.), U(., .)) ∈ B2(Y) the norm defined by:

‖ k ‖:= sup
0≤t≤T

ebtEQ|Yt|2+ sup
0≤t≤T

ebt

[∫ T

t

EQ|Zs|2ds +
∫ T

t

∫
E

EQ|Us(e)|2ν(ds, de)

]
with b > 0 a constant to be determined later.
To complete the proof, it is sufficient to prove that Λ maps B2(Y) onto itself,
and is a strict contraction for the previous norm. Let (Ȳi(.), Z̄i(.), Ūi(., .)) ∈
B2(Y) and (Yi(.), Zi(.), Ui(., .) := Λ(Ȳi(.), Z̄i(.), Ū(., .)) for i = 1, 2.
Then, using Itô’s formula and equation (18), we obtain:

EQ|Y1(t)− Y2(t)|2 + EQ

∫ T

t

d∑
i=1

|Zi
1(s)− Zi

2(s)|2ds

+EQ

∫ T

t

∫
E

|U1(s, e)− U2(s, e)|2ν(ds, de)

≤ γ̄K2EQ

∫ T

t

|Y1(s)− Y2(s)|2ds +
1
γ̄

[
EQ

∫ T

t

|Ȳ1(s)− Ȳ2(s)|2ds

+EQ

∫ T

t

d∑
i=1

|Z̄i
1(s)− Z̄i

2(s)|2ds + EQ

∫ T

t

∫
E

|Ū1(s, e)− Ū2(s, e)|2ν(ds, de)

]
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Which implies, from Gronwall inequality:

EQ|p1(t)− p2(t)|2 + EQ

∫ 1

t

d∑
i=1

|qi
1(s)− qi

2(s)|2ds

+EQ

∫ 1

t

∫
E

|r1(s, e)− r2(s, e)|2ν(ds, de)

≤ 1
γ̄

[
EQ

∫ 1

t

|p̄1(s)− p̄2(s)|2ds + EQ

∫ 1

t

d∑
i=1

|q̄i
1(s)− q̄i

2(s)|2ds

+ EQ

∫ 1

t

∫
E

|r̄1(s, e)− r̄2(s, e)|2ν(ds, de)
]

+K2

∫ 1

t

eγ̄K2(s−t)

[
EQ

∫ 1

t

|p̄1(τ)− p̄2(τ)|2dτ + EQ

∫ 1

t

d∑
i=1

|q̄i
1(τ)− q̄i

2(τ)|2dτ

+EQ

∫ 1

t

∫
E

|r̄1(τ, e)− r̄2(τ, e)|2ν(dτ, de)
]

where γ̄ is a positive real number. So we conclude:

‖ (Y1 − Y2, Z1 − Z2, U1 − U2) ‖≤ α ‖ (Ȳ1 − Ȳ2, Z̄1 − Z̄2, Ū1 − Ū2) ‖

with α = max{ 2
bγ̄

,
4K2

γ̄b(b− γ̄K2)
,

2K2

b− γ̄K2
}

which completes the proof, with an appropriate choice of γ̄ and b such that
the constant α is strictly majored by 1. It means that γ̄ and b has to verify
γ̄(1 + γ̄/2) < K−2 and b > 2/γ̄. �
Thanks to this theorem, we have a similar result as in the two other models:
under (H3) we have existence and uniqueness of the solution of the enlarged
BSDE. Moreover, as before, if the problem is well defined in both spaces,
both solutions are the same.
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Conclusion

Successively in a continuous process model, in a discrete jump process model
and finally in a continuous jump process model, we have studied and com-
pared the strategies of an insider trader and a non informed agent. Under
certain hypotheses we proved existence and uniqueness of solutions for their
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hedging strategies, and arbitrage free model for the insider trader. In fact,
with correct hypotheses on the information on a complete initial market, the
insider market is viable, and even pseudo-complete.

A limit to these models can be raised: we have only considered small
investors. It is perhaps not relevant enough. A further work would be to
consider an option hedging problem in a jump process model with a large
investor. This would lead us to use Forward-Backward stochastic differential
equations, instead of BSDEs.

What is the practical use of such results? It seems difficult to concretely
apply them at the moment. However such comparison results between in-
sider and non insider investment strategies could be interesting to establish
statistical tests for the detection of insider traders. Applied to market datas,
it could help organisms like French A.M.F. determining whether an agent is
informed or not. Unfortunately, theories are not yet enough performing to
compute such tests, and A.M.F.’s monitoring agents do not use so specialized
statistical tests.
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