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Reconfigurable Antennas Radiations Using Plasma
Faraday Cage

O. A. Barro*

Abstract — This letter presents a new reconfigurable
plasma antenna associated with a Faraday cage. The
Faraday cage is realized using a fluorescent lamp. A
patch antenna with a broadside radiation pattern or
a monopole antenna with an end-fire radiation pat-
tern, operating at 2.45 GHz, is placed inside Faraday
cage. The performance of the reconfigurable system
is observed in terms of input reflection coefficient,
gain and radiation pattern via simulation and mea-
surement. It is shown that by switching ON the
fluorescent lamp, the gain of the antenna decreases.
This reconfigurable antenna can be used to avoid
coupling with other communications or radar sys-
tems working in the same frequency band.

1 INTRODUCTION

Plasma refers to the fourth state of matter. When
the plasma inside a container (tube in our case)
is energized (state ON), the media performs like a
conductive element capable to reflect radio signals
like a metal [1]. But, when the tube is de-energized
(State OFF), the plasma is non-conductor and elec-
tromagnetic waves can go through it. In the liter-
ature, plasma can be used as radiator to replace
metallic radiator or as reflector. The main advan-
tage of plasma reflector or plasma antenna com-
pared to metallic element resides in the possibility
to use an electrical control rather than a mechani-
cal one. In [2], the authors proposed plasma reflec-
tor antennas in order to steer the beam in certain
directions. More recently, reconfigurable reflector
plasma antennas have been realized by using low-
cost commercial fluorescent lamps (CFL) [3]. On
the other hand, a monopole fluorescent tube an-
tenna was proposed in [4, 5].

In this letter, we present reconfigurable antennas
using plasma faraday cage. A Faraday cage is an
enclosure formed by a conductive material or by a
mesh of such material. In our case, the Faraday
cage is realized by using a fluorescent lamp which
allows to switch ON or OFF the plasma and to
obtain reconfigurable gain and radiation patterns.

The paper is organized as follows: in section II,
the patch and monopole antennas as well as the
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Faraday cage modeling and simulations are pre-
sented. The comparison between simulation and
measurement results is provided in section III. A
conclusion is given in section IV.

2 MODELING AND SIMULATIONS

First, we design two different antennas. A circu-
lar patch operating at 2.45 GHz which radiates in
broadside direction and a monopole operating also
at 2.45 GHz with end-fire radiation. The geome-
try of the proposed patch antenna fed by coaxial
line is shown in Figure 1(a). This circular patch
with a diameter of 31 mm is printed on an FR4
substrate with thickness h = 3.2 mm, ¢, = 4.4
and tand = 0.025.The diameter of the substrate
is 50 mm. The antenna is fed by a 50 Q coaxial
line. The feed point is located along the y-axis,
at a distance d = 5 mm from the center of the
patch. The antenna is polarized along the y-axis
and the ground plane is printed on the bottom side
of the substrate.The designed quarter-wavelength
monopole has a diameter of 2 mm and a height of
30 mm. This monopole is placed in the center of a
ground plane with a diameter of 50 mm (Fig. 1(b)).

Secondly, a spiral shape lamp is modelized (Fig.
1(c)) [6]. The plasma diameter is 19 mm, the height
of the lamp is 134 mm, its inner diameter is 60
mm, while the outer one is 98 mm and the gap
between the coils is 3.64 mm. A ground plane of
200 x 200 mm? is used in the bottom of the lamp
in order to mask the electronic devices used to en-
ergize the plasma. The manufacturing prototypes
and measurement setup are shown in Figure 2.

In simulation (the simulations are performed us-
ing CST Microwave studio [7]), the tubes contain-
ing the gas are made from lossy glass Pyrex with
€, = 4.82, tand = 0.005 and thickness of 0.5 mm.
The plasma obeys to the Drude model defined by
the equation (1).
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where ¢, is the complex plasma permittivity, w, is
the plasma angular frequency, w is the operating
angular frequency and v is the electron-neutral col-
lision frequency.

At the beginning, we used the same Drude model



Figure 1: The designed models. (a) The patch an-
tenna. (b) The monopole antenna. (¢) The Fluo-
rescent lamp.

as in [3], with the same parameters (v = 900 MHz
and w, = 43.9823 10° rad/s ). Unfortunately, the
simulation results were not in good agreement with
measurements. Hence, we tried to match the sim-
ulations with the measurement by changing the
plasma parameters defined in the Drude model. Af-
ter retro-simulations, w, = 62.8318 10° rad/s is
considered and v is kept equal to 900 MHz. In
the absence of information from the manufacturer,
the retro-simulation was necessary in order to have
realistic plasma data for this kind of lamp.

3 RESULTS AND DISCUSSION

Simulated and measured S7; parameters are shown
in Figure 3 for both patch and monopole cases
and by switching ON or OFF the fluorescent lamp
(Plasma ON / Plasma OFF). For the patch case
and all configurations (patch alone, plasma OFF,
plasma ON), the resonant frequency is close to 2.45
GHz and simulation and measurement are in good
agreement (Fig. 3(a) and 3(b)). These results show
that the matching of patch is not significantly af-
fected by the plasma tube (ON or OFF). In the case
of the monopole (Fig. 3(c) and 3(d)), the antenna
is not well matched at the operating frequency in
ON case. The plasma affects the antenna’s reso-
nance.

134 mm

end of lamp

Figure 2: Realized model. (a) Dimensions of
plasma Faraday cage. (b) Patch antenna inside the
plasma Faraday cage. (¢) Monopole antenna inside
the plasma Faraday cage. (d) Radiation pattern
measurement setup (SATIMO)

Radiation patterns have been measured in order
to validate the simulation results. Measurements
have been performed in a SATIMO anechoic cham-
ber (near-fields setup) with peak gain accuracy
equal to 0.8 dBi. Figure 4 shows the measured
and simulated radiation patterns at 2.45 GHz. For
both simulation and measurements results, each
radiation pattern is normalized to the maximum
value of plasma OFF. It can be observed that the
radiation patterns in measurement and simulation
are quite similar. For the patch antenna, in both
simulation and measurement the difference of gain
between plasma OFF and ON at 6 = 0 (broadside)
is 12 dB (Fig. 4(a), 4(b)). The gain of antenna is
slightly decreased when the plasma is ON because
the electric field polarization is parallel to the end
of the lamp (Fig. 2(a)). For the monopole an-
tenna (Fig.4(c) and 4(d)), the difference is lower,
almost 5dB, because the electric filed polarization
of monopole is orthogonal to the spiral part of the
lamp. So the electromagnetic waves coming from
the monopole are less attenuated.

Table 1 shows the maximum realized gain at 2.45
GHz for the patch and the monopole antenna cases.
The simulation and measurement are in good agree-
ment. It is interesting to note that the radiation of
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Figure 3: Sj; magnitude parameter comparison. (a) Simulated S;; patch antenna case. (b) Measured
S11 patch antenna. (c¢) Simulated S7; monopole antenna case. (d) Measured S1; monopole antenna.

Table 1: Maximum simulated and measured gain for the patch and monopole antennas

Configurations Patch antenna Patch antenna
Plasma OFF | Plasma ON | Plasma OFF | Plasma ON
Maximum simulated gain (dBi) 6.4 0.3 34 -1.3
Maximum measured gain (dBi) 5.5 -0.7 2.3 0.5

the patch can be strongly reduced when the plasma
is ON. This means that the lamp acts as a Faraday
Cage especially in the broadside direction. This be-
havior can be suitable if we want to avoid coupling
this antenna and other near communication sys-
tems or to protect it against external undesirable
signal.

4 CONCLUSION

In this letter, a Faraday cage using commercial Flu-
orescent Lamp (plasma) was presented. Two types
of antennas were considered inside the lamp to show
the impact of Faraday Cage on antenna radiation
pattern and polarization. By switching OFF or
ON the plasma, the lamp behaves like a trans-

parent media or Faraday Cage respectively. This
reconfigurability could be used to reduce antenna
gain when different communication systems work-
ing at the same frequency are put close to each
others. The results obtained in this paper show
that the plasma Faraday cage with patch antenna
is more interesting than the plasma Faraday cage
with monopole antenna.
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Figure 4: Normalized radiation patterns at 2.45 GHz. (a)-(b) Patch antenna case in the H-and E-planes
respectively. (¢)-(d) Monopole antenna case in H-and E-planes respectively.
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