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Abstract

The role of simulation has kept increasing for the sensitivity analysis and
the uncertainty quantification of complex systems. Such numerical proce-
dures are generally based on the processing of a huge amount of code evalua-
tions. When the computational cost associated with one particular evaluation
of the code is high, such direct approaches based on the computer code only
can be not affordable. Surrogate models have therefore to be introduced to
interpolate the information given by a fixed set of code evaluations to the
whole input space. When confronted to deterministic mappings, the Gaus-
sian process-based regression (GPR), or kriging, presents a good compromise
between complexity, efficiency and error control. Such a method considers
the quantity of interest of the system as a particular realization of a Gaussian
stochastic process, which mean and covariance functions have to be identi-
fied from the available code evaluations. In this context, this work proposes
an innovative parameterization of this mean function, which is based on the
composition of two polynomials. This approach is particularly relevant for
the approximation of strongly non linear quantities of interest from very little
information. After presenting the theoretical basis of this method, this work
compares its efficiency to alternative approaches on a series of examples.
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1. Introduction

In spite of always increasing computational resources, the numerical cost
of many codes to simulate complex mechanical systems is still very high. To
perform sensitivity analyses, uncertainty quantification or reliability studies,
these computer models have therefore to be replaced by surrogate models,
that is to say by mathematical functions that are cheap to evaluate. To
be more precise, for d > 1, let L?(D4,R) be the space of square integrable
functions on any compact subset Dy of RY, with values in R, equipped with
the inner product (-,-), and the associated norm ||-||,., such that for all u
and v in L*(Dg, R),

(0, 0) 2 = /D w(@o(@)de,  uls = (). (1)

Let S be a physical system, which response depends on a d-dimensional
input vector © = (x1,...,24), and which performance can be evaluated from
the computation of a quantity of interest, g(x). Function g is a deterministic
mapping that is assumed to be an element of L?(Dy, R). In this work, it is
supposed that the maximal available information about ¢ is a set of NV code
evaluations at the points {&™,... @™} in Dy. Given this information, we
are interested in the identification of the best predictor g* of g, in the sense
that:

Vg€ L*(Dy,R), llg =gz < llg =3l (2)

In that context, the Gaussian process regression (GPR) method, or krig-
ing, plays a major role [19, 15, 20, 21|. It is indeed able to provide a prediction
of g(x), which is optimal in the class of the linear predictors of g, and for
which precision can be a posteriori quantified. Such a method considers per-
formance function g := {g(x), © € Dy} as a sample path of a real-valued
Gaussian stochastic process YV := {Y(x,w), € Dy, w € Q}, which is de-
fined on the probability space (2,7,P). Let u and C' be respectively the
mean and the covariance functions of Y:

Y ~ GP(u,0). (3)

We can then introduce Fy the o-algebra generated by the available in-
formation about g,



Y = (y(l) :g(w(l))7"'7y(N) :g(w(N))) ) (4)

such that P( - | Fy) and E[ - | Fy] will be used to denote the condi-
tional probability and conditional mathematical expectation respectively.
The mean function of Y is then supposed to be parameterized by a cho-
sen M-dimensional vector of functions in L?(Dy4,R), f = (fi,..., fu), and a
M-dimensional real vector to be determined, 3, such that:

where (-,-) is the inner product in R™. This hypothesis, which was first
introduced in time series analysis [17] and in optimization [12], is widely
used in computational sciences, as it allows dealing with the conditional
probability and expectation, while leading to very interesting results in terms
of computer code prediction. Indeed, gathering in the matrices [F] and [C]
the evaluations of f and C' at the available points {z™,... &™)},

[Fli= (@) - f@™)],
(Clij = C(2,20), 1<ij<N,
it can be shown [16] that if the matrix [C] is invertible, then:

(6)

Y | B, Fn ~ GP(un,Cn), (7)

where, for all &, 2’ in Dy:

pn(z) = (f(z),8) + (@) [CI7" (Y - [F]B),
Cy(z, ') = C(z,x') — r(x)"[C] ' rx), (8)
r(x) = (C(, xW)y C’(:c,:c(N))) .

In addition, if matrix [F|T[C][F] is also invertible, and if we suppose
that the vector 8, which is a prior: unknown, can be modeled by a random

vector that is uniformly distributed on R (improper prior distribution), it
comes:

Y [ Fn ~ GP(puk, Cux), 9)



pok (@) = (f(2), B°) +r(@)"[CT7 (Y - [F]BY),
Cux(z,a) = Cy(z, @) + u(@) ([F]"[C]7'[F]) u(a),
g = ([FIT[CTHF)THFTTICTY,
u(x) = [F]'[C]'r(z) - f(a).

Under this formalism, the best prediction of g in a non-computed point

x is given by the mean value of (Y (x) | Fn), pux(x), whereas Cyk(x, x)
quantifies the trust we can put in that prediction.

(10)

Therefore, the relevance of pyk(x) to predict g(x) is conditioned by the
choice of function C' and vector f. Without information about the regularity
of g, function C' is generally chosen as an element of the Matern-5/2 class,
such that for all &, ' in Dy:

C(x,x') =0

1

d
(1+ V/5h; + 5h2/3) exp(—V/5bhi), hi = |z; — @] /6. (11)
=1
In this case, covariance function C'is characterized by a vector of hyper-
parameters, ©® = (o0, (1, ...,{), which values have also to be conditioned by
Fy and f. A full Bayesian approach would then require the introduction of a
prior distribution for this vector, and the use of sampling techniques (such as
Monte Carlo Markov Chains [18]) to approximate the posterior distribution
of (Y | Fn) [8, 10, 3]. In this work, we will adopt an alternative approach,
which consists in conditioning all the former results by the maximum likeli-
hood estimate of ®. This method, which is generally called plug-in approach,
has indeed been used in many previous papers for the definition of Gaussian
process-based predictors, as it presents a good compromise between com-
plexity, efficiency, and errors control |2, 1]. Finally, given these hypotheses,
the only thing that can be done to minimize ||g — k||, > is working on the
choice of vector f. Once again, without information about g, polynomials
are generally chosen for f. Indeed, the set {ma, a e Nd}, with

Mme(x) = 27" X -+ xay?, x € Dy, (12)

defines a basis of L*(Dy, R). For a given value of M, characterizing f amounts
therefore at identifying the best M-dimensional subset of {ma, a € Nd} to
minimize ||g — pux||;2-



In practice, this optimization problem over a very vast space is replaced
by an optimization over a finite dimensional subset of {ma, a € Nd}. Dif-
ferent truncation schemes have thus been proposed to choose such a relevant
subset, which are mostly based on the assumption that the most influential
elements of {ma, a € Nd} correspond to the elements of lowest total poly-
nomial order. Denoting by r the maximal polynomial order of the projection
basis, we can introduce:

d
P(r,d) := {ma |l e N, Y oyl < r} : (13)
i=1

By construction, it can be noticed that the cardinal of P(r,d), C(r,d),
increases exponentially with respect to r and d:

C(r,d) = (d+nr)!/(dl xr!). (14)

For M < C(r,d), vector f is then generally searched using a penalization
technique, such as the Least Angle Regression (LAR) method |9, 7, 4], which
allows disregarding insignificant terms. Such an approach will be referred
as "LAR+UK" approach in the following, where "UK" stands for universal
kriging, and corresponds to the former plug-in approach (more details about
the combination of the universal kriging and the Least Angle Regression can
be found in [11]).

However, when N, the number of code evaluations, is low compared to the
complexity of g, such approaches are limited by the fact that only low values
of M, the dimension of the projection family, can be considered to avoid
extra-fitting. In order to be able to deal with higher values of M, without
increasing the number of unknown parameters to be identified, this work
proposes a new parameterization of the polynomial trend, which is based on
a nested structure. This paper shows therefore an alternative approach to
construct relevant predictors for complex systems, when only very limited
information is available.

The outline of this work is as follows. First, Section 2 presents the theo-
retical framework we propose for the definition of a Gaussian-process regres-
sion with a nested polynomial trend. The practical implementation of this



method is then detailed in Section 3. At last, the efficiency of the method is
illustrated on a series of analytic examples in Section 4.

2. Nested polynomial trend

2.1. General framework

As presented in Introduction, in this work, we are interested in identifying
the best predictor of g in any non-computed point « in D,, when the maximal
information is a fixed number of code evaluations. To this end, for p,q,u
in N*, let [a] and b be respectively a (u x C(q, d))-dimensional matrix and a
C(p, u)-dimensional vector, such that the mean value of the stochastic process
Y associated with performance ¢, p, can be parameterized by:

pla; [a], b) == (mP([am @V (z)),b), @ € Dy, (15)

where numbers C(p,u) and C(q, d) are defined by Eq. (14), and where m®®
and m@? are the vector-valued functions that gather all the elements of
P(p,u) and P(q,d) respectively. The elements of these two vectors are sup-
posed to be sorted in an increasing total polynomial order, such that:

mgp,U) _ mgqu) =1. (16)

By construction, it can be noticed that:

p(: [a], b) = (mP([aJm*) (), b) |

Qg

u  [Clg,d)
,d
- Z b(al """ o) X H Z [a]ikml(cq )(CC) ) (17)
0<|ar|+-+|aw|<p i=1 \ k=1

= Z 2% % - x 259 Z5([a], by u),
0< e [+-+]aq|<pxq
such that, for all w > 1, function & — u(x;[a],b) is in Span {P(p X ¢,d)},
while being characterized by C(p, u)+uxC(q, d) parameters. In order to focus
on the minimal parameterization of this nested structure, the two following
constraints are moreover introduced:

[(I]ﬂ =0,
Sp-1 " "
k=1



and for 2 < k < C(q, d), at most one component ([alig, ..., [a].k) is supposed
to be non-zero. These C(q,d) — 1 non-zero coefficients of [a] can then be
gathered in a vector a, such that:

[aJm D (a) = [P*)(x)]a. (19)

A Bayesian formalism is then adopted to identify [a] and b. Function g
is supposed to be a particular realization of the Gaussian stochastic process
Y, which statistical properties are given by:

Y |ab® ~ GP(u(a,b),C(0)), (20)

u(x; a,b) = <m(p’”)([P(q’d)(m)]a), b> , x €Dy, (21)

where © gathers the d+1 parameters of the Matern-5/2 covariance C' defined
by Eq. (11).

2.2. Linearization of the nested polynomial trend

The proposed nested polynomial trend is however strongly non linear with
respect to a. This prevents us from using the convenient formula given by
Eq. (10). In order to circumvent this problem, let (a*, b*, ®*) be the solution
of the following log-likelihood maximization problem:

) g max L { N log(2m) -+ log(det((C(©)

(ab®)csxm 2 | + (Y — M(a,b)) [C(®)] (Y- M(a,b)) |’
(22)
M(a,b) = (u(w(l);a,b), (™ a, b)) = [M(a)]b, (23)
(@) = [0 (PO Oa) - mO (PO )], (21)

where the admissible searching set, S2I™ is a subset of RC(@?)~1 x RC(Pw)
R4*! but is not trivial, as it first takes into account the constraints on
a defined by Eqgs. (18) and (19), but also guarantees that [C'(®)] and
[M(a)]"[C(©)]*[M(a)] are invertible.



By construction, function b +— p(-;-, b) is linear, such that the lineariza-
tion of mean function u(x;a,b) in the vicinity of a* and b* is:

p(x;a,b) ~ <(h(1) (x;a*,b"), h(2)(ac; a*)) , (@ —a”, b)> , (25)
h(@; a*,b%) = [P ()] [D([P@) (x)]a")]"b", (26)
h(@: ") =m0 (P99 (@)]a), @7

am(pvu)

0z

D) = [ 6] zer (25)

(2), 1<j<u, 1<k<C(pu), z€R" (29)

(92’]' -

OmPw omPw
], -
0z ki

Let us now denote by 3 := (a—a*, b) the new vector of parameters to be
determined, and by f := (h(l)(-; a*,b*), h?(.; a*)) the new set of projection

functions. Hence, conditioned by the values of a*, b* and ©*, the formalism
introduced in Eq. (5) is found back:

Y[B ~ GP((f,8),C), (30)

such that the mean value of (Y | Fy) can be calculated analytically to com-
pute the predictor of g. At last, to avoid extra-fitting, classical penalization
techniques can also be used to consider only the most influential components
of f in the modeling of g.

Remark on the linearization.

As it will be shown in Section 3, the maximization problem defined by
Eq. (22) is not easy. Hence, by introducing vector 3, one additional interest
of the proposed linearization is to make the final predictor be less sensitive
to the solutions of this problem.



‘ Values of d H C(p x q,d) ‘ #Coeff(d, p,q,u = 1) ‘ #Coeff(d,p,q,u = d) ‘

1 10 6 6

2 95 12 17
bt 2002 o8 106
10 92378 288 261
20 10015005 1773 3521

Table 1: Comparison between the dimension of the projection set, C(p X ¢,d), and the
number of independent parameters to characterize the associated projection coefficients in
the proposed nested approach, #Coeff(d, p, ¢, u) = C(p,u)+(C(q,d)—1) —u, for g =p =3,
d e {1,2,5,10,20} and u € {1,d}.

2.3. Comments on the proposed parameterization
Proposing such a nested parameterization of the mean function of Y is
motivated by two main reasons.

e First, for d > 1, it allows us to model separately the dependency struc-
ture between the different input parameters, which is characterized by
p and u, and the individual actions of each input parameter, which are
characterized by polynomial order ¢ (considering different values of ¢
for each input could eventually be done to optimize such a two-scales
modeling). Hence, analyzing the optimal values of p, u and ¢ can give
us information about the structure of g. For instance, if p = 1 and
u = d, then ¢ is just an additive model, up to a transformation of its
input parameters. In the same manner, a value of ¢ strictly greater
than 1 tends to say that the relation between @ and ¢ is multiscale.

e Second, this approach is very attractive in terms of dimension reduc-
tion, as it can be seen in Table 1. Indeed, only #Coeff(d,p,q,u) =
C(p,u) + (C(q,d) — 1) — u independent parameters have to be fixed
to span a C(p X ¢, d)-dimensional projection set. As it will be seen in
Section 4, this is particularly interesting for the modeling of complex
phenomena with very limited information.

3. Practical implementation

As presented in Section 2, for given values of & and b, function a +—
p(x; a,b) is strongly non linear. Hence, one key step of the proposed for-

9



mulation is the solving of the optimization problem given by Eq. (22). In
addition, when trying to define optimized predictors with finite information,
we have to be careful to avoid extra-fitting. Methods to quickly evaluate
error ||g — g||;» for any g in L*(Dy,R) are therefore needed. This section is
therefore divided in two main sections, which respectively deal with these
two issues.

3.1. Mazximization of the likelihood

In this section, for given values of N, u, p and ¢, we are interested in
identifying the solution (a*, b*, ®*) of the log-likelihood maximization prob-
lem given by Eq. (22). To this end, denoting by L the function such that for
all (a, b, ®) belonging to the admissible set S2™,

L(a,b,®) = log(det([C(®)])) + (Y — M(a,b))"[C(©)]"(Y — M(a, b();,l)
it is interesting to notice that for all (a,b, ®) in S,

L(a,b"(a,®),0) < L(a,b,©), (32)

where:

b"5(a,©) = (M(a)]"[C(®)] 'M(a)]) ' M(a)"[C(O)]Y,  (33)
and matrix [M(a)] is given by Eq. (24). It comes:

(a*,®") = arg (ml@n) L(a,®),
> - (34)
b* = (M(a")]"[C(©")] " [M(a”)])  [M(a")]"[C(©7)]Y,

L(a,®):= L(a,b""(a,®),0). (35)

Function (a,®) — L(a,®) being strongly non-regular and non-convex,
it is proposed to work iteratively on the values of a and ®. Two reasons
motivate this separation. First, the actions of a and © on L(a,®) be-
ing very different, dividing the optimization problem tends to regularize the
mappings on which the minimization is carried out. Second, by reducing
each searching set, each minimization is made easier. Therefore, for a given
convergence tolerance ¢, Algorithm 1 is introduced for the minimization of
L. The convergence of such an iterative algorithm to the global minimum

10



of L is of course not guaranteed, but it appeared on a series of numerical
examples that it allowed us to identify good approximations of (a*, ®*) at a
reasonable computational cost.

Initialization: L; =0, Ly = 400, a* = (1,...,1)/|(1,...,1)]| ;
while |Ly — L;| > ¢ do

Ly=Ly;

O = argmaxe L(a*,0) ;

a* = argmax, L(a, ®) ;

Ly = min(Ls, L(a*,©%)) ;
end
a*~a*, O ~ O

Algorithm 1: Iterative minimization of function L.

N O oA W N =

3.2. Error evaluation

According to Section 2 and Eq. (10), for given values of truncation pa-
rameters p, ¢ and u, we propose to use the deterministic function g"*'(zx),
such that:

7" (x) = (f(w;a", ©), 5" (a", ©))

fr(@: ©)1CO (Y - [Fla*, 08" (a0, )

(e, 0% = (F(a", 00O 1P, ) {Fler @ (@) 1Y
to predict the value of g(x) for all © in D,, where:

e vectors a* and @™ are the solutions of the optimization problem given
by Eq. (34), under the additional condition that the matrix
[F(a*,©")|T[C(©")]7[F(a*,©®")] is invertible,

e vector Y is defined by Eq. (4),

e the function & — f(x;a*, ©") gathers the most influential terms of
the vector-valued function (h(l)(-; a*, b"(a*,©%)), h?(-; a*)), which
have been identified from a LAR procedure,

11



o [F(a*,®")] := [f(zM;a*,0%) --- f(x™);a*, ©")] gathers the evalu-
ations of f(-; a*, ®*) at the available code evaluations,

e and for all 1 < n,m < N, [C(O)],, = C(z™,2™) and r,(z; ©*) =
C(z,z™), with C the Matern-5/2 covariance function of parameters
o

As presented in Section 1, the relevance of such a predictor is assessed
from the computation of the L? error ||g — g"*| 1,- Function g being only
known through a limited number of evaluations, classical Leave-One-Out
(LOO) techniques [13, 4] can therefore be introduced to approximate such a
norm:

N 1 & R
Hg . gnestHiQ ~ Eioo — _E : (g(w(n)) _ gﬂejt(w(")))Q’ (38)
N
n=1

where, for all 1 < n < N, the function g"%" has been constructed in the same
manner than §g"**, but only using the N — 1 evaluations of the code in
{CE(Q), e ,ZL'(N)} ifn=1,
X = {m(l), . ,a:(N_l)} if n=N, (39)
{xW, . 20D 2t M otherwise.

In order to reduce the computational cost associated with the evaluation
of €50, it is interesting to notice (see 6] for further details) that for all
1<n<N:

m(n) __ ~mnest w(n) _ ([é(a*, 6*)]Y)n 40
olal") ~gat)) = ST (40)

Cla*,©")] = [C(O)] ! — [C(&M)]'[F(a*,©")][C(®")] ",  (41)

[F(a*,©")] = [F(a*, ©")]([F(a”, ©")]"[C(©")]'[F(a*,©")]) ' [F(a*, @(25
LOO error €, can then be approximated by:

12



N -~ 2
~ 1 PO C(a*, ®M)]Y),
oo ~ G0 = 7 2t F i {([[é(m* @*))]] ) } - W)

Such an approximation is however conditioned by the values of a* and
©*, which are computed using all the code evaluations. In order to be more
precise, it can be noticed that for all a, ©®, 1 < n < N:

n=1

7 (a0 s (ClaO))
L(a,©)=L_,(a,©)+ o). (44)

[C(a,©)] = [C(®)] " {[1] - [M(a)]([M(a)]T[C(@)]_l[M(a)])_l[M(a)]T[agC;))}_l} ,
where £_,,(a, ®) is the evaluation of function £(a,®) based on the N — 1
evaluations of the code in X(=™ only. Hence, in the optimization process
leading us to the identification of a* and ©*, let {(a;,©;), 1 <i < Ny }

be the Ny values of @ and ©, in which function £ has been evaluated.

With very limited additional computational cost, we can then define, for all

1 < n < N, the LOO evaluations of a* and ®*, which are denoted by a*,

and ©*  respectively, and which are given by:

a* O )=ar max L_.(a,©). 46
(a*,,©%,) R T (a,©) (46)
Finally, we can introduce error €00, such that:
1Y (C(a*,. 0" )Y), |
~n. 2 a’fnv -n n
HQ -9 eStHLQ R &oo = N e, = ~ . N . (47)
n=1 [C(a’fm ®—n)]7m

3.83. Convergence analysis

All the developments presented in Sections 3.1 and 3.2 are conditioned
by the values of three truncation parameters, p, ¢ and u, which have to be
identified from a convergence analysis. To do so, maximal values for p, ¢ and
w are a priori chosen, and the values for these parameters will be chosen in
order to minimize error €2 ,. In this work, as we want to reduce the number
of parameters on which the polynomial trend is based, only values of u that
are lower than d are considered.

13



Remark on the roles of p, q and u in the modeling of g.

As presented in Section 2.3, the roles of p, ¢ and u in the modeling of
g are different. Whereas p and u are associated with the modeling of the
dependency structure between the input parameters, ¢ is associated with
the individual transformation of each input. As a consequence, ¢ is strongly
dependent on the dimension of vector a, which parameterizes these individual
transformations. On the contrary, this dimension of a, which is equal to
C(q,d) —1—u, does not depend on p, and depends only linearly on u. Hence,
increasing the values of p and u does not really increase the search set for
the identification of @*, but makes the relation between a and £(a, ®) much
more complex.

4. Applications

To illustrate the advantages of the nested structure presented in Sections 2
and 3 for the modeling of quantity of interest g, this section introduces a series
of analytic examples, which are sorted with respect to the input set dimen-
sion, d. In each case, the proposed approach is compared to the "LAR+UK"
approach, which has been described in Section 1. In that prospect, for each
function g, let g"** and g'AR*+UK be the best approximations of g we can
get from the available information about g, when considering a nested poly-
nomial trend and a simple polynomial trend, respectively. Let e%pgr and

2 . : .
€tar.uk e the associated normalized errors, such that:

s = |lg — 7|2, / lgll3: (48)
e arux = |l9 — AU, gl - (49)

When dealing with a simple polynomial trend, it is reminded that the
only truncation parameter that needs to be identified is the maximal total
polynomial order, which will be denoted in the following by p"A®+UK for the
sake of clarity. On the contrary, three truncation parameters have to be
identified for the nested polynomial trends: p, v and q.

41 d—1
In this part, we suppose that d = 1, and we fix D; = [—1,1]. Three
analytic expressions for g are then proposed:

e case 1: g(z) = Pyo Pi(x),

14



e case 2: g(x) =sin((z +1)?),
e case 3: g(z) = sin(20x) cos(2z),

where, for all z in [—1,1]:

5

Pule) = S Wi o) (0,—0.03,0.5, —0.4, —0.5)
" ’ V0.03% + 0.5% + 0.4% + 0.5%
5 (50)
5
Py(z) =Y Pt e® =(-0.1,0.2,0.7,-0.2, —0.2).
i=1

For each case, Figure 1 compares the evolution of errors eX pgr and €7 y 5 yx
with respect to IV, the number of available evaluations of g. For each value of
N, convergence analyses have been performed for both methods. The maxi-
mal values for the truncation parameters associated were fixed such that:

0<pPARTUK <90 0<p,g<10, u=1. (51)

In addition, Figure 2 compares the two approaches in term of prediction
for given values of N. In these figures we notice that the proposed method is
particularly adapted to the cases when g presents a nested structure or when
it is oscillating. This is particularly true when N is small compared to the
complexity of g.

4.2. d>1

The idea of this section is to show that the tendencies that were noticed in
the one-dimensional cases are found back when considering multidimensional
input spaces. To this end, let us consider the three following expressions of
g, and the associated maximal values for the convergence analyses:

o Case 1: d=2, 0 < pMARIUK <90 0<p<6,0<¢<10,1<u<d.

_ [—1,1]2 — [—1,1]
9: { T — g?P(x) = (1 — 23) cos(Tzy) x (1 — 22) sin(5x2)(52)
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Figure 1: Evolution of the normalized L? errors with respect to N, the number of code
evaluations. To be more representative, for each value of N, the LAR+UK and the
proposed approaches have been repeated 10 times on randomly chosen learning sets. The
curves correspond to the mean value of the errors associated with these 10 repetitions.
Solid black line: evolution of the error associated with the LAR+UK approach, ef s , yk-
Red dotted line: evolution of the error associated with the proposed approach, 512\IEST-
The vertical bar indicates moreover the value of N on which the results of Figure 2 are
focused.
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Figure 2: Efficiency of the proposed method to predict in a non-computed point the value
of g(z) = Py o Pi(z) with N = 15 (first row), g(x) = sin((z + 1)?) with N = 11 (second
row) and g(z) = sin(20z) cos(2x) with N = 20 (third row). In each figure, the black solid
line is the evolution of the quantity of interest, g, with respect to x, the blue points are the
positions of the available observations of g, the red dotted line is the prediction of g based
on an optimized LAR+UK approach (left column) or based on the proposed approach
associated with optimized values of p, u and ¢ (right column). The grey areas correspond

to the 95% confidence region for the prediction.
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e Case 2 (the Ishigami function): d = 3, 0 < pFARTUK <900 <p < 3,
0<¢g<10,1<u<d.

) [—m, 73 — R
I &= (11,29, 23) — ¢*P(x) = sin(x1) + 7sin(xs)? + 0.124 sin(x)

(53)

e Case3: d=6,0 < pMRIUK <10, 0<p<3,0<¢<10,1<u<d.

16 R
0 e oy

6 6
g (z) = 0.1cos (Z zi> + Z z, z€R, (55)

i=1 i=1
9@ (x) = (cos(mxy + 1), cos(may + 2), ..., cos(mzg + 6)). (56)

In the same manner than in Section 4.1, Figure 3 compares the evolution
of errors eXpgr and €7y, yx With respect to N. As for the one-dimensional
cases, it can be noticed in these figures that, for the considered examples,
introducing a nested structure for the polynomial trend can allow us to make
the L? error decrease by several orders of magnitude, especially when N is
low. Moreover, these figures emphasize the interest of optimizing the values
of truncation parameter v when dealing with multidimensional input spaces.

4.83. Relevance of the LOO error

As presented in Section 3, when the maximal information about ¢ is
a set of code evaluations, error ||g — g"*"||,. can be evaluated by its LOO
approximation, e00. In order to reduce the computational cost associated
with the evaluation of £,00, two alternative estimations of error ||g — g"*"|| -,
€r.oo and 1,00, have been proposed. In order to underline the relevance of
these two LOO errors, Figure 4 compares these three errors in the case when
N =100 and g is the Ishigami function, for which expression is given by
Eq. (52) (the same kinds of results would have been obtained for other
values of N and other expressions of g). In this figure, it can thus be noticed
that both approximations 100 and 1,00 are very close to |lg — ¢*| ;.. In
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Figure 3: Evolution of the normalized L? errors with respect to N, the number of code
evaluations. To be more representative, for each value of N, the LAR+UK and the
proposed approaches have been repeated 10 times on randomly chosen learning sets. The
curves correspond to the mean value of the errors associated with these 10 repetitions.
Solid black line: evolution of the error associated with the LAR+UK approach, f sg , yk-
Blue dotted line: evolution of the error associated with the proposed approach, 512\IEST,
with u = 1. Red dashed line: evolution of the error associated with the proposed approach,
edpsrs With 1 <u < d.
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general, approximation €00 is more conservative, in the sense that there are
less chances that it underestimates ||g — g"*"||,.. However, as explained in
the final remark of Section 2.2, introducing a linearization around a* reduces
the risk of being too dependent on a*, which explains the fact that only small
differences can be noticed between 1,00 and £1,00.

5. Conclusions

One of the main objectives of this paper is to propose an alternative
parameterization of the polynomial trends for the Gaussian process-based
regression. This parameterization, which is based on the composition of two
polynomials, allows us to span high dimensional polynomial spaces with a
reduced number of parameters. Hence, it has been shown on a series of
examples that this approach can be very useful, especially when confronted
to the modeling of complex functions with very little information.

However, identifying relevant values for these parameters is not easy. In
this work, these parameters are identified from a two-steps approach. First,
their maximume-likelihood estimates are searched from the solving of a non-
convex optimization problem. An iterative algorithm has been proposed to
approximate the solutions of this problem. Then, a linearization around these
values is carried out, in order to find back the usual formalism of Gaussian
process-based regression, and to minimize the sensitivity of the results to
these values.

When the number of code evaluations becomes high, it appears that the
proposed approach and the "LAR+UK" approach give similar results (the
"LAR+UK" approach being a particular case of the proposed approach).
This can be due to the fact that the nested structure can be not necessary
when a lot of information about the code is available, or to numerical dif-
ficulties in the parameters identification. Increasing the robustness of the
proposed iterative algorithm, as well as proposing more efficient methods
to solve the introduced optimization problem are possible extensions of the
present work.

Furthermore, trying to increase the sparsity of the proposed nested rep-
resentation could be a good idea, especially to enable the proposed method
to deal with systems with high values of d. In that prospect, coupling the
proposed approach to low rank approximations |14, 5| seems promising for
future work.
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Figure 4: Comparisons between error |lg — §"**|| ;. and its LOO approximations &},00 and
eLoo for the modeling of the Ishigami function from N = 100 code evaluations, for u = d,
1<p<4andl <gq <5 Redsquares: the true values of ||g — g"®"||;.. Black circles
: the approximated values. In each case, the boxplots correspond to the distributions of
(2, 1<n < N)and (62, 1 <n < N), which expressions are given by Eqs. (42) and (46).
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