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To each Boolean function F : {0, 1} n → {0, 1} n and each point x ∈ {0, 1} n , we associate the signed directed graph G F (x) of order n that contains a positive (resp. negative) arc from j to i if the discrete analogue of (∂f i /∂x j )(x) is positive (resp. negative).

We then focus on the following open problem: Is the absence of a negative circuit in G F (x) for all x ∈ {0, 1} n a sufficient condition for F to have at least one fixed point? As main result, we settle this problem under the additional condition that, for all x ∈ {0, 1} n , the out-degree of each vertex of G F (x) is at most one.

Introduction

In the course of his analysis of discrete iterations, Robert introduced a discrete Jacobian matrix for Boolean maps and the notion of Boolean eigenvalue [START_REF] Robert | Théorèmes de Perron-Frobenius et Stein-Rosenberg Booléens[END_REF][START_REF] Robert | Dérivée Discrète et Comportement Local d'Une Itération Discrète[END_REF][START_REF] Robert | Discrete iterations: a metric study[END_REF][START_REF] Robert | Les systèmes dynamiques discrets[END_REF]. This material allows Shih and Ho to state in 1999 a Boolean analogue of the Jacobian conjecture [START_REF] Shih | Solution of the Boolean Markus-Yamabe Problem[END_REF]: If a map from {0, 1} n to itself is such that all the Boolean eigenvalues of the discrete Jacobian matrix of each element of {0, 1} n are zero, then it has a unique fixed point. Thanks to the work of Shih and Dong [START_REF] Shih | A combinatorial analogue of the Jacobian problem in automata networks[END_REF], this conjecture is now a theorem.

Our starting point is an equivalent statement of the Shih-Dong theorem, the Theorem 1 below, in which the condition "all the Boolean eigenvalues of the discrete Jacobian matrix are zero" is expressed with the following few basic definitions and graph-theoretic notions.

Let n be a positive integer, and consider a Boolean map F : {0, 1} n → {0, 1} n , x = (x 1 , . . . , x n ) → F (x) = (f 1 (x), . . . , f n (x)).

The interaction graph of F evaluated at point x ∈ {0, 1} n is the directed graph on {1, . . . , n} that contains an arc from a vertex j to a vertex i if the quantity f ij (x) = f i (x 1 , . . . , x j-1 , 1, x j+1 , . . . , x n )f i (x 1 , . . . , x j-1 , 0, x j+1 , . . . , x n ) is not zero, i.e., if the partial derivative of f i with respect to x j is not is not zero at point x.

A circuit of length p in G F (x) is a sequence of p distinct vertices i 1 , i 2 , . . . , i p such that there is an arc from i k to i k+1 , 1 ≤ k < p, and from i p to i 1 . An arc from a vertex to itself is thus a circuit of length one.

Theorem 1 [START_REF] Shih | A combinatorial analogue of the Jacobian problem in automata networks[END_REF] If G F (x) has no circuit for all x ∈ {0, 1} n , then F has a unique fixed point.

Remy, Ruet and Thieffry [START_REF] Remy | Graphics requirement for multistability and attractive cycles in a Boolean dynamical framework[END_REF] proved latter that F has at most one fixed point under a condition weaker than "G F (x) has no circuit for all x ∈ {0, 1} n ". For that, they define the sign of an arc from j to i in G F (x) to be equals to f ij (x). And, as usual, they define the sign of a circuit to be the product of the signs of its edges.

Theorem 2 [START_REF] Remy | Graphics requirement for multistability and attractive cycles in a Boolean dynamical framework[END_REF] If G F (x) has no positive circuit for all x ∈ {0, 1} n , then F has at most one fixed point.

This theorem positively answer a Boolean version of a conjecture of Thomas coming from theoretical biology (see [START_REF] Remy | Graphics requirement for multistability and attractive cycles in a Boolean dynamical framework[END_REF] and the references therein).

Seeing Theorems 1 and 2, it is natural to think about a proof by dichotomy of Theorem 1, and to study the following difficult question:

Question 1 Is the absence of a negative circuit in G F (x) for all x ∈ {0, 1} n a sufficient condition for F to have at least one fixed point?

In this note, we partially answer this question by establishing the following theorem:

Theorem 3 If G F (x)
has no negative circuit for all x ∈ {0, 1} n , and if the out-degree of each vertex of G F (x) is at most one for all x ∈ {0, 1} n , then F has at least one fixed point.

This partial answer is, in our knowledge, the first result about negative circuits in local interaction graphs associated with F . And it is not an obvious exercise. To see this, one can refer to the technical arguments used by Shih and Ho [7, pages 75-88] to prove that if G F (x) has no circuit for all x ∈ {0, 1} n , and if the out-degree of each vertex of G F (x) is at most one for all x ∈ {0, 1} n , then F has at least one fixed point.

Finally, we also prove, using Theorem 2, the following theorem:

Theorem 4 If G F (x) has no negative circuit for all x ∈ {0, 1} n , and if there exists a vertex i ∈ {1, . . . , n} such that, for all x ∈ {0, 1} n , all the positive circuits of G F (x) contain i, then F has at least one fixed point.

Note that Theorem 1 is an immediate consequence of Theorem 2 and Theorem 4.

The paper is organized as follows. After some preliminaries given in Section 2, Sections 3 and 4 are devoted to the proof of Theorems 3 and 4 respectively.

Preliminaries

As usual, we set 0 = 1 and 1 = 0. For all x ∈ {0, 1} and I ⊆ {1, . . . , n}, we denote by x I the point y of {0, 1} n defined by: y i = x i if i ∈ I, and y i = x i otherwise (i = 1, . . . , n). In order to simplify notations, we write x instead of x {1,...,n} , and x i instead of x {i} .

Let F be a map from {0, 1} n to itself. Using the previous notations, the partial derivative of f i with respect to x j can be defined by

f ij (x) = f i (x j ) -f i (x) x j -x j .
If G F (x) has an arc from j to i, we say that i (resp. j) is a successor (resp. predecessor ) of j (resp. i), and we abusively write j → i ∈ G F (x). The out-degree of a vertex is defined to be the number of successors of this vertex.

We are interested in maps F that have the following property P:

∀x ∈ {0, 1} n , the out-degree of each vertex of G F (x) is at most one.

(P)

Note that if F has the property P, then

j → i ∈ G F (x) ⇐⇒ F (x i ) = F (x) j .
The Hamming distance d(x, y) between two points x, y of {0, 1} n is the number of indices i ∈ {1, . . . , n} such that x i = y i . So, for instance, d(x, y) = n if and only if y = x, and d(x, y) = 1 if and only if there exists i ∈ {1, . . . , n} such that y = x i . Note also that F has the property P if and only if

∀x, y ∈ {0, 1} n , d(x, y) = 1 ⇒ d(F (x), F (y)) ≤ 1.
We then deduce, by recurrence on d(x, y), that F has the property P if and only if

∀x, y ∈ {0, 1} n , d(F (x), F (y)) ≤ d(x, y).
We now associate with F two maps from {0, 1} n-1 to itself that will be used as inductive 

F |b = (f |b 1 , . . . , f |b n ) : {0, 1} n-1 → {0, 1} n-1 by f |b i (x) = f i (x, b) (i = 1, . . . , n -1). f |b ij (x) = f ij (x, b) (i, j = 1, . . . , n -1).
Consequently, for all x ∈ {0, 1} n-1 and b ∈ {0, 1}, 3 Proof of Theorem 3

G F |b (x) is a subgraph of G F (x, b), i.e., if G F |b (x)
Lemma 1 If d(x, F (x)) = 1, then any circuit of G F (x) of length n is negative.
Proof -Suppose that d(x, F (x)) = 1 and that C = i 1 , . . . , i n is a circuit of G F (x) of length n. Without loss of generality, we can suppose that F (x) = x i 1 . Let h(1) = 1 and h(0) = -1. We have

f i 1 in (x) = f i 1 (x in ) -f i 1 (x) x in -x in = f i 1 (x in ) -x i 1 x in -x in ,
and since f i 1 in (x) = 0 we obtain

f i 1 in (x) = x i 1 -x i 1 x in -x in = h(x i 1 ) h(x in ) .
Furthermore, for k = 1, . . . , n -1, we have

f i k+1 i k (x) = f i k+1 (x i k ) -f i k+1 (x) x i k -x i k = f i k+1 (x i k ) -x i k+1 x i k -x i k ,
and since f i k+1 i k (x) = 0 we obtain

f i k+1 i k (x) = x i k+1 -x i k+1 x i k -x i k = h(x i k+1 ) h(x i k ) .
Denoting by s the sign of C, we obtain

s = f i 2 i 1 (x) • f i 3 i 2 (x) • f i 4 i 3 (x) • • • f ini n-1 (x) • f i 1 in (x) = h(x i 2 ) h(x i 1 ) • h(x i 3 ) h(x i 2 ) • h(x i 4 ) h(x i 3 ) • • • h(x in ) h(x i n-1 ) • h(x i 1 ) h(x in ) = h(x i 1 ) h(x i 1 ) = -1.
The rest of the proof is based on the following notion of opposition: given two points

x, y ∈ {0, 1} n and an index i ∈ {1, . . . , n}, we say that x and y are in opposition (with

respect to i in F ) if F (x) = x i , F (y) = y i and x i = y i .
Lemma 2 Let F be a map from {0, 1} n to itself that has the property P. If F has two points in opposition, then there exists two distinct points x and y in {0, 1} n such that G F (x)

and G F (y) have a common negative circuit.

Proof -We proceed by induction on n. The lemma being obvious for n = 1, we suppose that n > 1 and that the lemma holds for maps from {0, 1} n-1 to itself. We also suppose that F has at least two points in opposition.

First, suppose that α and β are two points in opposition with respect to i in F such that α = β. Then there exists j = i such that α j = β j , and without loss of generality we can suppose that α n = β n = b. Set α = (α 1 , . . . , α n-1 ) and β = (β 1 , . . . , β n-1 ) so that α = (α, b) and β = ( β, b). Then, αi = α i = β i = βi , and since F (α) = α i , we have We need the following four claims to complet the proof.

F |b (α) = (f 1 (α), . . . , f i (α), . . . , f n-1 (α)) = (
Claim 1 F has no fixed point.

Proof -Let α and β be two points in opposition with respect to i in F . Suppose, by contradiction, that x is a fixed point of F . If

x i = α i , then d(F (x), F (α)) = d(x, a i ) > d(x, α
) and this contradicts the fact that F has the property P. Otherwise,

x i = β i , thus d(F (x), F (β)) = d(x, β i ) > d(x, β
) and we arrive to the same contradiction.

Notation: In the following, for all x ∈ {0, 1} n , we set

x 1 = x and x k+1 = F (x k ) (k = 1, 2, 3, . . . ).
Claim 2 If α and β are in opposition in F , then there exists a permutation {i 1 , . . . , i n } of {1, . . . , n} such that α k and β k are in opposition with respect to i k in F (k = 1, . . . , n).

Proof -Suppose that α = α 1 and β = β 1 are in opposition with respect to i in F . For p = 1, . . . , n, we denote by S p the set of sequences (i 1 , i 2 , . . . , i p ) of p distinct indices of {1, . . . , n} such that α k+1 = α k i k for k = 1, . . . , p. S 1 is not empty since, by definition, (i) ∈ S 1 . So in order to prove that S n is not empty, it is sufficient to prove that S p = ∅ ⇒ S p+1 = ∅ (p = 1, . . . , n -1).

Suppose that (i 1 , . . . , i p ) ∈ S p (1 ≤ p < n). Then α p+1 = a p ip , so d(α p+1 , α p ) = 1 and since F has the property P, we deduce that

d(F (α p+1 ), α p+1 ) = d(F (α p+1 ), F (α p )) ≤ d(α p+1 , α p ) = 1.
Since, by Claim 1, we have F (α p+1 ) = α p+1 , we deduce that d(F (α p+1 ), α p+1 ) = 1. In other words, there exists j ∈ {1, . . . , n} such that

F (α p+1 ) = α p+1 j . F (α k ) = α k j
and since

α p+1 = α p {ip} = α p-1 {i p-1 ,ip} = • • • = α k {i k ,...,i p-1 ,ip} ,
we have

α k j = α k i k = α p+1 i k = α p+1 j .
Thus α k and α p+1 are in opposition with respect to i in F . But since {i k , . . . , i p-1 , i p } is strictly included in {1, . . . , n}, we have α p+1 = α k and this contradicts the hypothesis H.

Thus j ∈ {i 1 , . . . , i p } and we deduce that (i 1 , . . . , i p , j) belongs to S p+1 . Thus S p+1 is not empty and it follows that S n is not empty. Thus, there exists a permutation {i 1 , . . . , i n } of {1, . . . , n} such that α p+1 = a p ip for p = 1, . . . , n, and we show similarly that there exists a permutation {j 1 , . . . , j n } of {1, . . . , n} such that β p+1 = β p jp for p = 1, . . . , n. Observe that, following the hypothesis H, we have α = β and thus

α n+1 = α {i 1 ,...,in} = α = β and β n+1 = β {j 1 ,...,jn} = β = α. (1) 
We are now in possition to prove, by recurrence on k decreasing from n to 1, that α k and β k are in opposition with respect to i k in F . Since F has the property P, and from

(1), we have

d(α n , β n ) ≥ d(F (α n ), F (β n )) = d(α n+1 , β n+1 ) = d(β, α) = d(β, β) = n. thus d(α n , β n ) = n = d(α n+1 , β n+1 ) = d(α n in , β n jn )
We deduce that i n = j n and α n in = β n in . It is then clear that α n and β n are in opposition with respect to i n in F . Now, suppose that α k and β k are in opposition with respect to

i k in F (2 ≤ k ≤ n).
Then, following the hypothesis H, α k = β k , and since F has the property P, we deduce that

d(α k-1 , β k-1 ) ≥ d(F (α k-1 ), F (β k-1 )) = d(α k , β k ) = d(β k , β k ) = n Thus d(α k-1 , β k-1 ) = n = d(α k , β k ) = d(α k-1 i k-1 , β k-1 j k-1 ).
We deduce that i k-1 = j k-1 and α k-1 i k-1 = α k-1 i k-1 and thus that α k-1 and β k-1 are in opposition with respect to i k-1 in F .

Claim 3 If α and β are in opposition with respect to i in F , then i has at most one predecessor in G F (α).

Proof -Let {i 1 , . . . , i n } be a permutation of {1, . . . , n} with the property of Claim 2.

Then

α i 1 = F (α) = α i thus i = i 1 .
Suppose, by contradiction, that i 1 has at least two predecessors in G F (α). Then i 1 has a predecessor i k = i n in G F (α). Using the property P, we deduce that

F (α i k ) = F (α) i 1 = α i 1 i 1 = α = α i k i k and F (α k ) = α k i k . (α k ) i k = α i k = (α i k ) i k and α k in = (α i k ) in . (2) 
Otherwise, α k = α {i 1 ,...,i k-1 } and so (2) holds again. Consequently, in both cases, α k and α i k are in opposition with respect to i k in F and α k = α i k . This contradicts the hypothesis H. Proof -Let {i 1 , . . . , i n } be a permutation of {1, . . . , n} with the property of Claim 2. We will show that i 1 , . . . , i n is a circuit of G F (α n ). We have

F α k i k-1 = F α k-1 i k-1 i k-1 = F (α k-1 ) = α k = a k i k i k = F (α k ) i k (k = 2, . . . , n)
and thus

i k-1 → i k ∈ G F (α k ) (k = 2, . . . , n). (3) 
In addition,

F α k i k = F (α k+1 ) = a k+1 i k+1 = F (α k ) i k+1 (k = 1, . . . , n -1) 
and thus

i k → i k+1 ∈ G F (α k ) (k = 1, . . . , n -1).
Let k be any index of {1, . . . , n -1}, and suppose, by contradiction, that

i k → i k+1 ∈ G F (α n ).
Since i k → i k+1 ∈ G F (α k ), there exists p ∈ {k + 1, . . . , n} such that

i k → i k+1 ∈ G F (α p-1 ) and i k → i k+1 ∈ G F (α p ).
Following (3), we have i p = i k+1 . Furthermore, from i k → i k+1 ∈ G F (α p-1 ) we deduce that

f i k+1 (α p-1 ) = f i k+1 α p-1 i k , (4) 
and from both i k → i k+1 ∈ G F (α p ) and α p = α p-1 i p-1 we deduce that

f i k+1 α p-1 i p-1 = f i k+1 α p-1 i p-1 i k = f i k+1 α p-1 i k i p-1 . (5) 
If

f i k+1 (α p-1 ) = f i k+1 α p-1 i p-1
then i k+1 and i p are distinct successors of i p-1 in G F (α p-1 ), and this contradicts the fact that F has the property P. Thus

f i k+1 (α p-1 ) = f i k+1 α p-1 i p-1
and from ( 4) and [START_REF] Robert | Les systèmes dynamiques discrets[END_REF] we deduce that

f i k+1 (α p-1 i k ) = f i k+1 α p-1 i k i p-1
.

Thus i p-1 → i k+1 ∈ G F α p-1 i k and since F has the property P, we have

F α p i k = F α p-1 i p-1 i k = F α p-1 i k i p-1 = F α p-1 i k i k+1 Since i k → i k+1 ∈ G F (α p-1
), we have F α p-1 i k = F (α p-1 ) i k+1 and using the property P we obtain

F α p i k = F (α p-1 ) i k+1 i k+1 = F (α p-1 ) = α p = α p ip ip = F (α p ) ip
So i k and i p-1 are predecessors of i p in G F (α p ), and i k = i p-1 since i p = i k+1 . We have now a contradiction: following Claim 2, α p and β p are in opposition with respect to i p in F , and so, following Claim 3, i p has at most one predecessor in G F (α p ). We have thus prove that

i k → i k+1 ∈ G F (α n ) (k = 1, . . . , n -1) 
To prove the claim, it is thus sufficient to prove that i n → i 1 ∈ G F (α n ), and this is obvious. Indeed, following the hypothesis H, we have α = β, thus

F (α n ) = α n+1 = α {i 1 ,...,in} = α = β F . If not, then for b ∈ {0, 1}, F (ξ b , b) = (f 1 (ξ b , b), . . . , f n-1 (ξ b , b), f n (ξ b , b)) = (f |b 1 (ξ b ), . . . , f |b n-1 (ξ b ), f n (ξ b , b)) = (ξ b 1 , . . . , ξ b n-1 , f n (ξ b , b)) = (ξ b , f n (ξ b , b)) = (ξ b , b) = (ξ b , b) n .
We deduce that (ξ 0 , 0) and (ξ 1 , 1) are in opposition with respect to n in F , and so, by Lemma 2, there exists two distinct points x, y ∈ {0, 1} n such that G F (x) and G F (y) have a common negative circuit, a contradiction.

Theorem 1 is an obvious consequence of Lemma 3.

Proof of Theorem 4

We proceed by induction on n. The case n = 1 being obvious, we suppose that n > 1 and that the theorem holds for maps from {0, 1} n-1 to itself. Let F be a map from {0, 1} n to itself, and without loss of generality, suppose that, for all x ∈ {0, 1} n , all the positive circuits of G F (x) contain the vertex n. We will show that α = (ξ 0 , 0) or β = (ξ b , 1) is a fixed point of F . Suppose, by contradiction, that neither α nor β is a fixed point of F . Then, as in Lemma 3, we prove that F (α) = α n and that F (β) = β n .

Consider the map F from {0, 1} n to {0, 1} n defined by

F (x) = F (x) n .
It is clear that α and β are distinct fixed points of F . So, by Theorem 2, there exists

x ∈ {0, 1} n such that G F (x) has a positive circuit C. If n does not belong to C, then since fij = f ij for i = 1, . . . , n -1 and j = 1, . . . , n,

we deduce that C is a positive circuit of G F (x) that does not contains n, a contradiction.

Otherwise, n belongs to C, and we then deduce from [START_REF] Shih | A combinatorial analogue of the Jacobian problem in automata networks[END_REF] and the fact that fnj = -f nj for j = 1, . . . , n that C is a negative circuit of G F (x), a contradiction.

tools in the proof of Theorems 3 and 4 .

 4 If x ∈ {0, 1} n-1 and b ∈ {0, 1}, we denote by (x, b) the point (x 1 , . . . , x n-1 , b) of {0, 1} n . Then, for b ∈ {0, 1}, we define the map

  α 1 , . . . , α i , . . . , α n-1 ) = αi , and we show similarly that F |b ( β) = βi . Consequently, α and β are in opposition with respect to i in F |b . Since F has the property P, F |b has the property P, and so, by induction hypothesis, there exists two distinct points x, y ∈ {0, 1} n-1 such that G F |b (x) and G F |b (y) have a common negative circuit. Since G F |b (x) and G F |b (y) are subgraphs of G F (x, b) and G F (y, b) respectively, we deduce that G F (x, b) and G F (y, b) have a common negative circuit and the lemma holds. So in the following, we assume the following hypothesis H: If F has two points α and β in opposition, then α = β. (H)

Claim 4

 4 If α et β are in opposition in F , then G F (α n ) has a circuit of length n.

For

  b ∈ {0, 1} and x ∈ {0, 1} n-1 , it is clear that G F |b (x) has no circuit since G F |b (x) is a subgraph of G F (x, b) that does not contains the vertex n. So F |b trivilally satisfies the conditions of the theorem. So, by induction hypothesis, F |b has at least one fixed point that we denote by ξ b .

and so

We are now in position to prove the lemma. Let α and β be two points in opposition in F . Following Claim 2 and Claim 4, α n and β n are two points in opposition, and thus distinct, such that G F (α n ) and G F (β n ) have a common circuit of length n, and according

Lemma 3 Let F be a map from {0, 1} n to itself that has the property P. If there is no distinct points x, y ∈ {0, 1} n such that G F (x) and G F (y) have a common negative circuit, then F has at least one fixed point.

Proof -We proceed by induction on n. The lemma being obvious for n = 1, we suppose that n > 1 and that the lemma holds for maps from {0, 1} n-1 to itself. Let F be as in the statement, and let b ∈ {0, 1}. Since

F |b has the property P and there is no distinct points x, y ∈ {0, 1} n such that G F |b (x) and G F |b (y) have a common negative circuit. So, by induction hypothesis, F |b has at least one fixed point that we denote by ξ b . Now, we prove that (ξ 0 , 0) or (ξ 1 , 1) is a fixed point of