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SOME REMARKS ABOUT THE WEAK CONTAINMENT PROPERTY FOR

GROUPOIDS AND SEMIGROUPS

CLAIRE ANANTHARAMAN-DELAROCHE

Abstract. A locally compact groupoid is said to have the weak containment property if its full
C∗-algebra coincides with its reduced one. This property is strictly weaker than amenability and
is known to be equivalent to amenability for transformation groupoids relative to actions of exact
discrete groups. We believe that for general étale groupoids one should have the same equivalence
of the two properties under some mild exactness assumption. In this paper we try to support this
statement.

Introduction

The notion of amenability for locally compact groups takes many forms and is well understood
(see [42] for instance). Amenability was introduced in the measured setting for discrete group
actions and countable equivalence relations by Zimmer [56, 54, 55] at the end of the seventies.
Soon after, Renault extended this notion to general measured groupoids and to locally compact
groupoids [45]. This was followed by further studies, for example in [2, 4] for group actions. A
detailed general study is provided in the monograph [3]. In particular it has long been known
[45, 47, 3] that every amenable groupoid has the weak containment property, in the sense that its
full and reduced C∗-algebras coincide. Yet, at that time the converse was left open: is a locally
compact groupoid amenable when it has the weak containment property? For locally compact
groups, this is well known to be true, due to a theorem of Hulanicki [20]. More generally, this
is true for any transitive locally compact groupoid [9] (that is, a groupoid acting transitively
on its set of units). Later on it was proved [31] that the weak containment property for an
action of an exact discrete group on a compact space implies the amenability of the action, and
recently the compactness assumption was removed [12]. This leads to believe that for any étale
groupoid amenability and weak containment are two equivalent properties. However, in 2015
Willett exhibited [53] a nice simple example of an étale groupoid having the weak containment
property without being amenable. Willett’s example is a bundle of groups. A related example,
exhibiting this time a non-amenable principal groupoid having the weak containment property
was afterwards found in [1].

As explained in Section 3 of this paper, and illustrated by several examples, it seems that,
knowing a priori some exactness property of a locally compact groupoid, it is amenable as soon

2010 Mathematics Subject Classification. Primary 43A07 ; Secondary 46L55, 54H20, 22A22, 20M30,20M18.
Key words and phrases. Groupoids, semigroups, weak containment, amenability .

1



2 CLAIRE ANANTHARAMAN-DELAROCHE

as it has the weak containment property. In a previous version of this paper we had stated that, for
an inner exact étale groupoid, amenability was a consequence of the weak containment property.
However, our proof is false and irreparable and we leave open the problem. Inner exactness is
introduced in Definition 3.7. This notion is interesting and plays now a role in other contexts (see
[7], [12]).

In Section 4,we turn to the case of discrete semigroups. We limit ourself to semigroups not
too far from the case of discrete groups, namely inverse semigroups (defined in Section 4.1) and
sub-semigroups of groups. We address a recurrent question concerning semigroups: what is the
right definition of amenability for a semigroup? To the semigroups that we consider are attached
a full C∗-algebra and a reduced C∗-algebra, generalizing the classical case of groups. There are
three obvious candidates for the notion of amenability, and it is natural to wonder what are the
relations between them:

(1) left amenability, that is, there exists a left invariant mean on the semigroup;
(2) weak containment property, that is, the full and reduced C∗-algebras of the semigroup are

the same;
(3) nuclearity of the reduced C∗-algebra of the semigroup.

This problem has been considered in many papers (see [41], [14], [37], [24], [13], [32], [28], [29],
[16], to cite a few of them). Of course, these three properties are equivalent for a discrete group.

Let us consider first the case of an inverse semigroup (see Section 4.1), that we denote by S.
A very useful feature of such a semigroup is that its full and reduced C∗-algebras are described
via the groupoid GS canonically associated to it [43]. As a consequence, we see that (3) ⇒ (2) in
this case: if the reduced C∗-algebra C∗r (S) is nuclear, then S has the weak containment property,
since GS is amenable.

It is the only general fact that can be stated. The example given by Willett, once reinterpreted
in the setting of inverse semigroups, allows us to show that (2) 6⇒ (3) in general, for inverse
semigroups (see Example 4.11). This answers a question raised in [16, Remark 3.7]. This example
is a Clifford inverse semigroup, that is an inverse semigroup which is a disjoint union S = te∈ESe
of groups where the set E of idempotents is contained in the center of S. This gives an example of
Clifford semigroup which has the weak containment property, although not all groups Se, e ∈ E,
are amenable. This answers a question raised in [41].

We observe that the notion of left amenability is not interesting, except when S has not a zero
element, i.e., an element 0 such that 0s = 0 = s0 for every s ∈ S. Indeed, any inverse semigroup
with a zero is left amenable, since the Dirac measure at zero is a left invariant mean. Even if S
has no zero, the left amenability of S does not imply the weak containment property, and a fortiori
the nuclearity of C∗r (S) (see Example 4.11).

Next, we consider the case of a pair (P,G) where P is a sub-semigroup of a group G containing
the unit e. As pointed out in [28, 29, 39], a handy tool in order to study the C∗-algebras of P is its
left inverse hull S(P ). It is an inverse semigroup with nice properties (Propositions 4.1 and 4.6).
Following Xin Li [28, 29], we define the full C∗-algebra of P to be the full C∗-algebra of GS(P ).
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This extends the definition given by Nica in [37] for quasi-lattice ordered groups (Definition 4.14).
On the other hand, C∗r (P ) is a quotient of the reduced C∗-algebra of GS(P ).

We first observe that the left amenability of P always implies the nuclearity of C∗r (P ) (see
Proposition 4.16). It is not true in general that the weak containment property implies the left
amenability of P as shown by Nica in [37]. He considered the free group G = Fn on n generators
a1, . . . , an and P = Pn is the semigroup generated by a1, . . . , an. Using the uniqueness property
of the Cuntz algebra On, Nica proved that Pn has the weak containment property although it is
not left amenable. Note that C∗r (Pn) is the Cuntz-Toeplitz C∗-algebra, that is, the C∗-algebra
generated by n isometries s1, . . . sn such that

∑
1≤i≤n sis

∗
i � 1. The weak containment property is

equivalent to the uniqueness of the Cuntz-Toeplitz C∗-algebra. Moreover, C∗r (Pn) is an extension
of On by the algebra of compact operators and therefore is nuclear.

In [28], Xin Li introduced the independence property for P , which can be rephrased by saying
that the quotient map from C∗r (GS(P )) onto C∗r (P ) is injective. In this case (which occurs for
instance for quasi-lattice ordered groups), the nuclearity of C∗r (P ) implies the weak containment
property for GS(P ) and thus for P (see Proposition 4.15).

Whether the weak containment property for P implies the nuclearity of C∗r (P ) is an old problem
that was raised by several authors, for instance by Laca and Raeburn [24, Remark 6.9], and more
recently by Xin Li [29, §9]. It is still open. We wonder whether this is true when G is exact.

The sections 1 and 2 are devoted to preliminaries on locally compact groupoids and the notion
of amenability.

We emphasize that the locally compact spaces will always be Hausdorff (unless explicitly men-
tioned) and second countable. Locally compact groupoids will always come equipped with a Haar
system and Hilbert spaces will be separable.

1. Preliminaries

1.1. Groupoids. We assume that the reader is familiar with the basic definitions about groupoids.
For details we refer to [45], [43]. Let us recall some notation and terminology. A groupoid consists

of a set G, a subset G(0) called the set of units, two maps r, s : G → G(0) called respectively the
range and source maps, a composition law (γ1, γ2) ∈ G(2) 7→ γ1γ2 ∈ G, where

G(2) = {(γ1, γ2) ∈ G × G : s(γ1) = r(γ2)},

and an inverse map γ 7→ γ−1. These operations satisfy obvious rules, such as the facts that
the composition law (i.e., product) is associative, that the elements of G(0) act as units (i.e.,
r(γ)γ = γ = γs(γ)), that γγ−1 = r(γ), γ−1γ = s(γ), and so on (see [45, Definition 1.1]). For

x ∈ G(0) we set Gx = r−1(x) and Gx = s−1(x). Usually, X will denote the set of units of G.

A locally compact groupoid is a groupoid G equipped with a locally compact topology such that
the structure maps are continuous, where G(2) has the topology induced by G×G and G(0) has the
topology induced by G. We assume that the range (and therefore the source) map is open, which
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is a necessary condition for the existence of a Haar system. We denote by Cc(G) the algebra of
continuous complex valued functions with compact support on G.

Definition 1.1. Let G be a locally compact groupoid. A Haar system on G is a family λ = (λx)x∈X
of measures on G, indexed by the set X = G(0) of units, satisfying the following conditions:

• Support: λx has exactly Gx as support, for every x ∈ X;
• Continuity: for every f ∈ Cc(G), the function x 7→ λ(f)(x) =

∫
Gx f dλx is continuous;

• Invariance: for γ ∈ G and f ∈ Cc(G), we have∫
Gs(γ)

f(γγ1) dλs(γ)(γ1) =

∫
Gr(γ)

f(γ1) dλr(γ)(γ1).

Examples 1.2. (a) Transformation groupoid. Let G be a locally compact group acting conti-
nuously to the right on a locally compact space X. The topological product space X × G has
a natural groupoid structure with X as space of units. The range and source maps are given
respectively by r(x, g) = x and s(x, g) = xg. The product is given by (x, g)(xg, h) = (x, gh) and
the inverse by (x, g)−1 = (xg, g−1). We denote by XoG this groupoid. A Haar system λ is given

by λx = δx× λ̃ where λ̃ is a left Haar measure on G. Similarly, one defines GnX for a left action
of G.

(b) Groupoid group bundle. It is a locally compact groupoid such that the range and source

maps are equal. By [47, Lemma 1.3], one can choose, for x ∈ G(0), a left Haar measure λx on the
group Gx = Gx in such a way that (λx)x∈X forms a Haar system on G. An explicit example will
be given in Section 1.3.

(c) Etale groupoids. A locally compact groupoid is called étale when its range (and therefore

its source) map is a local homeomorphism from G onto G(0). Then Gx and Gx are discrete and

G(0) is open in G. Moreover the family of counting measures λx on Gx forms a Haar system (see
[45, Proposition 2.8]). Groupoids associated with actions, or more generally with partial actions
(that we define now), of discrete groups are étale.

(d) Partial transformation groupoid. A partial action of a discrete group G on a locally compact
space X is a family (βg)g∈G of partial homeomorphisms of X between open subsets, such that
βe = IdX and βgβh ≤ βgh for g, h ∈ G, meaning that βgh extends βgβh. Then

GnX =
{

(g, x) : g ∈ G, x ∈ Xg−1

}
⊂ G×X

with the topology induced from the product topology, where Xg−1 is the domain of βg, is an étale
groupoid. The range and source maps of G o X are given respectively by r(g, x) = βg(x) and
s(g, x) = x. The product is defined by (g, x)(h, y) = (gh, y) when x = βh(y), and the inverse is
given by (g, x)−1 = (g−1, βg(x)).

In the sequel, the locally compact groupoids are implicitly supposed to be Hausdorff, second
countable, and equipped with a Haar system λ. In the three above examples, λ will be the mentioned
Haar system.
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1.2. Representations of a locally compact groupoid. Let (G, λ) be a locally compact groupoid

with a Haar system λ. We set X = G(0). The space Cc(G) is an involutive algebra with respect to
the following operations for f, g ∈ Cc(G):

(f ∗ g)(γ) =

∫
f(γ1)g(γ−11 γ)dλr(γ)(γ1) (1)

f∗(γ) = f(γ−1). (2)

We define a norm on Cc(G) by

‖f‖I = max

{
sup
x∈X

∫
|f(γ)| dλx(γ), sup

x∈X

∫ ∣∣f(γ−1)
∣∣dλx(γ)

}
.

Definition 1.3. A representation of Cc(G) is a ∗-homomorphism π from Cc(G) into the C∗-algebra
B(H) of bounded operators of a Hilbert space H such that ‖π(f)‖ ≤ ‖f‖I for every f ∈ Cc(G).

Example 1.4. Let x ∈ X = G(0). We denote by λx the image of λx by the inverse map γ 7→ γ−1.
Let πx : Cc(G)→ B

(
L2(Gx, λx)

)
be defined by

(πx(f)ξ)(γ) =

∫
Gx
f(γγ−11 )ξ(γ1) dλx(γ1)

for f ∈ Cc(G) and ξ ∈ L2(Gx, λx). Then πx is a representation of Cc(G).

More generally, let µ be a (Radon) measure on X. We denote by ν = µ ◦ λ the measure on G
defined by the formula ∫

G
f dν =

∫
X

( ∫
Gx
f(γ) dλx(γ)

)
dµ(x).

Let ν−1 be the image of ν under the inverse map. For f ∈ Cc(G) and ξ ∈ L2(G, ν−1) we define
the operator Indµ(f) by the formula(

Indµ(f)ξ
)
(γ) =

∫
Gs(γ)

f(γγ−11 )ξ(γ1) dλs(γ)(γ1).

Then Indµ is a representation of Cc(G), called the induced representation associated with µ. We
have Indδx = πx.

The full C∗-algebra C∗(G) of G is the completion of Cc(G) with respect to the norm

‖f‖ = sup ‖π(f)‖

where π runs over all representations of Cc(G). The reduced C∗-algebra C∗r (G) is the completion
of Cc(G) with respect to the norm

‖f‖ = sup
x∈X
‖πx(f)‖.

Obviously, the identity map of Cc(G) extends to a surjective homomorphism from C∗(G) onto
C∗r (G).
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Remark 1.5. Assume that G is a locally compact group. Let us observe that the involution
on Cc(G) that we introduced is not the usual one in group theory. If ∆ denotes the modular

function of G, usually the involution is defined by f?(γ) = f(γ−1)∆(γ−1). The map f 7→ f̃ where

f̃(γ) = f(γ)∆(γ)−1/2 is an isomorphism of involutive algebra between the ∗-algebra Cc(G) with
the involution ∗ introduced in (2) and the usual one with the involution ?. The full and reduced
C∗-algebras defined above are then canonically identified respectively with the classical full and
reduced C∗-algebras of the group G.

Similarly, the full and reduced C∗-algebras of a transformation groupoid X oG are identified
with the full crossed product C0(X)oG and the reduced crossed product C0(X)orG respectively,
where C0(X) is the C∗-algebra of complex valued functions on X vanishing to 0 at infinity.

A familiar result in group theory relates in a bijective and natural way the non-degenerate
representations of the full group C∗-algebra and the unitary representations of the group. A
similar result holds for groupoids. Its statement requires some preparation.

Let (G, λ) be a locally compact groupoid and let µ be a (Radon) measure on X = G(0). We set
ν = µ ◦ λ. We say that µ is quasi-invariant if ν is equivalent to ν−1. In this case, we denote by
∆ the Radon-Nikodým derivative dν/dν−1. A groupoid (G, λ) equipped with a quasi-invariant
measure µ is called a measured groupoid.

Definition 1.6. A unitary representation of G is a triple (µ,H,U) where

(i) µ is a quasi-invariant measure on X;
(ii) H = ({Hx : x ∈ X}, E) is a measurable field of Hilbert spaces over X (where E is a

fundamental sequence of measurable vector fields);
(iii) U is a measurable action of G on H by isometries, that is, for every γ ∈ G we have an

isometric isomorphism U(γ) : Hs(γ) → Hr(γ) such that
(a) for x ∈ X, U(x) is the identity map of Hx;

(b) for (γ, γ1) ∈ G(2), U(γγ1) = U(γ)U(γ1);
(c) for ξ, η ∈ E , the function γ 7→ 〈ξ ◦ r(γ), U(γ)η ◦ s(γ)〉r(γ) is measurable.

We denote by H = L2(X,H, µ) the Hilbert space of square integrable sections of H, and for
f ∈ Cc(G) we define the operator πU (f) on H by the formula

〈ξ, πU (f)η〉 =

∫
X

(∫
Gx
f(γ)∆(γ)−1/2〈ξ ◦ r(γ), U(γ)η ◦ s(γ)〉r(γ) dλx(γ)

)
dµ(x).

Then f 7→ πU (f) is a representation of Cc(G), called the integrated form of (µ,H,U) (or simply U).
A crucial result, due to J. Renault, asserts that every representation of Cc(G) can be disintegrated.
Here, the fact that the groupoid is assumed to be second countable is needed.

Theorem 1.7. ([46, Proposition 4.2]) Let π be a non-degenerate representation of Cc(G) on a
Hilbert space H. There is a unitary representation (µ,H,U) of G such that π is unitary equivalent
to the integrated form πU of (µ,H,U). We say that π disintegrates over µ.
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Example 1.8. The left regular representation of G over a quasi-invariant measure µ is (µ,H =
L2(G, λ), L) where L2(G, λ) =

({
L2(Gx, λx) : x ∈ X

}
, E = Cc(G)

)
, and

L(γ) : L2(Gs(γ), λs(γ))→ L2(Gr(γ), λr(γ))

is given, for ξ ∈ L2(Gs(γ), λs(γ)), γ1 ∈ Gr(γ), by(
L(γ)ξ

)
(γ1) = ξ(γ−1γ1).

Note that L2(X,H, µ) = L2(G, µ ◦ λ) and that, for f ∈ Cc(G), ξ ∈ L2(G, µ ◦ λ) we have(
πL(f)ξ

)
x

=

∫
Gx
f(γ)∆(γ)−1/2L(γ)ξ ◦ s(γ) dλx(γ).

It is well known (and easy to see) that the map W : L2(G, ν) → L2(G, ν−1) defined by the

formula Wξ = ∆1/2ξ is an isometric isomorphism which implements a unitary equivalence between
πL and Indµ.

1.3. About reductions of a groupoid. Let G be a groupoid and Y a subset of X = G(0). We
set G(Y ) = r−1(Y ) ∩ s−1(Y ). Then G(Y ) is a subgroupoid of G called the reduction of G by Y .
When Y is reduced to a single element x, then G(x) = r−1(x) ∩ s−1(x) is a group called the
isotropy group of G at x.

Let now G be a locally compact groupoid with Haar system and let Y be a locally compact
subset of X which is G-invariant, meaning that for γ ∈ G, we have r(γ) ∈ Y if and only if
s(γ) ∈ Y . Then G(Y ) is a locally compact groupoid whose Haar system is obtained by restriction
of the Haar system of G.

Let us consider the general situation where a closed G-invariant subset F of X is given and set
U = X \ F . It is well known that the inclusion ιU : Cc(G(U))→ Cc(G) extends to injective homo-
morphisms from C∗(G(U)) into C∗(G) and from C∗r (G(U)) into C∗r (G). Similarly, the restriction
map pF : Cc(G) → Cc(G(F )) extends to surjective homomorphisms from C∗(G) onto C∗(G(F ))
and from C∗r (G) onto C∗r (G(F )). Moreover the sequence

0→ C∗(G(U))→ C∗(G)→ C∗(G(F ))→ 0

is exact. For these facts, we refer to [45, page 102], [19, Section 2.4], or to [44, Proposition 2.4.2]
for a detailed proof.

On the other hand, the corresponding sequence with respect to the reduced C∗-algebras is not
always exact, as shown for a non-Hausdorff groupoid by Skandalis in the Appendix of [47].

Example 1.9. Another interesting class of examples was provided in [18] by Higson, Lafforgue
and Skandalis. There, the authors consider a residually finite group Γ and an decreasing sequence

Γ ⊃ N0 ⊃ N1 · · · ⊃ Nk ⊃ · · · of finite index normal subgroups with ∩kNk = {e}. Let N̂ = N∪{∞}
be the Alexandroff compactification of N. We set N∞ = {e} and, for k ∈ N̂, we denote by

qk : Γ → Γ/Nk the quotient homomorphism. Let G be the quotient of N̂× Γ with respect to the
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equivalence relation
(k, t) ∼ (l, u) if k = l and qk(t) = qk(u).

Equipped with the quotient topology, G has a natural structure of (Hausdorff) étale locally com-

pact groupoid group bundle: its space of units is N̂, the range and source maps are given by
r([k, t]) = s([k, t]) = k, where [k, t] = (k, qk(t)) is the equivalence class of (k, t). The fibre G(k)
of the bundle is the quotient group Γ/Nk if k ∈ N and Γ if k = ∞. We call this groupoid an
HLS-groupoid. A basic result of [18] is that the sequence

0 −→ C∗r (G(N)) −→ C∗r (G) −→ C∗r (G(∞)) −→ 0

is not exact whenever Γ is infinite and has Kazdhan’s property (T) (it is not even exact in K-
theory!). In fact, we will see in Proposition 3.5 that this sequence is exact if and only if Γ is
amenable.

1.4. Crossed products. For the definition of actions of groupoids on C∗-algebras we refer to
[22]. Let us recall a few facts.

Definition 1.10. Let X be a locally compact space. A C0(X)-algebra is a C∗-algebra A equipped
with a homomorphism ρ from C0(X) into the centre of the multiplier algebra of A, which is
non-degenerate in the sense that there exists an approximate unit (uλ) of C0(X) such that
limλ ρ(uλ)a = a for every a ∈ A.

Given f ∈ C0(X) and a ∈ A, for simplicity we will write fa instead of ρ(f)a.

Let U be an open subset of X and F = X\U . We view C0(U) as an ideal of C0(X) and we denote
by C0(U)A the closed linear span of {fa : f ∈ C0(U), a ∈ A}. It is a closed ideal of A and in fact,
we have C0(U)A = {fa : f ∈ C0(U), a ∈ A} (see [6, Corollaire 1.9]). We set AF = A/C0(U)A and
whenever F = {x} we write Cx(X) instead of C0(X \ {x}) and Ax instead of A{x}. We denote by
ex : A→ Ax the quotient map and for a ∈ A we set a(x) = ex(a). Recall that ‖a‖ = supx∈X ‖a(x)‖
(so that a 7→ (a(x))x∈X from A into

∏
x∈X Ax is injective) and that x 7→ ‖a(x)‖ is upper semi-

continuous (see [50, 6]). Then, (A, {ex : A→ Ax}x∈X , X) is an upper semi-continuous field of
C∗-algebras.

Let A and B be two C0(X)-algebras. A morphism α : A→ B of C0(X)-algebras is a morphism
of C∗-algebras which is C0(X)-linear, that is, α(fa) = fα(a) for f ∈ C0(X) and a ∈ A. For x ∈ X,
in this case α factors through a morphism αx : Ax → Bx such that αx(a(x)) = α(a)(x).

Let Y,X be locally compact spaces and f : Y → X a continuous map. To any C0(X)-algebra
A is associated a C0(Y )-algebra f∗A =

(
C0(Y ) ⊗ A

)
F

where F = {(y, f(y)) : y ∈ Y } ⊂ Y × X.

For y ∈ Y , we have
(
f∗A)y = Af(y) (see [27, 22]).

Definition 1.11. ([27, 22]) Let (G, λ) be a locally compact groupoid with a Haar system and

X = G(0). An action of G on a C∗-algebra A is given by a structure of C0(X)-algebra on A and

an isomorphism α : s∗A → r∗A of C0(G)-algebras such that for every (γ1, γ2) ∈ G(2) we have
αγ1γ2 = αγ1αγ2 , where αγ : As(γ) → Ar(γ) is the isomorphism deduced from α by factorization.

When A is equipped with such an action, we say that A is a G-C∗-algebra.
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Let A be a G-C∗-algebra. We set Cc(r∗(A)) = Cc(G)r∗(A). It is the space of the continuous
sections with compact support of the upper semi-continuous field of C∗-algebras defined by the
C0(G)-algebra r∗A. Then, Cc(G)r∗(A) is a ∗-algebra with respect to the following operations:

(f ∗ g)(γ) =

∫
Gr(γ)

f(γ1)αγ1
(
g(γ−11 γ)

)
dλr(γ)(γ1)

and

f∗(γ) = αγ
(
f(γ−1)∗

)
(see [35, Proposition 4.4]). We define a norm on Cc(r∗(A)) by

‖f‖I = max

{
sup
x∈X

∫
Gx
‖f(γ)‖dλx(γ), sup

x∈X

∫
Gx

∥∥f(γ−1)
∥∥dλx(γ)

}
.

The full crossed product A oα G is the enveloping C∗-algebra of the Banach ∗-algebra obtained
by completion of Cc(r∗(A)) with respect to ‖·‖I .

Let us now define the reduced crossed product. For x ∈ X let us consider the Hilbert Ax-
module L2(Gx, λx)⊗Ax, defined as the completion of the space Cc(Gx;Ax) of continuous compactly
supported functions from Gx into Ax, with respect to the Ax-valued inner product

〈ξ, η〉 =

∫
Gx
ξ(γ)∗η(γ) dλx(γ).

For f ∈ Cc(r∗(A)), ξ ∈ Cc(Gx;Ax) and γ ∈ Gx, we set(
πx(f)ξ

)
(γ) =

∫
Gx
α−1γ

(
f(γγ−11 )

)
ξ(γ1) dλx(γ1).

Then πx(f) extends to a bounded operator with adjoint acting on the HilbertAx-module L2(Gx, λx)⊗
Ax. In this way we get a representation of the ∗-algebra Cc(r∗(A)). The reduced crossed product
A oα,r G is the completion of Cc(r∗(A)) with respect to the norm ‖f‖ = supx∈X ‖πx(f)‖ (see
[22])a.

Remarks 1.12. (a) We note that if Y is a locally compact G-invariant subset of X = G(0), then
C0(Y ) has a natural structure of G-C∗-algebra. Moreover, Cc(r∗(C0(Y ))) = Cc(G(Y )), and C0(Y )oG
and C0(Y )or G are canonically isomorphic to C∗(G(Y )) and C∗r (G(Y )) respectively.

(b) Let B be a C∗-algebra and set A = B ⊗C0(X). Since C0(X) is a G-C∗-algebra, we see that
A = B⊗C0(X) is a G-C∗-algebra, the action being trivial on B. Moreover, AoG and Aor G are
canonically isomorphic to B ⊗max C∗(G) and B ⊗ C∗r (G) respectively.

aπx is what is denoted Λx in [22] except that the authors consider Cc(s∗(A)) instead of Cc(r∗(A)). This explains
why our formula is not exactly the same.
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2. Amenability and weak containment

The reference for this section is [3]. The notion of amenable locally compact groupoid has many
equivalent definitions. We will recall two of them. Before, let us recall a notation: given a locally
compact groupoid G, γ ∈ G and µ a measure on Gs(γ), then γµ is the measure on Gr(γ) defined by∫
Gr(γ) f dγµ =

∫
Gs(γ) f(γγ1) dµ(γ1).

Definition 2.1. ([3, Definitions 2.2.2, 2.2.8]) We say that G is amenable if there exists a net (mi),
where mi = (mx

i )x∈G(0) is a family of probability measures mx
i on Gx, such that

(i) each mi is continuous in the sense that for all f ∈ Cc(G), the function x 7→
∫
f dmx

i is
continuous;

(ii) limi

∥∥∥γms(γ)
i −mr(γ)

i

∥∥∥
1

= 0 uniformly on the compact subsets of G.

We say that (mi)i is an approximate invariant continuous mean on G. Note that if G is amenable
and if Y is a locally compact G-invariant subset of X, then the groupoid G(Y ) is amenable.

Proposition 2.2. ([3, Proposition 2.2.13]) Let (G, λ) be a locally compact groupoid with Haar
system. Then G is amenable if and only if there exists a net (gi) of non-negative functions in
Cc(G) such that

(a)
∫
gi dλx ≤ 1 for every x ∈ G(0);

(b) limi

∫
gi dλx = 1 uniformly on the compact subsets of G(0);

(c) limi

∫ ∣∣gi(γ−1γ1)− gi(γ1)∣∣ dλr(γ)(γ1) = 0 uniformly on the compact subsets of G.

We will also need the notion of measurewise amenability.

Definition 2.3. ([3, Proposition 3.2.14]) Let (G, λ) be a locally compact groupoid.

(i) Let µ be a quasi-invariant measure on X. We say that the measured groupoid (G, λ, µ) is
amenable if there exists a net (gi) of (µ ◦ λ)-measurable non-negative functions on G such
that
(a)

∫
gi dλx = 1 for a.e. x ∈ G(0);

(b) limi

∫ ∣∣gi(γ−1γ1)− gi(γ1)∣∣ dλr(γ)(γ1) = 0 in the weak*-topology of L∞(G, µ ◦ λ).
(ii) We say that (G, λ) is measurewise amenable if (G, λ, µ) is an amenable measured groupoid

for every quasi-invariant measure µ.

Remark 2.4. An amenable groupoid is measurewise amenable. The converse is true for a large
family of groupoids, for instance all étale groupoids and all locally compact groups (see [3, The-
orem 3.3.7, Remark 3.3.9, Examples 3.3.10]).

Theorem 2.5. Let (G, λ) be a locally compact groupoid. Consider the following conditions:

(a) (G, λ) is measurewise amenable;
(b) for every G-C∗-algebra A, the canonical surjection from Ao G onto Aor G is injective;
(c) C∗r (G) is nuclear;
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(d) the canonical surjection from C∗(G) onto C∗r (G) is injective.

Then, we have (a) ⇒ (b) ⇒ (c), (b) ⇒ (d). Moreover, if the isotropy groups G(x) are discrete
for every x ∈ X, then (c) ⇒ (a).

Proof. For the proof of (a) ⇒ (b) see [47, Theorem 3.6] or [3, Proposition 6.1.10]. That (c) ⇒
(a) when the isotropy is discrete is contained in [3, Corollary 6.2.14]. To show that (b) ⇒ (c), we

take a C∗-algebra A and the trivial action of G on C0(X)⊗ A (where X = G(0)). Assuming that
(c) holds true we have

A⊗ C∗r (G) = (A⊗ C0(X))or G = (A⊗ C0(X))o G = A⊗max C∗(G) = A⊗max C∗r (G).

�

Definition 2.6. We say that a locally compact groupoid (G, λ) has the weak containment property
if Condition (d) of the previous theorem is fulfilled.

Every amenable locally compact groupoid has the weak containment property. We study the
converse in the next section.

3. Weak containement vs amenability

3.1. Some results. We first sum up the known results where weak containment implies amenabil-
ity.

Proposition 3.1. ([9]) Let (G, λ) be a transitive locally compact groupoid with Haar system having
the weak containment property. Then G is amenable.

This fact can also been shown using the notion of equivalence of groupoids. Recall that a
groupoid G is transitive if for every x, y ∈ X = G(0) there exists γ ∈ G with r(γ) = x and
s(γ) = y. Given x ∈ X, the groupoids G and G(x) are equivalent (see [34]). Moreover the
weak containment property and amenability are preserved under equivalence (see [52] for the first
property and [3] for the latter one). Then we apply Hulanicki’s result for groups.

Theorem 3.2. ([31], [12]) Let Gy X be an action of a discrete exact group on a locally compact
group. Assume that the transformation groupoid GnX has the weak containment property. Then
GnX is amenable

Example 3.3. Another example where the weak containment property implies amenability con-
cerns the natural action of a discrete group G on its boundary ∂G = βG \ G. Indeed, from the
commutativity of the diagram

0 // C∗(GnG) // C∗(Gn βG)

��

// C∗(Gn ∂G) //

'
��

0

0 // C∗r (GnG) // C∗r (Gn βG) // C∗r (Gn ∂G) // 0
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since the first line is an exact sequence the second line is exact also. Roe and Willett proved in
[51] that this exactness property implies that G has Yu’s property A and thus is exact. Therefore
the action of G on ∂G is amenable by the previous theorem.

Problem. If Gy βG has the weak containment property, is it true that the action is amenable
and thus that G is exact? (see [11, page 12]).

3.2. The case of bundles of groups. Let G be a groupoid group bundle over X = G(0). For
x ∈ X, we rather denote by G(x) the group G(x). We set Ux = X \ {x} and denote by G(Ux) the
subgroupoid of those γ ∈ G such that r(γ) ∈ Ux. Let πx be the canonical surjective map from
C∗r (G) onto C∗r (G(x)).

Proposition 3.4. Let G be a groupoid group bundle and let us consider the following conditions:

(1) G is amenable;
(2) for every a ∈ C∗r (G) the function x 7→ ‖πx(a)‖ is continuous;
(3) the sequence 0→ C∗r (G(Ux))→ C∗r (G)→ C∗r (G(x))→ 0 is exact for every x ∈ X.

Then we have (1) ⇒ (2) ⇔ (3). Moreover these three conditions are equivalent when G has the
weak containment property.

Proof. (1) ⇒ (3). Assume that G is amenable. Then we have C∗r (G) = C∗(G). Moreover the
groupoid G(Ux) and the group G(x) are also amenable and therefore their reduced and full C∗-
algebras coincide. It follows that the sequence in (3) is exact.

Let us prove the equivalence between (2) and (3). We know that

(C∗r (G), {πx : C∗r (G)→ C∗r (G(x))}x∈X , X)

is a field of C∗-algebras on X, which is lower semi-continuous in the sense that x 7→ ‖πx(a)‖ is
lower semi-continuous for every a ∈ C∗r (G) (see for instance [25, Theorem 5.5]). On the other
hand, C∗r (G) is a C0(X)-algebra. Indeed, for f ∈ C0(X), g ∈ Cc(G) and γ ∈ G, we set (fg)(γ) =
f ◦r(γ)g(γ). The map g 7→ fg extends continuously in order to define a structure of C0(X)-algebra
on C∗r (G). We have Cc(G(Ux)) = Cx(X)Cc(G) and by continuity we get C∗r (G(Ux)) = Cx(X)C∗r (G).
Note that for f ∈ C0(X), a ∈ C∗r (G) and x ∈ X, we have πx(fa) = f(x)πx(a). It follows from
[23, Lemma 2.3] that the function x 7→ ‖πx(a)‖ is upper semi-continuous at x0 for all a ∈ C∗r (G)
if and only if the kernel of πx0 is C∗r (G(Ux0)).

Assume now that G has the weak containment property. For every x ∈ X the following diagram
is commutative

0 // C∗(G(Ux))

��

// C∗(G)

λ
��

// C∗(G(x)) //

λx
��

0

0 // C∗r (G(Ux)) // C∗r (G)
πx // C∗r (G(x)) // 0

where the first line is exact and λ is an isomorphism. By a straightforward diagram chasing we
see that λx is injective (i.e., G(x) is amenable) if and only if the second line is exact. Moreover



SOME REMARKS ABOUT THE WEAK CONTAINMENT PROPERTY 13

the groupoid group bundle G is amenable if and only if G(x) is amenable for every x ∈ X (see [3,
Example 5.1.3. (1)]). �

Thus the natural question is whether the condition (3) of the previous proposition always holds
when G has the weak containment property. The nice example 3.6 below of Willett [53] shows
that the answer is no. It is a well chosen HLS groupoid (see Example 1.9).

Let us keep the notation of Example 1.9. In the case of HLS groupoids note that we have the
following result.

Proposition 3.5. We assume that Γ is finitely generated. Then the following conditions are
equivalent:

(1) Γ is amenable;
(2) G is amenable;
(3) C∗r (G) is a continuous field of C∗-algebras with fibres C∗r (G(x));
(4) the sequence 0 −→ C∗r (G(N)) −→ C∗r (G) −→ C∗r (G(∞)) −→ 0 is exact.

Proof. Note that the fibres G(k) of the groupoid group bundle G are finite groups if k ∈ N, and
that G(∞) = Γ. Therefore (1) ⇔ (2) ⇒ (3) ⇔ (4) follows from the proposition 3.4. That (3) ⇒
(1) is proved in [5, Proposition 9.14]. �

Example 3.6. There exist HLS groupoids that have the weak containment property and are not
amenable, that is with Γ non-amenable. Indeed, Willett takes Γ to be the free group with two
generators, and constructs a decreasing sequence Γ ⊃ N0 ⊃ N1 · · · ⊃ Nk ⊃ · · · of finite index
normal subgroups of Γ with ∩kNk = {e} such the correspondinding HLS groupoid has the weak
containment property.

3.3. About the role of exactness. We see in the above examples that when knowing a priori
some exactness property of the étale groupoid it is possible to show that its weak containment
property implies the amenability of the groupoid. We would like to understand to what extent
this is a more general fact. Let us give first some definitions.

Definition 3.7. We say that an action of a locally compact groupoid (G, λ) on a C∗-algebra A
is inner exact if for every G-invariant closed ideal I of A the sequence

0 −→ I or G −→ Aor G −→ (A/I)or G −→ 0

is exact. We say that G is inner exact if the canonical action of G on C0(G(0)) is inner exact, i.e.,

if for every invariant closed subset F of G(0), the sequence

0 −→ C∗r (G(U)) −→ C∗r (G) −→ C∗r (G(F )) −→ 0

is exact, where U = X \ F .

The term “inner” in the above definitions aims to highlight that we only consider short se-
quences with respect to the specific given action of the groupoid. A possible definition of exactness
for a groupoid is the following one. Other candidates are considered in [5].
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Definition 3.8. We say that a groupoid (G, λ) is exact in the sense of Kirchberg-Wassermann
(or KW-exact in short) if every action of (G, λ) on any C∗-algebra A is inner exact.

This notion was studied by Kirchberg and Wassermann for locally compact groups. They
proved in particular that this property is equivalent to the exactness of C∗r (G) for a discrete
group G.

Examples 3.9. (a) Amenable locally compact groupoids are KW-exact since for them the reduced
and full crossed products relative to any action are the same.

(b) Every minimal groupoid is inner exact. In particular, every locally compact group is inner
exact.

(c) Every KW-exact groupoid is inner exact.

(d) Let G be a locally compact KW-exact group acting to the right on a locally compact space
X. Then the transformation groupoid G = X o G is KW-exact. Indeed let α be an action of G
on a C0(X)-algebra A. Then G acts on A by (βga)(x) = α(x,g)(a(xg)) and it is straightforward
to check that A oβ,r G is canonically isomorphic to A oα,r G. Moreover, this identification is
functorial.

In fact the groupoid is exact in a very strong sense. Indeed, G acts amenably on a compact
space Y b and therefore it acts amenably on Y × X by (y, x)g = (yg, xg) (see [3, Proposition
2.2.9]). Then G = X oG acts amenably on Y ×X by (y, x)(x, g) = (yg, xg) and the momentum

map (y, x) 7→ x ∈ G(0) is properc. These facts imply that G is KW-exact. The proof is the same
as the proof showing that a group acting amenably on a compact space is KW-exact (see for
instance [4, Theorem 7.2]).More details on the notion of exactness for groupoids are given in [5].

Remark 3.10. Let (G, λ) be an amenable locally compact groupoid. Then C∗(G) = C∗r (G) and G
is inner exact. In the first version of this paper, we had stated that the converse is true, but our
proof has a fatal error. However, we still believe that the result holds under some appropriate
notion of exactness.

4. Semigroup C∗-algebras

4.1. Semigroups. We will consider two kinds of semigroups: inverse semigroups and sub-semi-
groups of a group.

An inverse semigroup S is a semigroup such that for every s ∈ S there exists a unique element
s∗ such that ss∗s = s and s∗ss∗ = s∗. Our references for this notion are [43, 26]. Note that
groups are inverse semigroups with exactly one idempotent. The set ES of idempotents of S
plays a crucial role. It is an abelian sub-semigroup of S. On S one defines the equivalence
relation s ∼

σ
t if there exists an idempotent e such that se = te. The quotient S/σ is a group,

bIn the non discrete case this fact is proved in a recent preprint of Brodzki, Cave and Kang Li [8].
cThis property holds true more generally for every partial transformation groupoid relative to a partial action

of an exact group (see [5, Proposition 4.18]).
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called the maximal group homomorphism image of S, since every homomorphism from S into a
group G factors through S/σ. This group S/σ is trivial when S has a zero element 0, which is a
frequent situation.

By an abuse of notation, σ will also denote the quotient map from S onto S/σ. If S has a zero,
we denote by S× the set S \ {0}. When S does not have a zero, we set S× = S.

Given a set X, we denote by IS(X) the inverse semigroup of partial bijections of X. Its zero
element 0 is the application with empty domain. The Wagner-Preston theorem [43, Proposition
2.1.3] identifies any inverse semigroup S with a sub-semigroup of IS(S).

Let G be a group and P a sub-semigroup of G containing the unit e. The left inverse hull S(P )
of P is the inverse sub-semigroup of IS(P ) generated by the injection `p : x 7→ px. It has a unit,
namely `e. Observe that `∗p is the map px 7→ x defined on pP . Every element of S(P ) is of the
form s = `∗p1`q1 · · · `

∗
pn`qn with pi, qi ∈ P and n ≥ 1. Let us recall some important properties of

S(P ).

Proposition 4.1. Let (P,G) as above. Then

(1) 0 6∈ S(P ) if and only if PP−1 is a subgroup of G;
(2) The function ψ : S(P )× → G sending s = `∗p1`q1 · · · `

∗
pn`qn to p−11 q1 · · · p−1n qn is well

defined. It satisfies ψ(st) = ψ(s)ψ(t) if st 6= 0 and we have ψ−1(e) = E×S(P ).

Proof. PP−1 is a subgroup of G if and only if pP ∩ qP 6= ∅ for every p, q ∈ P (i.e., P is left
reversible). Then, assertion (1) is Lemma 3.4.1 of [39].

(2) is proved in [39, Proposition 3.2.11]. �

Recall that on an inverse semigroup S, a partial order is defined as follows: s ≤ t if there exists
an idempotent e such that s = te (see [26, page 21] for instance).

Definition 4.2. An inverse semigroup S is said to be E-unitary if ES is the kernel of σ : S → S/σ
(equivalently, every element greater than an idempotent is an idempotent). When S has a zero,
this means that S = ES .

Definition 4.3. Let S be an inverse semigroup. A morphism (or grading) is a function ψ from
S× into a group G such that ψ(st) = ψ(s)ψ(t) if st 6= 0. If in addition ψ−1(e) = E×S , we say that
ψ is an idempotent pure morphism. When such a function ψ from S× into a group G exists, the
inverse semigroup S is called strongly E∗-unitary.

Note that when S is without zero, S is strongly E∗-unitary if and only if it is E-unitary.

Remark 4.4. Let (P,G) with G = PP−1. Then the map τ : S(P )/σ → G such that τ ◦ σ = ψ
is an isomorphism. Indeed ψ is surjective, so τ is also surjective. Assume that τ(σ(x)) = e, with
x ∈ S(P ). Since ψ is idempotent pure, we see that x is an idempotent and therefore σ(x) is the
unit of S(P )/σ.
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In [38], Nica has introduced the Toeplitz inverse semigroup S(G,P ) which is the inverse sub-
semigroup of IS(P ) generated by the maps αg : g−1P ∩ P → P ∩ gP , g ∈ G, where αg(x) = gx if
x ∈ g−1P ∩ P . For p ∈ P we have αp = `p. Therefore we have S(P ) ⊂ S(G,P ).

Definition 4.5. We say that (P,G) satisfies the Toeplitz condition if S(P ) = S(G,P ).

We will give in Section 4.4 another characterization of the Toeplitz condition, along with
examples.

Proposition 4.6. Assume that (P,G) satisfies the Toeplitz condition. Let ψ : S(P )× → G as
defined in Proposition 4.1. Then, αg 6= 0 if and only if g is in the image of ψ. In this case we
have ψ(αg) = g, and αg is the greatest element of ψ−1(g).

For the proof, see [40, Proposition 4.1] or [38, Lemma 3.2].

4.2. Groupoid associated with an inverse semigroup. Let S be an inverse semigroup. We
recall the construction of the associated groupoid GS that is described in detail in [43]. We denote
by X the space of non-zero maps χ from ES into {0, 1} such that χ(ef) = χ(e)χ(f) and χ(0) = 0

whenever S has a zero. Equipped with the topology induced from the product space {0, 1}E , the
space X, called the spectrum of S, is locally compact and totally disconnected. Note that when
S is a monoid (i.e., has a unit element 1) then χ is non-zero if and only if χ(1) = 1, and therefore
X is compact.

The semigroup S acts on X as follows. The domain (open and compact) of t ∈ S is Dt∗t =
{χ ∈ X : χ(t∗t) = 1} and we set θt(χ)(e) = χ(t∗et). We define on Ξ = {(t, χ) ∈ S ×X : χ ∈ Dt∗t}
the equivalence relation (t, χ) ∼ (t1, χ1) if χ = χ1 and there exists e ∈ ES with χ(e) = 1 and
te = t1e. Then GS is the quotient of Ξ with respect to this equivalence relation, equipped with
the quotient topology. The range of the class [t, χ] of (t, χ) is θt(χ) and its source is χ. The
composition law is given by [u, χ][v, χ′] = [uv, χ′] if θv(χ

′) = χ (see [43] or [15] for details). In
general, GS is not Hausdorff. But for the inverse semigroups we are interested in, like S(P ), we
will see that the quotient topology is Hausdorff.

Proposition 4.7. Let S be a strongly E∗-unitary inverse semigroup, and let ψ : S× → G be an
idempotent pure morphism. Then there is a partial action of G on the spectrum X of S such
that the groupoid GS is topologically isomorphic to the groupoid GnX associated with the partial
action. In particular, GS is Hausdorff and étale. Moreover, X is compact when S has a unit.

Proof. This result is described in [33]. The partial action of G on the spectrum X of S is defined
by setting Xg−1 = ∪t∈ψ−1(g)Dt∗t (which can be empty). For χ ∈ Xg−1 we set βg(χ) = θt(χ) where

t ∈ ψ−1(g) is such that χ ∈ Dt∗t. This does not depend on the choice of t as shown in [33, Lemma
3.1]. Moreover, by [33, Theorem 3.2], the groupoid GS is canonically isomorphic to GnX.d �

dIn [33], the proofs are carried out assuming that S is E-unitary (i.e., without zero) but they immediately extend
to our setting.
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Proposition 4.8. Let S be a strongly E∗-unitary inverse semigroup. We assume that there is an
idempotent pure morphism ψ : S× → G such that if g 6= e is in the image of ψ, then ψ−1(g) has
a greatest element αg. Then the groupoid GS is equivalent e to a transformation groupoid Gn Y
for an action of G on an Hausdorff locally compact space Y .

Proof. Let t ∈ S× be such that ψ(t) = g. Since t ≤ αg we have Dt∗t ⊂ Dα∗
gαg and therefore

Xg−1 = Dα∗
gαg is a closed subset of X. Moreover, for χ ∈ Xg−1 we have βg(χ) = θαg(χ). It

follows that the cocycle c : G n X → G sending (g, x) to g is injective and closed. Injectivity
means that the map γ ∈ G n X 7→ (c(γ), s(γ)) is injective. The cocycle is said to be closed if
γ 7→ (r(γ), c(γ), s(γ)) from G n X into X × G × X is closed. Since the cocycle c is injective
and closed, there exists a locally compact space Y endowed with a continuous action of G such
that the transformation groupoid Gn Y is equivalent to GnX = GS . When S has a unit, X is
compact and the equivalence is given by a groupoid isomorphism j from GnX onto a reduction
of Gn Y ) (see [21, Theorem 1.8] and [48, Theorem 6.2]). �

Corollary 4.9. Let P be a sub-semigroup of a group G containing the unit.

(i) The groupoid GS(P ) is defined by a partial action of G on a compact space.
(ii) If (P,G) satisfies the Toeplitz condition, then GS(P ) is equivalent to a transformation

groupoid defined by an action of G on a locally compact space.

Proof. (i) By Proposition 4.1 there is an idempotent pure morphism ψ : S(P )× → G and we use
Proposition 4.7.

(ii) follows from Propositions 4.6 and 4.8. �

4.3. Weak containment for inverse semigroups. Let S be an inverse semigroup. Let us
recall the definition of the full and reduced C∗-algebras of S (for more details, see [43, §2.1]).
Given f, g ∈ `1(S), we set

(f ? g)(t) =
∑
uv=t

f(u)g(v), f∗(t) = f(t∗).

Then `1(S) is Banach ∗-algebra, and the full C∗-algebra C∗(S) of S is defined as the enveloping C∗-
algebra of `1(S). It is the universal C∗-algebra for the representations of S by partial isometries.
The left regular representation π2 : S → B(`2(S)) is defined by

π2(t)δu = δtu if (t∗t)u = u, π2(t)δu = 0 otherwise.

The extension of π2 to `1(S) is faithful. The reduced C∗-algebra C∗r (S) of S is the sub-C∗-algebra
of B(`2(S)) generated by π2(S). We still denote by π2 : C∗(S)→ C∗r (S) the extension of the left
regular representation to C∗(S).

When S has a zero, we have π2(0)δ0 = δ0 and π2(0)δt = 0 if t 6= 0. It follows that Cδ0 is an
ideal in C∗(S) that it is preferable to get rid of. So we set C∗0 (S) = C∗(S)/Cδ0 and similarly

eFor this notion of equivalence of groupoids we refer to [3, Definition 2.2.15].
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C∗r,0(S) = C∗r (S)/π2(Cδ0). We denote by π2,0 the canonical surjective homomorphism from C∗0 (S)

onto C∗r,0(S) (see [39]).

As shown in [43] and [21], the C∗-algebras C∗0 (S) and C∗r,0(S) are canonically isomorphic to

C∗(GS) and C∗r (GS) respectively.f This is the reason for having introduced C∗0 (S) and C∗r,0(S).

Note that C∗r,0(S) is nuclear if and only C∗r (S) is so, and that π2 is injective if and only if it is the
case for π2,0.

Definition 4.10. We say that S has the weak containment property if π2 (or equivalently π2,0)
is an isomorphism.

Observe that S has the weak containment property if and only if the groupoid GS has this
property.

Recall that a semigroup S is left amenable if there exists a left invariant mean on `∞(S). An
inverse semigroup with zero is of course left amenable since the Dirac measure at zero is a left
invariant mean.

If C∗r (S) is nuclear, the groupoid GS is amenable and therefore S has the weak containment
property. What about the converse?

The following example shows that left amenability, even in the absence of zero, does not imply
the weak containment property. It also shows that the weak containment property is strictly
weaker than the nuclearity of C∗r (S).

Example 4.11. Let Γ be a residually finite group and (Nk)k≥0 a decreasing sequence as in

Example 1.9, whose notation we keep. Let S =
{
qk(t) : k ∈ N̂, t ∈ Γ

}
. Formally, S = G, the HLS

groupoid defined in Example 1.9 but we view S as an inverse semigroup in the following way.
The product is given by qm(t).qn(u) = qm∧n(tu) where m ∧ n is the smallest of the two elements

m,n. We set qm(t)∗ = qm(t−1). The set ES of idempotents is
{
qm(e) : m ∈ N̂

}
that we identify

with N̂. The product of two idempotents is given by m.n = m ∧ n. The spectrum X is the set{
χm : m ∈ N̂

}
where χm(n) = 1 if and only if m ≤ n. It is homeomorphic to the compact space

N̂. The groupoid GS associated with S is the space of equivalence classes of pairs
(
qm(t), χk

)
with k ≤ m, where

(
qm(t), χk

)
∼
(
qn(u), χ′k

)
if and only if k = k′ and qk(t) = qk(u). The map

sending the class of
(
qm(t), χk

)
to qk(t) is an isomorphism of topological groupoids from GS onto

the HLS-groupoid G.

The maximal group homomorphism image of S is the finite group Γ/N0 and σ : S → S/σ =
Γ/N0 is qm(t) 7→ q0(t). It is not idempotent pure. Note that S has a zero if and only if N0 = Γ,
the zero being then q0(e).

Let us observe that S = t
k∈N̂Γ/Nk is a Clifford semigroup.

fMore precisely in [43, 21], the authors consider the C∗-algebras C∗(S) and C∗
r (S), but their definition of GS is

also slightly different because for the space X = G(0)
S they do not require that the map χ from ES into {0, 1} satisfy

χ(0) = 0. Their proof also works in our setting.
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Since S/σ is amenable, this semigroup S is left amenable by a result of Duncan and Namioka
(see [43, Proposition A.0.5]). If Γ = F2 and the sequence (Nk)k is the one defined by Willett in [53],
then S has the weak containment property but C∗r (S) is not nuclear. Moreover, S is a Clifford
semigroup for which not every subgroup is amenable, although it has the weak containment
property.

On the other hand, if we realize F2 as a finite index subgroup of SL(2,Z), and choose Nk to be
the intersection with F2 of the kernel of the reduction map SL(2,Z) → SL(2,Z/2kZ), then the
corresponding HLS-groupoid has not the weak containment property, as observed in [53, Remarks
2.9]. Hence, the left amenability of S does not imply its weak containment property in general.

Remark 4.12. Let S be a strongly E∗-unitary inverse semigroup, and let ψ : S× → G be an
idempotent pure morphism. Assume that G is amenable. Then we have C∗(S) = C∗r (S) and
C∗r (S) is nuclear. Indeed, by Proposition 4.7, the groupoid GS is associated to a partial action
of G on the spectrum of S. If G is amenable, then GS is amenable (see [49]) and therefore our
statement holds.

Assume that G is exact. Is is true that the weak containment property of S is equivalent to
the nuclearity of C∗r (S)?

4.4. Weak containment for semigroups embedded in groups. In this section we consider
a discrete group G and a sub-semigroup P which contains the unit e. We denote by λ the left
regular representation of G, and for p ∈ P we denote by Vp : `2(P ) → `2(P ) the isometry given
by Vpδq = δpq. The reduced C∗-algebra C∗r (P ) of P is the C∗-algebra generated by the isometries
Vp, p ∈ P .

The right definition of the full C∗-algebra of P is more speculative. The universal C∗-algebra
generated by elements vp, p ∈ P , such that v∗pvp = 1 and vpvq = vpq for every p, q ∈ P , is too big.

For instance Murphy proved that, for the commutative semigroup N2, this universal C∗-algebra
is not nuclear [36]. A reasonable definition for the full C∗-algebra of P was introduced by Xin
Li in [28, Definition 2.2] and a variant in [28, Definition 3.2]. It is this variant (denoted C∗s (P )
in [28]) that we adopt as the definition of the full C∗-algebra of P in the sequel, and we denote
it C∗(P ). By [39, Proposition 3.3.1], C∗(P ) can be defined as C∗0 (S(P )). Let us recall (see [39,
Lemma 3.2.2]) that the inverse semigroup S(P ) is canonically isomorphic to the inverse semigroup
of partial isometries

V (P ) =
{
V ∗p1Vq1 · · ·V

∗
pnVqn : n ∈ N, pi, qi ∈ P

}
.

Let us also recall that there is a surjective homomorphism h : C∗r,0(S(P )) → C∗r (P ) such that

h(π2(`p)) = Vp for p ∈ P (see [39, Lemma 3.2.12]). Therefore we have the following situation

C∗(P ) = C∗0 (S(P )) ≡ C∗(GS(P ))
π2,0
−� C∗r,0(S(P )) ≡ C∗r (GS(P ))

h
−� C∗r (P ).

Definition 4.13. We say that P has the weak containment property if C∗(P ) = C∗r (P ).

Note that the weak containment property of P implies the weak containment property of S(P ).
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Definition 4.14. Let (P,G) as above and assume in addition that P ∩ P−1 = {e}. Then we
define on G a partial order by setting x ≤ y if x−1y ∈ P . We say that (P,G) is a quasi-lattice
ordered group if for every g ∈ G, we have either P ∩ gP = ∅ or P ∩ gP = rP for some r ∈ P
(equivalently, every pair of elements in G having a common upper bound has a least common
upper bound (see [13, Lemma 7] for more on this)).

The Toeplitz condition for (P,G) is equivalent to the following property: for every g ∈ G such
that EPλgEP 6= 0, there exist p1, . . . , pn, q1, . . . , qn ∈ P such that EPλgEP = V ∗p1Vq1 . . . V

∗
pnVqn

(see for instance the proof of [40, Proposition 4.1]).

Quasi-lattice ordered semigroups and semigroups (P,G) such that G = P−1P satisfy the
Toeplitz condition (see [29, §8]). Xin Li has also introduced an important condition for P , he
called independence ([28, Definition 2.26]). We will not describe it here. We only note that when
P is contained in a group, this condition is equivalent to the injectivity of h (see [39, Theorem
3.2.14]) and that it is satisfied for quasi-lattice ordered groups (see [28, Lemma 28]).

Proposition 4.15. Let P be a sub-semigroup of a group G with e ∈ P . Assume that P satisfies
the independence condition. Then the nuclearity of C∗r (P ) implies the weak containment property
for P , i.e., C∗(P ) = C∗r (P ).

Proof. Assume that C∗r (P ) is nuclear. Since C∗r (P ) = C∗r (GS(P )), we see that the groupoid GS(P )

is amenable. It follows that S(P ) (and thus P ) has the weak containment property. �

Proposition 4.16. Let P be a sub-semigroup of a group G with e ∈ P .

(1) If G is amenable, then C∗r (P ) is nuclear.
(2) If P is left amenable, then PP−1 is an amenable subgroup of G and C∗r (P ) is nuclear.

Proof. Assume that G is amenable. By Proposition 4.1 and Proposition 4.7 the groupoid GS(P ) is
amenable since it is isomorphic to the groupoid defined by a partial action of G. It follows that
C∗r (GS(P )) is nuclear as well as its quotient C∗r (P ).

Suppose now that P is left amenable. Then it is left reversible (i.e., pP ∩qP 6= ∅ for all p, q ∈ P )
and therefore G′ = PP−1 is an amenable subgroup of G (see [42, Propositions 1.23, 1.27]). To
see that C∗r (GS(P )) is nuclear, we apply the first part of the proof. �

Remark 4.17. Let P be a sub-semigroup of a group G, containing the unit e. Assume that C∗-
algebra C∗r (P ) is nuclear and that P satisfies the independence condition. Then C∗(P ) = C∗r (P )
by Proposition 4.15. Is the converse true when G is exact?
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[20] A. Hulanicki. Means and Følner condition on locally compact groups. Studia Math., 27:87–104, 1966.
[21] Mahmood Khoshkam and Georges Skandalis. Regular representation of groupoid C∗-algebras and applications

to inverse semigroups. J. Reine Angew. Math., 546:47–72, 2002.
[22] Mahmood Khoshkam and Georges Skandalis. Crossed products of C∗-algebras by groupoids and inverse semi-

groups. J. Oper. Theory, 51(2):255–279, 2004.
[23] Eberhard Kirchberg and Simon Wassermann. Operations on continuous bundles of C∗-algebras. Math. Ann.,

303(4):677–697, 1995.
[24] Marcelo Laca and Iain Raeburn. Semigroup crossed products and the Toeplitz algebras of nonabelian groups.

J. Funct. Anal., 139(2):415–440, 1996.
[25] N. P. Landsman and B. Ramazan. Quantization of Poisson algebras associated to Lie algebroids. In Groupoids

in analysis, geometry, and physics (Boulder, CO, 1999), volume 282 of Contemp. Math., pages 159–192. Amer.
Math. Soc., Providence, RI, 2001.

[26] Mark V. Lawson. Inverse semigroups. World Scientific Publishing Co., Inc., River Edge, NJ, 1998. The theory
of partial symmetries.
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