
HAL Id: hal-01298793
https://hal.science/hal-01298793v1

Submitted on 6 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a verified compiler prototype for the
synchronous language SIGNAL

Zhibin Yang, Jean-Paul Bodeveix, M Filali, Kai Hu, Yongwang Zhao, Dianfu
Ma

To cite this version:
Zhibin Yang, Jean-Paul Bodeveix, M Filali, Kai Hu, Yongwang Zhao, et al.. Towards a verified
compiler prototype for the synchronous language SIGNAL. Frontiers of Computer Science, 2016, 10
(1), pp.37-53. �10.1007/s11704-015-4364-y�. �hal-01298793�

https://hal.science/hal-01298793v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15047

To link to this article : DOI:10.1007/s11704-015-4364-y
URL : http://dx.doi.org/10.1007/s11704-015-4364-y

To cite this version :
Zhibin, Yang and Bodeveix, Jean-Paul and Filali, Mamoun and Hu,
Kai and Zhao, Yongwang and Ma, Dianfu Towards a verified
compiler prototype for the synchronous language SIGNAL. (2016)
Frontiers of Computer Science, vol. 10 (n° 1). pp. 37-53. ISSN
2095-2228

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Towards a Verified Compiler Prototype for the Synchronous
Language SIGNAL

Zhibin YANG 1,2,3, Jean-Paul BODEVEIX 2, Mamoun FILALI 2,
Kai HU 3, Yongwang ZHAO3, Dianfu MA3

1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China

2 IRIT-CNRS, Université de Toulouse, Toulouse 31062, France
3 State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China

Abstract SIGNAL belongs to the synchronous languages
family which are widely used in the design of safety-critical
real-time systems such as avionics, space systems, and nu-
clear power plants. This paper reports a compiler proto-
type for SIGNAL. Compared with the existing SIGNAL com-
piler, we propose a new intermediate representation (named
S-CGA, a variant of clocked guarded actions), to integrate
more synchronous programs into our compiler prototype in
the future. The front-end of the compiler, i.e. the translation
from SIGNAL to S-CGA is presented. As well, the proof of
semantics preservation is mechanized in the theorem prover
Coq. Moreover, we present the back-end of the compiler, in-
cluding sequential code generation and multi-threaded code
generation with time-predictable properties. With the ris-
ing importance of multi-core processors in safety-critical em-
bedded systems or cyber-physical systems (CPS), there is a
growing need for model-driven generation of multi-threaded
code and thus mapping on multi-core. We propose a time-
predictable multi-core architecture model in AADL (Archi-
tecture Analysis and Design Language), and map the multi-
threaded code to this model.

Keywords synchronous languages, SIGNAL, guarded ac-
tions, verified compiler, Coq, AADL(Architecture Analysis
and Design Language)

E-mail: { f ilali, bodeveix}@irit. f r, hukai@buaa.edu.cn

1 Introduction

Safety-critical real-time systems such as avionics, space sys-
tems, and nuclear power plants, are also considered as reac-
tive systems, because they always interact with their environ-
ment continuously. The environment can be some physical
devices to be controlled, a human operator, or other reac-
tive systems. These systems receive from the environment
input events, and compute the output information, which
is eventually sent to the environment. The synchronous
approach is an important choice for the design of these
systems, which relies on the synchronous hypothesis [1]:
a synchronous program reacts to its environment in a se-
quence of discrete instants. At each instant, the system
does input-computation/communication-output, which takes
zero time. Even if the physical time is abstracted, the in-
herent functional properties are not changed, so we can say
this method focuses on functional behaviors at a platform-
independent level. In contrast to asynchronous concurrency,
synchronous languages avoid the introduction of nondeter-
minism by interleaving. Namely, the execution of two in-
dependent, atomic parallel tasks is simultaneous. This al-
lows deterministic semantics, thereby making synchronous
programming amenable to predictable system design.

There are several synchronous languages, such as ES-
TEREL [2], LUSTRE [3] and QUARTZ [4] based on the per-
fect synchrony paradigm, and SIGNAL [5] based on the poly-

chrony paradigm. Synchronous languages can be considered
as different implementations of the synchronous hypothesis.
As a main difference from other synchronous languages, SIG-
NAL naturally considers a mathematical time model, in term
of a partial order relation, to describe multi-clocked systems
without the necessity of a global clock. This feature permits
the description of globally asynchronous locally synchronous
systems (GALS) conveniently, where components based on
different clock domains are integrated at the system level.

This paper reports a new compiler prototype for the SIG-
NAL language, including sequential code generation and
multi-threaded code generation with time-predictable prop-
erties.

(1) Intermediate representation
Guarded commands [6], also called asynchronous guarded

actions by J. Brandt et al. [7], are a well-established con-
cept for the description of concurrent systems. In the spirit of
the guarded commands, J. Brandt et al. propose synchronous
guarded actions [8] as an intermediate representation for their
QUARTZ compiler. As the name suggests, it follows the syn-
chronous model. Hence, the behavior (control flow as well as
data flow) is basically described by sets of guarded actions
of the form 〈γ ⇒ A〉. The boolean condition γ is called the
guard andA is called the action. To support the integration of
synchronous, polychronous and asynchronous models (such
as CAOS [9] or SHIM [10]), they propose an extended inter-
mediate representation, that is clocked guarded actions [7,11]
where one can declare explicitly a set of clocks. They also
show how clocked guarded actions can be used for verifica-
tion by symbolic model checking (SMV) and simulation by
SystemC.

Compared with the existing SIGNAL compiler-
Polychrony1), we use clocked guarded actions as the
intermediate representation, to integrate more synchronous
languages such as QUARTZ, AIF2) [7] into our compiler
prototype in the future. However, in contrast to the SIGNAL
language, clocked guarded actions can evaluate a variable
even if its clock does not hold. We mention also that the
DC+ [12] intermediate format has been proposed as an
intermediate format for compiling multiclock synchronous
languages (ESTEREL, LUSTRE and SIGNAL). However,
DC+ is introduced as a layer on top of DC which is a
monoclock intermediate language. DC+ is characterized
by a rich kernel with a monoclock guarded assignment
(named at) and the equivalent of SIGNAL when and
default constructs. Thus, we propose a variant of Clocked

1) http://www.irisa.fr/espresso/Polychrony
2) Averest Intermediate Format

Guarded Actions, namely S-CGA, which constrains variable
accesses as done by SIGNAL and guarded assignments are
multiclocked. Compared to DC+, the SIGNAL when and
default are not part of S-CGA, actually, they are com-
piled. More generally, to conform with the revised semantics
of clocked guarded actions, we also do some adjustments
on the translation rules from SIGNAL to clocked guarded
actions (which are given by [7] [11]).

(2) Code generation
The sequential code generation from SIGNAL programs

is adapted to the S-CGA context. We also consider enhance-
ments of the compiler and their insertion in the compilation
chain. Moreover, we propose an appropriate modular archi-
tecture for our prototype.

With the advent of multi-core processors, automated syn-
thesis of multi-threaded code from polychronous models is
an attractive option for embedded system designers [13–17].
However, we would like to consider the multi-threaded
code generation with time-predictable properties. Time pre-
dictability means that the program timing can be foreseen
statically, such as worst-case execution time (WCET). In or-
der to measure WCET in a compositional way, strong ar-
chitectural hypotheses must be done and this is the goal of
the time-predictable architecture. In this paper, we propose
a time-predictable multi-core architecture model in AADL
(Architecture Analysis and Design Language) [18], and then
we map the multi-threaded code to this model.

(3) Verification of the compilation
For a safety-critical system, it is naturally required that

the compiler must be verified to ensure that the source pro-
gram semantics is preserved. There are many approaches to
gain assurance that the transformation or the translation of
a specification or a program is semantic-preserving. This
can be done by directly building a theorem-prover-verified
compiler [19], by using translation validation [20], etc. The
existing formal verification techniques around SIGNAL are
mainly based on translation validation [20] [21]. However,
translation validation treats the compiler as a “black box”,
namely it just checks the input and output of each program
transformation to validate the semantics preservation. So it
yields that one needs to redo the validation when the source
program is changed. We would like to extract a verified SIG-
NAL compiler from a correctness proof developed within the
theorem prover Coq as it has been done in the GENEAUTO
project for a part of the SIMULINK compiler [22].

Firstly, formal semantics is an important basis for the com-
piler verification. There exist several semantics for SIGNAL,
such as denotational semantics based on traces (called trace

semantics) [23–25], denotational semantics based on tags
which puts forward a partial order view of time (called tagged
model semantics) [24, 26], structural operational semantics
defining inductively a set of possible transitions [5,24], oper-
ational semantics defined by synchronous transition systems
(STS) [20]. In [27], we have studied the equivalence between
the trace semantics and the tagged model semantics, to assert
a determined and precise semantics of the SIGNAL language.

Secondly, verifying a compiler is always a long-term
work. The front-end of our compiler prototype has been
proven. However, there already exists a mechanized seman-
tics of a subset of C language in Coq [19], and we have
already worked on the mechanized semantics of different
AADL subsets such as [28]. Thus we can envision to vali-
date semantically the mapping from the S-CGA level to the
targets such as sequential code in C and multi-threaded code
in AADL.

To summarize, the relation between our work and related
work is shown in Figure 1 (which extends the figure given
in [7]).

The rest of this paper is structured as follows. Section 2
introduces the basic concepts of the SIGNAL language. The
abstract syntax of SIGNAL and its denotational semantics
based on the trace model are also given. Section 3 presents
the abstract syntax and the denotational semantics of S-CGA.
Section 4 gives the front-end of the compiler, that is the trans-
lation from SIGNAL to S-CGA. The proof of the semantics
preservation of the transformation is also presented in Sec-
tion 4. Section 5 and Section 6 present the sequential code
generation and the multi-threaded code generation respec-
tively. Section 7 discusses the related work, and Section 8
gives some concluding remarks.

2 An Introduction to SIGNAL

In the SIGNAL language, the variables can be evaluated only
at some instants which define their so-called clocks. More-
over, since SIGNAL is polychronous, each variable can have
its own clock. In this section, we first introduce the basic con-
cepts and the abstract syntax of the SIGNAL language, and
then we present the semantics domain and the trace semantics
of SIGNAL.

2.1 Basic Concepts and Abstract Syntax of SIGNAL

Signals In the synchronous hypothesis, the behaviors of a re-
active system are divided into a discrete sequence of instants.

At each instant, the system does input-computation-output,
which takes zero time. Thus, the inputs and outputs are se-
quences of values, each value of the sequence being present
at some instants. Such a sequence is called a signal. Con-
sequently, at each instant, a signal may be present or absent
(denoted by ⊥). In SIGNAL, signals must be declared be-
fore being used, with an identifer (i.e., signal variable or the
name of signal) and an associated type for their values such
as integer, real, complex, boolean, event, string, etc.

Example 1 Three signals named input1, input2, output are
shown as follows. Here a logical time reference is denoted as
(tk)k∈N.

t t1 t2 t3 t4 · · ·
input1 1 ⊥ 3 ⊥ · · ·
input2 ⊥ 5 7 9 · · ·
output ⊥ ⊥ 10 ⊥ · · ·

Abstract Clock The set of instants where a signal takes
a value is the abstract clock of the signal. Two signals are
synchronous if they are always present and absent at the same
instants, which means they have the same abstract clock.

In the example given above, the abstract clocks of input1,
input2 and output, denoted respectively ̂input1, ̂input2 and
ôutput, are defined by different sets of logical instants. For
instance, the abstract clock associated with input1 is the set
{t1, t3, ...}.

Moreover, SIGNAL can specify the relations between the
abstract clocks of signals in two ways: implicitly or explic-
itly.

Primitive Constructs SIGNAL uses several primitive
constructs to express the relations between signals, includ-
ing relations between values and relations between abstract
clocks. Moreover, the primitive constructs can be classified
into two families: monoclock operators (for which all sig-
nals involved have the same abstract clock) and multiclock
operators (for which the signals involved may have different
clocks).

• Monoclock operators, including instantaneous func-
tion and delay. The instantaneous function x :=
f (x1, · · · , xn) applied on a set of inputs x1, · · · , xn will
produce the output x, while the delay operator x :=
x1 $ init c sends the previous non-absent value of the
input to the output with an initial value c.

• Multiclock operators, including undersampling and de-
terministic merging. The undersampling operator x :=
x1 when x2 is used to get the output of an input at the
true occurrence of another input, while the deterministic
merging operator x := x1 de f ault x2 is used to select be-
tween two inputs to be sent as the output, with a higher

Figure 1 A global view of the relation between our work and related work

priority to the first input.

Note that, these operators specify the relations between the
abstract clocks of the signals in an implicit way.

In the SIGNAL language, the relations between values and
the relations between abstract clocks of the signals, are de-
fined as equations, and a process consists of a set of equa-
tions. Two basic operators apply to processes, the first one
is the composition of different processes, and the other one
is the local declaration in which the scope of a signal is re-
stricted to a process.

Extended Constructs SIGNAL also provides some oper-
ators to express control-related properties by specifying clock
relations explicitly, such as clock synchronization, set op-
erators on clocks (union, intersection, difference) and clock
comparison.

• Clock synchronization, the equation x1 ˆ= x2 ˆ= · · · ˆ=
xn specifies that signals x1, x2, · · · , xn are synchronous.

• Set operators on clocks, such as the equation x:= x1 ˆ+
x2 defines the clock of x as the union of the clocks of
signals x1 and x2, the equation x:= x1 ˆ* x2 defines the
clock of x as the intersection of the clocks of signals x1

and x2, and the equation x:= x1 ˆ- x2 defines the clock of
x as the difference of the clocks of signals x1 and x2.

• Clock comparison, such as the statement x1 ˆ< x2 speci-
fies a set inclusion relation between the clocks of signals
x1 and x2, and the statement x1 ˆ> x2 specifies a set con-
tainment relation between the clocks of signals x1 and
x2.

The semantics of each of the extended constructs is de-
fined in term of the primitive constructs [24], so we just con-
sider the primitive constructs, that is kernel SIGNAL (kSIG-
NAL for short). Its abstract syntax is presented as follows.

P ::= x := f (x1, · · · , xn) (instantaneous function)
|x := x1 $ init c (delay)
|x := x1 when x2 (undersampling)
|x := x1 de f ault x2 (deterministic merging)
|P|P′ (composition)

We can use both primitive constructs and extended con-
structs in the programming. However, the compiler will
translate it into kSIGNAL (just use primitive constructs).
Thus, in the proof of semantics preservation, we consider
kSIGNAL and S-CGA.

In order to get a simplest criterion for the proof of seman-
tics equivalence, local variables are supposed to be moved to
the top level, so that the corresponding signals can be con-
trolled from the outside. It means that non-deterministic be-
haviors are excluded, but our goal is to generate executable
code, not specifications.

2.2 Trace Model

There exist several semantics for SIGNAL, such as trace se-
mantics (which is used in the reference manual for SIGNAL
Version 4), tagged model semantics (based on tags which
puts forward a partial order view of time), structural opera-
tional semantics, etc. This paper considers the trace seman-
tics. In the following paragraphs, we summarize the trace
model [23, 24] which is used to define the trace semantics of
SIGNAL.

Let X be a set of variables, and let V be the set of values
that can be taken by the variables. For a variable x ∈ X, and
a non-empty subset X of variables in X, we consider Vx the
domain of values that may be taken by x, andVX =

⋃
x∈X
Vx.

The symbol ⊥ (⊥ < V) is introduced to express the ab-

sence of valuation of a variable. Then we denote:

V⊥ = V ∪ {⊥}

V⊥X = VX ∪ {⊥}

The basic objects manipulated by the SIGNAL language
are signals. The length of a signal can be either finite or infi-
nite.

Definition 1 (Signal) A signal s is a sequence (si)i∈I of
typed values (ofV⊥), where I is the set of natural numbers N
or an initial segment of N, including the empty segment.

After, the definition of a trace is given. Note that, a signal
is just a sequence of values corresponding to a signal variable,
while a trace defines the synchronized sequences of values of
a set of signal variables.

Definition 2 (Event) Considering X a non-empty subset of
X, we call event on X any application

e : X →V⊥X

• e(x) = ⊥ indicates that variable x has no value in the
event.

• e(x) = v indicates, for v ∈ Vx, that variable x takes the
value v in the event.

The absent event on X (X → {⊥}), where all the signals
are absent at a logical instant, is denoted ⊥e(X). Moreover,
the set of events on X (X →V⊥X) is denoted εX .

A trace is a sequence of events. For any subset X of X, we
consider the following definition of the set ΦX of traces on X.

Definition 3 (Traces) ΦX is the set of traces on X, defined
as the set of applications N→εX where N is the set of natu-
ral numbers.

Similarly, a trace can be finite. However, we can extend
the finite sequence with infinite absent events, to get an infi-
nite trace.

The absent trace on X (N → {⊥e(X)}), i.e., the infinite se-
quence formed by the infinite repetition of ⊥e(X), is denoted
⊥X .

Definition 4 (Process) Given a SIGNAL process, its trace
semantics, denoted SProcess, includes a set of signal vari-
ables defining the domain of the process and a set of traces.

Definition 5 (Trace Equivalence) Two traces are equiva-
lent if and only if they have the same set of signal variables
and the same set of signals.

2.3 Trace Semantics of SIGNAL

Based on the trace model, the trace semantics of SIGNAL is
presented as follows. It defines the set of traces associated to
each primitive construct of SIGNAL.

Trace Semantics 1 The trace semantics of the instanta-
neous function x := f (x1, · · · , xn) is defined as follows:

∀t ∈ N

xt =

{
⊥ i f x1t = . . . = xnt = ⊥

f (x1t, . . . , xnt) i f x1t , ⊥ ∧ . . . ∧ xnt , ⊥

At each instant t, the signals are either all present or all
absent, i.e., they are synchronous, denoted x ˆ = x1 ˆ = · · · ˆ
= xn. xt gets the value of f (x1t, . . . , xnt) when the signals are
all present. The function f includes different mathematical
operations, such as arithmetic operations, boolean operations,
etc.

Trace Semantics 2 The trace semantics of the delay con-
struct x := x1 $ init c is defined as follows:

− (∀t ∈ N) x1t = ⊥ ⇔ xt = ⊥

− {k | x1k , ⊥} , ∅ ⇒ xmin{k|x1k,⊥} = c
− (∀t ∈ N) x1t , ⊥ ∧ {k > t | x1k , ⊥} , ∅
⇒ xmin{k>t|x1k,⊥} = x1t

Here, min(X) denotes the minimum of a non-empty set of
naturals. Similarly to the instantaneous function, the delay
construct also requires signals x and x1 have the same clock,
denoted x ˆ= x1. Given a logical instant t, x takes the most
recent value of x1 except the one at t. Initially, x takes the
value c.

Trace Semantics 3 The trace semantics of the undersam-
pling construct x := x1 when x2 is defined as follows:

∀t ∈ N

xt =

{
x1t i f x2t = true
⊥ otherwise

Here, x and x1 have the same type and x2 is a boolean
signal. The clock of x is the intersection of the clock of x1

and the true occurrences of x2, denoted x=x1 ˆ* [x2], where
[x2] = x̂2 ∧ x2 represents the true occurrences of x2.

Trace Semantics 4 The trace semantics of the determin-
istic merging construct x := x1 de f ault x2 is defined as fol-
lows:

∀t ∈ N

xt =

{
x1t i f x1t , ⊥
x2t otherwise

Here, signals x, x1 and x2 have the same type. The clock
of x is the union of the clocks of x1 and x2, denoted x = x1 ˆ+
x2. Given a logical instant t, xt gets the merge of the values
of x1t and x2t, and the value of x1t has a higher priority.

Finally the semantics of parallel composition is defined as
the intersection of the semantics of the components. We ap-
ply these semantics rules to a SIGNAL process, to get a com-

plete semantics of the process, that is SProcess (Definition
4).

3 Synchronous Clocked Guarded Actions for
SIGNAL

In papers such as [11], clocked guarded actions have been de-
fined as a common representation for synchronous (via syn-
chronous guarded actions), polychronous and asynchronous
(via asynchronous guarded actions) models. It has a multi-
clocked feature. However, in contrast to the SIGNAL lan-
guage, clocked guarded actions can evaluate a variable even
if its clock does not hold [11] [29], in this case the read value
is the most recently written value, while in SIGNAL read
and writes can be simultaneous provided the causality is re-
spected. As a consequence, we introduce S-CGA, which is a
variant of clocked guarded actions. S-CGA constrains vari-
able accesses as done by SIGNAL. We remark that the SIG-
NAL compiler has introduced intermediate representations
to manage guards and dependencies such as HCDG (Hierar-
chized Conditional Dependency Graph) [26]. The proposed
intermediate language is not at the same level: S-CGA does
not resolve dependencies. Actually, HCDG could be reused
in the next stages of the compilation process. In this section,
we first present the syntax of S-CGA, and then we give the
denotational semantics of S-CGA based on the trace model.

S-CGA has the same structure as clocked guarded actions,
but they have different semantics.

Definition 6 (S-CGA) An S-CGA system is represented
by a set of guarded actions of the form 〈γ ⇒ A〉 defined over
a set of variables X. The Boolean condition γ is called the
guard and A is called the action. Guarded actions can be of
the following forms:

(1) γ ⇒ x = τ (immediate)
(2) γ ⇒ next(x) = τ (delayed)
(3) γ ⇒ assume(σ) (assumption)

where

• the guard γ is a Boolean condition over the variables of
X, and their respective clocks. For a variable x ∈ X, we
denote:

– its clock x̂,
– its initial clock init(x̂) as the clock which ticks the

first time (if any) where x̂ ticks.
• τ is an expression over X,
• σ is a Boolean expression over the variables of X and

their clocks.

An immediate assignment x = τ writes the value of τ im-
mediately to the variable x. The form (1) implicitly imposes
that if γ is defined3) and its value is true, then x is present and
τ is defined.

A delayed assignment next(x) = τ evaluates τ in the given
instant but changes the value of the variable x at next time
clock x̂ ticks.

The form (3) defines a constraint. It determines a Boolean
condition which has to hold when γ is defined and true. All
the execution traces must satisfy this constraint. Otherwise,
they are ignored.

Guarded actions are composed by using the parallel oper-
ator ‖.

Definition 7 (Trace semantics of S-CGA) The trace se-
mantics of an S-CGA system is defined as a set of traces, that
is JS CGAK = {S | ∀scga ∈ S CGA, JscgaKS = true}. We have
the following semantics rules,

(1) Jγ ⇒ x = τKS =

∀t ∈ N, ĴγKS ,t ∧ JγKS ,t

→ (ĴxKS ,t ∧ ĴτKS ,t ∧ JxKS ,t = JτKS ,t)

(2) Jγ ⇒ next(x) = τKS =

∀t1 < t2 ∈ N,

((∀t′ ∈ N, t1 < t′ < t2 → ¬ĴxKS ,t′) ∧ ĴγKS ,t1
∧ JγKS ,t1)

→ (ĴxKS ,t1
∧ ĴτKS ,t1

∧ (ĴxKS ,t2
→ JxKS ,t2 = JτKS ,t1))

(3) Jγ ⇒ assume(σ)KS =

∀t ∈ N, ĴγKS ,t ∧ JγKS ,t → ĴσKS ,t ∧ JσKS ,t

where ĴeKS ,t defines the domain of e: it is true if all the vari-
ables of e are present in trace S at the instant t; JeKS ,t is a
partial function defined over the domain ĴeKS ,t whose value is
the valuation of e on trace S at the instant t.

• Rule (1): when γ is present, and the value of γ is true, x
and τ are both present, and the value of x is that of τ.

• Rule (2): when γ is present and the value of γ is true at
instant t1, x and τ are present at t1, and if t2 is the next
instant where x is present, then the value of x at t2 is that
of τ at instant t1.

• Rule (3): when γ is present, and the value of γ is true, σ
is present and true.

The semantics of S-CGA composition is defined as
Jscga1 ‖ scga2KS = Jscga1KS ∧ Jscga2KS .

3) An expression is said to be defined if all the variables it contains are
present.

4 From kSIGNAL to S-CGA and its Semantics
Preservation

In this section, we present the front-end of the compiler, that
is the translation from kSIGNAL to S-CGA. We envision the
extraction of a complete verified-compiler prototype from the
theorem proof. Thus, we would like to use the theorem prover
Coq, to express and verify the translation from kSIGNAL to
S-CGA.

4.1 Translation Rules

kSIGNAL can be structurally translated to S-CGA by trans-
lating each construct separately. The translation rules are
close to the ones which have been given in [7]. However,
to conform with the semantics of S-CGA (i.e. the revised
semantics of clocked guarded actions), we have done some
adjustments.

kS IGNAL S −CGA

(1) x := f (x1, · · · , xn) V

x̂⇒ x = f (x1, · · · , xn)
‖ x̂1 ⇒ assume(x̂)
‖ ...
‖ x̂n ⇒ assume(x̂)

(2) x := x1 $ init c V

init(x̂)⇒ x = c
‖ x̂⇒ next(x) = x1
‖ true⇒ assume(x̂ = x̂1)

(3) x := x1 when x2 V

{
x̂1 ∧ x2 ⇒ x = x1
‖ x̂⇒ assume(x̂1 ∧ x2)

(4) x := x1 de f ault x2 V

x̂1 ⇒ x = x1
‖ x̂2 ∧ ¬x̂1 ⇒ x = x2
‖ x̂⇒ assume(x̂1 ∨ x̂2)

• Translation (1): The instantaneous function is applied
to the inputs and produces the output. Note that the im-
mediate assignment x̂ ⇒ x = f (x1, · · · , xn) implicitly
imposes x̂ ⇒ x̂1, ..., x̂ ⇒ x̂n, so in the assumption we
only assert x̂1 ⇒ assume(x̂), ..., x̂n ⇒ assume(x̂). Thus
all variables have the same clock as required by the se-
mantics of SIGNAL.

• Translation (2): The translation of the delay construct is
split up in two cases. a) The first value that is produced
by this construct is the constant c at the first instant when
x is present. b) In all other instants the value of x is
assigned by the value of x1 evaluated at the last non-
absent instant of x̂1. The assumption ensures that both
variables have the same clock.

• Translation (3): The undersampling construct transfers
the value of x1 to x whenever it is needed. The clock

assumption ensures that x̂ only holds when both inputs
(i.e., x1 and x2) are present and x2 is true. Thanks to the
assume semantics (Rule(3) of Definition 7), assume(x̂1∧

x2) implies x̂1 ∧ x̂2 ∧ x2.
• Translation (4): The deterministic merging construct

merges two signals with priority for the first one. There-
fore, if the first input is present, it is passed to x. If it
is not present, but the second one is, the second one is
passed to x. The clock assumption ensures that x̂ only
holds when at least one of the inputs is present.

Remark 1 Compared with the translation rules given in
[7], the main change is in the Translation (3). Namely,
true ⇒ assume(x̂ = x̂1 ∧ x̂2 ∧ x2) has been changed into
x̂ ⇒ assume(x̂1 ∧ x2). According to the Rule (3) (Defini-
tion 7): when γ is present, and the value of γ is true, σ must
be present, and the value of σ is true. true ⇒ assume(x̂ =

x̂1 ∧ x̂2 ∧ x2) implies x2 is always present and always true.
Thus, to conform with the semantics of S-CGA, we change
it into x̂ ⇒ assume(x̂1 ∧ x2). It means when x is present,
x̂1 ∧ x2 is present and true, i.e., x1 is present and x2 is present
and true.

Example 2 A translation from kSIGNAL to S-CGA 4) is
given as follows.

(|y1 := x$ init 1
|y2 := x$ init 2
|z := x > 0
|s1 := f (y1) when z
|s2 := s1 + 1
|s3 := f (y2) when (not z)
|s4 := s3 + 2
|)

V

true⇒ assume(ŷ1 = x̂)
init(ŷ1)⇒ y1 = 1
ŷ1 ⇒ next(y1) = x
true⇒ assume(ŷ2 = x̂)
init(ŷ2)⇒ y2 = 2
ŷ2 ⇒ next(y2) = x
true⇒ assume(x̂ = ẑ)
ẑ⇒ z = (x > 0)
ŝ1 ⇒ assume(ẑ ∧ z)
ẑ ∧ z⇒ s1 = f (y1)
ŝ2 ⇒ s2 = s1 + 1
ŝ1 ⇒ assume(ŝ2)
ŝ3 ⇒ assume(ẑ ∧ (not z))
ẑ ∧ (not z)⇒ s3 = f (y2)
ŝ4 ⇒ s4 = s3 + 2
ŝ3 ⇒ assume(ŝ4)

4.2 The Proof of Semantics Preservation

As shown in Figure 2, the Coq mechanization includes 7
modules (about 1300 lines of Coq code), i.e., the abstract
syntax of kSIGNAL, the trace model, the trace semantics of
kSIGNAL, the abstract syntax of S-CGA, the trace semantics

4) If two guarded actions update the same variables, the guards must be
exclusive.

of S-CGA, the translation rules, and the proof of the seman-
tics preservation. Here, the semantics preservation is defined
as a trace equivalence between two trace semantics models
related to kSIGNAL and its translation into S-CGA respec-
tively.

Figure 2 The global view of the semantics preservation

All the definitions given as above have been mechanized
in Coq. Here we just present the main idea of the proof.

Firstly, we prove each semantics rule of the trace seman-
tics of kSIGNAL is trace equivalent with its translation into
S-CGA. For each semantics rule, there are two Lemmas to be
proven (in two directions).

Instantaneous function. (1) Its trace semantics is defined
as Sassignment. (2) As defined in section 4.1, its translated
guarded actions are x̂⇒ x = f (x1, · · · , xn), x̂1 ⇒ assume(x̂),
..., and x̂n ⇒ assume(x̂). Applying the semantics of S-
CGA (scgaSimm is the semantics of immediate assignment),
we can get the semantics of instantaneous function construct
translated into S-CGA. Then, we prove the trace equivalence
between (1) and (2).

Lemma s i g n a l 2 s c g a _ a s s 1 : ∀ f x x i t r ,
S a s s i g n m e n t x f x i t r →
(scgaSimm ^x x { | exp_fun := f ; e x p _ a r g s := x i | } t r
∧ s t r M o d e l . s t r a c e s

(s c g a 2 S p r o c e s s (GA_ipar (fun i : Fc tAr f
⇒ ^ (x i i) =⇒ assume (^ x)))) t r) .

Lemma s i g n a l 2 s c g a _ a s s 2 : ∀ f x x i t r ,
scgaSimm ^x x { | exp_fun := f ; e x p _ a r g s := x i | } t r
→ s t r M o d e l . s t r a c e s

s c g a 2 S p r o c e s s (GA_ipar (fun i : Fc tAr f ⇒
^ (x i i) =⇒ assume (^ x)))) t r

→ S a s s i g n m e n t x f x i t r .

Delay. (1) Its trace semantics is defined as Sdelay. (2)
There are three translated guarded actions, i.e., init(x̂)⇒ x =

c, x̂ ⇒ next(x) = x1, and true ⇒ assume(x̂ = x̂1). Ap-
plying the semantics of S-CGA (getFirst0 is used to get the
first instant when x is present, that is init(x̂), scgaSnext is the
semantics of delayed assignment, and scgaSctr is the seman-
tics of assumption), we can get the semantics of delay con-
struct translated into S-CGA. Then, we prove the trace equiv-

alence between (1) and (2). In the Lemmas, x̂ = x̂1 is denoted
x̂ ˆ= x̂1 (as clock synchronization operator in SIGNAL).

Lemma s i g n a l 2 s c g a _ d e l a y 1 : ∀ x x1 v t r ,
Sd e l ay x x1 v t r →
((scgaSimm i n i t (x) x v t r (g e t F i r s t 0 t r))
∧ (∃ c : Value ,

s c g a S n e x t gTrue x x1 c t r (g e t F i r s t 0 t r)))
∧ s c g a S c t r gTrue (^ x ^= ^ x1) t r (g e t F i r s t 0 t r) .

Lemma s i g n a l 2 s c g a _ d e l a y 2 : ∀ x x1 v t r ,
scgaSimm i n i t (x) x v t r (g e t F i r s t 0 t r)
→ (∃ c : Value ,

s c g a S n e x t gTrue x x1 c t r (g e t F i r s t 0 t r))
→ s c g a S c t r gTrue (^ x ^= ^ x1) t r (g e t F i r s t 0 t r)
→ Sd e l ay x x1 v t r .

Undersampling. (1) Its trace semantics is defined as
Swhen. (2) There are two translated guarded actions, i.e.,
x̂1 ∧ x2 ⇒ x = x1 and x̂ ⇒ assume(x̂1 ∧ x2). Applying
the semantics of S-CGA, we can get the semantics of under-
sampling construct translated into S-CGA. Then, we prove
the trace equivalence between (1) and (2). In the Lemmas,
x̂1 ∧ x2 is denoted x̂1 ˆ∗ x2 (reusing the clock intersection
operator of SIGNAL).

Lemma s i g n a l 2 s c g a _ w h e n 1 : ∀ x x1 x2 t r ,
Swhen x x1 x2 t r →
scgaSimm (^ x1 ^∗ x2) x x1 t r
∧ s c g a S c t r ^x (^ x1 ^∗ x2) t r .

Lemma s i g n a l 2 s c g a _ w h e n 2 : ∀ x x1 x2 t r ,
scgaSimm (^ x1 ^∗ x2) x x1 t r
→ s c g a S c t r ^x (^ x1 ^∗ x2) t r
→ Swhen x x1 x2 t r .

Deterministic merging. (1) Its trace semantics is de-
fined as Sdefault. (2) There are three translated guarded
actions, i.e., x̂1 ⇒ x = x1, x̂2 ∧ ¬x̂1 ⇒ x = x2, and
x̂ ⇒ assume(x̂1 ∨ x̂2). Applying the semantics of S-CGA,
we can get the semantics of deterministic merging construct
translated into S-CGA. Then, we prove the trace equivalence
between (1) and (2). In the Lemmas, x̂2 ∧ ¬x̂1 is denoted
x̂2 ˆ− x̂1 (clock difference operator of SIGNAL), and x̂1 ∨ x̂2

is denoted x̂1 ˆ+ x̂2 (clock union operator of SIGNAL).

Lemma s i g n a l 2 s c g a _ d e f a u l t 1 : ∀ x x1 x2 t r ,
S d e f a u l t x x1 x2 t r →
(scgaSimm ^ x1 x x1 t r
∧ scgaSimm (^ x2 ^− ^ x1) x x2 t r)
∧ s c g a S c t r ^x (^ x1 ^+ ^ x2) t r .

Lemma s i g n a l 2 s c g a _ d e f a u l t 2 : ∀ x x1 x2 t r ,
scgaSimm ^ x1 x x1 t r
→ scgaSimm (^ x2 ^− ^ x1) x x2 t r
→ s c g a S c t r ^x (^ x1 ^+ ^ x2) t r
→ S d e f a u l t x x1 x2 t r .

Secondly, based on these Lemmas, we prove the fol-
lowing Theorem, that the two semantics models, i.e., (Pro-
cess2Sprocess P) and (scga2Sprocess(signal2scga P)) are
trace equivalent (they have the same set of signal variables
and the same set of traces). This property concerns infinite
objects and cannot generally be proved automatically. This is
why we use the proof assistant which verifies a user-assisted
proof.

Record SPeq (p1 p2 : S p r o c e s s) : Prop :=
{

SPd : ∀ y , sdom p1 y ↔ sdom p2 y ;
SPs : ∀ t r , s t r a c e s p1 t r ↔ s t r a c e s p2 t r

} .

Theorem s i g n a l 2 s c g a _ c h e c k : ∀ p ,
SPeq (P r o c e s s 2 S p r o c e s s p)

(s c g a 2 S p r o c e s s (s i g n a l 2 s c g a p)) .

Finally, we can extract the corresponding CAML code, to
synthesize the first stage of the verified compiler prototype.

5 Sequential Code Generation

The compilation process of synchronous languages is not
limited to code generation: some analyses are first applied to
determine if the specification is indeed executable. The SIG-
NAL compilation process contains one major analysis called
clock calculus from which code generation directly follows.
Moreover the clock calculus contains several steps [26], such
as construction of an equation system over clocks; resolution
of the system of clock equations; construction of a clock hier-
archy on which the automatic code generation strongly relies.

For a safety-critical system, it is important to optimize the
control structure of the generated code. In the SIGNAL com-
piler, the control flow expressed by abstract clocks serves to
derive a control structure in automatic code generation. Thus,
the quality of clock calculus has a strong impact on the cor-
rectness and efficiency of implementations. In [30], the au-
thors have shown that there is a limitation of the clock cal-
culus of the SIGNAL compiler. For example, for the under-
sampling construct x = x1 when x2, the clock of the Boolean
expression x2 is partitioned into [x2] and [¬x2], which are re-
ferred to as condition-clocks. If x2 is defined by a numerical
expression such as an integer comparison, [x2] and [¬x2] are
seen as black boxes. This has a strong impact on the analysis
precision and the quality of generated code. Thus, the authors
propose a new clock abstraction, that is combined numerical-
Boolean abstraction, to eliminate this problem. They also
use an SMT solver to reason on the new abstraction. With

the same purpose, in [31], an interval-based data structure
referred to as Interval-Decision Diagram (IDD) is consid-
ered for the analysis of numerical properties in SIGNAL pro-
grams.

As shown in Figure 3, in our compiler prototype (sequen-
tial code generation): (1) We have considered the main com-
ponents of the clock calculus, such as construction of an
equation system over clocks, resolution of a system of clock
equations, and construction of a clock hierarchy. (2) To in-
tegrate more synchronous languages, such as QUARTZ, AIF,
etc., into our prototype in the future, we introduce S-CGA
as the intermediate representation, and we adapt the clock
calculus to S-CGA. (3) We propose an appropriate modular
architecture for our prototype. One benefit of this approach is
that we just need to redo a part of proof when some modules
of the compilation process are changed. (4) We have consid-
ered existing enhancements such as [30] [31], namely we can
use both BDD and SMT in the resolution of a system of clock
equations.

Specifically, the compilation process is mainly structured
as five modules. At each module, there are several submod-
ules.

• Module 1: Beyond the usual lexical analysis, parsing
and type checking, the compiler will transform the user
program (using the subset of SIGNAL) whose state-
ments all expressed with both primitive constructs and
extended constructs to the normalized program (using
kSIGNAL) whose statements are all expressed with
primitive constructs.

• Module 2: As a difference with the existing SIGNAL
compiler, we construct S-CGA from the normalized pro-
gram. S-CGA contains control flow (a system of clock
equations) as well as data flow. As mentioned above,
for the under-sampling construct, the SIGNAL compiler
consider the condition-clocks [x2] and [¬x2] as black
boxes if x2 is defined by a numerical expression. When
x2 is defined by a complex boolean function, we have
[x2] = x̂2 ∧ x2 and [¬x2] = x̂2 ∧ ¬x2. Based on this
abstraction, we can get more precise clock analysis.

• Module 3: If the system of clock equations contains
more than one equation with the same clock, the exe-
cution of the generated code will check the same control
condition several times, and it is inefficient. This is why
we need to resolve it. All the clock equations are con-
sidered as predicates. We can use BDD or SMT technol-
ogy to check the equivalence of two predicates, and put
the corresponding clock variables into the same equiva-

Figure 3 The architecture of the verified compiler prototype

lence class. We also check the endochrony property at
this step, namely there is just one master clock.

• Module 4: The code generation is based on both the
clock hierarchy and the data dependencies. However,
there may be clock-to-data cycles. To reduce these cy-
cles, we first sort all the guarded actions. It will be eas-
ier to construct a clock hierarchy based on determinis-
tic sorting, and we consider the sorting as a depth first
search (DFS) order.

• Module 5: The basic idea of code generation is the
same as in the SIGNAL compiler. Furthermore, we do
some optimizations based on clock inclusions. Given
two equations such as y = x when x1 and z =

x when (x1 and x2), there is a clock-inclusion relation:
[x1 ∧ x2] → [x1], i.e., the clock of [x1 ∧ x2] is a subset
of the clock of [x1]. Consequently, we can do the code
optimization illustrated as follows. If control condition
x1 holds, we do not need to check x1 again in x1&&x2.
We just need to check if x2 holds or not.

i f (x1){
do actions
...
i f (x1&&x2){
do actions
...}

}

V

i f (x1){
do actions
...
i f (x2){
do actions
...}

}

Actually, the first version of the compiler prototype has
been implemented in CAML directly. It is a good way to
provide a basis for the Coq mechanization of the prototype.
Finally, we envision the extraction of a complete prototype
from the mechanization.

6 Multi-threaded Code Generation with
Time-Predictable Properties

Safety-critical embedded systems or cyber-physical systems
(CPS) distinguish themselves from general purpose comput-
ing systems by several characteristics, such as failure to meet
deadlines may cause a catastrophic or at least highly undesir-
able system failure. Time-predictable system design [32–34]
is concerned with the challenge of building systems in such
a way that timing requirements can be guaranteed from the
design. This means we can predict the system timing stati-
cally. With the widespread advent of multi-core processors,
it further aggravates the complexity of timing analysis. We
would like to consider the multi-threaded code generation
with time-predictable properties. At the modeling level, syn-
chronous programming is a good choice for time-predictable
system design. At the compiler level, we give the verified
compiler from SIGNAL to our intermediate representation S-
CGA and thus to multi-threaded code. At the platform level,
we propose a time-predictable multi-core architecture model
in AADL (Architecture Analysis and Design Language) [18],
and then we map the multi-threaded code to this model.
Therefore, our method integrates time predictability across
several design layers.

6.1 From S-CGA to Multi-threaded Code

The SIGNAL compilation process contains one major anal-
ysis called clock calculus from which code generation di-

rectly follows. Moreover the clock calculus contains several
steps [26], such as construction of an equation system of rela-
tions over clocks; resolution of the system of clock equations;
construction of a clock hierarchy. Our goal here is to adapt
the clock calculus to S-CGA. Moreover, in the multi-threaded
code generation scheme, the data-dependency graph (DDG)
should also be constructed to find more parallelism.

Based on the semantics of S-CGA, we can get the equation
system over clocks. The general rules are given as follows.

S-CGA Clock Equations
γ ⇒ x = τ γ̂ ∧ γ → x̂ ∧ τ̂
γ ⇒ next(x) = τ γ̂ ∧ γ → x̂ ∧ τ̂
γ ⇒ assume(σ) γ̂ ∧ γ → σ̂ ∧ σ

init(x̂)→ x̂ (∀x ∈ X)

As a first step, we just consider endochrony property 5),
namely we can construct a clock hierarchy based on the reso-
lution of the system of clock equations. The clock hierarchy
of Example 2 (with three clock equivalence classes, i.e., C0,
C1, and C2) is shown in Figure 4. For instance, the signals x,
y1, y2, and z are synchronous, thus they are in the same clock
equivalence class (C0).

Figure 4 Clock hierarchy

The properties of the clock hierarchy are presented as fol-
lows [36].

• Each node is a clock equivalence class.
• There is just one master clock equivalence class, here is

C0 in the clock hierarchy.
• There is a clock implication relation (checked by BDD

or SMT) between a son node and its father node, for
instance, ẑ ∧ z → ẑ. Thus, all the clocks in the clock
hierarchy can be defined from the master clock.

In the sequential code generation scheme, we associate
guarded actions to each clock equivalence class of the clock
hierarchy, then the deterministic sequential code will be gen-
erated [29]. In the multi-threaded code generation schema,
the DDG should also be constructed to find more parallelism.
We construct the DDG, as shown in Figure 5, based on the
variables reading and writing.

5) Weak endochrony [35] property will be considered in the future.

Definition 8 (Reading and Writing Dependencies) [37]
Let FV(τ) denote the free variables occurring in the ex-

pression τ. The dependencies from guarded actions to vari-
ables are defined as follows:

RdVars(γ ⇒ x = τ) := FV(γ) ∪ FV(τ)
RdVars(γ ⇒ next(x) = τ) := FV(γ) ∪ FV(τ)
WrVars(γ ⇒ x = τ) := {x}
WrVars(γ ⇒ next(x) = τ) := {next(x)}

Then, the dependencies from variables to guarded actions
are defined as follows:

RdActs(x) := {γ ⇒ A | x ∈ RdVars(γ ⇒ A)}
WrActs(x) := {γ ⇒ A | x ∈ WrVars(γ ⇒ A)}

Note that, γ ⇒ assume(σ) is used in the construction of
the clock hierarchy. We expect that it is not needed to as-
sociate some actions to assume inside the DDG. This leads
to proof obligations that should be checked to guarantee the
correctness of the generated code.

An action can only be executed if all read variables are
known. Similarly, a variable is only known if all actions writ-
ing it in the current step have been evaluated before.

Figure 5 Data dependency graph

The multi-threaded code generation depends on the data
dependency graph which has been associated with the clock
hierarchy. We first need to find partitions. As presented
in Figure 6, we would like to treat the partition methods in
general, this means different partition methods (such as the
vertical way [38] for a concurrent execution, the horizontal
way [39] for a pipelined execution, etc.) don’t affect the

Figure 6 The proof idea

proof. Our approach is general and it only requires a legal
partition, here we reuse the definition of [37].

Definition 9 (Legal Partition) Let P be a partition, A1 and
A2 be guarded actions of P, and v be the reflexive and transi-
tive closure of the following relation R ⊆ A ×A : (A1, A2) ∈
R ⇔ WrVars(A1) ∩ RdVars(A2) , {}. P is legal if only if v
is a partial order.

Note that, the intersection of WrVars(A1) and RdVars(A2)
is empty if A1 is a delayed action for a reading variable in A2.

Based on the Definition 9, a partition scheme of Example
2 (with 4 partitions) is given in Figure 5. The basic principle
of our partition method is described as follows.

• Consider one partition (i.e. one thread) for each vertex
of the data-dependency graph.

• Merge two partitions for example P1 and P2, if P2 is the
only son of P1 and P1 is the only father of P2.

• In each partition, we organize the guarded actions based
on the clock equivalence classes. For example, the two
guards in Thread2 belong to the same clock equivalence
class, so they will be merged inside the same control
condition in the generated code.

Finally, we add wait/notify synchronization among the
threads. A code fragment of Thread2 is given as follows.

/ ∗ Thread 2 ∗ /
void step()
{

wait(Thread1);
i f (C1){

s1 = f (y1);
s2 = s1 + 1; }

noti f y(Thread4);
}

6.2 Mapping Multi-threaded Code to Multi-core

To allow for static prediction of the system timing, we need
time-predictable processor architectures, thus we know all
the architecture details such as the pipeline and the memory

hierarchy to analyze the execution time of programs. Further-
more, the mapping from multi-threaded code to multi-core
architectures should be also static and deterministic.

6.2.1 A time-predictable multi-core architecture model

With the advent of multi-core architectures, interference be-
tween threads on shared resources further complicates anal-
ysis. There are some recommendations from R. Wilhelm et
al. [33, 34], i.e., the better way is to reduce the time interfer-
ence: (1) pipeline with static branch prediction and with in-
order execution; (2) separation of caches (instruction and data
caches); (3) LRU (Least Recently Used) cache replace policy;
and (4) access of main memory via an TDMA (Time Divi-
sion Multiple Access) scheme. In the EC funded project T-
CREST 6), M. Schoeberl et al. [40,41] propose a new form of
organization for the instruction cache, named method cache
(MC), and split data caches (including stack cache (SC),
static data cache (SDC), constants data cache (CDC), and
heap allocated data cache (HC)), to increase the time pre-
dictability and to tighten the WCET. The method cache stores
complete methods and cache misses occur only on method
invocation and return. They split the data cache for different
data areas, thus data cache analysis can be performed indi-
vidually for the different areas. In our work, heap is avoided
to be used because we don’t use dynamic memory allocation
in our multi-threaded code.

Based on existing work, we would like to model a time-
predictable multi-core architecture in AADL. AADL is an
SAE (Society of Automotive Engineers) architecture descrip-
tion language standard for embedded real-time systems, and
supports several kinds of system analysis such as schedula-
bility analysis. Moreover, we have already worked on the
semantics of different AADL subsets such as [28]. So we
envision how to validate semantically the mapping from the
language level to the architecture level.

Our multi-core architecture model is illustrated in Figure
7. Inside the core, we consider static branch prediction and
in-order execution in the pipeline. A simplified instruction
set (get_instruction, compute, write_data, and read_data) is
used. As a first step, we just consider first level cache (i.e.
without L2 and L3). Each core is associated with a method
cache, a stack cache, a static data cache, and a constants data
cache. However, the same principle of cache splitting can
be applied to L2 and L3 caches. The extension of the tim-
ing analysis for a cache hierarchy is straightforward. More-
over, TDMA-based resource arbitration allocates statically-

6) Time-predictable Multi-Core Architecture for Embedded Systems

computed slots to the cores.

Figure 7 A time-predictable multi-core architecture model

As proposed by [42], a core is associated with an AADL
processor component and a multi-core processor with an
AADL system component containing multiple AADL pro-
cessor subcomponents, each one representing a separate core.
This modeling approach provides flexibility: an AADL sys-
tem can contain other components to represent cache, and
shared bus, etc. For that purpose, we define specific mod-
eling patterns with new properties such as MC_Properties.
TDMA_Window denotes a Slot to an access connection. For
a bus, there will be a list of allocations of slots, that is
TDMA_Schedule. For instance, for N access connections, the
TDMA period of the bus is T=Slot * N. Here, we consider all
the access connections have the same slot duration.

property set MC_Properties is
TDMA_Window : type record (
AccessPoint : list of reference (access connection);
Slot : time;
);

TDMA_Schedule : list of MC_Properties
::TDMA_Window applies to (bus);

...
end MC_Properties;

6.2.2 The Mapping Method

To preserve the time predictability, we consider static map-
ping and scheduling. Take the Example 2, it generates a con-
figuration file (such as num_of_threads=4) in multi-threaded
code generation. Moreover, we have a manual configuration
file for the time-predictable multi-core architecture model,
for example num_of_cores=4. Thus, we can generate a static
mapping and scheduling, for instance:

• Thread1 7→ Core1, Thread2 7→ Core2, Thread3 7→
Core3, and Thread4 7→ Core4.

• Thread1: notify(Thread2), notify(Thread3);
Thread2: wait(Thread1), notify(Thread4);
Thread3: wait(Thread1), notify(Thread4);
Thread4: wait(Thread2), wait(Thread3).

Thanks to the mechanizations such as method cache, split
data caches, TDMA and static scheduling, the execution time
of the multi-threaded code can be bounded.

7 Related Work

We discuss in this section some related work about two as-
pects: verification of the SIGNAL compilation (mainly fo-
cuses on sequential code generation) and multi-threaded code
generation from SIGNAL.

7.1 Verification of the SIGNAL Compilation

For a safety-critical system, it is naturally required that the
compiler must be verified to ensure that the source program
semantics is preserved. For example, the SCADE Suite KCG
automatic C code generator has been qualified as a develop-
ment tool at DO-178B level A. Moreover, one of the supple-
ments to DO-178C, the DO-330 (Software Tool Qualification
Considerations) provides a guidance to qualify tools. This
means a tool for example a development tool or a verification
tool also needs to be qualified. There are many approaches to
gain assurance that the transformation or the translation of a
specification or a program is semantic-preserving. This can
be done by directly building a theorem-prover-verified com-
piler [19], by using translation validation [20], etc.

A. Pnueli et al. propose the notion of translation validation
to verify the code generator of SIGNAL [20]. In that work,
the authors define a language of symbolic models to repre-
sent both the source and target programs, called Synchronous
Transition Systems (STS). An STS is a set of logic formulas
which describe the functional and temporal constraints of the
whole program and its generated C code. Then they use BDD
representations to implement the symbolic STS models, and
their proof method uses a SAT-solver to reason on the signal
constraints.

In [21], the authors adopt translation validation to for-
mally verify that the clock semantics and data dependence are
preserved during the compilation of the SIGNAL compiler.
They represent the clock semantics, the data dependence of
a program and its transformed counterpart as first-order for-
mulas which are called Clock Models and Synchronous De-
pendence Graphs (SDGs) respectively. Then they introduce
clock refinement and dependence refinement relations which
express the preservations of clock semantics and dependence,
as a relation on clock models and SDGs respectively. Finally,
an SMT-solver is used for checking the existence of the cor-
rect transformation relations.

In the work of [43], the authors encode the source SIG-
NAL programs and their transformations with Polynomial
Dynamical Systems (PDSs), and prove that the transforma-
tions preserve the abstract clocks and clock relations of the
source programs. By using the simulation in model checking
techniques, their approach suffers from the increasing of the
state-space when it deals with large programs.

These existing researches mainly use the method of trans-
lation validation. However, translation validation treats the
compiler as a “black box”, namely it just checks the input
and output of each program transformation to validate the se-
mantics preservation. So it yields that one needs to redo the
validation when the source program is changed. We would
like to extract a verified SIGNAL compiler which considers
a subset of the SIGNAL language, based on the theorem-
prover-verified compiler method [19]. Moreover, the chal-
lenge is to be modular enough to make proof compositional
and to be able to update the proof when we need to do more
optimization.

7.2 Multi-threaded Code Generation from SIGNAL

The report [13] describes all code generation strategies avail-
able in the Polychrony toolset. In the multi-threaded code
generation scheme, it uses micro-level threading which cre-
ates a large number of threads and equally large number of
semaphores, leading to inefficiency. Thus, [14] proposes a
process-oriented and non-invasive multi-threaded code gen-
eration using the sequential code generators. It means that
instead of changing the compiler, they use the existing se-
quential code generator and separately synthesize some pro-
gramming glue to generate multi-threaded code. [16] defines
a full design flow starting from high level domain specific
languages (Simulink, SCADE, AADL, SysML, MARTE,
SystemC), transforming to polychronous specifications, and
going to the generation of deterministic concurrent (multi-
threaded) executable code for simulation or (possibly dis-
tributed) implementation. The multi-threaded code genera-
tion in [14] and [16] are both based on the weak endochrony
property.

There are also some work about multi-threaded code gen-
eration from the guarded actions. [38] presents a compilation
of synchronous programs to multi-threaded OpenMP-based
C programs. They start at the level of synchronous guarded
actions. In addition to the explicit parallelism given in the
source program, their method also exploits the implicit par-
allelism which is due to the underlying synchronous model
of computation and the data dependencies of the guarded ac-

tions. To speedup the execution of multi-threaded code, [39]
proposes an automatic synthesis procedure that translates
synchronous guarded actions to software pipelines. The syn-
chronous guarded actions are analyzed in terms of their data-
dependencies to define legal partitions into pipeline stages.
Given such a legal partitioning into pipeline stages, the pre-
sented synthesis procedure automatically identifies poten-
tial pipeline conflicts and implements code for forwarding
(if possible) while stalling is implicitly given by the FIFO
buffers. Finally, the sequential threads for the conflict-free
pipeline stages are implemented in OpenMP-based C-code.

However, these works have not considered time-
predictable properties. The mapping from their multi-
threaded code to multi-core platforms is handled by the un-
derlying system. In addition, architectural aspects are not ad-
dressed and consequently architectural based properties, e.g.,
time determinism, cannot be explicitly controlled in order to
have precise and safe timing properties.

8 Conclusion and Future Work

This paper reports a SIGNAL compiler prototype based on
the intermediate representation S-CGA. Since SIGNAL is
polychronous, each variable can have its own clock. More-
over, the variables can be evaluated only at some instants
which define their so-called clocks. In contrast to the SIG-
NAL language, clocked guarded actions can evaluate a vari-
able even if its clock does not hold. As a consequence, we
propose a variant of clocked guarded actions, namely S-CGA,
which constrains variable accesses as done by SIGNAL. S-
CGA has the same structure as clocked guarded actions, but
they have different semantics. The front-end of the compiler,
i.e. the translation from SIGNAL to S-CGA is presented.
The proof of semantics preservation mechanized in the the-
orem prover Coq is also given. Moreover, we present the
back-end of the compiler, including sequential code gener-
ation and multi-threaded code generation. Concerned with
the sequential code generation, we adapt the code generation
to the S-CGA context. But we also consider enhancements
of the compiler and their insertion in the compilation chain.
Moreover, we propose an appropriate modular architecture
for our prototype. One benefit of this approach is that we just
need to redo a part of proof when some modules of the com-
pilation process are changed. With the widespread advent of
multi-core processors, it further aggravates the complexity of
timing analysis. This paper proposes the multi-threaded code
generation by considering time-predictable properties. Our

method integrates time predictability across several design
layers, i.e., synchronous programming, verified compiler, and
time-predictable multi-core architecture model.

Interaction among cores might also jeopardize software
isolation layers, such as the one defined in ARINC653. There
are some existing work such as [42], [44], [45], and [46],
about AADL modeling on multi-core architectures and their
association with ARINC653.

Again, for us, the challenge will be to specify formally
such a platform, with respect to space and time isolation, and
to prove the satisfaction of timing properties at the applica-
tion level.

Acknowledgements This work was partially supported by the Natural Sci-
ence Foundation of Jiangsu Province under Grant SBK2015041894, the
National Key Basic Research Program of China (973 plan) under Grant
2014CB744904, Project of the State Key Laboratory of Software Develop-
ment Environment of China under Grants SKLSDE-2015KF-04, SKLSDE-
2014ZX-09 and SKLSDE-2013ZX-30, and the RTRA STAE Foundation in
France (http://www.fondation-stae.net/).

References

1. Dumitru Potop-Butucaru, Robert de Simone, and Jean-Pierre Talpin.

The synchronous hypothesis and synchronous languages. The Embed-

ded Systems Handbook, pages 1–21, 2005.

2. Frédéric Boussinot and Robert de Simone. The Esterel language. Pro-

ceedings of the IEEE, 79(9):1293–1304, 1991.

3. Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud.

The synchronous data-flow programming language Lustre. Proceed-

ings of the IEEE, 79(9):1305–1320, 1991.

4. Klaus Schneider. The synchronous programming language QUARTZ.

Internal report, Department of Computer Science, University of

Kaiserslautern, Germany, 2010.

5. Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Syn-

chronous programming with events and relations: the Signal language

and its semantics. Science of Computer Programming, 16:103–149,

1991.

6. Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal

derivation of programs. Commun. ACM, 18(8):453–457, 1975.

7. Jens Brandt, Mike Gemunde, Klaus Schneider, Sandeep K. Shukla, and

Jean-Pierre Talpin. Integrating system descriptions by clocked guarded

actions. In FDL, pages 1–8. IEEE, 2011.

8. Jens Brandt and Klaus Schneider. Separate translation of synchronous

programs to guarded actions. Internal Report 382/11, Department of

Computer Science, University of Kaiserslautern, 2011.

9. Jens Brandt, Klaus Schneider, and Sandeep K. Shukla. Translating

concurrent action oriented specifications to synchronous guarded ac-

tions. In Proceedings of the ACM SIGPLAN/SIGBED 2010 conference

on Languages, compilers, and tools for embedded systems, LCTES

2010, Stockholm, Sweden, April 13-15, 2010, pages 47–56. ACM,

2010.

10. Stephen A. Edwards and Olivier Tardieu. Shim: a deterministic

model for heterogeneous embedded systems. IEEE Trans. VLSI Syst.,

14(8):854–867, 2006.

11. Jens Brandt, Mike Gemünde, Klaus Schneider, Sandeep K. Shukla,

and Jean-Pierre Talpin. Representation of synchronous, asynchronous,

and polychronous components by clocked guarded actions. Design

Automation for Embedded Systems, pages 1–35, 2012.

12. Esprit project : Safety Critical Embedded Systems SACRES. The

declarative code DC+, version 1.4. Technical report, IRISA, november

1997.

13. Loïc Besnard, Thierry Gautier, and Jean-Pierre Talpin. Code genera-

tion strategies in the polychrony environment. Research Report RR-

6894, INRIA, 2009.

14. Bijoy A. Jose, Hiren D. Patel, Sandeep K. Shukla, and Jean-Pierre

Talpin. Generating multi-threaded code from polychronous specifi-

cations. Electr. Notes Theor. Comput. Sci., 238(1):57–69, 2009.

15. Bijoy A. Jose, Sandeep K. Shukla, Hiren D. Patel, and Jean-Pierre

Talpin. On the deterministic multi-threaded software synthesis from

polychronous specifications. In 6th ACM & IEEE International Con-

ference on Formal Methods and Models for Co-Design (MEMOCODE

2008), June 5-7, 2008, Anaheim, CA, USA, pages 129–138. IEEE Com-

puter Society, 2008.

16. Virginia Papailiopoulou, Dumitru Potop-Butucaru, Yves Sorel, Robert

De Simone, Loïc Besnard, and Jean-Pierre Talpin. From design-time

concurrency to effective implementation parallelism: The multi-clock

reactive case. In Electronic System Level Synthesis Conference (ES-

Lsyn), 2011, pages 1–6, June 2011.

17. Kai Hu, Teng Zhang, and Zhibin Yang. Multi-threaded code genera-

tion from Signal program to OpenMP. Frontiers of Computer Science,

7(5):617–626, 2013.

18. SAE. AS5506A: Architecture Analysis and Design Language (AADL)

Version 2.0. 2009.

19. Xavier Leroy. Mechanized Semantics for Compiler Verification.

In Programming Languages and Systems - 10th Asian Symposium,

APLAS 2012, Kyoto, Japan, December 11-13, 2012. Proceedings, vol-

ume 7705 of Lecture Notes in Computer Science, pages 386–388.

Springer, 2012.

20. Amir Pnueli, Michael Siegel, and Eli Singerman. Translation valida-

tion. pages 151–166. Springer, 1998.

21. Van Chan Ngo, Jean-Pierre Talpin, Thierry Gautier, Paul Le Guernic,

and Loïc Besnard. Formal verification of synchronous data-flow pro-

gram transformations toward certified compilers. Frontiers of Com-

puter Science, pages 1–19, 2013.

22. Nassima Izerrouken, Marc Pantel, and Xavier Thirioux. Machine-

checked sequencer for critical embedded code generator. In Formal

Methods and Software Engineering, volume 5885 of Lecture Notes in

Computer Science, pages 521–540. Springer Berlin Heidelberg, 2009.

23. Loïc Besnard, Thierry Gautier, and Paul Le Guernic. SIGNAL V4 Ref-

erence Manual, 2010.

24. Abdoulaye Gamatié. Designing embedded systems with the SIGNAL

programming language. Springer, 2010.

25. Paul Le Guernic and Thierry Gautier. Data-Flow to von Neumann: the

Signal approach. Advanced Topics in Data-Flow Computing, pages

413–438, 1991.

26. Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe Le Lann.

Polychrony for system design. Journal of Circuits, Systems, and Com-

puters, 12:261–304, 2002.

27. Zhibin Yang, Jean-Paul Bodeveix, and Mamoun Filali. A comparative

study of two formal semantics of the SIGNAL language. Frontiers of

Computer Science, 7(5):673–693, 2013.

28. Zhibin Yang, Kai Hu, Dianfu Ma, Jean-Paul Bodeveix, Lei Pi, and

Jean-Pierre Talpin. From AADL to timed abstract state machines:

A verified model transformation. Journal of Systems and Software,

93:42–68, 2014.

29. Zhibin Yang, Jean-Paul Bodeveix, Mamoun Filali, Kai Hu, and Dianfu

Ma. A verified transformation: from polychronous programs to a vari-

ant of clocked guarded actions. In Henk Corporaal and Sander Stuijk,

editors, 17th International Workshop on Software and Compilers for

Embedded Systems, SCOPES ’14, Sankt Goar, Germany, June 10-11,

2014, pages 128–137. ACM, 2014.

30. Paul Feautrier, Abdoulaye Gamatié, and Laure Gonnord. Enhancing

the compilation of synchronous dataflow programs with a combined

numerical-boolean abstraction. CSI Journal of Computing, 1(4):8:86 –

8:99, 2012.

31. Abdoulaye Gamatié, Thierry Gautier, and Paul Le Guernic. Towards

Static Analysis of SIGNAL Programs using Interval Techniques. In

Synchronous Languages, Applications, and Programming, SLAP’06,

Vienna - Austria, 2006.

32. Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund,

Nan Guan, Bengt Jonsson, Peter Marwedel, Jan Reineke, Christine

Rochange, Maurice Sebastian, Reinhard Von Hanxleden, Reinhard

Wilhelm, and Wang Yi. Building timing predictable embedded sys-

tems. ACM Trans. Embed. Comput. Syst., 13(4):82:1–82:37, March

2014.

33. Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Hol-

sti, Stephan Thesing, David Whalley, Guillem Bernat, Christian Fer-

dinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle

Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The worst-

case execution-time problem: Overview of methods and survey of

tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53, May 2008.

34. Lothar Thiele and Reinhard Wilhelm. Design for timing predictability.

Real-Time Syst., 28(2-3):157–177, November 2004.

35. Dumitru Potop-Butucaru, Benoît Caillaud, and Albert Benveniste.

Concurrency in synchronous systems. Formal Methods in System De-

sign, 28(2):111–130, 2006.

36. Loïc Besnard, Thierry Gautier, Paul Le Guernic, and Jean-Pierre

Talpin. Compilation of polychronous data flow equations. In

Sandeep K. Shukla and Jean-Pierre Talpin, editors, Synthesis of Em-

bedded Software, pages 1–40. Springer US, 2010.

37. Daniel Baudisch, Jens Brandt, and Klaus Schneider. Dependency-

driven distribution of synchronous programs. In Mike Hinchey, Bernd

Kleinjohann, Lisa Kleinjohann, PeterA. Lindsay, FranzJ. Rammig, Jon

Timmis, and Marilyn Wolf, editors, Distributed, Parallel and Biolog-

ically Inspired Systems, volume 329 of IFIP Advances in Information

and Communication Technology, pages 169–180. Springer Berlin Hei-

delberg, 2010.

38. Daniel Baudisch, Jens Brandt, and Klaus Schneider. Multithreaded

code from synchronous programs: Extracting independent threads for

OpenMP. DATE ’10, pages 949–952, 2010.

39. Daniel Baudisch, Jens Brandt, and Klaus Schneider. Multithreaded

code from synchronous programs: Generating software pipelines for

openmp. In Manfred Dietrich, editor, MBMV, pages 11–20. Fraunhofer

Verlag, 2010.

40. Martin Schoeberl, Benedikt Huber, and Wolfgang Puffitsch. Data

cache organization for accurate timing analysis. Real-Time Systems,

49(1):1–28, 2013.

41. Martin Schoeberl. A time predictable instruction cache for a Java pro-

cessor. In Robert Meersman, Zahir Tari, and Angelo Corsaro, editors,

On the Move to Meaningful Internet Systems 2004: OTM 2004 Work-

shops, volume 3292 of Lecture Notes in Computer Science, pages 371–

382. Springer Berlin Heidelberg, 2004.

42. Julien Delange and Peter Feiler. Design and analysis of multi-core

architecture for cyber-physical systems. In 5th Embedded Real Time

Software and Systems, ERTS’14, February 2014.

43. Van Chan Ngo, Jean-Pierre Talpin, Thierry Gautier, Paul Le Guernic,

and Loïc Besnard. Formal verification of compiler transformations on

polychronous equations. In Integrated Formal Methods, volume 7321

of Lecture Notes in Computer Science, pages 113–127. Springer Berlin

Heidelberg, 2012.

44. Jéróme Hugues. AADLib, a library of reusable AADL models. In SAE

Aerotech 2013 Congress & Exhibition (Montreal, Canada), September

2013.

45. Abdoulaye Gamatié and Thierry Gautier. Synchronous modeling of

avionics applications using the SIGNAL language. In 9th IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS),

pages 144–151, May 2003.

46. Abdoulaye Gamatié, Thierry Gautier, Paul Le Guernic, and Jean-Pierre

Talpin. Polychronous design of embedded real-time applications. ACM

Trans. Softw. Eng. Methodol., 16(2), April 2007.

Zhibin YANG is an assistant profes-

sor at Nanjing University of Aeronau-

tics and Astronautics, China. He re-

ceived his PhD degree in Computer

Science from Beihang University, Bei-

jing, China in February 2012. From

April 2012 to December 2014, he was

a Postdoc in IRIT of University of

Toulouse, France. His research interests include safety-critical

real-time system, formal verification, AADL, and synchronous lan-

guages.

Jean-Paul BODEVEIX received a PhD

of Computer Science from the Univer-

sity of Paris-Sud 11 in 1989. He has

been assistant professor at University

of Toulouse III since 1989 and is now

Professor of computer science since

2003. His main research interests con-

cern formal specifications, automated

and assisted verification of protocols as well as of proof environ-

ments. He has participated in European and national projects related

to these domains. His current activities are linked to real time mod-

eling and verification either via model checking techniques or at the

semantics level.

Mamoun FILALI is a full time re-

searcher at CNRS (Centre National de

la Recherche Scientifique). His main

research interests concern the certified

development of embedded systems. He

is concerned by formal methods, model

checking and theorem proving. During

the last years, he has been mainly in-

volved in the french nationwide TOPCASED project where he was

concerned by the verification topic. He has also participated to the

proposal of the AADL behavioral annex which has been adopted as

part of the AADL SAE standard.

Kai HU is an associate professor at

Beihang University, China. He re-

ceived his Ph.D. degree from Beihang

University in 2001. From 2001 to

2004, he did the post-doctoral research

at Nanyang Technological University,

Singapore. Since 2004, he is the leader

of the team of LDMC in the Institute of

Computer Architecture(ICA), Beihang university. His research in-

terests concern embedded real time systems and high performance

computing. He has good cooperation with IRIT and INRIA Institute

of France on study of AADL and synchronous languages.

Yongwang ZHAO is an assistant pro-

fessor at Beihang University, Beijing,

China. He received his PhD degree in

Computer Science from Beihang Un-

versity in 2009. His research interests

include formal methods, real-time op-
erating systems, and AADL.

Dianfu MA is a professor at Beihang

University, China. He was the execu-

tive director of Chinese Computer Fed-

eration, the secretary of the steering

committee of Computer Science and

Technology Education in Ministry of

Education of China. He is the vice di-

rector of SOA standards working group

under the steering committee of China

National Information Technology Standardization. He took charge

of the National Basic Research Program (also called 973 Program),

National High-tech 863 Program, National Natural Science Foun-

dation of China, Key Technologies Research and Development Pro-

gram, etc. He has published more than 50 academic papers in in-

ternational journals or conferences. He received the 3rd prize of

Science and Technology Innovation Award from Ministry of Edu-

cation of China in 2003, and 1st prize of Science and Technology

Innovation Award of Beijing in 2011. His research interesting in-

cludes services computing, real-time systems and high dependable

software.

