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On a Class of Oscillations in the 
Finite-Deformation Theory of Elasticity 

J. K. KNOWLES 
Associate Professor 

of Applied Mechanics, 
California Institute of Technology, 

Pasadena, Calif. 

This paper treats the large-mnplilude radial oscill~IIions of a perfeclly clastic, incom
pressible C)'lindrica! lube of infinite ICJ1gl11 due /o suddenly applied pressures on its 
!a/era! surfaces. The mo/iou is studied for materials 1vith essentially arbitrary strain
energy de11Sity. .'3uf}icient conditions for periodic motions and a formula for the period 
of oscillation are r.h·en in terms of /he strain energy. The results are specialized to the 
wse of a rubberlike material of Jl!ooney type, and asymptotic formulas are gir·en for the 
wse of a thin shell and for /he case of small applied pressure. 

IN MCENT years there has been eonaiderable interest 
in problems involving large .trains in perfectly elastic solids. 
A special cla1111 of materials for which such problems are .of im
portance are those capable of IIW!taining only locally volume
preserving deformations. Included among the practically im
}>O.rtant materials which pOI!I!ellll this property IU'8 various types of 
rubber. It is well koown from the work of Rivlin, A. E. Green, 
and others that the condition of incompreBBibility makes it 
possible to obtain relatively explicit exact solutions of many 
special atatic problems in the finite-deformation theory of elu
ticity without first specializing tbe strain-energy function charac
teristic of the material. 1 

This paper is concerned with arbitrarily large deformation dy
namic response of perfectly elastic incompreBBible materials. 
Specifically, we discu1111 the problem of radial oscillations of an in
finitely long, hollow cireular cylinder of an arbitrary material of 
this type. The motion results from the sudden application of uni
form normal pressures over the inner and outer surfaces of the 
eylinder. Such a discussion has two purposes: (o) It indicates 
by example that ct>rtain information· can be obtained in dynamic 
problems involvinslarge strains for eBBentiaUy tbe entire cla1111 of 
iucompreBBible materials, regardless of tbe special form of the 
strain-energy function. (b) It provides explicit results for the 
amplitude and period of oscillation for a particular rubberlike 
material when the strain-energy function characteristic of 
the material is suitably specialised. 

In a recent papers the problem of radial oscillations of an in
finitely long hollow cylinder of isotropically elastic incompressible 
material subject on itl inner and outer surfaces to spatially uni
form tbne-dependent pressures was formulated and reduced to a 
single nonlinear ordinary differential equation for the inner 
radius as a (unction of time. In that paper, however, the only 
ease treated in detail was one in which the tube is set in motion by 
imparting to its inner surface an initial displacement and an 
initial vcloclty and subsequently oscillates freely in the absence 
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of external lateral surface preBBUrea. In the present paper we 
treat the "forced'' oeeillations of the hollow cylinder which follow 
the sudden applieation of uniform pressures to the inner and outer 
surfaces. The applied preBBUres are m•intained constant in time 
and the cylinder is taken to be initially at rest and undeformed. 

Resu.lts similar to those in this paper can also be obtained for 
an oscillating hollow aphere. 

E~uatiaa af Matln 
Let the inner and onter radii of the tube in the undeformed 

state ben and rr, respectively. Let r, (), 11 denote the co-ordinates 
of a point in the tube in the undeformed state with reference to a 
fixed eylindrical co-ordinate system coaxial with the cylinder. A 
particle which was .at r, (), • in the undeformed state is usumed to 
have cylindrical co-ordinates R(r, t), II, • at time t. The motion 
completely determined once B. ... R(r, t) is known. 

Denote by Rt(l) 811d &(t), respectively, the inner and outer 
radiiofthecylinderattimet; i.e.,.B.i{t)- B.(n,t),i •1,2. The 
aSIIUDlption that the material is incompressible. clearly requires 

1rB.1 - Tllt1 = ..rs - 11"1'11, n :S r :S rs, t ~ 0 (1) 

Thus if the function Rt(t) is known, R(r, t) may be determined by 
(1), so that the problem is reduced to the determination of the 
inner :radius Ra as a function of time. 

Since the material of the tube is taken to be holl1ogeneous, 
elastic, and isotropic, it is characterized by a strain energy W per 
unit undeformed volume which is a function of two of the three 
principal atrain invariants• It, I., and Ia: W • W(l1, It). In
compressibility requires that the third strain invariant Ia must 
satisfy I a = 1, a condition which can be shown to be equivalent to 
(1). For the motion eonaidered here it is found that 

Ia • It • 1 + (r/BJ1 + (B.tr)1 

We introduce a dimensionless inner .radius 

(2) 
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J Tlw 1 !Tmir!Olng\· 
r,.f ( ;tf''f'll awl Zent;~. 1 



for iaeompleaaibie materlaJa (88 preaeated, for example, b,y Green 
and Zero&!) reduce to the following aing1e DODliDear ordinary dif
feNDtial equation for the nondimcmsioDal imler radiua a:( I): 

d's 
[:11 loa (1 + 1'/s'JJ dl• 

+ [ loa(1 + l'ls'J -" ~ :~~•] (: )' 

+/( ) .. P.(l) - P.J.I) (3' 
s, I' Pl't!/2 ' " 

where the function/ is given in terms of the atrain-enerv denalty 
Wby 

(4) 

where 

2 
W o(v) • f'l'P W'(I~> I,)J...,..,..-ht+lltl (6) 

The flrR two terms on the left aide of the ditfeNDtial equation (3) 
arise from apreaaingthe radialacoeleration li'R/~ of an element 
of the tube in terms of the aceeleration iJ,I&fdl• and velooity 
dl4/dl of the imler aurface of the tube by means of the ineom
preaeibility eondition (1). The function J(s, ~&) in (3) represents 
the elutic chara.cterillti of the material u manifeated. by the 
main enerv w. 

In the P#Jper it will be uaumecl that W'(lt1 1-t} poRBIIBilB eon• 
tinuoua flrR partial derivative~~ with mpect to I a and It and tha.t 

( aw + <>w) iii:i 0 <&> 
?111 ai, 1.-t• 

This inequality la implied by inequalities diaculllled by Tru.elldell• 
in connection with reatrietionB which muat be applied to a etr&ilr 
enerv denalty in order that it be phyaically admillllible. From 
this inequality and (5) it folloWB that 

•· _ ..!.. (1 _ ..!...) ( aw + <>W) (1) • ,..., ~ au ai, 

hu the&ip of u - 1, and hence from (4) that 

{
<0 if O<:t:<1 

J(s. I') • 0 if s == 1 

>O if s>1 

(8) 

In the paper by Knowles the ditfeNDtial equation (3) wu con
aidered for the apeci&lease P.(l) - P.J.I) - 0 and subject to the 
initial eonditionB :11(0) - -.and (ds/di)(O) • .,. Here we shall 
eonaider the eaee in which 

P:(f) - P'!(t) fO I < 0 
J 'p = -lP I , il 

(H) 

wlH•rr• pis consl.:\nt \\-,, il"'lllll!' tli:~l llH> ltd"' ic it,itinlly 
fonlled and n·sl HJ lhal riU) 1, i(Ci) lL Tln1s '"'an' 
con"idl'rinp; Uw motinn wlii,·h follow>' [ hv _,udd,•n application ,,f 
eor"tant prTssurcs to ll11• !:tiend surf:"-'" of lite- lul"'- While 
eumpn•ssihle watNial would nl'pond lo ''lll'h a londing by )lropn

gating eylinrlrieal dilation \11Wf'3 "t, a finitr ojwcd nway fro111 1tH 

lateral surfaces, this n•spom;e does nol "''cnr i11 the l!H'Ornpn·l,.·,illle 

'C. Truesdell, "The .:\IedHnlical Fuundrtt.inn;-; !_1[ },L::--ti('iL\ nnd 
Fluid l\lechani(·~;;," Journal of N<l!t . .oiw.l Jfet!~.un11';~ A .\'Ill. I, 
1 D!J2, pp. 125-:100. 

ease ainee auch a material cannot propqate dllatatton wavea at a 
Jinlte speed. It will be ahown that the oylindrlcal tube naponda 
by oaoilJatinc about a static equilibrium atata in aooordance with 
(1) and (3). 

Perle'lc MIUOI far I 811aral Slrlla·E•ru DtlsHJ 
The elua of nonlinear oaeiUatiOBII which we willh to eonaider ie 

thua de8eribed by the followinc initial value problem: 

:1 loa (1 + 1'/St)l + [loa (1 + 1'/St) - I' ~ :t:l] :jl 
+ /(z, ~&) • p, l > 0 (10) 

:11(0) • I, 1(0} • 0 (11) 

where p la a CIOBIItant and a. dot indicates differentiation with 
mpect to I. With the notation , - d.:e/dl, we may write I • 
•6/d.z,aothat(10) beeomee 

" ,. flt~:t:•loc(J t ~&/lilt)+ F(s, 11>J - ps, (12} 

where 

F(s, I') - J..• mt ~&)df (13) 

Makinc uae of (11) we thua have a flrR integral in the form 

iA:•Ioc(1 + ~&fst) + F(:s, ~&) - j.p(lll' -1) (14) 

Equation (14) deacribee the trajectory C, J'ic. 1, m the :H 

plane &III!IOCliated with the motion. C le aymmetric about the 
.axle. The motion ill periodic if C ill closed and if the period of 
oaeiUation 

'l' - ,{ d.:e (16} 
J'c• 

ill finite. The curve C given by (14) atarta at the initial point 
:s - 1, rt == 0 at time I - 0. The oricinal ditfeNDtial equation 
(10) may easily be UBed to llhow tha.t if pill poaitive (negative), ao 
tha.t tbe net prellll1ll"e on the lateral surface ill outward (inward), 
the points," then move~! into the recion :t: > 1," > 0 <• < 1," < 0) 
ae I increuee from .ero. If for fl poaiti.ve (negative)., pa1l888 

throuchama.xlmum (minimum) &ndretuma to .ero 88:1: increuee 
(decreuea) from unity. the curve C will be ololled A.ceorc:linc to 
(14) this will happen if there ill & root (dileNDt from unity) of <the 
equation 

y 

Fig. 1 Po><ibla !rojedories for general periodic motions 



F(z, p.) • i p(z~ - 1), (16) 

so that u • 0 for some :r; ;o! 1. 
Let ua aaaume that, for a given p, that (16) poasesses auoh a 

root.• Let z == a ;o! 1 be the positive root of ( 16) whioh is nearest 
unity. Thus when z = a, u = 0. Since according to the deJini.tion 
(13) we have l!'(z, p.) • 3!/(z, p.) (where prime denotes differentia,. 
tion with respect to :r; ), it follows from (8) that I! decreaaea as :r; in
oreaeea for 0 < ~~: < 1, vaniaheaat~~; -1, and inoreaaea uzincreaaea 
for It > 1. Therefore the root z • a of (16) is greater than 1 if 
p > 0 and leas than 1 if p < 0. In theformercue cnepreaents the 
greateSt value of the ( dimenilonleea) inner radius of the tube 
during the oacillation under net outward preaaure, while in the 
latter cue a represents the smalleat value of the inner radius 
oscillating under net inward preeaure. 

Since 

l!(:t, p.) - i p(~ - 1) 

vanishes at 111 - 1 and~~: .. a, and ainee 

1!'(~~:, p.) - 3!/(11:, p.), 

it is elear that the existence of a root 111 ... a of (16) implies tile 
existence of a root:~: • b between s - 1 and 11: • a of the equation 

J(.z) = p (11) 

A solution 11: = b of (11) represents a statio equilibrium state of 
thetube under the net preaaure lf.J.nlpp), ilnce it is a time-inde
pendent solution of the differential equation (10). Thus if (16) 
pollllflllll6ll a solution 111 • a, the inner radius of the tube will 
oacillate about a statio equilibrium value between 111 - 1 and 
z •<a. 

The period of oaoillation for the tube will be given by (15); 
ualnC(l4) to obtain uin termt of z, we find 

T - Ia ~ = 2 sp.(a - 1) 

r· [ log(l + p.fz., ]'~• (18) 
J 1 p(:r;• - 1) - 2.li'(a:, p.) -

On the uaumption that (l6) poaaeaaea a <root 111 ... a, equation 
(18) expreaaea the period of oaoillation of the tube of arbitrary 
inoompreailble material in terms of the strain.oenergy denilty 
oharacteriatio of the material by means of (13) and ( 4). The 
period Twill be finite provided that the root z • a of (16) is not 
atootof(l1). 

We now turn to the question of a suftioient condition on the 
strain-energy function W.(u) of (i) which will guarantee that 
(16) baa a root. For positive p (outward net preeaure) it can be 
abownthat 

l!(:t, p.) - i p(:r;l - 1} 

is negative when z - 1 is small and positive; thus if F grows fast 
enough to insure that 

i:1 po:-=itivt' for laq,:::1: :r, W{: nru~L indeed have a r<HJf _r 

;::imilar f\'lll:trL npply l'clH·Jl p < 0. A dH:dl<·d :mnh F, 
using tlH' d•·liniliuml ( l :'.! :\!HI ('1) nnd L:d t h:1t 
ll'u( 1 /u)' l<·:t(b to the r,.!lt<\1 ing ,.uf!icient conditione' 

(a) Tf W,(u) ·, "'' for colll!' ''"t:cLmlc >(I and 

k 1, tlwn Equation (lli) 11ill have r<i'>l hr ali vttl•H·H ,,f Uw 
pn'""urv p, and ll11· t rajt·,·t<>l",l' C in the 

cur;;'~-

~A t<uH!('ii'flt conditJqlJ on t}Jp :d.rnin~\":1H'rvy df'n:.-.ity ;vLi(·h g!Jarnn-
ti'C'S th\; i)f f.,flis fUi)t ];.; rivt'!l in t1n~ 

(b) If Wo(u) "'Ku as u- • for some constant K > 0, then 
equation (16) will have a root/or llll 'P 8Giiafymg p < Klog (1 + p.), 
and the trajectory a in the IN plane will be a closed curve. 

The auftioient condition (b) is included ilnce the phyldcally im
portant cue of the Mooney material considered in the following 
aeotion leads to a strain-energy denilty whose asymptotic form for 
large u is of the type covered in condition (b). 

A Spellal Strala EIIII'IJ 
In this section we specialize the results of the foregoing to the 

case of a rubberlike material whose strain-energy denaity 
W(lt, I~ is given by 

W(lt,l~ • ia<I,- 3} + ifJ<It- 3), (19) 

This exprealdon deaoribea the so-called Mooney material•; a 
and fJ are poiltive constants. 

In this case the functions defined in (6), ( 4), and (13) are eailly 
ealoulated to be 

Wo(u) • K(u + u-t- 2), (20) 

[ ( 1 ) p. (1 + p./z')J !(.~~:, p.) • K 1 - :~:• P. + :~:• - log 1 + P. ' (21) 

and 

1 + p.fz• 
F(z, p.) • iK(1- :~:-,log l + p. , (22) 

where the constant K is given by K • (a + fJ)/r.tp. lnapeotion 
of (20) indicates that W o( u) ,..., Ku as u - ... , so that part (b) of 
the suflioient condition for a closed trajeetory is relevant. 

The condition (16} which determines the greatest (or least) 
value of the. inner radius of t.he tube during the oaeilla.tion is, in 
this cue. given by 

Kloa(1 ~::z.) • P (23) 

The left ilde of equation (23) is a monotone increailng function 
of z for z > 0. It increaaea from minus infinity, when z = O+, 
through negative values, vanishes at z ... 1, and tenda to K log 
(1 + p.) as z tends to plus infinity. Thus for all values of the apo 
plied pressure satisfying 

p < p., "" f{ log (1 + p.) (24) 

a unique positive root of (23) exists, ~d a tube of material 
~ by the strain-energy density (19) wiD undergo 
periodic oaoillations in accordance with our earlier diseuasion. 
For pressures 

p 5; p.,.- Klog(1 + p.) 

periodic motions will not exist. 
TlH' t·ritie::d \'~dnr· }•,. 1 !Jf p dr:fliH_·d 11y 1! h:t:: ~tJll)(lH·r pn)perty 

i11 tht' prt_'~!'ld. (':\~!_', L:-.:~unin~dinn r)f tLl' ~~·\pl't_'...;,,:,.h_)Jl I '.!1) f~lr J fnr 

t b• pn•ct•nt k uw.lcr CflliSidcr:tt inn t h:!l ( also 
minliS infi~tity td .r ()I ::nd :q:-

as c t:·n,b to plus inlinity. Tltih f,.r 11 · J'n. iiH·rc i:J 
ill< ro:d r I> of d[ll!ttinn ( li) dt·tH:nini:,i-' thP cl::ri,· <'•]IJilihriu:n 
st::tic 11f th(\ 1u1w :1 given :tpplicd pn';-~un· diJ'f,·n·lJ('(', 

TLi' n·~trid.i(Jn ('2 n ',';Lir-h is Tl.{'Ct':-::~:q·y lh'I iudiv rnotions 

l'<lli IH' writf<'ll follow" in terms oi llH· on~imtl ]'hl:'ll',tl qnanti
t it\;~ }wr\.;tining 1 r) Llw n::d r:rial) g(•nnwt , ;tnd lo:1dirq.: (jf UH' h(lllow 
cy1iltdt'r: 



a 

(lr+fJloa .. : 

Fig. 2 Rallo of maldlftUm cPt - Pt > · 0) or mllllmum CP. - Pt < 0) Imler 
radius Jo uncleforrned lllner radius versus net outward preaaure Pa ·- I' 

apProximations in two inlportant special cases. The fim is that 
in whieh the parameter p - (ra/r.)' - 1 is small, compared with 
unity, so that the tube is a f.hin..walled eylindrieal shell. The 
aeeond special ease is that in whieh the (nondimensional) net 
pressure p/K is small eompared with unity. 

We consider the thin-shell approximation p < 1 first.. Suppose 
first that the net preslllllre is outward, so that p > 0. In this case, 
by using the inequalities 

~- 11 :i!Io"'I+:.:sz-y ~~··, (30' 
1+~ .. 1+u-l+u' ,. 1 

and 

(31) 

rt 
P1 - P. < (a + (I) log

r.t. 

it is p0118ible to obtain the following bounds .on the period of 
(26) oseillation T: 

Here Pi - P1 is the net outward (CODStant) pressure, a and flare 
the material constants from {19), and nand ra are the.bmet and 
outer radii of the t.ube in its undeformed state. We observe that 
(2fi) is ahnt.rs satildied if P1 - Ps < O, ao that the net pressure is 
inward. Moreover, it mlly be observed that the critical pressure 
on the right sidt of (20) tends to .zero for a given material as the 
wall thiilkneu ra - n tends to zero. 

The root~· - a of equation (23) ean be computed explicitly as 

[ # ]'/• 
a - (1 + p)e-l'fK - 1 

(26) 

In tetnls of physical variables, 

{ ,... - ,.. }1/t 
a - r,• ex.p ( -2{P, - P,)/(a + (I) 1 - rr' (27) 

If Pa - P2 > 0, 1!(1 that the net pressure ill outward, a is greater 
than 1 and represents the ratio of the largest value of the iuner 
r11cdiU111 during the motion to the undeformed inner radius n. If 
P1 - P. < 01 a is lfts than 1 and represents the ratio of th~ smallest 
vall•e or the inner radius to n. ~ote that 4- <II as 

Pa - P, - (a + (I) log !'!. 
r.t. 

The general character of a as a function of Pa - P, is shown in 
F'Ql.2. 

The period of oscillation Tis found from (18} to be 

T • 2{sgn p) 

f11i{ ~·log (1 + pfzl) }''• 
J1 (~•- 1)[p- Klog(1 + p) + Klog(1 + p/~')] tb 

{28) 

1,\p rt'\Hit<· r:28)h:: (2G) to <·>;pres,; pin i<·mcs of u ancl lJ) !n-
t.rodttcinp; t.lu· chan)!:E' of val'iahlr's q ThHr· folln11.' 

T!\'1: [sp;n (a" I)] 

) 
+ ;r/u'; ( 

rl~ (29) 

g\l:l r:1nt\•ei11g 

pPriodie mol iun ""I isli<'d. 
While t lu· npn·,c;ion (2S) or (2\1) fur thP JH'riod of o:.cl'il!ati<lll 

doet: noi apjlf':tr t•> hr· ea]>ctble of f'vaiuution in ,·]os.·d form in 
tenns of elPHH·nt~try functiun:s, il 1~ lJ(I~.~,ihle tu uilL:tin :tsynqd_utic 

;~. (l + p)- 11• :!! T :!! ;~. (1 + p) 1h (32) 

where a - a(p, p) is the maximum nondimensional radius during 
the oseillation. It is important to note that the bounds (32) 
hold for all p ~ 0. From (32) it follows immediately that the 
asymptotic relation 

n 
T ""'Ji!Tt. u p-0 (33) 

holds, in the sense that 

lim (TKlf• - 1) ""' 0 
,.-+0 'II"A 

(84) 

The asymptotic relation (33) is unifonnly valid for p It 0; i.e., 
the limit(M) holda uoiforl'nly in p for p It 0. 

A similar argument shows that the uymptotic relation a}l!(l 
holda when p is negative but only in the sense that the limit 
(34) holds uniformly for p It -cp for any arbitrary but fixed 
positive constant e. 

In tel'l1ls of physieal quantities, with a given by (27), the thin
shell approximation (33) to the period becolnes 

T ,..,,r, (a~ pr'· {Tt1 ex.p [-2(P,r._:_ ;.>~a+ (1)}- n•F'' 
(Sfi) 

In the case where the sheU is not neceuarily thin but the ap
plied pressure is small, considerations apin based on the· in
equalities (30) lead to the asymptl;)tic relation 

T ... {< 1 + p.) log (1 + p.) }." (36·\ ""'ifllt " as 71 -o ~ 

The relation (36) holda for every u > 0; moreover. it is uniform 
Jll i.e., for p. 2.: p.., > 0, 
whPr<' 1-'' i,; an arbitran· pc,sit.iv(• numhc·r, no matter how smalL 

In (c·rms of physical q11ant.itirs, the small pre~s!lrP approxima
t inn b kco the. form 

1 t. ma~· hr: n·tnarked 1 hat is p:·vcis<'l.l· t ht' formnla obtained 
for lit(• !ll'riod of '"cillat iun pf thP hollow I'Vlindcr when the 
prolllen1 is aual~·zed on the basi~ of the !.'la;3sical line~tr t,}!eory of 
t•bstlr·ity ~pl'ci<dizc·d to t!H' rase of ~Hl incu:npn·s~ihif. niatf:r i:ll. 


