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On a Class of Oscillations in the

Finite-Deformation Theory of Elasticity

J. K. KNOWLES

Associate Professor

of Applied Mechanics,

California Institute of Technology,
Pasadena, Calif,

This paper treats the large-amplitude radial oscillations of a perfectly elastic, incom-
pressible cylindrical tube of infinile length due to suddenly applied pressures on ils
lateral surfaces. The motion is studied for materials with essentially arbitrary strain-
energy density. Sufficient conditions for periodic motions and a formula for the period
of oscillation are given in terms of the strain energy. The results are specialized to the
case of a rubberlike material of Mooney tvpe, and asymptotic formulas are given for the

case of a thin shell and for the case of small applied pressure.

IN RECENT years there has been considerable interest
in problems involving large strains in perfectly elastic solids.
A special class of materials for which such problems are of im-
portance are those capable of sustaining only locally volume-
preserving deformations. Included among the practically im-
portant materials which possess this property are various types of
rubber. It is well known from the work of Rivlin, A. E. Green,
and others that the condition of incompressibility makes it
possible to obtain relatively explicit exact solutions of many
special static problems in the finite-deformation theory of elas-
ticity without first specializing the strain-energy function charac-
teristic of the material.!

This paper is concerned with arbitrarily large deformation dy-
namic response of perfectly elastic incompressible materials.
Specifically, we discuss the problem of radial oscillations of an in-
finitely long, hollow circular cylinder of an arbitrary material of
this type. The motion results from the sudden application of uni-
form normal pressures over the inner and outer surfaces of the
evlinder. Such a discussion has two purposes: (a) It indicates
by example that certain information can be obtained in dynamic
problems involving large strains {or essentially the entire class of
incompressible materials, regardless of the special form of the
strain-energy function. (b) It provides explicit results for the
amplitude and period of oscillation for a particular rubberlike
material when the strain-energy function characteristic of
the material iz suitably specialized.

In o recent paper? the problem of radial oscillations of an in-
finitely long hollow eylinder of isotropically elastic incompressible
material subject on its inner and outer surfaces to spatially uni-
form time-dependent pressures was formulated and reduced to a
single nonlinear ordinary differential equation for the inner
radius as a function of time. In that paper, however, the only
case treated in detail was one in which the tube is set in motion by
imparting to its inner surface an initial displacement and an
initial velocity and subsequently oscillates freely in the ahsence

! An extensive discussion of finite deformations of incompressible
elastic solids is contained in “Theoretical Elasticity,” by A. E. Green
and W, Zerna, Clarendon Press, Oxford, England, 1854. This work
contains additional references.

2 J. K. Knowles, “Large Amplitude Oscillations of a Tube of In-
compressible Elastic Materials," Quarterly of Applied Mathematics,
vol, 18, 1960, pp. 71-77.
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Discussion of this paper should be addressed to the Editorial De-
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of external lateral surface pressures. In the present paper we
treat the “forced” oscillations of the hollow cylinder which follow
the sudden application of uniform pressures to the inner and outer
surfaces. The applied pressures are maintained constant in time
and the eylinder is taken to be initially at rest and undeformed.

Results similar to those in this paper can also be obtained for
an oscillating hollow sphere.

Equation of Motion

Let the inner and outer radii of the tube in the undeformed
state be r and ry, respectively. Let r, 6, z denote the co-ordinates
of a point in the tube in the undeformed state with reference to a
fixed cylindrical co-ordinate system coaxial with the cylinder. A
particle which was at r, 0, z in the undeformed state is assumed to
have cylindrieal co-ordinates E(z, t), 8, z at time {. The motion
completely determined once B = R(r, {) is known.

Denote by Ri(¢) and Rs(f), respectively, the inner and outer
radii of the cylinder at time ¢; i.e., Ri(t) = R(r,1),¢ = 1,2. The
assumption that the material is incompressible clearly requires

TR — wRy? = 7rt — wnl, t=0 (1)

Thus if the function R,(¢) is known, R(r, {) may be determined by
(1), so that the problem is reduced to the determination of the
inner radius R, as a function of time.

Since the material of the tube is taken to be homogeneous,
elastie, and isotropic, it is characterized by a strain energy W per
unit undeformed volume which is a function of two of the three
principal strain invariants® Iy, Ip, and Iyt W = W({l, I,). In-
compressibility requires that the third strain invariant I3 must
satisfy I's = 1, a condition which can be shown to be equivalent to
(1). For the motion considered here it is found that

L =1 =1+ (r/R)* + (B/n)* 2
We introduce a dimensionless inner radius
z(t) = Ri(t)/m,
and a positive parameter
=(r/r)2 — 1

n<rn

which is small for the special case of the thin-walled cylindrical
tube. Let p denote the mass density of the material of the tube,
and Py(f) and Ps(f) stand for the external pressures acting on the
inner and outer surfaces at time {. It was shown by Knowles?
that the exact equations of motion, stress-strain relations, and
boundary conditions of the finite deformation theory of elasticity

3 The terminology and notation in what follows are essentially those
of Green and Zerna.!



for incompressible materials (as presented, for example, by Green
and Zerna') reduce to the following single nonlinear ordinary dif-
ferential equation for the nondimensional inner radius z(¢):

2.
[z log (1 + u/z9)] %‘?

b dz \*
+ I:log(l + w/zY) — ot zg] (—d;')

Pi(i) — Pyt)
i) = =

where the function f is given in terms of the strain-energy density

W by

» (3)

= dW,
fz, p) = f (-1 d—" du, 4)
(ut29/(s+1) u
where
2
Wo(w) = —= W, I) netttutire (5)
rp

The first two terms on the left side of the differential equation (3)
arise from expressing the radial acceleration 92R/0¢2 of an element
of the tube in terms of the acceleration d*R,/di* and velocity
dRy/di of the inner surface of the tube by means of the incom-
pressibility condition (1). The function f(z, u) in (3) represents
the elastic characteristics of the material as manifested by the
strain energy W.

In the paper it will be assumed that W(I,, I;) possesses con-
tinuous first partial derivatives with respect to I and I; and that

oW oW
_— _— =
( oIy + )h—h 20 ©

ol
This inequality is implied by inequalities discussed by Truesdell*
in connection with restrictions which must be applied to & strain-
energy density in order that it be physically admissible. From
this inequality and (5) it follows that

wom(-w)Gre) o
has the sign of # — 1, and hence from (4) that
<0 if O0<z<1
Az, p) { =0 if z=1 (8)
>0 if z>1

In the paper by Knowles the differential equation (3) was con-
sidered for the special case Pi(f) = Py(f) = 0 and subject to the
initial conditions z(0) = z, and (dz/df)(0) = w. Here we shall
consider the case in which

Pl(t)mps(0={0 t<0
4n%p p t>0

where p is constant. We assume that the tube is initially unde-
formed and at rest so that z(0) = 1, #(0) = 0. Thus we are
congidering the motion which follows the sudden application of
constant pressures to the lateral surfaces of the tube, While a
compressible material would respond to such a loading by propa~
gating cylindrical dilation waves at a finite speed away from its
lateral surfaces, this response does not oceur in the incompressinle

)

¢ C. Truesdell, “The Mechanical Foundations of Elasticity and
Fluid Mechanics,” Journal of Rational Mechanics and Analysis, vol. 1,
1952, pp. 125-300.

case since such a material cannot propagate dilatation waves at a
finite speed. It will be shown that the eylindrieal tube responds
by oscillating about a static equilibrium state in accordance with
(1) and (3).

Periodic Motion for a General Strain-Energy Density

The class of nonlinear oscillations which we wish to consider is
thus deseribed by the following initial value problem:

zlog (1 + p/z9)E + [log(l + u/z%) — o _t ,s] #

+ flz, w) =p, >0 (10)
2(0) =1, #0) =0 (11)

where p is a constant and a dot indicates differentiation with

respect to L. With the notation v = dz/dl, we may write £ =
v dv/dz, so that (10) becomes
L Bowtlog (1 +uled + Fo @l =pz, (1)
where
P = [ 0 wa (19

Making use of (11) we thus have a first integral in the form
ot log (1 + u/2Y) + Flz, p) = $p(a® - 1)  (19)

Equation (14) describes the trajectory C, Fig. 1, in the z-v
plane associated with the motion. C is symmetric about the
z-axis. The motion is periodie if C is closed and if the period of
oscillation

I
c v
is finite. The curve C given by (14) starts at the initial point
z = 1,v = 0 at time { = 0. The original differential equation
(10) may easily be used to show that if p is positive (negative), so
that the net pressure on the lateral surface is outward (inward),
the point z, » then moves into theregionz > 1,0 > 0(z < 1,v < 0)
as ¢ increases from zero. If for p positive (negative) v passes
through a maximum (minimum) and returns to zero as z increases
(decreases) from unity, the curve C will be closed According to
(14) this will happen if there is a root (different from unity) of ¢he
equation

(15)

v

Clp<0) C(p>0)

Fig. 1 Possible trajectories for general periodic motions



F(z, p) = §p(z? - 1),

so that v = 0 for some z # 1.

Let us assume that, for a given p, that (16) possesses such a
root.f Letz = a # 1 be the positive root of (16) which is nearest
unity. Thuswhenz = a,» = 0. Since according to the definition
(13) we have F'(z, u) = zf(z, ) (where prime denotes differentia~
tion with respect to z), it follows from (8) that F decreases as z in-
ereases for 0 < z < 1, vanishesat z = 1, and increases as z increases
for £ > 1. Therefore the root z = g of (186) is greater than 1 if
p > 0 and less than 1 if p < 0. Intheformer case arepresents the
greatest value of the (dimensionless) inner radius of the tube
during the oscillation under net outward pressure, while in the
latter case a represents the smallest value of the inner radius
oscillating under net inward pressure.

Since

(16)

F(z, u) — $p(z* — 1)

vanishes at z = 1 and z = g, and since
Flz, p) = zf(z, w),

it is clear that the existence of a root £ = a of (16) implies the
existence of a root £ = b between = 1 and z = a of the equation

fz) = (17)

A solution z = b of (17) represents a static equilibrium state of
the tube under the net pressure !/x(r1%pp), since it is a time-inde-
pendent solution of the differential equation (10). Thus if (16)
possesses 2 solution z = @, the inner radius of the tube will
oscillate about a static equilibrium value between z = 1 and
T = qa.

The period of oscillation for the tube will be given by (15);
using (14) to obtain v in terms of z, we find

T=fd—x=2sgn(a—l)
¢ v
log(1 + u/z%

(4] l/’
fl [P(x’ - 1) — 2F(z, ,,)] zdz (18)

On the assumption that (16) possesses a root z = a, equation
(18) expresses the period of oscillation of the tube of arbitrary
incompressible material in terms of the strain-energy deusity
characteristic of the material by means of (13) and (4). The
period T will be finite provided that the root z = a of (16) is not
aroot of (17).

We now turn to the question of a sufficient condition on the
strain-energy function Wy(u) of (5) which will guarantee that
(16) has a root. For positive p (outward net pressure) it ean be
shown that

F(z, p) — $p(a® — 1)

is negative when z — 1 is small and positive; thus if F grows fast
enough to insure that

Fz, ) — Fp(z® — 1)

is positive for large x, we must indeed have a root z = a > 1.
Similar remarks apply when p < 0. A detailed analysis of F,
using the definitions (13) and (4) and the fact that Wyw) =
Wo(1/w), leads to the following sufficient conditions:

(@) If Wo(u) ~ Ku* as u — « for some constants K > 0 and
k > 1, then Equation (16) will have a root for all values of the
pressure p, and the trajectory C in the z-v plane will be a closed
curve.

§ A sufficient condition on the strain-energy density which guaran-
tees the existence of this root is given in the sequel.

(b) If We(u) ~ Ku as u — o for some constant K > 0, then
equation (16) will have a root for all p satisfying p < K log (1 + ),
and the trajectory C in the z-v plane will be a closed curve.

The sufficient condition (b) is included since the physically im-
portant case of the Mooney material considered in the following
section leads to a strain-energy density whose asymptotic form for
large u is of the type covered in condition (b).

A Special Strain Energy

In this section we specialize the results of the foregoing to the
case of a rubberlike material whose strain-energy density
W(I, I) is given by

W, I) = §olly — 3) + § 81 — 3), (19)

This expression describes the so-called Mooney material; o
and 3 are positive constants.

In this case the functions defined in (5), (4), and (13) are easily
calculated to be

Woluw) = K(uw + u=t — 2), (20)

1 © 1+ u/z?
far ) B[K(l B z’) u+z’_]°g( 1+ u )]’ @1

and

1+ p/z?
1+p’

where the constant K is given by K = (a + §8)/n1%. Inspection
of (20) indicates that Wo(u) ~ Ku as u — «, so that part (b) of
the sufficient condition for a closed trajectory is relevant.

The condition (16) which determines the greatest (or least)
value of the inner radius of the tube during the oscillation is, in

this case, given by
1+p )
log{ ———) =
Klog (1 + u/x? r

The left side of equation (23) is a monotoue increasing function
of z for x > 0. It increases from minus infinity, when z = 0+,
through negative values, vanishes at = = 1, and tends to K log
(1 + p) as z tends to plus infinity. Thus for all values of the ap-
plied pressure satisfying

Flz, u) = 5 K(1 — 2% log (22)

(23)

P < per = Klog (1 + ) (29
& unigue positive root of (23) exists, and a tube of material
characterizerl by the strain-energy density (19) will undergo
periodic oscillations in acecordance with our earlier discussion.
For pressures

D= por = Klog (1 +

periodic motions will not exist.

The critical value p.: of p defined vy (24) has another property
in the present case. Examination of the expression (21) for f for
the material presently under consideration shows that f is also
monotone increasing from minus infinity at * = 04 and ap-
proaches per as z tends to plus infinity. Thus for p > Per, there is
no root & = b of equation (17) determining the static equilibrium
state of the tube for a given applied pressure difference.

The restriction (24) which is necessary for periodic motions
can be written as follows in terms of the original physical quanti-
ties pertaining to the material, geometry, and loading of the hollow
cylinder:

¢ Refer to Green and Zerns,! p. 76.
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T, » By e
(a+a)logr—l-

Fig.2 Ratio of maximum (P; — P; > 0) or minimum (P, — P; < 0) inner
radius to undeformed inner radivs versus net outward pressure P — P

P, —P,<(a+6)1ogé:—:— (25)
Here P; — P, is the net outward (constant) pressure, @ and {3 are
the material constants from (19), and r, and r. are the inner and
outer radii of the tube in its undeformed state. We observe that
(28) is always satisfied if P, — P; < 0, so that the net pressure is
inward. Moreover, it may be observed that the eritical pressure
on the right side of (25) tends to zero for a given material as the
wall thickness r; — »; tends to zero.

The root = a of equation (23) can be computed explicitly as

s ]" ’ 26
T La+ e 1 @9
In terms of physical variables,
re? — 1y? 2
= 2
¢ {rz’ exp [—2(Py — P)/(a + B)] — 7'1'} @n

If P, — P, > 0, so that the net pressure is outward, a is greater
than 1 and represents the ratio of the largest value of the iuner
radius during the motion to the undeformed inner radius r. If
Py — P.< 0, aisless than 1 and represents the ratio of the smallest
value of the inner radius to 1. Note that a —+ « as

Py —Pg—*(a+ﬂ)log%
1

The general character of @ as a function of Py — P; is shown in
Fig. 2.
The period of oscillation 7' is found from (18) to be
T = 2(sgn p)
f" { at log (1 + u/z?) }'/' dz
1 Wzt =1p — Klog (1 + p) + Klog (1 + u/x?]
(28)

We rewrite (28) by using (26) to express p in terms of ¢ and by in-
troducing the change of variables z = 2% There follows

TK'* = [sgn (a? — 1)]

f"’ { log (1 + p/2)
1 Wz = 1D log [(1 + u/z)(1 + p/e?]

The integral (29) is always finite if the condition (25) guaranteeing
periodie motion is satisfied.

While the expression (28) or (29) for the period of oscillation
does not appear to be capable of evaluation in closed form in
terms of elementary functions, it is possible to obtain asymptotic

Ve
} dz (29)

approximations in two important special cases. The first is that
in which the parameter 4 = (r2/n)? — 1 is small compared with
unity, so that the tube is a thin-walled cylindrical shell. The
second special case is that in which the (nondimensional) net
pressure p/K is small compared with unity.

We consider the thin-shell approximation u <€ 1 first. Suppose
first that the net pressure is outward, so that p > 0. In this case,
by using the inequalities

14z z-—y

T —y
£ lo =
¥y 1+y

142z

T 2y, (30)

and

L <log(l+z) sz =20,

e (31)

it is possible to obtain the following bounds on the period of
oscillation 7':

e

K (32)

Ta
+w™ " sT s 470+ m"
where a = a(g, p) is the maximum nondimensional radius during
the oscillation, It is important to note that the bounds (32)

hold for all p 2 0. From (32) it follows immediately that the
asymptotic relation

T ~ ;—,% as u—0 (33)
holds, in the sense that
e
lim (Tfa - 1) -0 (34)
w0

The asymptotic relation (33) is uniformly valid for p 2 0; i.e,
the limit (34) holds uniformly in p forp = 0.

A similar argument shows that the asymptotic relation also
holds when p is negative but only in the sense that the limit
(34) holds uniformly for p 2 —cu for any arbitrary but fixed
positive constant c.

In terms of physieal quantities, with e giveun by (27), the thin-
shell approximation (33) to the period becomes

T ~ary ( P )v' { re? — n? }‘h
a+f retexp [—2(Py — P)/(a + )] — n?
(35)

In the case where the shell is not necessarily thin but the ap-
plied pressure is small, considerations again based on the in-
equalities (30) lead to the asymptotic relation
T {(1 + ) log (1 + u)

TNI‘(,—/' p

Vs
} as p—>0 (36)

The relation (36) holds for every u > 0; moreover, it is uniform
in x as long as u is hounded away from zero; i.e., for g > pe > 0,
where g is an arbitrary positive number, no matter how small.

In terms of physical quantities, the small pressure approxima-
tion takes the form

/2 2 /2
T~ ( p [27‘1 log (rg/n):l
a+f r? —n?
It may be remarked that (37) is precisely the formula obtained
for the period of oscillation of the hollow cylinder when the

problem is analyzed on the basis of the classical linear theory of
elasticity specialized to the case of an incompressible material.

(37)



