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Abstract: In order to achieve greater pressure ratios, compressor designers have the opportunity to use transonic configurations. In the 
supersonic part of the incoming flow, shock waves appear in the front part of the blades and propagate in the upstream direction. In case 
of multiple blade rows, steady simulations have to impose an azimuthal averaging (mixing plane) which prevents these shock waves to 
extend upstream. In the present paper, several mixing plane locations are numerically tested and compared in a supersonic 
configuration. An analytical method is used to describe the shock pattern. It enables to take a critical look at the CFD (computational 
fluid dynamics) steady results. Based on this method, the shock losses are also evaluated. The good agreement between analytical and 
numerical values shows that this method can be useful to wisely forecast the mixing plane location and to evaluate the shift in 
performances due to the presence of the mixing plane.  
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Nomenclature 

Symbol  

P Static pressure 

tP  Stagnation pressure in the impeller frame 

tP  
Circumferentially averaged stagnation 
pressure 

t  Circumferential pitch 
  Density 

V  Velocity in the impeller frame 

nV  Normal velocity component 

1 2,t tV V  Tangential velocity components 

r  Radius 
a  Speed of sound 
  Perfect gas constant 

 Rotation speed 

x0 
Position of the bow shock on the profile 
symmetry axis 

x, y Coordinates of a point in the profile frame

M Mach number 

                                                           
Corresponding author: Emmanuel Benichou, Ph.D. student, 

research fields: aerodynamic instabilities in centrifugal 
compressors, including rotor-stator interactions and flow 
control issues using boundary layer aspiration. E-mail: 
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µ Mach angle 

 Angle of the flow 

 Angle of the bow shock 

eB Axial distance between points x0 and B 

d Detachment distance of the shock wave 

 
Pitchwise distance on which the flow is 
considered isentropic 

θ Circumferential direction 

K Total pressure loss coefficient 

Subscript  

B, C Relative to points B and C 

1, 2 Calculated in Section 1 or Section 2 

∞ Value of the quantity at infinite upstream 

Exponent  

* Value of the quantity at M = 1 

1. Introduction 

The need for compact, efficient high pressure ratio 

compressors often results in high rotation speeds. In 

some cases, the entry flow may therefore be supersonic 

over the entire- or upper-span. The resulting physics of 

the flow field in the entry zone can be complex because 

D 
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of the interaction between compression and expansion 

waves [1-3]. Besides, shock waves propagating 

upstream the blades are dissipative and must 

necessarily be taken into account in the prediction of 

the stage performances [4]. 

Current CFD (computational fluid dynamics) offers 

three main categories for simulations: RANS 

(Reynolds-averaged Navier-Stokes), LES (large eddy 

simulation) and DNS (direct numerical simulation).  

RANS simulations approximate the mean effect of 

turbulence, while DNS enables a full resolution of the 

Navier-Stokes equations, from the smallest turbulence 

scale (Kolmogorov scale) up to the integral scale. LES 

corresponds to a filtered DNS: only the largest 

turbulence scales are resolved, the smallest ones being 

modeled. The more turbulence scales are resolved, the 

finer the mesh must be, and thus the more expensive 

the simulation becomes. 

In a current engine design process, only RANS 

simulations can be carried out. This sort of simulation 

is based on the Reynolds decomposition and turbulence 

models are added to close the set of equations. 

U-RANS (unsteady RANS) simulations are generally 

not affordable in a conception approach, because of 

their high CPU cost. That is why the only tool typically 

available for designers today consists in steady RANS 

simulations. In the case of multi-row turbomachinery, 

these simulations rely most of the time on the use of 

mixing planes, which average the data in the 

circumferential direction, and thus do not let the 

non-uniformities in the flow field transmit in the 

upstream or downstream direction. 

This article focuses on the entry zone of a supersonic 

compressor. The filtration of the shock pattern 

upstream the blades by the mixing plane raises the 

issue of the mixing plane location. The present paper 

compares numerically different locations to point out 

the influence of the mixing plane on the flow field, 

notably in terms of stagnation pressure change. 

In a first part, the numerical results are qualitatively 

analyzed and the role of the mixing plane is highlighted. 

An analytical model is then used to reproduce the shape 

of the shock waves at the leading edge of the blades. 

Finally, a method is given that enables to judge the 

reliability of steady simulations on supersonic 

configurations. 

2. Test Case and Numerical Procedure 

The test case is a centrifugal unshrouded impeller 

designed and built by Turbomeca. In the present study, 

only the front part of it is concerned. There is therefore 

no need giving the compressor geometry and 

performance in this paper. Only one operating point is 

examined, and it corresponds to the sonic blockage 

region. The flow, supersonic over 60% of the span, is 

examined at several section heights between h1 and h2 

in Fig. 1. 

A simulation performed without any mixing plane is 

used as reference (Fig. 2a). In this one, the inlet block 

is rotating with the impeller, and there is no particular 

interface. In order to evaluate the change in 

performance induced by the mixing plane approach, 

three different mixing plane locations are numerically 

tested (Fig. 2b). They are labeled “a”, “b” and “c” in 

Fig. 1. In those three simulations, the inlet block is 

fixed, like a stator row and the periodicity enables to 

use a smaller domain since the flow upstream of the 

mixing plane is circumferentially uniform. 

Computations were performed with the elsA 

software developed at ONERA [5]. The code is based 

on a cell-centered finite volume method and solves the  
 

 
Fig. 1  Meridional sketch of the compressor inlet part. 

h1 
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(a) 

 
(b) 

Fig. 2  (a) 3D view of the domain without mixing plane; and 
(b) 3D view of the domain with mixing plane. 
 

compressible RANS equations on multi-block 

structured meshes. The k-l model of Smith [6] (chosen 

according previous work [7]) is used for turbulence 

modeling. The set of equations are resolved in the 

relative frame of each row, using the Roe space scheme 

for convective fluxes and a 2nd-order centered scheme 

for viscous fluxes. An LU implicit phase (lower upper 

decomposition) is associated to the backward-Euler 

scheme for time integration. The near-wall region is 

described with y+ < 13. The inlet condition imposes the 

velocity angles and the standard stagnation pressure 

and temperature. The turbulent values are determined 

from a free-stream turbulence rate of 5% (resulting 

from previous measurements). The outlet condition 

imposes a uniform value of static pressure. The walls are 

described with non-slip and adiabatic conditions. The 

steady state enables to simulate only one blade passage, 

the azimuthal boundaries being periodic. Blade-to-blade 

surfaces are then extracted from all simulations at the 

same section heights between h1 and h2. 

At the mixing plane interface, a circumferential 

average using Riemann invariants is computed at both 

upstream and downstream faces. The resulting values 

(m1-m5) are then applied to the adjacent face with a 

non-reflective boundary condition: 
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with dS S   the total surface of the interface. 

3. Numerical Results 

Fig. 3 shows the relative Mach number in the 

reference case (without any mixing plane), in a 

blade-to-blade surface. The white lines indicate the 

three mixing plane locations and the purple line shows 

the iso-contour M = 1. With the mixing plane located in 

(c), the subsonic zone between the leading edge and the 

shock wave is clearly cut. 

 = 0 

Mixing plane 





Inlet 

Outlet 

Periodic boundaries 

Main blade 

Splitter blade 
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Fig. 3  Relative Mach number without mixing plane. 
 

Fig. 4 shows that in the four configurations, the 

detachment distance of the shock remains constant, 

which tends to prove that the mixing plane gives a 

correct value of the averaged Mach number. Indeed, as 

explained in the following, the detachment distance 

only depends on the blade geometry and inlet Mach 

number. The white lines represent Mach iso-contours 

from 0.7 to 1.4. 

However, the shape of the subsonic zone is seriously 

affected. The more the mixing plane is located 

downstream, the less the shock waves can extend 

upstream. Thereby, according to the position of the 

mixing plane, the total pressure loss is under-estimated. 

The change in stagnation pressure can be quantified 

with the value of the loss coefficient K calculated as: 

1
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t

P

P
K 

 
with tP , the momentum-averaged relative stagnation 

pressure integrated on the whole surface at Section 2 

(located at the blade leading edge) and on the whole 

surface at Section 1 (located upstream) as:  
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Fig. 4  Relative Mach number in the four test cases. 
 

As is expected, the more the mixing plane is located 

downstream, the lower the losses are, and consequently, 

the more the massflow is over-estimated. Table 1 gives 

the difference between overall inlet massflow in cases  

Without mixing plane 

Case (a) 

Case (b) 

Case (c) 

Section 1 (a) (b) (c) Section 2 
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Table 1  Performance shift to the reference configuration. 

 Massflow K/Kref 

Mixing plane located in (a) +0.04% -1.2% 

Mixing plane located in (b) +0.35% -8.3% 

Mixing plane located in (c) +0.80% -21.2% 
 

(a), (b), (c) compared to the reference configuration 

without mixing plane.  

The effect of the mixing plane can also be shown by 

the evolution of the entropy along a constant span 

height in the supersonic region (black arrow in the 

meridional view in Fig. 5). By preventing the shock 

wave to extend upstream, the mixing plane introduces a 

shift in the global level of entropy. 

These data show that the result of the steady state 

simulation significantly depends on the mixing plane 

location both in terms of performance (massflow and 

loss) and flow topology. The objective of the following 

part is to propose a method which can be used to: 

(1) forecast the location of the mixing plane 

minimizing the shift in performance; 

(2) forecast the change in performance for a given 

mixing plane location. 

4. Analytical Description 

Let us consider a supersonic incoming flow 

compressor with subsonic axial velocity component. 

Depending on the inlet Mach number and on the back 

pressure level, two different regimes can exist: 

 the unstarted regime, characterized by a detached, 

quasi-normal shock across the passage; 

 the started regime, characterized by an attached 

oblique shock. 

In case of a blunt leading edge, the shock cannot be 

strictly attached and a small subsonic area exists 

upstream the blade. The detachment distance of the 

shock is obviously smaller in the case of started regime 

than that of unstarted regime. 

The model presented hereafter is only valid for a 

started regime. This is the first reason why the study 

takes place near the sonic blockage: the shock wave has 

to remain attached to the leading edge of the blades. 

 
Fig. 5  Evolution of entropy along the rotation axis z, at a 
constant span height. 
 

Moreover, the presence of splitter blades here is likely 

to influence the shock system at the leading edge of the 

main blades through potential effects. Thus, the back 

pressure has to be imposed very low. 

The two inputs of this model are the upstream Mach 

number and the geometry of the blade leading edge. 

The detachment distance is calculated with Moeckel’s 

method [8], which assumes that the detached shock has 

a hyperbolic shape (Fig. 6). The equation of the 

hyperbola is specified by its asymptote (of angle ) 

and the position of point C located on the sonic line 

[BC], which is supposed to be straight. 
 

 
Fig. 6  Sketch of a detached shock. 
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In order to apply Moeckel’s model, the upstream 

flow is supposed to be two-dimensional, uniform and 

the profile is approximated by a symmetric shape. The  

thermodynamic shock relations for ideal gas are used. 

The maximum entropy rise, corresponding to a normal 

shock, is located on the streamline passing by the 

leading edge. This line and the sonic line are assumed 

to be straight. The available equations are: 

 The equation of the hyperbola: 

 22
0

22 )( tgxxy cc  (1)

 The equation of the tangent at point C: 

  2tg
y

x
tg

C

C
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(2)

which, combined with Eq. (1), gives: 
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In order to calculate the ordinate of point C, yC, the 

continuity equation is written between the segment 

[OC’] upstream the shock wave and the sonic line 

[BC]: 

* * * *BC
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Since a shock wave is isenthalpic, we can write: 
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(8)

It is important to notice that a choice is possible at 

that Eq. (8) in the way the stagnation pressure ratio is 

calculated. In the present case, a normal shock is 

considered at point C: 

 
1
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(9)

It would also be thinkable to consider an oblique 

shock to evaluate the thermodynamic state along the 

sonic line. This is at the same time a source of 

uncertainty in this method and a degree of freedom for 

the user (playing on this ratio enables to fit CFD or 

measurements but it is rather difficult to give a formula 

which works for all types of blades). 

The steps of the detachment distance calculation are 

thus:  

 From the value of the inlet Mach number M,  

is calculated with: 


 

M

1
arcsin

 
(10)

and the values of the deviation C and shock angle C 

are deduced from the shock relations. 

 Point B which belongs to the profile is identified 

from its tangent B which has to be equal to C.  

 Eqs. (3), (4) and (6) are then used to calculate the 

detachment distance d: 

 ABB xxed   (11)

This procedure, initially thought for symmetric 

isolated profiles, leads to a geometric representation   

of the subsonic zone (in grey in Fig. 6), between    

the hyperbola and the sonic line. The part of the  

shock wave confining this subsonic region is 

responsible for most of the total pressure losses. 

Therefore, it is crucial to let it fully extend upstream  

the blades. The consequences of a mixing plane  

cutting the subsonic pocket are examined in the 

following. 
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5. Comparison between Analytical and 
Numerical Results 

The analytical method previously described for 

started regimes enables to draw the shape of the 

detached bow shock and the subsonic zone. Fig. 7 

superimposes the analytical shape (in black) on the 

CFD results without any mixing plane (the yellow line 

is the iso-contour M = 1). 

Qualitatively, the subsonic area is well 

approximated. Assuming that the major part of the 

losses are due to the part of the shock confining the 

subsonic part, it is seen that the analytical calculation 

gives a pretty good evaluation of the minimal distance 

to be put between the mixing plane and the leading 

edge (dmin in Fig. 7). 

However, two weaknesses should be pointed out.  

Firstly, the model is very sensitive to the upstream 

Mach number, in particular in the low supersonic Mach 

numbers region (between M = 1.0 and M = 1.1). Fig. 

8 shows the typical evolution of the detachment 

distance as a function of the upstream Mach number. 

Furthermore, when the upstream Mach number 

decreases, the shape of the subsonic pocket tends to 

become more elliptic. Fig. 9 shows that with M = 1.1, 

the detachment distance and the orientation of the 

shock wave are still well estimated but Moeckel’s 

method cannot reproduce the numerical result near the 

leading edge. 

Secondly, the choice in the calculation of the loss 

across the shock leads to the thermodynamic state of 

the sonic line, because in the end, it directly drives the 

value of the detachment distance. Since Eq. (9) is non 

linear, the higher the upstream Mach number, the more 

important the way the loss is calculated becomes. 

The main benefits of Moeckel’s model are that only 

the geometry of the profile and the upstream Mach 

number are needed. As a consequence, this is a tool 

which can easily be employed in a pre-design phase.  

It should be underlined that the sonic blockage is    

the most “favorable” case because when the mass  

flow decreases, the compressor will pass from started 

 

Fig. 7  Application of Moeckel’s method with M ≈ 1.3. 
 

 
Fig. 8  Evolution of the detachment distance for a given 
profile. 
 

 
Fig. 9  Application of Moeckel’s method with M ≈ 1.1. 

dmin 
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regime to unstarted regime. Thus, the shock pattern 

moves upstream, so that the impact of the mixing plane 

can only become stronger. 

6. Shock Loss Prediction 

Although current blade design relies on numerical 

optimization, including transonic bladings [9], many 

analytical shock loss models exist, as described in Refs. 

[10, 11], for example. Bloch, Copenhaver and O’Brien 

also give an interesting approach based on Moeckel’s 

method [12], adapted to unstarted regime. 

Since the other objective of this paper is to 

analytically forecast the change in pressure loss for a 

given mixing plane location compared with the 

reference case (without any mixing plane), the shock 

loss associated to a started regime has to be evaluated. 

Fig. 10 shows the relative total pressure calculated in 

the reference case (without mixing plane): the low 

relative stagnation pressure zone at the leading edge 

plane corresponds to the projection of the strongest part 

of the shock on the leading edge plane in the mean flow 

direction. In order to be consistent with the numerical 

fields, only the part of the shock wave which is 

downstream the mixing plane location is kept and this 

portion of the upper branch of the hyperbola is 

projected in the plane of the leading edge (Fig. 11). 

The losses are then calculated in the plane of the 

leading edge as if the fluid going through the bow 

shock was seeing a normal shock and the rest of the 

incoming flow remained unperturbed. The losses are 

evaluated with the coefficient K defined as:  


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



 
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t

t

P

P

t
K

t

t 

1

21  (12)

where,   is the length of the projected hyperbola, t  

is the pitch and 12 / tt PP  refers to the total pressure 

ratio across a normal shock (see Eq. (9)). 

The value of K is of course overestimated, since a 

part of the incoming fluid actually goes across an 

oblique shock and the bow shock extending upstream 

becomes rapidly evanescent. But it enables to evaluate 

the shock loss in the most unfavorable situation. Note 

 

Fig. 10  Relative stagnation pressure in a blade-to-blade 
surface. 
 

 
Fig. 11  Loss calculation for a given Mach number with a 
given mixing plane location. 
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that in case of no mixing plane, the model is equivalent 

to considering a normal shock over the whole pitch. 

This choice keeps the present tool simple, but it 

would be possible to make a more sophisticated model: 

 First, by improving the shock wave 

approximation. A good example is given by Ottavy 

[13], by coupling Levine’s method [14] to predict the 

unique incidence seen by the blade profile with 

Moeckel’s detachment distance calculation. 

 By discretizing the shock wave, so that the flow 

angle and the pressure loss change from a normal shock 

on the blade axis to an oblique shock and integrating 

the result on a pitch to the neighboring blade. 

For a given profile, it is possible to plot the loss as a 

function of the upstream Mach number in the different 

configurations (Fig. 12). The case without mixing plane 

corresponds to the shock loss across a normal shock. 

Depending on its location, the mixing plane has no 

more impact beyond a certain Mach number. For 

example, with a mixing plane located in Section (b) 

(green curve), it can be seen that beyond M = 1.46, the 

mixing plane has no more influence. It means that if the 

upstream Mach number is higher than this value, the 

steady results can be considered reliable. 

For a given mixing plane location, the discrepancy 

compared to the reference case firstly increases with 

the Mach number. Indeed, the length  continuously 

increases but the pressure loss is increasing faster due 

to the shock wave. Then the upper branch of the 

hyperbola is more and more straightened up together 

with a decrease in the detachment distance until its 

projection covers the whole pitch. At that step, there is 

no more difference with or without a mixing plane and 

a steady RANS simulation can be considered as 

reliable (Fig. 13). 

This analytical tool has been applied to the three 

mixing plane positions and to the reference case with 

no mixing plane. The input data are the 

circumferentially-averaged Mach numbers in Section 

(b) coming from the CFD with no mixing plane and the 

geometry of the front part of the blades. 
 

(a) 

 
(b) 

Fig. 12  (a) Evolution of K for a given profile; and (b) zoom 
from Fig. 12a. 
 

 
Fig. 13  Effect of the mixing plane on the bow shock for 
different upstream Mach numbers. 

M = 1.20 M = 1.50 M = 1.80 
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Fig. 14  Analytical and numerical loss as function of the 
upstream Mach number for different mixing plane 
locations. 
 

Fig. 14 compares the analytical and numerical 

values obtained for the losses. Different section heights 

between h1 and h2 have been tested, so that both the 

profile and the Mach number were changing. The 

values of K are plotted as a function of the upstream 

Mach number and are calculated as: 
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In Fig. 14, the analytical evolution corresponding to 

case (a) is the same as the reference one for Mach 

numbers greater than 1.30. This means that the major 

part of the hyperbola is contained downstream the 

mixing plane for the corresponding section heights. 

According to this criterion, any mixing plane should be 

located upstream Section (a) (Fig. 3) for the present 

impeller.  

Nevertheless, despite the good qualitative agreement 

between analytical and numerical results in Fig. 7, we 

can observe quantitative discrepancies in the shock 

loss. 

First of all, the simulation without mixing plane 

describes a different loss evolution around M = 1.20 

than those with a mixing plane. This is a well-known 

problem with mixing planes in general: the loss is 

radially redistributed. 

The influence of the location of the mixing plane is 

clearly visible in the numerical curves. The slopes are 

not so far from the analytical ones. But there is a sort of 

offset between the numerical and the analytical results. 

It is probable that for the low Mach numbers, the shock 

loss is low compared to the viscous loss. To compare 

properly the two curves families, it would be necessary 

to take from the Navier-Stokes simulations only the 

shock loss, as done in Ref. [12] by subtracting the 

friction loss from measurements. 

The discrepancies are also due to the strong 

hypotheses made in the analytical method, which 

consists in a two-dimensional approach and due to the 

choice made for the loss calculation. Real blade 

profiles are also often cambered and not symmetric in 

order to produce lift, which is not taken into account in 

the present model. And finally, the numerical loss at 

the highest Mach numbers (close to the section height 

h2) is suddenly increasing, near the shroud boundary 

layer. It is likely that friction loss dominates shock loss 

in this area. 

Thanks to this simple model, the order of magnitude 

of the under prediction of the losses due to the 

introduction of a mixing plane is easily evaluated. It 

has been tested that this approach gives acceptable 

results from inlet Mach number larger than 1.1. Once 

again, the major drawbacks of this method are that it 

gives wrong predictions for lower Mach numbers and 

that the shock formulas which are used in it are very 

sensitive. This is maybe one of the reasons why Bloch 

et al. [12] had to take into account an “effective” 

leading edge radius in their model dedicated to predict 

the shock loss through the lower branch of Moeckel’s 

hyperbola, in supersonic compressor cascades 

operating in unstarted regime. Indeed, they increased 

the leading edge thickness until the analytical results 
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matched the experimental ones. This reminds us of the 

difficulty of implementing a shock loss model that fits 

all types of profiles, under various operating 

conditions. 

7. Conclusion 

Steady state numerical simulations performed with a 

mixing plane approach show that the results, in terms 

of mass flow and losses, significantly depend on the 

mixing plane position. The operating point chosen here 

corresponds to the sonic blockage of the compressor 

but for near-surge points, it would be even more 

important. 

The fact that this study takes place near the blockage 

enables to propose an analytical method in order to 

forecast this change in performance. The validity of 

this analytical method is checked by comparing its 

results with the numerical ones in the entry zone of a 

transonic compressor. Analytical and numerical results 

show good agreement. 

This tool may be useful for transonic compressor 

design: first, to have an idea of the minimal distance 

that should be put between the mixing plane and the 

leading edge of the blades, and then to know how 

representatively the steady simulations can be 

expected. 
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