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Closed-form expressions of the exact Cramer-Rao, bound for parameter estimation of BPSK, MSK, or

QPSK waveforms

Introduction

The stochastic Cramer-Rao bound (CRB) is a well known lower bound on the variance of any unbiased estimate, and as such, serves as useful benchmark for practical estimators. Unfortunately, the evaluation of this CRB is mathematically quite difficult when the observed signal contains, in addition to the parameters to be estimated, random discrete data and random noise. A typical example of such a situation that has been studied by many authors (see e.g., [START_REF] Noels | The true Cramer-Rao bound for carrier frequency estimation from a PSK signal[END_REF] and the references therein) is the observation of noisy linearly modulated waveforms that are a function of deterministic parameters such that the time delay, the carrier frequency offset, the carrier phase, noise and signal powers, as well as the data symbol sequence. Because the analytical computation of this CRB has been considered to be unfeasible, a modified CRB (MCRB) which is much simpler to evaluate than the exact CRB has been introduced in [START_REF] Andrea | The modified Cramer-Rao bound and its application to synchronization problems[END_REF]. But this MCRB may not be as tight as the exact CRB [START_REF] Moeneclaey | On the true and modified Cramer-Rao bound for the estimation of a scalar parameter in the presence of nuisance parameters[END_REF] for joint estimation of all parameters. To circumvent this difficulty, asymptotic expressions at low [START_REF] Steendam | Low SNR limit of the Cramer-Rao bound for estimating the carrier phase and frequency of a PAM, PSK or QAM waveform[END_REF] or high [START_REF] Tavares | Improved Cramer-Rao bounds for phase and frequency estimation with M -PSK signals[END_REF] signal-to-noise ratio (SNR) have been investigated. But unfortunately, these asymptotic expressions do not apply at moderate SNR, for which only combined analytical/numerical (see e.g., [START_REF] Tavares | Improved Cramer-Rao bounds for phase and frequency estimation with M -PSK signals[END_REF][START_REF] Rice | Cramer-Rao bounds for the QAM phase and frequency estimation[END_REF][START_REF] Noels | The true Cramer-Rao bound for carrier frequency estimation from a PSK signal[END_REF]) approaches are available until now.

In this paper, we investigate an analytical expression of the stochastic CRB (i.e., if the information symbols are viewed as nuisance parameters, and thus applicable in non data-aided estimation) associated with the joint estimation of the carrier frequency offset, the carrier phase and the noise and signal powers of BPSK, QPSK or MSK modulated signals corrupted by additive white circular Gaussian noise, which is valid for arbitrary SNR. This paper is organized as follows. After formulating the problem in Section 2, an explicit expression of the Fisher information matrix (FIM) associated with all the deterministic parameters is given in Section 3. Because the carrier frequency offset and the carrier phase parameters are decoupled from the signal noise and signal powers parameters, simple explicit expressions for the stochastic CRB of these four parameters are deduced. Specialized expressions for low and high-SNR are presented as well. Finally, in Section 4, our proposed analytical expressions are numerically compared with the previously given approximate expressions.

Problem formulation

Consider BPSK, QPSK or MSK modulated signals. The received signals are bandpass filtered and after down conversion the signal to baseband, the in-phase and quadrature components are paired to obtain complex signals. We assume Nyquist shaping and ideal sample timing so that the inter-symbol interference at each symbol spaced sampling instance can be ignored. In the presence of frequency offset and carrier phase, the signals at the output of the matched filters yield the observation vector y = (y k0 , ..., y k0+K-1 ), with y k = as k e i2πkν e iϕ + n k , for k = k 0 , ..., k 0 + K -1. {s k } is a sequence of independent identically distributed (IID) data symbols taking values ±1 and ± √ 2/2 ± i √ 2/2 with equal probabilities for BPSK and QPSK respectively and for MSK are defined by s k+1 = is k c k where c k is a sequence of independent BPSK symbols with equal probabilities where the original value s k0 remains unspecified in the set {+1, +i, -1, -i}. The deterministic unknown parameters a, ν and ϕ represent the amplitude, the carrier frequency offset normalized to the symbol rate and the carrier phase at k = 0. Finally, the sequence {n k } consists of IID zero-mean complex circular Gaussian noise random variables1 of variance

σ 2 def = E|n k | 2 .
The symbols s k are assumed to be independent from n k . If no a priori information is available concerning the transmitted symbols, the distribution of y is parameterized by θ def = (ν, ϕ, a, σ). We note that the MSK is modelled equivalently (see e.g., [START_REF] Lebrun | An algebraic approach to blind identification of communication channel[END_REF]) by s k = i k-k0 b k s k0 where b k is another sequence of independent BPSK symbols {-1, +1} with equal probabilities. Consequently, similar to the BPSK and QPSK, (y k ) k=k0,...,k0+K-1 are independently non-identically distributed along the following mixture of circular Gaussian distribution2 :

p(y k ; θ) = 1 Lπσ 2 L ∑ l=1 exp ( - |y k -as l,k e i2πkν e iϕ | 2 σ 2 ) , (2.1) with s l,k = ±1 (L = 2), s l,k = ± √ 2/2 ± i √ 2/2 (L = 4) or s l,k = i k-k0 b l s k0 with b l = ±1 (L = 2
) associated with BPSK, QPSK or MSK, respectively.

Stochastic CRB: analytical results

General closed-form expression

Using the independence of the random variables y k , the Fisher information matrix (FIM) is given (elementwise) by:

(I F ) i,j = - k0+K-1 ∑ k=k0 E ( ∂ 2 ln p(y k ; θ) ∂θ i ∂θ j ) i, j = 1, . . . , 4, (3.2) 
where the PDF's (2.1) take the following forms:

p(y k ; θ) = 1 πσ 2 exp ( - |y k | 2 + a 2 σ 2 ) c(y k ), 3
where c(y k ) is respectively equal to cosh

( a σ 2 g 1 (y k ) ) , cosh ( a σ 2 √ 2 g 1 (y k ) ) cosh ( a σ 2 √ 2 g 2 (y k ) ) and cosh ( a σ 2 g 3 (y k ) )
for the BPSK, QPSK and MSK respectively, with

g 1 (y k ) def = 2ℜ(e i2πkν e iϕ y * k ), g 2 (y k ) def = 2ℑ(e i2πkν e iϕ y * k ) and g 3 (y k ) def = 2ℜ(i k-k0 e i2πkν e iϕ s k0 y * k ).
Extending the approach used in [START_REF] Alagha | Cramer-Rao bounds for SNR estimates for BPSK and QPSK modulated signals[END_REF] for the parameters a and σ only and in [START_REF] Delmas | Cramer-Rao bounds of DOA estimates for BPSK and QPSK modulated signals[END_REF] for the direction of arrival (DOA) parameters, the following lemma is proved in Appendix A: Lemma 1 The parameter θ = (ν, ϕ, a, σ) is partitioned in two decoupled parameters (ν, ϕ) and (a, σ) in the FIM associated with the BPSK, QPSK and MSK:

I BPSK = I MSK = [ I (1) B O O I (2) B ] , I QPSK = [ I (1) Q O O I (2) Q ] with I (1) B = 2ρ 2 (1 -f 1 (ρ)) [ (2π) 2 ∑ k0+K-1 k=k0 k 2 2π ∑ k0+K-1 k=k0 k 2π ∑ k0+K-1 k=k0 k K ] I (2) B = 2K ρ a 2 [ 1 -f 2 (ρ) 2 √ ρf 2 (ρ) 2 √ ρf 2 (ρ) 2(1 -2ρf 2 (ρ)) ] I (1) Q = 2ρ 2 (1 -(1 + ρ)f 1 ( ρ 2 )) [ (2π) 2 ∑ k0+K-1 k=k0 k 2 2π ∑ k0+K-1 k=k0 k 2π ∑ k0+K-1 k=k0 k K ] I (2) Q = 2K ρ a 2 [ 1 -f 2 ( ρ 2 ) 2 √ ρf 2 ( ρ 2 ) 2 √ ρf 2 ( ρ 2 ) 2(1 -2ρf 2 ( ρ 2 ))
]

where ρ is the SNR a 2 σ 2 and f 1 and f 2 are the following decreasing functions of ρ:

f 1 (ρ) def = 2e -ρ √ 2π ∫ +∞ 0 e -u 2 2 cosh(u √ 2ρ) du, f 2 (ρ) def = 2e -ρ √ 2π ∫ +∞ 0 u 2 e -u 2 2 cosh(u √ 2ρ) du.
The determinants of I

B and I

Q do not depend on the time k 0 at which the first sample is taken and consequently the CRB for the frequency does not depend on it either, but the CRB for the phase does. The minimum value for this CRB is attained for k 0 = -(K -1)/2. This particular choice of k 0 renders I

B and I

Q diagonal and we obtain in this case the following result, where the MCRB are straightforwardly derived from [START_REF] Andrea | The modified Cramer-Rao bound and its application to synchronization problems[END_REF]:

MCRB(θ i ) = 1 E y,s ( ∂ 2 ln p(y/s;θ) ∂θ 2 i ) , i = 1, . . . , 4.

Result 1

The CRB for the joint estimation of the parameters (ν, ϕ, a, σ) associated with the BPSK and MSK are given by:

CRB(ν) = 6 (2π) 2 K(K 2 -1)ρ(1 -f 1 (ρ)) = MCRB(ν) ( 1 1 -f 1 (ρ) ) (3.3) CRB(ϕ) = 1 2Kρ(1 -f 1 (ρ)) = MCRB(ϕ) ( 1 1 -f 1 (ρ) ) (3.4) CRB(a) = a 2 (1 -2ρf 2 (ρ)) 2Kρ(1 -f 2 (ρ) -2ρf 2 (ρ)) = MCRB(a) ( 1 -2ρf 2 (ρ) 1 -f 2 (ρ) -2ρf 2 (ρ) ) (3.5) CRB(σ) = a 2 (1 -f 2 (ρ)) 4Kρ(1 -f 2 (ρ) -2ρf 2 (ρ)) = MCRB(σ) ( 1 -2ρf 2 (ρ) 1 -f 2 (ρ) -2ρf 2 (ρ) ) . ( 3 

.6)

The CRBs associated with the QPSK are obtained by replacing f 1 (ρ) and f 2 (ρ) by, respectively,

(1 + ρ)f 1 ( ρ 2 ) and f 2 ( ρ 2 ) in (3.
3), (3.4), (3.5) and (3.6). Note that the proof of the decoupling that is not trivial (see (5.11),(5.12)) has not appeared in the literature despite the first expressions CRB(ν) and CRB(ϕ) coincide with the expressions given in [START_REF] Cowley | Phase and frequency estimation for PSK packets: Bounds and algorithms[END_REF] for CRB(ν) with (ϕ, a, σ) known and CRB(ϕ) with (ν, a, σ) known, for the BPSK only. The first expressions CRB(ν) and CRB(ϕ) does not appear in [START_REF] Cowley | Phase and frequency estimation for PSK packets: Bounds and algorithms[END_REF] for MSK and QPSK including for (ϕ, a, σ) or (ν, a, σ) known. Using the definition of f 1 and f 2 , these asymptotic CRBs coincide with the MCRB for high SNR. This extends a property proved in [START_REF] Moeneclaey | On the true and modified Cramer-Rao bound for the estimation of a scalar parameter in the presence of nuisance parameters[END_REF] for a scalar parameter only.

Low-SNR expression

For low SNR, f 1 (ρ) and f 2 (ρ) approach 1. We resort to a Taylor series expansion of these functions obtained by expanding e -ρ and cosh(u √ 2ρ) around ρ = 0. Then, using the values (2n)!/2 n n! of the moments of order 2n of zero-mean unit variance Gaussian random variables, we obtain after tedious, but straightforward algebraic manipulations:

f 1 (ρ) = 1 -2ρ + 4ρ 2 - 40 3 ρ 3 + 208 3 ρ 4 + o(ρ 4 ), f 2 (ρ) = 1 -4ρ + 16ρ 2 - 256 3 ρ 3 + 12544 21 ρ 4 + o(ρ 4 ).
Inserting these expansions in Result 1 allows us to prove the following result4 :

Result 2

The CRB for the joint estimation of the parameters (ν, ϕ, a, σ) associated with the BPSK, MSK and QPSK are given for low SNR by: We note that (3.7) and (3.8) for BPSK and QPSK are refinements of the expressions of CRB(ν) and CRB(ϕ) given in [START_REF] Steendam | Low SNR limit of the Cramer-Rao bound for estimating the carrier phase and frequency of a PAM, PSK or QAM waveform[END_REF].

CRB(ν) = 6 (2π) 2 K(K 2 -1) L! L 2 ρ L (1 + Lρ + o(ρ)) = MCRB(ν) L! L 2 ρ L-1 (1 + Lρ + o(ρ)) (3.7) CRB(ϕ) = 1 2K L! L 2 ρ L (1 + Lρ + o(ρ)) = MCRB(ϕ) L! L 2 ρ L-1 (1 + Lρ + o(ρ)) (3.8) CRB(a) = a 2 Kα L ρ L (1 + Lρ + o(ρ)) = MCRB(a) 2 α L ρ L-1 (1 + Lρ + o(ρ)) (3.9) CRB(σ) = a 2 Kβ L ρ L-1 (1 + γ L ρ 3-L/2 + o(ρ 3-L/2 )) = MCRB(σ) 4 β L ρ L-2 (1 + γ L ρ 3-L/2 + o(ρ 3-L/2 )), (3.

High-SNR expression

For high SNR, the MCRB approaches the CRB at the same rate that f 1 (ρ) and f 2 (ρ) approach 0. Because we prove in Appendix B that these functions are bounded above by e -ρ √ πρ and more precisely that f 1 (ρ)/ e -ρ ln (2) √ πρ tends to 1 when ρ tends to ∞, the CRB are practically equal to the MCRB for moderate SNR. For example: ρ = 2 (3dB), and ρ = 4 (6dB)] give respectively the upper bound 0.05 and 0.005 for f 1 (ρ) and f 2 (ρ), and consequently the ratios CRB/MCRB is around one from these values of SNR.

Numerical results

The analytical result 1 is numerically compared with the approximations given in result 2 and to the approximations given in [START_REF] Steendam | Low SNR limit of the Cramer-Rao bound for estimating the carrier phase and frequency of a PAM, PSK or QAM waveform[END_REF] for CRB(ν) and CRB(ϕ) of BPSK and QPSK at low SNR.

In these conditions, we see good agreement between the numerical values derived from results 1 and 2 in a large range of low SNR. Furthermore, we note that the ratio CRB/MCRB is unbounded except for the noise power of BPSK and MSK for which it tends to 2 when the SNR tends to 0. 

Appendix: Proof of Lemma 1

To evaluate the FIM (3.2) for the BPSK, the partial derivatives are straightforwardly derived, in particular: 

∂ 2 ln p(y k ; θ) ∂ϕ 2 = a 2 g 2 2 (y k ) σ 4 1 cosh 2 ( ag1(y k ) σ 2 ) - ag 1 (y k ) σ 2 tanh ( ag 1 (y k ) σ 2 ) ∂ 2 ln p(y k ; θ) ∂a∂ϕ = - ag 1 (y k )g 2 (y k ) σ 4 1 cosh 2 ( ag1(y k ) σ 2 ) - g 2 (y k ) σ 2 tanh ( ag 1 (y k ) σ 2 ) ( 5 
) = 0. With ∂ln p(y k ;θ) ∂a = -2a σ 2 + g1(y k ) σ 2 tanh ( ag1(y k ) σ 2 ) , we obtain E ( g 1 (y k )tanh ( ag 1 (y k ) σ 2 )) = 2a.
This identity enables us to straightforwardly derive the terms of I

B using the definition of the function

f 2 (ρ) = E ( g 2 1 (y k ) 2σ 2 1 cosh 2 ( ag 1 (y k ) σ 2
)

)

, where the random variable g 1 (y k ) is equally weighted mixed Gaussian (N (-2a; 2σ 2 ) and N (+2a; 2σ 2 )).

To evaluate I 

(ρ) = E ( 1 cosh 2 ( ag 1 (y k ) σ 2
)

) , the terms of I

B are derived. Because g 1 (y k ) and g 2 (y k ) are independent and zero mean, E( ∂ 2 ln p(y k ;θ)

∂a∂ϕ ) = E( ∂ 2 ln p(y k ;θ) ∂σ∂ϕ ) = E( ∂ 2 ln p(y k ;θ) ∂a∂ν ) = E( ∂ 2 ln p(y k ;θ) ∂σ∂ν ) = 0.
This implies that the parameters (ν, ϕ) and (a, σ) are decoupled in the FIM. For the MSK, the derivations follow the same lines, replacing g 1 (y k ) by g 3 (y k ). Finally for the QPSK, evaluating the partial derivatives ∂ 2 ln p(y k ;θ) ∂θi∂θj and taking their expectation are derived in the same way, provided the log-likelihoods associated with g 1 (y k ) and g 2 (y k ) are gathered, and the hypothesis of independence of ℜ(s k ) and ℑ(s k ) is taken into account.

6 Appendix: Bounds on f 1 (ρ) and f 2 (ρ)

For high SNR, using the inequality

1 cosh(u √ 2ρ) < 2e -u √ 2ρ
, we obtain after simple algebraic manipulations:

f 1 (ρ) < 4Q( √ 2ρ
) and f 2 (ρ) < 4 Inserting this into f 1 (ρ), we obtain after simple algebraic manipulations the following alternating expansion: √ πρ tends to 1 when ρ tends to ∞.

( (2ρ + 1))Q( √ 2ρ) - √ 2ρ √ 2π e -ρ ) , ( 6 

10 )

 10 with L = 2 for BPSK and MSK and L = 4 for QPSK, and α 2 = 4, α 4 = 16/3, β 2 = 2, β 4 = 16/3, γ 2 = -16/3 and γ 4 = 4.

Fig. 1

 1 Fig. 1 Ratio CRB(ν)/MCRB(ν)=CRB(ϕ)/MCRB(ϕ) at low SNR: (a) exact value given by (3.3), (3.4), (b) approximate value given by (3.7), (3.8), (c) approximate value given in [4].

Fig. 2

 2 Fig. 2 Ratio CRB(a)/MCRB(a) at low SNR: (a) exact value given by (3.5), (b) approximate value given by (3.9).

Fig. 3

 3 Fig. 3 Ratio CRB(σ)/MCRB(σ) at low SNR: (a) exact value given by (3.6), (b) approximate value given by (3.10).

1 √

 1 .13) where Q(x) is the error function ∫ +∞ x 2π e -u 2 2 du classically bounded above by 1 x √ 2π e -x 2 2. Applying this upper bounds in (6.13) gives:f 1 (ρ) < e -ρ√ πρ and f 2 (ρ) < e -ρ √ πρ . To specify the upper bound of f 1 (ρ), we use the following expansion

f 1 (ρ) = 4 +∞ ∑ k=0 (- 1 )

 14k=01 k e ρ[(k+1) 2 -1] Q[(k + 1)after simple algebraic manipulations that f 1 (ρ)/ e -ρ ln(2) 

  -iϕ n k are uncorrelated and therefore independent, the three random variables s k , e i2πkν e iϕ n * k + e -i2πkν e -iϕ n k and e i2πkν e iϕ n * k -e -i2πkν e -iϕ n k are collectively independent and thus g 1 (y k ) and g 2 (y k ) are independent. Using the definition of the function f 1

B , we note that g 1 (y k ) = 2as k + ( e i2πkν e iϕ n * k + e -i2πkν e -iϕ n k ) and g 2 (y k ) = -i ( e i2πkν e iϕ n * k -e -i2πkν e -iϕ n k ) . Because s k and n k are independent and the two Gaussian random variables e i2πkν e iϕ n * k + e -i2πkν e -iϕ n k and e i2πkν e iϕ n * k -e -i2πkν e

Note that many papers consider the parameters a

and σ 2 denoted usually as the symbol energy Es and the noise power spectral density N0 as known. They usually suppose a unit variance for the noise and use the ratio ϵ def = (Es/N0) 1/2 as the modulation amplitude, but in practice these two parameters are unknown as well.2 Usually for such a mixture, explicit closed-form expressions of the CRB are not available.

Note that this product form does not extend to arbitray QAM (see e.g.,[6, rel. (41)] for the 16QAM).

Of course these bounds are going to infinity as the SNR decreases to zero, consequently for the parameters ν and ϕ with finite support, these results are useful for not too low-SNR only (typically in the range [-5dB, 0dB]).