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Closed-form expressions of the exact Cramer-Rao bound

for parameter estimation of BPSK, MSK or QPSK

waveforms

Jean-Pierre Delmas, Senior member, IEEE

Abstract

This paper addresses the stochastic Cramer-Rao bound (CRB) pertaining to the joint estimation
of the carrier frequency offset, the carrier phase and the noise and signal powers of binary phase-shift
keying (BPSK), minimum shift keying (MSK) and quaternary phase-shift keying (QPSK) modulated
signals corrupted by additive white circular Gaussian noise. Because the associated models are gov-
erned by simple Gaussian mixture distributions, an explicit expression of the Fisher information matrix
is given and an explicit expression for the stochastic CRB of these four parameters are deduced. Spe-
cialized expressions for low and high-SNR are presented as well. Finally, these expressions are related
to the modified CRB and our proposed analytical expressions are numerically compared with the
approximate expressions previously given in the literature.
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EDICS Category: SAS-STAT,
Paper SPL-05038-2008.R1
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1 Introduction

The stochastic Cramer-Rao bound (CRB) is a well known lower bound on the variance of any unbiased estimate,
and as such, serves as useful benchmark for practical estimators. Unfortunately, the evaluation of this CRB is
mathematically quite difficult when the observed signal contains, in addition to the parameters to be estimated,
random discrete data and random noise. A typical example of such a situation that has been studied by many
authors (see e.g., [1] and the references therein) is the observation of noisy linearly modulated waveforms that are
a function of deterministic parameters such that the time delay, the carrier frequency offset, the carrier phase,
noise and signal powers, as well as the data symbol sequence. Because the analytical computation of this CRB has
been considered to be unfeasible, a modified CRB (MCRB) which is much simpler to evaluate than the exact CRB
has been introduced in [2]. But this MCRB may not be as tight as the exact CRB [3] for joint estimation of all
parameters. To circumvent this difficulty, asymptotic expressions at low [4] or high [5] signal-to-noise ratio (SNR)
have been investigated. But unfortunately, these asymptotic expressions do not apply at moderate SNR, for which
only combined analytical/numerical (see e.g., [5, 6, 1]) approaches are available until now.

In this paper, we investigate an analytical expression of the stochastic CRB (i.e., if the information symbols
are viewed as nuisance parameters, and thus applicable in non data-aided estimation) associated with the joint
estimation of the carrier frequency offset, the carrier phase and the noise and signal powers of BPSK, QPSK or
MSK modulated signals corrupted by additive white circular Gaussian noise, which is valid for arbitrary SNR.
This paper is organized as follows. After formulating the problem in Section 2, an explicit expression of the Fisher
information matrix (FIM) associated with all the deterministic parameters is given in Section 3. Because the
carrier frequency offset and the carrier phase parameters are decoupled from the signal noise and signal powers
parameters, simple explicit expressions for the stochastic CRB of these four parameters are deduced. Specialized
expressions for low and high-SNR are presented as well. Finally, in Section 4, our proposed analytical expressions
are numerically compared with the previously given approximate expressions.
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2 Problem formulation

Consider BPSK, QPSK or MSK modulated signals. The received signals are bandpass filtered and after down
conversion the signal to baseband, the in-phase and quadrature components are paired to obtain complex signals.
We assume Nyquist shaping and ideal sample timing so that the inter-symbol interference at each symbol spaced
sampling instance can be ignored. In the presence of frequency offset and carrier phase, the signals at the output
of the matched filters yield the observation vector y = (yk0 , ..., yk0+K−1), with

yk = aske
i2πkνeiϕ + nk,

for k = k0, ..., k0 + K − 1. {sk} is a sequence of independent identically distributed (IID) data symbols taking
values ±1 and ±

√
2/2± i

√
2/2 with equal probabilities for BPSK and QPSK respectively and for MSK are defined

by sk+1 = iskck where ck is a sequence of independent BPSK symbols with equal probabilities where the original
value sk0 remains unspecified in the set {+1,+i,−1,−i}. The deterministic unknown parameters a, ν and ϕ
represent the amplitude, the carrier frequency offset normalized to the symbol rate and the carrier phase at k = 0.
Finally, the sequence {nk} consists of IID zero-mean complex circular Gaussian noise random variables1 of variance

σ2 def
= E|nk|2. The symbols sk are assumed to be independent from nk. If no a priori information is available

concerning the transmitted symbols, the distribution of y is parameterized by θ
def
= (ν, ϕ, a, σ). We note that the

MSK is modelled equivalently (see e.g., [7]) by sk = ik−k0bksk0 where bk is another sequence of independent BPSK
symbols {−1,+1} with equal probabilities. Consequently, similar to the BPSK and QPSK, (yk)k=k0,...,k0+K−1 are
independently non-identically distributed along the following mixture of circular Gaussian distribution2:

p(yk;θ) =
1

Lπσ2

L∑
l=1

exp

(
−|yk − asl,ke

i2πkνeiϕ|2

σ2

)
, (2.1)

with sl,k = ±1 (L = 2), sl,k = ±
√
2/2± i

√
2/2 (L = 4) or sl,k = ik−k0blsk0 with bl = ±1 (L = 2) associated with

BPSK, QPSK or MSK, respectively.

3 Stochastic CRB: analytical results

3.1 General closed-form expression

Using the independence of the random variables yk, the Fisher information matrix (FIM) is given (elementwise)
by:

(IF )i,j = −
k0+K−1∑
k=k0

E

(
∂2ln p(yk;θ)

∂θi∂θj

)
i, j = 1, . . . , 4, (3.2)

where the PDF’s (2.1) take the following forms:

p(yk;θ) =
1

πσ2
exp

(
−|yk|2 + a2

σ2

)
c(yk),

3

where c(yk) is respectively equal to cosh
(

a
σ2 g1(yk)

)
, cosh

(
a

σ2
√
2
g1(yk)

)
cosh

(
a

σ2
√
2
g2(yk)

)
and cosh

(
a
σ2 g3(yk)

)
for the BPSK, QPSK and MSK respectively, with g1(yk)

def
= 2ℜ(ei2πkνeiϕy∗k), g2(yk)

def
= 2ℑ(ei2πkνeiϕy∗k) and

g3(yk)
def
= 2ℜ(ik−k0ei2πkνeiϕsk0

y∗k). Extending the approach used in [8] for the parameters a and σ only and in [9]
for the direction of arrival (DOA) parameters, the following lemma is proved in Appendix A:

Lemma 1 The parameter θ = (ν, ϕ, a, σ) is partitioned in two decoupled parameters (ν, ϕ) and (a, σ) in the FIM
associated with the BPSK, QPSK and MSK:

IBPSK = IMSK =

[
I
(1)
B O

O I
(2)
B

]
, IQPSK =

[
I
(1)
Q O

O I
(2)
Q

]
1Note that many papers consider the parameters a2 and σ2 denoted usually as the symbol energy Es and the noise power

spectral density N0 as known. They usually suppose a unit variance for the noise and use the ratio ϵ
def
= (Es/N0)

1/2 as the
modulation amplitude, but in practice these two parameters are unknown as well.

2Usually for such a mixture, explicit closed-form expressions of the CRB are not available.
3Note that this product form does not extend to arbitray QAM (see e.g., [6, rel. (41)] for the 16QAM).

2



with

I
(1)
B = 2ρ2(1− f1(ρ))

[
(2π)2

∑k0+K−1
k=k0

k2 2π
∑k0+K−1

k=k0
k

2π
∑k0+K−1

k=k0
k K

]

I
(2)
B = 2K

ρ

a2

[
1− f2(ρ) 2

√
ρf2(ρ)

2
√
ρf2(ρ) 2(1− 2ρf2(ρ))

]
I
(1)
Q = 2ρ2(1− (1 + ρ)f1(

ρ

2
))

[
(2π)2

∑k0+K−1
k=k0

k2 2π
∑k0+K−1

k=k0
k

2π
∑k0+K−1

k=k0
k K

]

I
(2)
Q = 2K

ρ

a2

[
1− f2(

ρ
2 ) 2

√
ρf2(

ρ
2 )

2
√
ρf2(

ρ
2 ) 2(1− 2ρf2(

ρ
2 ))

]
where ρ is the SNR a2

σ2 and f1 and f2 are the following decreasing functions of ρ:

f1(ρ)
def
=

2e−ρ

√
2π

∫ +∞

0

e−
u2

2

cosh(u
√
2ρ)

du, f2(ρ)
def
=

2e−ρ

√
2π

∫ +∞

0

u2e−
u2

2

cosh(u
√
2ρ)

du.

The determinants of I
(1)
B and I

(1)
Q do not depend on the time k0 at which the first sample is taken and consequently

the CRB for the frequency does not depend on it either, but the CRB for the phase does. The minimum value

for this CRB is attained for k0 = −(K − 1)/2. This particular choice of k0 renders I
(1)
B and I

(1)
Q diagonal and we

obtain in this case the following result, where the MCRB are straightforwardly derived from [2]:

MCRB(θi) =
1

Ey,s

(
∂2ln p(y/s;θ)

∂θ2
i

) , i = 1, . . . , 4.

Result 1 The CRB for the joint estimation of the parameters (ν, ϕ, a, σ) associated with the BPSK and MSK are
given by:

CRB(ν) =
6

(2π)2K(K2 − 1)ρ(1− f1(ρ))
= MCRB(ν)

(
1

1− f1(ρ)

)
(3.3)

CRB(ϕ) =
1

2Kρ(1− f1(ρ))
= MCRB(ϕ)

(
1

1− f1(ρ)

)
(3.4)

CRB(a) =
a2(1− 2ρf2(ρ))

2Kρ(1− f2(ρ)− 2ρf2(ρ))
= MCRB(a)

(
1− 2ρf2(ρ)

1− f2(ρ)− 2ρf2(ρ)

)
(3.5)

CRB(σ) =
a2(1− f2(ρ))

4Kρ(1− f2(ρ)− 2ρf2(ρ))
= MCRB(σ)

(
1− 2ρf2(ρ)

1− f2(ρ)− 2ρf2(ρ)

)
. (3.6)

The CRBs associated with the QPSK are obtained by replacing f1(ρ) and f2(ρ) by, respectively, (1 + ρ)f1(
ρ
2 ) and

f2(
ρ
2 ) in (3.3), (3.4), (3.5) and (3.6).

Note that the proof of the decoupling that is not trivial (see (5.11),(5.12)) has not appeared in the literature
despite the first expressions CRB(ν) and CRB(ϕ) coincide with the expressions given in [10] for CRB(ν) with
(ϕ, a, σ) known and CRB(ϕ) with (ν, a, σ) known, for the BPSK only. The first expressions CRB(ν) and CRB(ϕ)
does not appear in [10] for MSK and QPSK including for (ϕ, a, σ) or (ν, a, σ) known. Using the definition of f1
and f2, these asymptotic CRBs coincide with the MCRB for high SNR. This extends a property proved in [3] for
a scalar parameter only.

3.2 Low-SNR expression

For low SNR, f1(ρ) and f2(ρ) approach 1. We resort to a Taylor series expansion of these functions obtained
by expanding e−ρ and cosh(u

√
2ρ) around ρ = 0. Then, using the values (2n)!/2nn! of the moments of order

2n of zero-mean unit variance Gaussian random variables, we obtain after tedious, but straightforward algebraic
manipulations:

f1(ρ) = 1− 2ρ+ 4ρ2 − 40

3
ρ3 +

208

3
ρ4 + o(ρ4),

f2(ρ) = 1− 4ρ+ 16ρ2 − 256

3
ρ3 +

12544

21
ρ4 + o(ρ4).
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Inserting these expansions in Result 1 allows us to prove the following result4:

Result 2 The CRB for the joint estimation of the parameters (ν, ϕ, a, σ) associated with the BPSK, MSK and
QPSK are given for low SNR by:

CRB(ν) =
6

(2π)2K(K2 − 1)

L!

L2ρL
(1 + Lρ+ o(ρ)) = MCRB(ν)

L!

L2ρL−1
(1 + Lρ+ o(ρ)) (3.7)

CRB(ϕ) =
1

2K

L!

L2ρL
(1 + Lρ+ o(ρ)) = MCRB(ϕ)

L!

L2ρL−1
(1 + Lρ+ o(ρ)) (3.8)

CRB(a) =
a2

KαLρL
(1 + Lρ+ o(ρ)) = MCRB(a)

2

αLρL−1
(1 + Lρ+ o(ρ)) (3.9)

CRB(σ) =
a2

KβLρL−1
(1 + γLρ

3−L/2 + o(ρ3−L/2)) = MCRB(σ)
4

βLρL−2
(1 + γLρ

3−L/2 + o(ρ3−L/2)), (3.10)

with L = 2 for BPSK and MSK and L = 4 for QPSK, and α2 = 4, α4 = 16/3, β2 = 2, β4 = 16/3, γ2 = −16/3
and γ4 = 4.

We note that (3.7) and (3.8) for BPSK and QPSK are refinements of the expressions of CRB(ν) and CRB(ϕ) given
in [4].

3.3 High-SNR expression

For high SNR, the MCRB approaches the CRB at the same rate that f1(ρ) and f2(ρ) approach 0. Because we

prove in Appendix B that these functions are bounded above by e−ρ
√
πρ and more precisely that f1(ρ)/

e−ρln(2)√
πρ tends

to 1 when ρ tends to ∞, the CRB are practically equal to the MCRB for moderate SNR. For example: ρ = 2
(3dB), and ρ = 4 (6dB)] give respectively the upper bound 0.05 and 0.005 for f1(ρ) and f2(ρ), and consequently
the ratios CRB/MCRB is around one from these values of SNR.

4 Numerical results

The analytical result 1 is numerically compared with the approximations given in result 2 and to the approximations
given in [4] for CRB(ν) and CRB(ϕ) of BPSK and QPSK at low SNR.

In these conditions, we see good agreement between the numerical values derived from results 1 and 2 in a large
range of low SNR. Furthermore, we note that the ratio CRB/MCRB is unbounded except for the noise power of
BPSK and MSK for which it tends to 2 when the SNR tends to 0.

4Of course these bounds are going to infinity as the SNR decreases to zero, consequently for the parameters ν and ϕ with
finite support, these results are useful for not too low-SNR only (typically in the range [-5dB, 0dB]).

4



−15 −10 −5 0 5
10

0

10
1

10
2

10
3

SNR(dB)

CR
B/

M
CR

B

BPSK

QPSK

(a)

(b)

(c)

(a)

(b)

(c)

Fig. 1 Ratio CRB(ν)/MCRB(ν)=CRB(ϕ)/MCRB(ϕ) at low SNR: (a) exact value given by (3.3), (3.4), (b) approximate
value given by (3.7), (3.8), (c) approximate value given in [4].

−15 −10 −5 0 5
10

0

10
1

10
2

10
3

SNR(dB)

CR
B/

M
CR

B

BPSK

QPSK

(a)
(b)

(a)

(b)

Fig. 2 Ratio CRB(a)/MCRB(a) at low SNR: (a) exact value given by (3.5), (b) approximate value given by (3.9).
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Fig. 3 Ratio CRB(σ)/MCRB(σ) at low SNR: (a) exact value given by (3.6), (b) approximate value given by (3.10).

5 Appendix: Proof of Lemma 1

To evaluate the FIM (3.2) for the BPSK, the partial derivatives are straightforwardly derived, in particular:

∂2ln p(yk;θ)

∂ϕ2
=

a2g22(yk)

σ4

1

cosh2
(

ag1(yk)
σ2

) − ag1(yk)

σ2
tanh

(
ag1(yk)

σ2

)
∂2ln p(yk;θ)

∂a∂ϕ
= −ag1(yk)g2(yk)

σ4

1

cosh2
(

ag1(yk)
σ2

) − g2(yk)

σ2
tanh

(
ag1(yk)

σ2

)
(5.11)

∂2ln p(yk;θ)

∂a∂ν
= (2πk)

∂2ln p(yk;θ)

∂a∂ϕ

∂2ln p(yk;θ)

∂σ∂ϕ
=

2a2g1(yk)g2(yk)

σ5

1

cosh2
(

ag1(yk)
σ2

) +
2ag2(yk)

σ3
tanh

(
ag1(yk)

σ2

)
(5.12)

∂2ln p(yk;θ)

∂σ∂ν
= (2πk)

∂2ln p(yk;θ)

∂σ∂ϕ
.

Using the regularity condition ∂
∂θi

∫
p(yk;θ)dyk =

∫ ∂p(yk;θ)
∂θi

dyk which is fulfilled for finite mixtures of Gaussian

distributions, the following property holds: E
(

∂ln p(yk;θ)
∂a

)
= 0. With ∂ln p(yk;θ)

∂a = − 2a
σ2 + g1(yk)

σ2 tanh
(

ag1(yk)
σ2

)
, we

obtain

E

(
g1(yk)tanh

(
ag1(yk)

σ2

))
= 2a.

This identity enables us to straightforwardly derive the terms of I
(2)
B using the definition of the function f2(ρ) =

E

(
g2
1(yk)
2σ2

1

cosh2
(

ag1(yk)

σ2

)), where the random variable g1(yk) is equally weighted mixed Gaussian (N (−2a; 2σ2) and

N (+2a; 2σ2)).

To evaluate I
(1)
B , we note that g1(yk) = 2ask +

(
ei2πkνeiϕn∗

k + e−i2πkνe−iϕnk

)
and g2(yk) =

−i
(
ei2πkνeiϕn∗

k − e−i2πkνe−iϕnk

)
. Because sk and nk are independent and the two Gaussian random variables

ei2πkνeiϕn∗
k + e−i2πkνe−iϕnk and ei2πkνeiϕn∗

k − e−i2πkνe−iϕnk are uncorrelated and therefore independent, the
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three random variables sk, e
i2πkνeiϕn∗

k + e−i2πkνe−iϕnk and ei2πkνeiϕn∗
k − e−i2πkνe−iϕnk are collectively indepen-

dent and thus g1(yk) and g2(yk) are independent. Using the definition of the function f1(ρ) = E

(
1

cosh2
(

ag1(yk)

σ2

)),
the terms of I

(1)
B are derived.

Because g1(yk) and g2(yk) are independent and zero mean, E(∂
2ln p(yk;θ)

∂a∂ϕ ) = E(∂
2ln p(yk;θ)

∂σ∂ϕ ) = E(∂
2ln p(yk;θ)

∂a∂ν ) =

E(∂
2ln p(yk;θ)

∂σ∂ν ) = 0. This implies that the parameters (ν, ϕ) and (a, σ) are decoupled in the FIM.
For the MSK, the derivations follow the same lines, replacing g1(yk) by g3(yk).

Finally for the QPSK, evaluating the partial derivatives ∂2ln p(yk;θ)
∂θi∂θj

and taking their expectation are derived

in the same way, provided the log-likelihoods associated with g1(yk) and g2(yk) are gathered, and the hypothesis
of independence of ℜ(sk) and ℑ(sk) is taken into account.

6 Appendix: Bounds on f1(ρ) and f2(ρ)

For high SNR, using the inequality 1
cosh(u

√
2ρ)

< 2e−u
√
2ρ, we obtain after simple algebraic manipulations:

f1(ρ) < 4Q(
√
2ρ) and f2(ρ) < 4

(
(2ρ+ 1))Q(

√
2ρ)−

√
2ρ√
2π

e−ρ

)
, (6.13)

where Q(x) is the error function
∫ +∞
x

1√
2π

e−
u2

2 du classically bounded above by 1
x
√
2π

e−
x2

2 . Applying this upper

bounds in (6.13) gives: f1(ρ) <
e−ρ
√
πρ and f2(ρ) <

e−ρ
√
πρ . To specify the upper bound of f1(ρ), we use the following

expansion

1

cosh(u
√
2ρ)

= 2e−u
√
2ρ(1 + e−u

√
2ρ)−1 = 2

+∞∑
k=0

(−1)ke−(k+1)u
√
2ρ.

Inserting this into f1(ρ), we obtain after simple algebraic manipulations the following alternating expansion:

f1(ρ) = 4

+∞∑
k=0

(−1)keρ[(k+1)2−1]Q[(k + 1)
√
2ρ]. (6.14)

Using the standard bounds 1
x
√
2π

(1 − 1
x2 )e

− x2

2 ≤ Q(x) ≤ 1
x
√
2π

e−
x2

2 and ln(2) = −
∑∞

k=1
(−1)k

k in (6.14) proves

after simple algebraic manipulations that f1(ρ)/
e−ρln(2)√

πρ tends to 1 when ρ tends to ∞.
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