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Abstract Along with the development of powerful pro-
cessing platforms, heterogeneous architectures are nowa-
days permitting new design space explorations. In this
paper we propose a novel heterogeneous architecture for
reliable pedestrian detection applications. It deploys an
efficient Histogram of Oriented Gradient pipeline tightly
coupled with a neuro-inspired spatio-temporal filter. By
relying on hardware-software co-design principles, our
architecture is capable of processing video sequences from
real-word dynamic environments in real-time. The paper
presents the implemented algorithm and details the pro-
posed architecture for executing it, exposing in particu-
lar the partitioning decisions made to meet the required
performance. A prototype implementation is described
and the results obtained are discussed with respect to
other state of the art solutions.

1 Introduction

As reported by the World Health Organization, in 2013
about 1.2 million people died in accidents [34], most of
them attributable to human errors or drivers distrac-
tions. Although the big efforts spent since 1990s to de-
velop safety technologies solutions such as airbags, anti-
lock brakes, traction control, etc, human casualties in
the road environment are still too high. In the latest
years, a new level of on-board intelligence, named Ad-
vanced Driver Assistant System (ADAS), has been de-
veloped to actively assist the driver in order to improve
the road security. The main idea beneath ADAS tech-
nologies is to extend the human visual information with
one or more cameras mounted outside the cabin. These
cameras are autonomously processing the images to re-
veal possible threats and eventually prevent the acci-
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dent by communicating with the on-board ADAS sys-
tem. Along with the evolution of computer vision capa-
bilities, vision sensors are becoming more and more im-
portant to extend the ADAS environmental understand-
ing. In [6, 20, 36] detailed surveys of the available detec-
tion techniques have been presented. In particular, two
main challenges arise from the application point of view.
First, vision-enabled ADAS systems should provide reli-
able detection information. This aspect obviously is the
essential condition to rely on computer vision deploy-
ment and already represents a challenging task so far.
But, because they operate in an environment which in-
trinsically changes very rapidly, they should also provide
this information in real-time. Most of the time, given
the complexity of the involved computer vision algo-
rithms, this requires a computing power which is still
not available from commercial-of-the-shelf (COTS) em-
bedded processing platforms.

In developing effective ADAS systems – and in many
other computer vision applications as well – three main
processing stages can be identified as shown in Fig. 1.
The sparse and noisy image information is firstly pro-
cessed to extract significant features. Those features are
then analysed and classified into known patterns to re-
cover higher level image characteristics. Finally, a post
processing phase includes the complete scene comprehen-
sion and understanding, towards a virtual events percep-
tion.

Feature
extraction

Classification
Image

Model

Post-
processing

Fig. 1: Pedestrian detection overview.

Feature extraction Feature extraction is generally based
on the computation of so-called descriptors and several
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kinds of descriptors have already been proposed to in-
crease detection reliability. In the context of pedestrian
detection, descriptors relying on spatial orientation pat-
terns, such as Local Binary Patterns (LBPs) [28] and
Histograms of Oriented Gradient (HOG) [5] have been
specially studied. With LBPs, neighbor pixel compar-
isons are encoded with binary strings to describe the
local pattern distribution. Since the result is based on
relative luminance, this method limits the dependence
to global luminance variation. HOG-based methods, on
the other hand, aim at improving the descriptor robust-
ness for structured image patterns. For this, the local
spatial characteristics are described with a distribution
of local intensity gradients within uniformly spaced cells.
The resulting gradient histogram within each cell, possi-
bly normalised, represents an element of the final HOG
descriptor. Due to its invariance to luminance variation
and good detection performance [3], the HOG descriptor
is well suited to mobile vision applications. In this paper,
an optimized version of the HOG pipeline is deployed to
reduce the computational requirements for real-time em-
bedded ADAS deployments.

Classification Feature extraction is generally followed by
a classification step. Classification aims at evaluating
whether specific patterns, whose shape is supposed to
be captured by the descriptors, occur in the input im-
age. Machine-learning based systems are generally used
to find correlations between the computed descriptors
and a reference model. These systems typically emit de-
tection results with their associated confidence interval.
The higher is the confidence in the result, the higher is
the probability of a correct classification. In the context
of pedestrian detection, Support Vector Machines (SVM)
are commonly used for performing the classification step,
as a widespread and efficient supervised learning tech-
nique, based on strong mathematical foundations. The
goal of this technique is to separate sets of descriptors
in two classes. Once the reference model has been gen-
erated (with an off-line training phase), SVM produces
detection classifications by labelling the input feature de-
scriptors. Although algorithmically simple, application
of SVM to image classification raises challenging im-
plementations issues, especially if real-time performance
level is required, as in pedestrian detection applications.

Post-processing As previously introduced, the classifica-
tion reliability is one of the most critical point for pedes-
trian detection system. Classically, reliability is assessed
by means of two indicators : the true positive detection
rate (TPR) and a false positive detection rate (FPR).
The former corresponds to the ”sensitivity” of the de-
tection process and the latter to its ”specificity”. Best
methods are supposed to achieve the highest TPR while
keeping the lowest FPR.

Reliability numbers obtained with pure SVM-based
algorithms are generally not sufficient for an effective

ADAS deployment. In response, several post-processing
techniques have been proposed to improve this reliability,
essentially by reducing the FPR.

The contribution of this paper is threefold. First, we
describe a reformulation of the HOG computation pro-
cess allowing a very efficient implementation on deeply
pipelined parallel architectures. Second, we introduce an
original method based on probabilistic filtering method,
exploiting spatio-temporal coherence between consecu-
tive image detections, for significantly improving the re-
liability of the SVM-based classification process. Third,
we describe an heterogeneous architecture implement-
ing these ideas and providing both real-time processing
performance and reliable detection results for pedestrian
detection applications. The term ”bio-inspired” comes
from the fact that this hybrid architecture, which relies
on the transformation of a large amount of unstructured
visual data into smaller, more abstract and robuts rep-
resentations of objects of interest, somehow mimicks the
transition from homogeneous retinal information to ab-
stract and sparse coding in higher cortices of the brain
(transition which has been extensively studied in the field
of neuro-sciences).

The rest of the paper is organized as follows. In sec-
tion 2 several state-of-the-art pedestrian detection solu-
tions are presented. Our proposed solution is compared
with previous works to show the benefits of a bio-inspired
heterogeneous architecture. The section 3 introduces the
mathematical background of the chosen algorithms and
the contribution of the paper to the state-of-the-art. Our
implementation is described in section 4. Section 5 gives
and discusses preliminary results in terms of detection
quality, hardware resource usage and performance, ob-
tained with a prototype implementation running on a
platform embedding a Altera Cyclone 5 FPGA and a
ARM Cortex A9 CPU. Section 6 concludes the paper.

2 Related Work

Because of their potentially pervasive applications, pedes-
trian detection systems are a very active research area.
Although SVM-based system have already shown good
detection performance with real-world images [16, 6],
work is still on-going in order to improve the detection
reliability. For this, two main directions have been sug-
gested. The first is to extract and exploit several sets of
feature descriptors. The second is to improve the robust-
ness of the extracted feature descriptors.

Work described in [38, 37, 31, 14] belong to the first
category. In particular, in [38] and [37] HOG-LBP and
HOG-Local Self-Similarity (LSS) algorithms are respec-
tively deployed to increase the detection accuracy with
multiple algorithm predictions. A further improvement
has been recently proposed in [31], where a HOG-LBP
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detection process is applied simultaneously and sepa-
rately on the three channels of color images. These imple-
mentations rely on weighted inferences among the avail-
able detections to improve the final decision result. It can
be noted, however, that requiring simultaneous compu-
tation of several feature sets places severe constraints on
the implementation, especially if real-time behavior is
targeted. In [14], the computation of a combined HOG-
Discrete wavelet transform (DWT) is restricted to se-
lected ROIs in image in order to reduce the global com-
putation latency. A similar approach is presented in [22],
where ROI-based pedestrian multi-view pose evaluations
are processed with a HOG-LBP pipeline followed by a
non linear SVM. Nonetheless, ROI-based approaches in-
herently reduce the ”active” image part. In an environ-
ment which changes very rapidly, finding an acceptable
trade-off between global computation time and the num-
ber of active ROIs is a complex problem, especially for
time critical applications.

The second investigated approach for improving de-
tection reliability concerns the descriptor robustness. Ba-
sically, the idea is to extend the feature descriptor dimen-
sion in order to improve its robustness in real-world de-
ployment. In [35], for instance, the HOG descriptor is im-
proved by taking into account similarity on the local rep-
resentation of contours. Since the pedestrian appearance
usually presents symetry properties, a geometric feature
description is added. A two-level cascade of SVM clas-
sifiers is then applied to the extended descriptor. Even
though this method improves the performance with re-
spect to a classic HOG descriptor, the processing perfor-
mance overhead once again reduces the applicability of
the method in embedded platforms. Another approach
is to augment HOG descriptors with temporal informa-
tions obtained from video sequences. In [15], for exam-
ple, the authors aggregate several descriptors obtained
by different techniques to extract temporal information
from images. The 3DHOG descriptor proposed in [21]
for characterizing motion features with a co-occurence
spatio-temporal vector also belongs to this category. The
HOGHOF descriptor using histogram of optical flow and
the STHOG (Spatio-temporal histogram of oriented gra-
dient) proposed by the author both increase the discrim-
inative nature of the usual HOG descriptor space, at the
price, here again, of a highest computation cost.

To address performance issues, FPGA and GPU im-
plementations have been proposed. For instance, in [24]
a hybrid CPU/GPU architecture is described, achiev-
ing a speedup factor of 30x with respect to a conven-
tional CPU implementation. In [2] another HOG GPU
optimized implementation is proposed to tackle both the
processing performance and reliability issues. However,
given their energetic requirements, GPU-based solutions
are more suited to high-end, non-embedded applications.
Solutions based on reconfigurable logic, FPGAs in par-
ticular, generally show a better performance/Watt ratio,
making them more attractive for embedded applications.

In [11], for example, a FPGA-based HOG-SVM pedes-
trian detection system is proposed. However, in this re-
alization, the achieved detection performance does not
meet the reliability requirements for a real-world pedes-
trian detection scenario, due to the approximations re-
sulting from the fixed-point computations that are usu-
ally implemented within hardware pipelines. The impact
of arithmetic approximations has been further investi-
gated in [23], where several fixed-point implementations
have been evaluated to better explore the trade-off be-
tween resource usage and accuracy. The conclusion is
that, although current FPGA implementations achieve
the highest processing performance, they do no cope with
CPU-based implementations in terms of detection relia-
bility.

In response to the aforementioned issues, so-called
heterogeneous platforms, combining general purpose pro-
cessors and hardware accelerators, have been proposed.
The idea is to exploit highly parallel architectures for
low-level pixel-wise operations and general purpose pro-
cessors for higher level inferences. Design methodologies
for this kind of platforms have been presented in [12,
13, 30, 17], for example. Typically, design proceeds by
moving computationally intensive parts of the applica-
tion from software to hardware accelerators, while keep-
ing in software the parts having the lowest computa-
tional cost and/or the more demanding requirement in
terms of arithmetic precision. In [19, 1, 4] several meth-
ods, aiming at finding the ”best” partition between the
hardware and software parts, have been formally anal-
ysed to distinguish their benefits in terms of develop-
ment time, efficiency and architecture optimisation. The
approach we propose and describe in Sec. 4 follows this
so-called co-design approach. Comparative results (with
the aforementioned work) will be given in Sec. 5.

3 Detection algorithm

As stated in Sec. 1, the detection algorithm consists
in a feature extraction step followed by a classification
step. The extracted features are HOG (Histogram of Ori-
ented Gradients), computed on a dense grid of uniformly
spaced cells and normalized. Practically, the input image
is divided into small connected regions, called cells, and
within each cell an histogram of gradient directions is
computed. The resulting descriptors are sent to a pre-
trained SVM-based classification machine.

Following Dalal’s formulation in [5], the 1-D spatial
gradient components are first computed as follows:

Gx =
∂I

∂x
= I
(
x+ 1, y

)
− I
(
x− 1, y

)
(1)

Gy =
∂I

∂y
= I
(
x, y + 1

)
− I
(
x, y − 1

)
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Then the gradient magnitude ‖∇I(x, y)‖ and orien-
tation angle θ are evaluated as in Eq. 2.

‖∇I(x, y)‖ =
√
G2
x +G2

y (2)

θ = arctan
Gy
Gx

Within each cell, gradient orientations are then dis-
cretized and accumulated in a small number of histogram
bins. Each histogram is finally normalized using a nor-
malization factor derived from the mean intensity com-
puted across a larger region of the image (block). This
normalization results in better invariance to changes in
illumination or shadowing [9]. The final HOG descriptor
of an image is obtained by aggregating the normalized
histograms.

(a) (b)

Fig. 2: (a) a pedestrian image from the Daimler dataset.
(b) the associated HOG Descriptor.

Fig. 2b shows an example image and its associated
HOG descriptor. It is worth to note that the foreground
silhouette is clearly enhanced with respect to the back-
ground details. These features are completely meaning-
less without a supervised learning machine.

The classification stage compares the produced HOG
descriptor with a pre-trained reference model. This re-
sults in a binary decision, that would mark the current
descriptor for belonging to one of two categories. The
detection reliability is then expressed as a confidence in-
terval, that is usually exploited to assess the classifier ac-
curacy. In this work, the Support Vector Machine classi-
fier proposed in [33] has been used. The SVM algorithm
compares the input vector descriptor with a reference
model, which is produced by a supervised learning phase.
The training step builds the reference model by assigning
a great number of labelled examples to a specific class
among a set of classes. The resulting model is then used
online to map each descriptor to one of the predefined
classes (non-probabilistic binary classification).

More formally, given a set of l data elements x1, ...,xl

and their corresponding classes y1 = y(x1), ..., yl = (xl)
where xi ∈ Rd and yi = ±1, the classification function
can be expressed as follows:

y(x) = sgn

(
NSV∑
i=1

yiαiK(xi,x) + b

)
, 0 ≤ αi ≤ C (3)

where K(xi,x) is a kernel function, C is a regular-
ization constant, αi and b are parameters given by the
learning phase. NSV is the number of reference features,
called Support Vectors (SVs). The examples x1, ...,xl

are HOG feature vectors evaluated from database im-
ages and y corresponds to the associated class. In the
case of a binary classification with a linear kernel, the
general Eq. 3 can be simplified as follows:

y(x) = wT · x + b (4)

where w and b are model parameters, produced by the
training phase. Note that in Eq. 4 the sgn operator has
disappeared because what is actually used is the distance
of the considered input with respect to the decision hy-
perplane.

In most published work, evaluation of object pres-
ence is performed in a limited number of regions of the
image, called regions of interest (ROIs). We propose, by
contrast, to perform this evaluation for all possible posi-
tions of a detection window, therefore called sliding win-
dow, in the camera field of view. This approach has the
advantage of being able to automatically detect new ob-
jects in images, whereas ROI-based approach can only
focus on predefined targets and need some kind of track-
ing system to adjust the position of the ROIs.

The equation 3 is then generalized to take into ac-
count the fact that the response of the SVM step is now
a matrix in which each element gives the detection result
for a given detection window in the original image:

Y =

 y1,1 · · · y1,M...
. . .

...
yN,1 · · · yN,M

 =
[
yn,m

]
(5)

where n ∈ {1, · · · , N} and m ∈ {1, · · · ,M}. The val-
ues N and M respectively corresponds to the number of
windows in the vertical and horizontal direction.

As stated in Sec. 1, a final filtering mechanism is of-
ten added in order to improve detection reliability. Since
the SVM classifier here generates a full detection map,
with a degree of confidence associated to each detection
point in the image, we can directly apply a Dynamic
Neural Field (DNF) model on the HOG-SVM classifica-
tion results. DNFs can can be viewed as a neuro-inspired
and massively parallel ways of performing probabilistic
recursive estimation at the image level (mesoscopic scale
in the visual cortex), instead of relying for instance on
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the Bayesian filtering and tracking of a few areas of inter-
est (Kalman or particle filter). DNFs exploit the spatio-
temporal coherence of the stimuli, relying on population
coding (i.e. distributed representations relying on over-
lapping visual receptive fields) to perform robust infer-
ence. We can indeed expect SVM outputs to display co-
herence between subsequent frames (movement continu-
ity) and between nearby locations on the image (SVM
input being generated from overlapping groups of HOG
cells). Incorporating an evolution model of the target
dynamics, DNFs can even further improve detection re-
liability by reducing the FPR. The following paragraphs
rely on the classical stationary equation for explanatory
purpose, but the reader can refer to [29] for details on
the predictive version using a linear model of movement.

The classical DNF equation models the dynamics of
the mean potential of the neural population in cortical
columns, forming 2D fields in the visual cortex. The po-
tential at position x ∈ X and time t on such a field is
defined by u(x, t), while the input stimulation of the field
is set to y(x, t), corresponding to SVM outputs over the
entire image for the frame at time t. A simplified version
of the one-layer DNF equation gives:

τ
∂u(x, t)

∂t
= −u(x, t) + c(x, t) + y(x, t) (6)

where c is a lateral competition term leading to the
selection/detection of targets, and defined by:

c(x, t) =

∫
x′∈X

w(x,x′)σ(u(x′, t))dx′ (7)

where σ is a non linear activation function (clas-
sically a sigmoid function), and w(x,x′) is the lateral
connection weight function satisfying Eq. 8. Excitatory
standard deviation a controls the expected size of the
target, thus allowing for multi-scale tracking, while the
inhibitory standard deviation b determines the minimal
distance between acquired targets. A and B are respec-
tively the amplitudes of the excitatory and inhibitory
components of the kernel. They thus control/weight the
influence of the lateral competition relatively to the noisy
input data (i.e. here the outputs from the SVM). In prob-
abilistic terms, they thus weight the prior distribution on
target location with observations from the current frame.

w(x,x′) = Ae−
|x−x′|2

a2 −Be−
|x−x′|2

b2 (8)

4 Heterogeneous implementation

The first step is to partition the design into an hard-
ware part and a software part. Since the goal is the
meet the real-time constraints, this partition is based
on the computational cost of each algorithmic compo-
nent. For this, we evaluated the required throughput (in
MB/s) for each algorithmic component. The results are

reported in Tab. 1, for a full-HD resolution (720p) at 30
fps. Not surprisingly, the highest numbers are associated
to the first two steps, which respectively computes the
gradient and accumulates the histograms of their direc-
tions. The related computations involve massive, regu-
lar data-parallelism. They are therefore well suited to
FPGA implementation. The last step (DNF filtering)
exhibits a very moderate requirement in terms of data
throughput but involves computations for which the ac-
curacy is a key requirement. This step is therefore suited
for a purely software CPU implementation. The two in-
termediate steps (normalization and SVM computation)
have intermediate requirements both in terms of data
throughput and accuracy. Because they require an tight
coupling with the previous steps, with still significant
throughput, they will benefit from an implementation
on the FPGA.

The resulting proposal for the hardware-software het-
erogeneous architecture is sketched in Fig. 3. Mapping
the three first steps on the same FPGA minimizes the
risk of communication bottleneck between the hardware
and software parts. On the other hand, having the post-
filtering stage realized in software will make it easier to
test and benchmark different post-filtering algorithms.

Function Required throughput Optimal target

Gradient 27.6 MB/s FPGA

Histogram 27.6 MB/s FPGA

Normalization 3.45 MB/s FPGA

SVM 3.45 MB/s FPGA

DNF 0.34 MB/s CPU

Table 1: Required data throughput (720p resolution, 30
fps, 8x8 cells, 8 bins) and proposed target architecture

In the rest of this section, each design partition is
further detailed and the associated implementation is-
sues discussed. The complete system is then profiled and
assessed in Sec. 5.

4.1 Gradient computation

Since the highest throughput appears right after pixel
acquisition, the performance of this first stage signifi-
cantly affects the overall results. Here, computation of
the gradient is performed using the HOG-Dot algorithm
proposed in [27]. With this algorithm, each gradient is
discretized by projecting it onto a set of predefined di-
rections θk (k = 0 . . . Nb−1). The kth projection is given
by :
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FPGA partition CPU partition

Gradient
Extraction Histogram Block

Normalization

Image

Feature Extraction pipeline

Classification

HOG
Features

Model

DNF
Filtering

Raw
object
detection

Filtered
object
detection

Fig. 3: Overview of the proposed hardware-software architecture.
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Fig. 4: The HOG-Dot parallel implementation.

∂I

∂îk
(x, y) = cos θk [I(x+ 1, y)− I(x− 1, y)]

+ sin θk [I(x, y + 1)− I(x, y − 1)] (9)

where îk is the unitary vector in direction θk.
The greatest projection then directly gives the clos-

est gradient approximation in the discrete domain. The
process is summarized in Fig. 4 (with Nb = 8), where
∇IDot here gives both to the discretized gradient orien-
tation and the corresponding magnitude for each input
pixel.

From an implementation point of view, this approach
has two advantages. First, the Nb projections can be
computed in parallel, thus significantly improving the
overall throughput. Second, it involves only linear oper-
ations – and no square root neither arc tangent – and is
therefore particularly suitable for hardware implementa-
tions. In fact, we have shown that, in this context, the
use of linear approximations – compared to non-linear,
floating point realizations – leads to an average error of
less than 2% [26].

4.2 Histogram computation

Algorithmically speaking, this step is straightforward: it
only consists in accumulating, in an array, each gradient

orientation (the number Nb of discretized orientations
therefore corresponds to the number of histogram bins).
Nonetheless it raises challenging issues at the implemen-
tation level when applied to the data flow produced by
the previous stage. Classically, histogram computation is
decomposed in three successive steps: (i) address compu-
tation, (ii) memory read and addition (iii) memory write.
With a synchronous implementation, the read-modify-
write procedure therefore requires two clock cycles to
handle each input data. The gradient computation stage,
instead, produces one gradient direction per clock cycle.
The architecture we used to solve this problem is de-
picted in Fig. 5. It is a modified version of one initially
presented in [25] and uses two distinct histogram mod-
ules (SubCell0 and SubCell1 in Fig. 5). Input data is
directed alternately to one or the other of these mod-
ules, so that none of them requires more than one access
to the memory at each clock cycle. At the end of each
cell, the final histogram is obtained by simply adding the
two sub-histograms.

binsgradients
SubCell0

SubCell1

Fig. 5: Internal histogram cell generation.

4.3 Histogram Normalization

As previously underlined, a normalization step is required
to limit the sensitivity of the algorithm to the variations
in global luminance. We have evaluated well-known nor-
malization schemes for HOG in terms of detection per-
formance. Results are given in Fig. 6, using the Receiver
Operating Characteristics (ROC) metric – i.e. by plot-
ting the True Positive Rate (TPR) with respect to the
False Positive Rate (FPR). With no surprise, a lack of
normalization leads to the poorest performance, with a
maximum of 83% of TPR at 10% FPR. The three other
assessed normalization schemes (L1-norm, L1-srqt and
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L2) give similar performances. We have chosen to im-
plement the L1-norm because it offers the best trade-
off between precision and implementation complexity. As
shown in Fig. 6, the L1-norm shows only a limited loss
in precision with respect to L2-norm – from 95% to 93%
of TPR both evaluated at 10% FPR. Moreover, L1-norm
does not require the square root operation with respect
to L2-norm but only a division.

Our implementation of the L1-norm computation step
is sketched in Fig. 7. The normalization factor is here
computed as the sum of the histogram. A pre normal-
ization factor is applied to each value to limit the effect
of quantification due to fixed-point encoding. This factor
can be adjusted according to the required accuracy on
the one hand and the output data range on the other
hand.

0 0.05 0.1 0.15 0.2 0.25
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FPR

T
P
R

 

 

No norm
L1 Norm

L1 Sqrt
L2

Fig. 6: Normalization output results.

In Fig. 7 a shift register (upper left) is used to buffer
the histogram values belonging to the same cell so that
each value can eventually be divided by the sum of val-
ues within his cell. This allows the normalization step to
be carried out in a fully pipelined fashion. The division
operation (right) is itself implemented using a pipelined
architecture in order to maximize the global throughput.

H
W

 divider

Histogram 
bin

Normalized 
bin

pre-normalization

Fig. 7: L1 norm module.

4.4 Support Vector Machine

As introduced in Eq. 5, the SVM classification is com-
puted over image subsets, called detection windows (or
simply windows in the sequel). Fig. 8, for example, shows
a situation in which a detection window, here composed
of 8 × 16 cells, is slided over the entire image in order to
detect pedestrians.

(a) Initial Position (b) Second window (one block
shifted on the horizontal di-
rection)

(c) Last window in the first
row

(d) First window of the second
row (one block shifted in the
vertical direction)

Fig. 8: Illustration of the sliding detection window

In most implementations, this sliding mechanism is
carried out sequentially, i.e. by processing one window
after the other. This purely sequential approach is highly
time consuming and, in practice practically precludes
real-time performance to be obtained on general purpose
CPUs. Our implementation circumvent this problem by
leveraging the massive parallelism offered by FPGAs.
The idea is to process the (overlapping) windows of a
single row in parallel (e.g., Fig. 8 those located between
positions a and c). For this, we introduce a dedicated
accumulation unit called a slice. Each slice computes,
in parallel, the dot product between the descriptors ob-
tained on a set of neighboring windows and the model
obtained by the offline training phase.

The dot product itself is obtained from the Eq. 3
with a linear kernel (K(xi,x) is linear) and a binary
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classification problem. For each window:

yn,m(x) =
∑

1≤i≤16
1≤j≤8

wBi,j · xBn+i,m+j
+ b (10)

with n ∈ {1, · · · , N} and m ∈ {1, · · · ,M}

where xBn,m is the HOG descriptor value at coordinates

(n,m) and yn,m is the corresponding SVM detection re-
sult. As introduced in Eq. 5, N and M respectively gives
number of windows in the vertical and horizontal direc-
tion.

Since weight coefficients have constant position within
the detection window, each slice has a closed-loop mech-
anism for hardware reuse. Indeed, the first weight co-
efficients wB1,j

for a block xBn,m are also the first co-

efficients for the next block xBn+1,m
and so on. This

temporal relationship allows the transfer of the weights
between slices, thus reducing the memory footprint and
wiring complexity of the design.

Slices are first structured into horizontal machines
managing the horizontal overlap and the model weights
distribution. For a specific line of HOG descriptors at
the n vertical coordinate, the hardware instance Hz (as
in Fig. 9) computes all the horizontal stride windows as
follows:

y
n,1..M

=


n+15∑
i=n

j mod 8+7∑
k=j mod 8

wBα,k · xBi,j
∣∣∣ j ∈ {1, ...,M}α = i− n+ 1


(11)

The horizontal machine computes the SVM projec-
tions by addressing the wBα,k and xBi,j values. The in-
dexes (i, j) identifies the cell coordinates within the im-
age. The horizontal iterations, relative to windows and
to cells within the window are referenced with j and k
respectively. The Hz machine finishes when the last cell
in the n+ 15th cell row has been processed. In Fig. 9, the
hardware architecture of the horizontal system is given
for the generic line z. Here the SVM weights wBα,k com-

ing from the previous Hz−1 flow as a carry chain among
slices and then to the next Hz+1 instance. In order to fur-
ther minimize the number of concurrent read accesses to
the memory containing the model descriptor, a circular
chain of coefficients is deployed, allowing reuse of these
coefficients between active H machines. Once the weight
coefficients have been sent once, the machines internally
explois the temporal correlations without requiring any
further memory access.

The same approach is applied to a vertical overlap
machine, as illustrated in Fig. 10, which shows how 16
horizontal H modules – as defined in the previous para-
graph – are instantiated to process in parallel 16 lines of
a set of windows, with the corresponding SVM weights
distributed in a loop. The role of the output multiplexer

Hz

Slice 1

Slice 2

Slice ...

Slice 8

xBi,j wBα,k

yn,m

yn,m+1

yn,···

yn,m+7

wBα,k+1

wBα,k+2

· · ·

To Hz+1

wBα,k+8

Fig. 9: The horizontal module Hz

is to select the SVM result corresponding to the corre-
sponding window line, following equation Eq. 12. In this
equation, yn,m is the result associated to the window
at coordinates (n,m) and 16 is the number of lines per
window.

y
n,1···M = {Hz}, with z = n mod 16 (12)

SVM

H1

H2

H...

H16

xBi,j wBi,k

yn,1..M

yn+1,1..M

yn+..,1..M

yn+15,1..M

yn,m

Fig. 10: The complete SVM architecture

The final resul is a parallel architecture capable of
carrying out the SVM detections in a parallel manner.
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4.5 Dynamic Neural Field

To make the DNF model simulation possible, discretiza-
tion is performed in the spatial (grid lattice approxima-
tion) and temporal domains (Euler integration scheme).
Using a matrix formulation, Eq. 6 becomes:

U(t+ dt) =

(
1− dt

τ

)
U(t) +

dt

τ

(
C + Y (t)

)
(13)

where Y is obtained by first thresholding Y (from
Eq. 5), and then normalizing it in [0, 1]. This opera-
tion has the effect of setting all values below −µ to 0,
where µ corresponds to a tolerance on the negative side
of the classification separator. Increasing µ (especially
above the SVM margin value) leads to retaining a larger
amount of false positive results. Yet since DNF models
are designed to deal with low signal-to-noise ratios and
effectively filter false positives out (i.e. limited FPR), set-
ting µ > 0 actually leads to higher TPR. Nevertheless,
and in order to make a fair comparison with the raw
data in the result section, µ was set to 0. The spatial
competition term C is then defined by:

C = W+ ∗ σ(U(t))−B ×Σ(U(t)) (14)

where W+ is the matrix version of the excitatory part
of the kernel function w (see Eq. 8), and Σ(U(t)) is the
grand sum of the matrix σ(U(t)). This approximation is
made possible by setting b = +∞, focusing on a single
pedestrian at a time, but also limiting the convolution to
a reduced excitatory kernel of 5 × 9. Other parameters
take the following values: A = 1, B = 0.3, a = 0.25, as-
suming an affine transform is applied to the input space
(matrix Y of 72 × 44) so that the pedestrian detection
window (8 × 16 HoG cells) corresponds to a unit square.

5 Experimental results

In order to evaluate the heterogeneous architecture pro-
posed in the previous section, a prototype implementa-
tion has been developed. This prototype is built upon
an Arrow SOC development board. This board embeds
an Altera Cyclone V FPGA with up to 45k Arithmetic
Logic Unit (ALM) and 336 9x9 DSP multipliers. Within
the FPGA fabric, a dual core ARM Cortex-A9 is de-
ployed as a Hard Processor System (HPS). The HPS and
the FPGA part are tightly coupled through the AMBA
bus, which allows interoperable communications between
hardware and software routines.

Two issues are addressed by the evaluation process.
Performance on the one hand and reliability on the other
hand. Performance is assessed in terms of processing time
and hardware resource usage (Sec. 5.1). Reliability is as-
sessed in terms of detection accuracy with respect to
state of art existing realizations with different evaluation
conditions (Sec. 5.2).

5.1 Performance evaluation

Tab. 2 gives the details of the FPGA implementation
as obtained using the Altera Quartus II 13.1 toolchain.
The reported values give, for each algorithmic step the
resource usage in terms of ALM, RAM and DSP, the
latency (L) and the estimated maximum clock frequency.

The complete processing pipeline takes only 18% of
the available hardware resources. The required amount
of memory (for line buffering and internal data storage),
in particular, is less than 200 Kbit and largely fits in the
available on-chip FPGA RAM.

Concerning latency, it is defined as the time between
the consumption of the first input data and the produc-
tion of the first output result. This time directly depends
on the depth of the processing pipeline. In our case, in
does not depend on the value of the input data and is
therefore constant.

ALMs RAM DSPs L fMAX

Gradient 464 16 Kb 8 10 107

Histogram 244 131 Kb 0 5120 145

Norm 400 8 K 0 16 83.9

SVM 7300 42 Kb 128 10240 130

Table 2: FPGA hardware results for VGA resolution.
The fMAX and Latency (L) are expressed as MHz and
clock cycles respectively.

In order to demonstrate the potential benefits of our
heterogeneous architecture, the results given above have
been compared to those obtained with two other archi-
tectures: a commercial Intel i7-870 workstation and an
embedded ARM HPS subsystem. For the latters, a state
of the art OpenCV implementation of the HOG and
SVM algorithms was used. Results are given in Tab. 3.
Because the notion of clock frequency is not directly ap-
plicable to software implementations, comparison is per-
formed in terms of processing time for a single frame. It
must be noticed, however, that this notion of process-
ing time has an interpretation which ultimately depends
on the platform. For a purely software implementation,
it is generally defined as the interval separating the end
of the input frame acquisition and the end of the pro-
cessing of this frame by the CPU ((b)-(d) in Fig. 11).
For a FPGA-based implementation, processing actually
occurs in parallel with acquisition, in a fully pipelined
fashion. Processing time, in this case, can be evaluated
by measuring the latency of the output result (interval
(b)-(c) or (a)-0 in Fig. 11).

In our case, the maximum clock frequency and laten-
cies reported in Tab. 2 lead to a global latency of 184 µs
(sum of each module latency). Compared to the I7-870
and ARM implementations this corresponds to a reduc-
tion of 400x and 4630x respectively. In terms of FPS, the
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t
0 a b c d

Image acquisition

CPU processing

FPGA dataflow

Fig. 11: Performance comparison.

multiplication factor, with respect to these same imple-
mentations, are of 20x and 218x respectively. However,
these numbers should be interpreted keeping in mind
that the reported processing times for the CPU imple-
mentations ((b)-(d) in Fig. 11) do not take into account
the image acquisition time. This might lead to a signif-
icant overestimation of the performance results. For the
FPGA implementation instead, the fps value is experi-
mentally measured and only depends to the input pixel
rate. The maximum clock frequency, which in our case,
gives the maximum pixel rate, is 83.9 MHz. For VGA
resolution, this gives a maximum throughput of 273 fps.

i7 870 ARM FPGA

Function time (µs) time (µs) time (µs)

Gradient

38200 425756

0.12

Histogram 61.4

Normalization 0.2

SVM 36000 376566 122

Overall HOG 74200 802322 184

fps 13.5 1.25 273

Table 3: Comparison of processing times at VGA resolu-
tion.

We also compared our implementation to other FPGA-
based implementations of the HOG-SVM application.
In [19] a solution with 10 parallel processing elements
is described. The reported maximum clock frequency is
127.49 MHz but with a maximum frame rate of 30 fps
at VGA resolution. Another heterogeneous HOG archi-
tecture has been proposed in [4]. But, due to the pro-
cessing bottleneck caused by the PCIe communication
interface between the FPGA and the rest of the system,
the histogram computation is 10x time slower than in
our solution (657 µs instead of 64.4 µs). In [11] the PCIe
limitation is significantly reduced to 150 µs with Full-
HD images sent through a GigaE connection but still
represents a significant bottleneck, hindering global sys-
tem performance for the CPU-FPGA proposed solution.
In [1] an hybrid FPGA-CPU-GPU solution is described.
Using FPGA modules leads to a processing time of 311
µs only for gradient and histogram computations. The

normalization step and the Gaussian kernel SVM are
then handled by an external CPU-GPU device though
multiple DMA instances.

Compared to those realizations, our architecture min-
imizes bottlenecks by privileging on-chip communications
and limiting inter-chip communications to low bandwidth
data. Implementing all the most throughput demand-
ing modules in the FPGA, in particular, allows these
throughputs to be limited only by the critical path in
the associated circuitry and not by the bandwith of the
hardware-software interface. The proposed hybrid ap-
proach minimizes also the external interfaces require-
ments thus reducing the global system complexity.

5.2 Detection accuracy

In this section we evaluate the final accuracy of our de-
tection application by comparing it to other state of the
art similar applications. The selected alternatives are
those described in [11], [19], [1] and discussed in Sec. 2.

Evaluation is carried out in two steps : first with
the well-known INRIA dataset, second with real-world
VGA image sequences taken from the Daimler Pedes-
trian Benchmark Dataset [7]. In both cases, the classi-
fiers were trained with positive and negative image sam-
ples from the INRIA pedestrian dataset [5], with an of-
fline training phase performed with the SVMLight frame-
work [18].

5.2.1 Evaluation using the INRIA dataset

Results for this first evaluation step are given in Tab. 4.
For fair comparisons, all the considered techniques are
trained with the INRIA train dataset [5] and verified
with the INRIA test subset (1126 positives and 453 neg-
atives 64×128 windows) and no post-SVM filtering was
used. For [1] only the gradient and histogram parts have
been ported inside the FPGA.

All implementations exhibit comparable results in
terms of TPR (the most critical aspect for pedestrian
detection applications). Our implementation exhibit a
slightly higher FPR (4%). This effect has been tracked
down to the use of the L1-norm approximation and can
be eliminated by adding a post-SVM filtering stage (as
shown in the next section).

[11] [19] [1] Our

TPR 93 % 95 % 95.4 % 94.9 %

FPR 1.0 % 1.0 % 0.1 % 5.5 %

Table 4: Comparisons with state of the art FPGA HOG
implementations on the INRIA train/test dataset.

.
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[3] CPU [7] CPU Tp=2.5s [7] CPU Tp=250ms Our FPGA+ARM

Raw Raw Tracking Raw Tracking Raw DNF

TPR 41.5 64.3 68.7 67.4 79.1 91.0 80.3

FPR - 1.17 0.14 14.3 1.3 17.6 1.0

AUC - - - - - 0.785 0.891

Table 5: Detection performance for cross-dataset implementations. Area Under ROC Curve (AUC) ∈ [0, 1], True
Positive Rate (TPR) and False Positive Rate (FPR) in percents.

5.2.2 Evaluation using the real world video sequences

Obviously, and as recalled in [3], this step is manda-
tory for any pedestrian detection system aiming at real-
istic applications, such as those integrated in ADAS. We
therefore have evaluated our application using a dataset
consisting in sequences of VGA images obtained with a
camera mounted on an outside moving vehicle (Daim-
ler pedestrian video sequence [7]). This kind of data
is indeed the ideal benchmark for an ADAS prototype
because experimental evaluation here nearly perfectly
matches the actual exploitation conditions (with differ-
ent intrinsic camera parameters, extreme luminance vari-
ation and rapid scene changes). Moreover since most of
the false positive detections are not temporally coherent,
they can be removed using a DNF-based post-processing
step (as showed below). Training of the models, how-
ever, is still be carried out using the INRIA dataset.
This so-called cross-dataset approach has been proposed
in [7] and [3]. As a proof-of-concept, a single window
scale is considered in this work. Although it substan-
tially reduces the detection performance with respect to
a multi-scale implementation, it represents a benchmark
to validate our methodology.

Results are given in Tab. 5 using three metrics : the
TPR/FPR metrics on the one hand and the AUC met-
ric on the other hand. The former is the same as pre-
viously defined. The latter has been proposed in [6] in
order to evaluate the overlap between the detected and
the ”ground truth” bounding boxes (BBdt and BBgt in
the sequel) when multiple detection windows are placed
around a pedestrian silhouette. For this, a overlaping fac-
tor is computed as

a =
Area(BBdt ∩BBgt)
Area(BBdt ∪BBgt)

(15)

and compared to given threshold a0. In the PASCAL
challenge [8], a0 is set to 0.5 and we adopt it for com-
parisons as well. Each detected bounding box is evalu-
ated with respect to the manually labelled ground truth.
The higher the overlap, the higher the detection confi-
dence results. If the overlap does not exceed the thresh-
old value, the bounding box is labeled as false detection.
The final detection performance is finally expressed as
the Area Under Curve (AUC) and the TPR/FPR with
respect to the ”ground truth” bounding box BBgt. Re-

ceiver Operating characteristic (ROC) curves are gener-
ated by varying the threshold value and then used to
compute the AUC metric. The AUC metrics is 1 is for
the ground truth, 0 for a fully wrong result and 0.5 for
chance level. Because it does not depend on the detection
threshold (b parameter in Eq. 10), this metric is partic-
ularly useful to estimate the detection gain with respect
to brute FPR/TPR values.

In Tab. 5, the Raw columns correspond to the zero-
crossing output of the SVM with respect to b (e.g., posi-
tive values as pedestrians), while Tracking and DNF re-
sults are relative to the post-processing method applied.
Note that [3] reports only TPR number, without any ad-
ditional implementation detail. Results in [7] are given
for two implementations based on different constraints
on a 2.66 GHz Intel processor. Note also that these two
implementations differ in the size of the detection grid
applied to the image and thus exhibit distinct processing
times (with respect to trajectory-based detections [10]).

First of all, Tab. 5 clearly shows that overall perfor-
mances, compared to those given in Tab. 4, are signif-
icantly reduced. This is an unavoidable consequence of
using a cross-dataset-based approach, in which the de-
tector is confronted to unexpected features. Moreover,
raw SVM detections are considerably less accurate than
filtered ones. The work reported in [7] shows that tem-
poral tracking allows a reduction of the FPR from 1.17%
to 0.14% and from 14.3%0 to 1.3% with 2.5 s and 250 ms
implementations respectively and an increase of the TPR
from 64.3% to 68.7% and from 67.4% to 79.1% respec-
tively. With respect to the TPR, our solution outper-
forms other implementations regardless of the post pro-
cessing stage, and leads to a reduced miss rate for pedes-
trians in a real deployment scenario.

As already shown in Tab. 4, our architecture presents
an higher raw FPR with respect to other methods. In-
deed, with cross-dataset validation the raw FPR reaches
17.6% with respect to the 5.5% achieved with INRIA
dataset. This rate is also higher than the other consid-
ered cross-dataset validations, which limits the FPR to
1.17% and 14.3% respectively. Nevertheless, our solution
performs significantly better for raw TPR values, reach-
ing 91% of accuracy with respect to 41.5%, 64.3% and
67.4% of the considered comparison in Tab. 5.

Tab. 5 also shows the positive effect of the post-
processing stages, either based on tracking or on DNF.
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For our implementation, in particular, the DNF step
drastically reduces the number of false detections, reduc-
ing the FPR from 17.6% to 1.0% (82% improvement).
This drastic reduction in FPR comes at a price though.
As shown in Tab. 4, the TPR value results are indeed
slightly reduced by the DNF post-processing (-10%). This
effect is due to some misled false detection suppression,
which are particularly important in case of not com-
pletely overlapping detection windows. Despite the TPR
degradation, the AUC metric shows that DNF has im-
proved the system response. Indeed, the FPR improve-
ments largely compensates for the TPR degradation, and
the resulting SVM+DNF combination globally improves
the detection reliability. Fig. 12 illustrates visually the
impact of the DNF-based post-processing stage on the
detection results. The left column (Fig.12a, 12c, 12e, 12g)
shows the raw SVM detections provided by the hardware
system on four consecutive frames (from Daimler pedes-
trian dataset). The right column (Fig. 12b, 12d, 12f, 12h)
gives to the detections after the DNF filtering stage has
been applied. As suggested by results in Tab. 5, the FPR
value has been considerably reduced with a stable and
consistent target detection.

6 Conclusions

In this paper, a bio-inspired heterogeneous architecture
has been presented aiming at meeting the requirements
of real-time pedestrian detection applications.

Experimental results, obtained in realistic conditions,
show that this architecture achieves satisfactory detec-
tion performance for this kind of applications, thus envi-
sioning a possible ADAS deployment. They show in par-
ticular the benefit of a co-design partitioning method-
ology, in which a tight coupling of hardware and soft-
ware processing modules leads both to a gain in perfor-
mance and an improvement in detection reliability. They
also demonstrate the benefits of a spatio-temporal DNF-
based post-filtering step in terms of detection reliability,
by reducing the amount of false positive detections.

These results also suggest several possible improve-
ments. First, with respect to the hardware implementa-
tion, an improved normalization schema should be in-
cluded to improve the robustness against variation in
global luminance. Second, using a multi-scale approach
in each detection window is likely to improve the de-
tector sensitivity and the DNF post-processing as well.
Indeed, our prototype considers only one detection win-
dow scale at a time. That is obviously a limitation and
it is reducing the TPR with respect to what a multi-
scale implementation would do. Moreover, a multi-scale
implementation would especially benefit from a hetero-
geneous architecture by leveraging on parallel hardware
processing pipelines and a final high level data fusion
step. Third, the DNF post-processing stage, now imple-
mented in software, could be moved to hardware. Ef-

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 12: Raw SVM detections (left) and DNF filtering
results (right) computed by the proposed architecture.
Subsequent frames were chosen to display the spatiotem-
poral coherence of the SVM results.

ficient FPGA implementations of DNFs have been re-
cently proposed [32] demonstrating that, though com-
plex, hardware implementations of this kind of algorithm
are indeed possible and profitable. Such an optimisation
would allow the introduction of more complex, sparse
model based, filtering mechanisms on the CPU parti-
tion, thus pushing again further the complementarity of
parallel and sequential capabilities of an heterogeneous
architecture.

Finally, another aspect needing further investigation
is power consumption, an issue whose importance is likely
to become crucial for real, embedded ADAS deployment.
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