
HAL Id: hal-01298635
https://hal.science/hal-01298635v1

Submitted on 8 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

An Efficient Trim Structure for Rendering Large B-Rep
Models

Frédéric Claux, David Vanderhaeghe, Loic Barthe, Mathias Paulin, Jean
Pierre Jessel, David Croenne

To cite this version:
Frédéric Claux, David Vanderhaeghe, Loic Barthe, Mathias Paulin, Jean Pierre Jessel, et al..
An Efficient Trim Structure for Rendering Large B-Rep Models. 17th International Work-
shop on Vision, Modeling and Visualization (VMV 2012), Nov 2012, Magdebourg, Germany.
�10.2312/PE/VMV/VMV12/031-038�. �hal-01298635�

https://hal.science/hal-01298635v1
https://hal.archives-ouvertes.fr

Vision, Modeling, and Visualization (2012)
M. Goesele, T. Grosch, B. Preim, H. Theisel, and K. Toennies (Eds.)

An Efficient Trim Structure for Rendering Large B-Rep Models

Frédéric Claux1,2, David Vanderhaeghe1, Loïc Barthe1, Mathias Paulin1, Jean-Pierre Jessel1, David Croenne2

1IRIT - Université de Toulouse 2Global Vision Systems

Abstract
We present a multiresolution trim structure for fast and accurate B-Rep model visualization. To get a good tradeoff
between performance and visual accuracy, we propose to use a vectorial but approximated representation of the
model that allows efficient, real-time GPU exploitation. Our structure, based on a quadtree, enables us to do
shallow lookups for distant fragments. For closeups, we leverage hardware tessellation. We get interactive frame
rates for models that consists of hundreds of thousands of B-Rep faces, regardless of the zoom level.

1. Introduction

Boundary Representation (B-Rep) models are the de-facto
representation for the geometry produced by Computer
Aided Design (CAD) software applications. B-Rep models
contain a set of faces, where each face is described by a basis
surface such as a plane, a cone or a NURBS, and trimming
curves defined in the parametric space of each basis surface.
Each face has one outer trimming curve and zero or more in-
ner trimming curves defining holes, possibly with islands.
The representation of CAD models often requires the use of
faces with a very large number of holes, as the ones appear-
ing in Figure 1. Trimming curves are defined with parametric
representations such as lines, circles, ellipses, polynomial or
rational curves. The accurate visualization of such models in
real time is of high interest for the industry but remains an
open scientific challenge, especially for very large models.

CAD model visualization, which we are dealing with in
this paper, ideally requires unlimited precision (Figure 2). As
users zoom into the model, they expect to see a very accurate
rendering with smooth curves and sharp, crisp features, just
like when they observe actual machined parts.

outer trimming curve

inner trimming curve

Figure 1: Trimmed surface tessellation produces a lot of ill-
configured triangles.

Prior to being given to a 3D rendering engine for display,
B-Rep models are usually tessellated into triangles, readily
renderable by Graphics Processing Units (GPUs). One major
drawback of this process is that tessellation is carried out at a
fixed resolution. The higher the precision, the more accurate
the generated mesh and the display but the lower the ren-
dering performance due to the higher number of tessellated
polygons. Because B-Rep faces sometimes contain hundreds
of trimming curves, a large number of vertices and triangles
are produced to match the shape of these holes and contours,
leading to an increased memory usage and decreased ren-
dering performance. Tessellation examples are presented in
Figure 1.

As addressed in previous work, it is possible to use GPUs
to render faces on the fly during rendering using geometrical
representations. A face is represented by a basis surface and
a binary texture, called a trim texture. The trim texture de-
fines points that are trimmed away from the basis surface and
points that remain on the trimmed basis surface. This process
is called point classification. We call trimmed points off-face
points and remaining points on-face points. The basis sur-
face is rendered using either dynamic tessellation [SS09]
or ray casting [TL08], and during rasterization, off-face and
on-face fragments are identified by a query in the trim tex-
ture. Finally, only the on-face fragments are displayed. Even
though very elegant, such state of the art techniques (Sec-
tion 2) provide insufficient rendering interactivity or require
prohibitive memory to be effective when dealing with very
large models.

Contributions: Based on trim textures, we present a
method allowing us to render large B-Rep models with high
visual quality, at interactive to real-time frame rates. Our

Authors version
The definitive version is available at diglib.eg.org
doi: 10.2312/PE/VMV/VMV12/031-038

http://diglib.eg.org/handle/10.2312/PE.VMV.VMV12.031-038
http://dx.doi.org/10.2312/PE/VMV/VMV12/031-038

F. Claux et al. / An Efficient Trim Structure for Rendering Large B-Rep Models

Figure 2: Our point classification method for trimmed surface rendering scales well with the zoom level. When surfaces are
zoomed out, a multiresolution mechanism reduces the cost of point classification. When surfaces are zoomed in, we leverage
hardware tessellation when possible and perform triangle classification to accelerate overall surface rendering.

Raycasting 0.1 pixel tess. 0.5 pixel tess. Max tess.

Figure 3: Cracks between two faces caused by tessellation.
The circular trimming of the plane, around the tore, is per-
formed with the method of Schollmeyer and Fröhlich that has
no precision problem. Left: Error-free but slow rendering us-
ing raycasting. Middle: Tore tessellation using a chordal er-
ror of 0.5 or 0.1 screen pixel, leaving cracks. Right: pushing
the hardware tessellation factor to its maximum value is not
always sufficient to completely remove cracks either.

main contribution lies in the way we represent and exploit a
vector trim structure for efficient on-face and off-face point
classification. We have observed (Section 2) that raycasting
only can lead to an error-free rendering of B-Rep models.
Nevertheless, it is too slow. Using tessellation almost in-
evitably leads to cracks between faces (Figure 3). Based on
these observations, we choose to deliberately approximate
trimming curves, which does create a few more cracks be-
tween faces, at very high zoom level, but enables extra per-
formance gains. The maximum allowed size of these cracks
is defined during a preprocess. The multiresolution nature
of our trim structure also enables us to reduce computation
costs for distant fragments. Finally, we leverage hardware
tessellation to perform early triangle classification, our struc-
ture being well suited to tessellation-based rendering. Our
trim structure is unbalanced which reduces memory usage,
especially compared to methods based on mipmaps.

Overview: Ideally, point classification should be done on
the original trimming curves but this requires a high com-
putational cost at render time. Instead, we approximate all
types of input trimming curves, within a controllable error,
with sets of connected 2D quadratic Bézier curves repre-
sented implicitly (Section 3) and stored in a quadtree built
over the parametric space of each basis surface (Section 4).
Each node of the quadtree contains a binary coverage value

telling us if the quadtree cell is mainly on or off the face.
Leaf nodes that are not completely on or off the face also
contain references to the quadratic approximation curves
crossing the node. This structure, efficiently handled by the
GPU (Section 7), allows us to save on memory compared to
previous works and to enable a multiresolution lookup re-
ducing screen flicker and accelerate point classification on
distant (Section 5, Multiresolution access) and close (Sec-
tion 6) objects.

Our data structure is only bound to the uv coordinates in
the parametric domain of the basis surfaces, that will be re-
ferred to as the parametric space onwards. Although it is
independent of the rendering method being used, it shows
most of its benefits when used in conjunction with hardware
surface tessellation. For all rendered fragments, we calcu-
late their uv coordinates in parametric space and access our
quadtree trim structure to do the classification. During the
traversal of this quadtree, we stop the traversal as soon as
we reach a node that covers less than a pixel, in which case
we use the node coverage value to do the classification. If we
reach a leaf node, if this leaf node covers more than one frag-
ment and has references to quadratic curves, we resort to a
more expensive quadratic evaluation (Section 5). For object
close-ups, we classify triangles issued from the tessellation
unit (Section 6).

With our method, model features are displayed in a
smoother fashion than when using static model tessellation,
at any zoom level. We demonstrate real-world model render-
ing at interactive frame rates with models containing hun-
dreds of thousands of B-Rep faces (Section 8).

2. Previous Work

Each rendered point (or fragment) of a basis surface needs
to be classified as either on or off the face. The idea of ex-
ploiting trim textures in order to classify points on NURBS-
based models has been introduced by Guthe et al. [GBK05].
Guthe et al. convert NURBS and T-Splines into a hierar-
chy of Bézier patches and binary trim textures where each
node matches a given world space approximation error. Data
is then streamed to the GPU on demand during rendering.
Their work heavily relies on continuous streaming and has

Authors versionThe definitive version is available at diglib.eg.orgdoi: 10.2312/PE/VMV/VMV12/031-038

http://diglib.eg.org/handle/10.2312/PE.VMV.VMV12.031-038
http://dx.doi.org/10.2312/PE/VMV/VMV12/031-038

F. Claux et al. / An Efficient Trim Structure for Rendering Large B-Rep Models

problems dealing with close-ups, where the texture resolu-
tion is exploding.

In an effort to overcome this resolution problem,
Schollmeyer et al. [SF09] define an approximation-free trim-
ming model preserving geometrical properties. They first
break down input NURBS curves into piecewise, bimono-
tonic rational Bézier curves. Dealing with such curves allows
them to determine iteratively if a point shall be classified as
on or off the face. Curve segments are stored in an accel-
eration structure based on a dual binary tree. Their method
is very accurate as they do not need to approximate input
trimming curves. When used in conjunction with raycasting,
rendering is guaranteed to be pixel-precise. On the down-
side, performance starts to drop when too many fragments
need to be classified, using either raycasting or tessellation.

The vectorial representation of trim texture shares com-
mon ideas with vector textures and path rendering. Nehab
and Hoppe [NH08] perform path rendering in realtime. Their
approach is to build a regular grid over a vector drawing, and
then restrict the path rendering work to each cell. Their ap-
proach has no level of details mechanism. Cell size is typ-
ically fixed manually with a tradeoff between performance
and memory consumption.

Ray et al. [RNCL05] introduce Vector Texture Maps.
A Vector Texture Map is a multiresolution vector function
representation, using monotonic representations of vector
curves restricted to the cell of a 4x4 subdivision tree. Point
classification is done by evaluating up to two curves bound
to each cell. Their multiresolution structure is based on a
mipmap. The trimming curves found in CAD models would
sometimes push the quadtree depth down to 12 or more, trig-
gering the creation of a 212 by 212 texture. This memory-
hungry representation is unsuitable in our context.

Hanniel and Haller [HH11] propose an approach for
pixel-accurate rendering using a point classification algo-
rithm based on a 2-pass ray casting. Their method does not
scale up well for large B-Rep models and their point clas-
sification method only works with raycasting. Finally, they
need adjacency information between faces, which is not al-
ways available in B-Rep models.

3. Trimming Curves Approximation

The first step of our approach, done in a pre-process, is to
generate a representation of trimming curves suitable for ef-
ficient GPU access and evaluation.

3.1. Approximation with connected Bézier curves

Trimming curves are first approximated by piecewise
quadratic Bézier curves following a world space approxi-
mation error ε, as shown in Figure 4. We first use a curve
fitting algorithm interpolating discretized points of the orig-
inal curve and producing a fixed-degree (in our case, two)
uniform Bspline. This Bspline is then simplified using a knot
reduction algorithm guided by a parametric space approxi-
mation error calculated from ε, and broken down into a se-

quence of connected quadratic Bézier curves [LM87,LM88].
C1 continuity is maintained across curve endpoints when the
input curves are themselves C1 continuous. Flat quadratic
Bézier curves are converted to their line segment definition.

3.2. Local Implicit Reconstruction

Following the convention used for the input trimming
curves, our quadratic curves are always represented with
globally consistent orientation that ensures that on-face
points are on the left side of the curve. Point classifica-
tion just consists in evaluating on which side of a curve a
point lies. Inside the convex hull of the control polygon of
quadratic Bézier curves, classifying a point is achieved by
using the method introduced by Loop and Blinn [LB05].

Loop and Blinn use a field function f : R2 → R, defined
as f (x,y) = y−x2 if the face is locally convex and f (x,y) =
x2− y if the face is locally concave, to represent a quadratic
Bézier curve, with (x,y) expressed in a quadratic space de-
fined by a quadratic frame (Figure 5). In this quadratic frame
the quadratic Bézier curve is the 0-set of f . The quadratic
frame is also defined such that, in this frame, the succes-
sive control points pi, i = 0,1,2 of the Bézier curve have
their coordinates (xi,yi) successively equal to (0,0), (0.5,0)
and (1,1) (Figure 5). Within the convex hull of the Bézier
curve control polygon, (x,y) point coordinates evaluating to
f (x,y)≥ 0 are on-face.

When classifying a point of coordinates (u,v) in the para-
metric space, its coordinates are transformed into (x,y) in
the quadratic space as follows:x

y
1

=

2(up1 −up0) up0 −2up1 +up2 −up0

2(vp1 − vp0) vp0 −2vp1 + vp2 −vp0

0 0 1

−1u
v
1

where (upi ,vpi), i = 0,1,2 are the coordinates of the Bézier
curve control points in the parametric space. Once this is
done, the evaluation of f (x,y) tells us if the point is on-face
(f (x,y)≥ 0) or off-face (f (x,y)< 0).

4. Building The Multiresolution Structure

The multiresolution representation of the face is generated
off of the parametric space as a recursive power of two sub-
division of uniform cells.

Leaf cells can identify an area that is fully on or off the
face, or that intersects one or two quadratic curves. Cell sub-
division continues until each leaf cell respects these con-
straints. Leaves store a reference to the one or two quadratic
curves they intersect. This is shown in Figure 4(b).

Having two quadratic curves referenced in a cell is in-
evitable because junction points between adjacent piecewise
quadratic segments will not always fall onto cell boundaries.
Also, two distinct trimming curves might be so close to each
other that subdividing cells until these trimming curves end
up in different cells would force the subdivision process to

Authors versionThe definitive version is available at diglib.eg.orgdoi: 10.2312/PE/VMV/VMV12/031-038

http://diglib.eg.org/handle/10.2312/PE.VMV.VMV12.031-038
http://dx.doi.org/10.2312/PE/VMV/VMV12/031-038

F. Claux et al. / An Efficient Trim Structure for Rendering Large B-Rep Models

u

v

x

y

u

v

(a) (b) (c) (d)

x

y

Figure 4: (a) Piecewise quadratic approximation of trimming curves. The control points and the control polygons of Bézier
quadratic curves are shown in red. (b) Quadtree structure: each leaf is either fully inside or outside the trimmed surface,
or intersecting at most two quadratic curves. (c) When a leaf intersects two quadratic curves, the curves are separated by a
line that is bound to the cell. (d) To evaluate a quadratic Bézier curve implicitly, we transform point coordinates from the uv
parametric space to the xy quadratic frame.

x

y

(0,0) (0.5,0)

(1,1)

x

y

(0,0) (0.5,0)

(1,1)

Figure 5: Illustration of the on-face area (in red) defined
by the implicit representation of the Bézier curve in the
quadratic frame. Left: on-face convex area verifying y−x2≥
0. Right: concave area verifying x2− y≥ 0.

be extremely deep in order to respect the constraints. Fig-
ure 6 shows a quadtree built over the parametric domain for
two complex B-Rep faces.

The top-down recursive cell subdivision process is fol-
lowed by a bottom-up on-face cell coverage calculation.
The coverage value is used at runtime as part of the multi-
resolution lookup (Section 5, Multiresolution access).

5. Point Classification Within Cells

Point classification for completely on or off face cells is triv-
ial to handle. We now describe the classification process for
cells with intersecting curves.

Cells with one quadratic curve: In a cell intersected by a
single convex curve, the point coordinates (u,v) in paramet-
ric space are transposed to (x,y) quadratic frame coordinates

Figure 6: Quadtree structure generated for the faces shown
in Figure 1

as explained in Section 3.2. A point is first tested against
the control polygon of the curve and classified as off-face if
y < 0 or y− 2x+ 1 < 0, as on-face if y− x ≥ 0; outside the
control polygon, we classify the point with the evaluation of
the field function f presented in Section 3.2 (Figure 4(d)). In
the concave case, on-face becomes off-face and the opposite
way around.

Cells with two quadratic curves: When two quadratic
curves intersect a cell, we precompute a separating line.
Considering only the two curve parts located within a cell,
a separating line is a line that intersects none of the two
quadratic curves, with one curve on each of its sides (see
Figure 4(c)), and can be calculated with the separating axis
theorem [Ebe06, p. 393]: given two non-intersecting con-
vex polygons, there always exists a line with one polygon
on one side of the line, and the other polygon on the other
side. In addition, it exists a segment of one of the polygons
that is the support of a separating line (Figure 4(c)). Such a
segment is determined by subdividing these polygons until
they do not intersect. This always happens since faces are
2D-Manifold and thus, Bézier curves do not cross. Then we
test lines supported by the refined control polygons segments
and we take as separating line the first line that does not in-
tersect the other polygon (Figure 14 right). At runtime, we
first evaluate on which side of the line a point is, then pro-
ceed with the point classification method described in the
previous paragraph.

Multiresolution access: The binary coverage value deter-
mines if a cell mainly (> 50%) represents an on-face or off-
face surface area in the cell. Leaf cells that are completely
on or off the face are respectively identified in the quadtree
by a coverage value of 1 or 0, with no reference to quadratic
curves.

At runtime, the quadtree traversal is stopped when a node
covering an area of less than a screen pixel is reached. When
reaching a leaf covering several pixels, point classification is
performed following the procedure presented in Section 5.
This multiresolution access enables us to both increase ren-
dering performance by limiting the depth of the quadtree

Authors versionThe definitive version is available at diglib.eg.orgdoi: 10.2312/PE/VMV/VMV12/031-038

http://diglib.eg.org/handle/10.2312/PE.VMV.VMV12.031-038
http://dx.doi.org/10.2312/PE/VMV/VMV12/031-038

F. Claux et al. / An Efficient Trim Structure for Rendering Large B-Rep Models

traversal (Figure 7 and 8(a)) and to avoid visually inelegant
moiré patterns (Figure 8(b)) at low zoom levels.

6. Triangle classification

The input B-Rep structure and topology of a model usually
reflects the way the model has been designed by the CAD
operator, before the B-Rep export took place. Very large B-
Rep surfaces containing only very sparse on or off-face areas
are common. They are prone to hamper performance as they
generate a very large number of fragments during rasteriza-
tion that could ideally be trivially classified. See the airplane
model section in Figure 9.

When B-Rep faces are close to the observer, performance
starts to drop dramatically as point classification needs to be
carried out for a very large number of fragments: even small
surfaces generate many fragments when they are zoomed in.

The cost of point classification in our method mostly
comes from the traversal of the quadtree, which is propor-
tional to the node depth. The classification against the curves
in the reached node, when needed, is relatively fast, as we
use implicit evaluations. To reduce the number of individual
fragment classifications, we propose to classify the triangles
issued from dynamic tessellation. Additionally, for triangles
that we cannot classify, we speed up the classification of un-
derlying fragments.

Basis surfaces are tessellated over the u,v parametric do-
main at runtime respecting a screen-space error (see Sec-
tion 7). For each surface, we precompute a quadtree level ki

u

v

Figure 7: Left: fragment footprint in screen space. The para-
metric domain is distorted to reflect the perspective projec-
tion of the current view. Right: fragment footprint in para-
metric space. We calculate the size of the largest square fit-
ting in the footprint to limit quadtree traversal depth.

(a) (b)
Figure 8: (a) Red fragments making use of our multireso-
lution access. They identify fragments for which we stopped
the traversal of the quadtree at an intermediate node, or at
a leaf node but without resorting to actual curve evaluation.
(b) Left: example B-Rep face with many tiny holes. Center:
moiré pattern visible at low zoom levels. Right: when mul-
tiresolution access is used, holes disappear altogether, and
there is no moiré pattern.

at which we know we will be able to quickly classify at run-
time at least 40% of the parametric domain when covered
by triangles issued from tessellation using a pair of tessel-
lation factors tu = 2ki , tv = 2ki . At runtime, we want the tes-
sellated triangles to both respect the screen space error and
also never cross node boundaries up to the kth

i level in the
quadtree, guarantying that at least 40% of them are classi-
fied during rendering. We thus compute tessellation factors
to respect the screen space error, and adjust them so that their
value match the nearest superior power of two value greater
than or equal to 2ki , giving us the final tessellation factors
2ku f ,2kv f . Figure 10 shows how we adjust the tessellation
factors so that enough triangles are classified.

For every tessellated triangle we classify it before raster-
ization takes place as shown in Figure 11. A single node
lookup is performed by traversing the quadtree up to a max-
imum level k f = min(ku f ,kv f), once per triangle, using its
barycentric center. At this point, a triangle can be classified
as on-face or off-face if the node is a quadtree leaf that

• identifies a completely on-face or off-face area,
• holds one quadratic curve, and the triangle resides in the

convex side of the curve,
• holds two quadratic curves, the triangle points fit on the

same side of the separating line, and reside in the convex
side of the corresponding quadratic curve.

Otherwise, when the triangle cannot be classified, the ref-
erence to the quadtree node is passed to the fragment shader,
which quadtree traversal for the contained fragments will re-
sume from.

The performance increase achieved through triangle clas-
sification must outweight the penalty incurred by doing the
extra tessellation of the surface that would otherwise typi-

Figure 9: Left: untrimmed airplane model revealing many
planar faces cutting the fuselage across. The fuselage has
many circular sections that have been designed as one sin-
gle part in the CAD program. Right: green and red zones in
the piston model match triangles for which triangle classifi-
cation was successful. Red triangles are discarded.

Figure 10: Level 1-aligned triangles (red) cannot be clas-
sified, while level 2 and 3 = ki triangles shown in blue and
green can, and cover 25% and 50% of the parametric space.

Authors versionThe definitive version is available at diglib.eg.orgdoi: 10.2312/PE/VMV/VMV12/031-038

http://diglib.eg.org/handle/10.2312/PE.VMV.VMV12.031-038
http://dx.doi.org/10.2312/PE/VMV/VMV12/031-038

F. Claux et al. / An Efficient Trim Structure for Rendering Large B-Rep Models

Figure 11: Left: planar surface with large off-face areas
highlighted in black. Right: triangle classification. The red
triangles classification fails as their vertices are either on
both sides of the node’s separating line (right), or on the
concave side of the curve (bottom). Green triangles that have
passed classification will either be quickly classified as on-
face areas, or discarded by the geometry shader altogether.

cally be tessellated into the minimum amount of triangles
with respects to the screen-space tessellation error. Triangle
classification is increasingly interesting as the average num-
ber of fragments per triangle increases. On average, the cost
of classifying n fragments lying in a screen-space triangle T
must be lower when tessellation and triangle setup has been
done for T , than when it has not, i.e.

CT (ku f ,kv f)+
n

∑
i=1

CT (ku f ,kv f)
f (i)<

n

∑
i=1

C f (i)

Where CT (ku f ,kv f) is the cost of triangle classification, C f

the cost of fragment classification and CT (ku f ,kv f)
f the cost

of fragment classification taking into account triangle-wide
calculations reused for the fragment.

We have tested triangle classification with a uniform tu =
tv tessellation factor for plane surfaces, due to their large
quantity in CAD models (see Table 1), since the tessella-
tion factor has no impact on the screen space error, and
because we can reliably calculate the number of fragments
early in the rendering pipeline. We enable extra tessellation
only when triangles occupy on average at least 200 frag-
ments on the screen. This is enough to considerably enhance
the performance. For instance, View 1 of the Piston model
runs twice as fast with triangle classification for planar sur-
faces than without.

7. Implementation

CAD models consist of a large variety of basis surfaces.
As demonstrated by Toledo and Levy [TL08] raycasting is
well suited to CAD visualization. It produces high quality
and accurate rendering, with an increase of performance for
simple basis surfaces, comparable to (and sometimes chal-
lenging) tessellation. Nevertheless, raycasting is computa-
tionally heavy for complex basis surfaces. Our data structure
being orthogonal to the rendering algorithm, our rendering
engine can either tessellate all basis surfaces, or raycast sim-
ple surfaces and tessellate on the fly more complex ones.
We implement raycasting for spheres, cylinders and cones ;
torus, fillets and cubic Bézier patches have dedicated tessel-
lation shaders. Other basis surface types such as revolution

1240 fps 55 fps 143 fps 148 fps

950 fps 116 fps 162 fps 171 fps

Static SF PM 0.01mm PM 0.1mm
1240 fps 55 fps 143 fps 148 fps

950 fps 116 fps 162 fps 171 fps

Figure 12: Rendering quality for the piston model. Static:
0.1mm static tess., SF: Schollmeyer and Fröhlich, PM: pro-
posed method with ε = 0.01mm and 0.1mm. Dynamic tessel-
lation rendering using εs = 0.1 screen pixel error.

Figure 13: Views used for performance evaluation for the
Piston (top) and Satellite (bottom) models.

and extrusion surfaces are first converted into cubic Bézier
patches [LM87,LM88], respecting a predefined world-space
approximation error.

When tessellation is used, each basis surface is delivered
to the tessellation shaders as a single patch, with surface data
needed for tessellation read off of GPU texture memory. We
use two tessellation factors by basis surface, one along each
dimension of the parametric domain. The tessellation fac-
tor supported by current hardware is limited to 64, creating
at most 4096 vertices for a single basis surface patch. Our
tessellation strategy is governed by a screen-space error εs
defining the maximum deviation between the actual basis
surface and its discretization and by the tessellation factors
tu and tv (Section 6).

8. Results

We use three CATIA V5 models for our tests, a piston, a
satellite and an airplane section. Table 1 gives details about
surface types and trimming curve types for these models.

Visual quality: Our rendering method provides very high
visual accuracy with close-ups. While static tessellation can-
not handle both large scale, global object visualization as
well as small scale feature-level rendering, with a limited
amount of memory, our approach can display smooth trim-
ming curves, see Figure 12.

Performance: Table 2 shows performance results obtained
with our method and the one proposed by Schollmeyer et al.
Tessellation is performed with the Datakit CATIA file read-
ing API (www.datakit.com). In this test, we set the tol-

Authors versionThe definitive version is available at diglib.eg.orgdoi: 10.2312/PE/VMV/VMV12/031-038

www.datakit.com
http://diglib.eg.org/handle/10.2312/PE.VMV.VMV12.031-038
http://dx.doi.org/10.2312/PE/VMV/VMV12/031-038

F. Claux et al. / An Efficient Trim Structure for Rendering Large B-Rep Models

Basis surface type Satellite Airplane Piston
Planes 36518 276788 210
Cylinders 41832 295262 390
Cones 9722 20488 26
Spheres 667 1595 24
Tores 6517 34266 66
Fillets 166 22125 74
Nurbs 853 20871 0
Other type 173 30669 0
Total basis surfaces 96448 702064 790
Cubic Bézier 1271 71894 0
Total patches 96693 722418 790

Trimming curves
Curve type Satellite Airplane Piston
Line 354197 2767813 2680
Elliptical arc 58797 438295 294
Total Nurbs 58236 496808 606
Nurbs degree 1 12479 2251 0
Nurbs degree 2,3,4 98 407 8
Nurbs degree 5 45571 493723 598
Nurbs degree 6,7,8,11 88 427 0
Total curves 471230 3702916 4186
Quadratics (0.1mm) 690140 5975794 5695
Quadratics (0.01mm) 941476 8661440 7854

Table 1: Model information broken down by basis surface type and trimming curve type. The Cubic Bézier line counts the
number of cubic Bézier surface patches that are created as a result of a 0.1mm approximation of the original basis surfaces.
Any surface which type is not one of the six primitive types (plane, cone, cylinder, tore, sphere or fillet) has to be approximated
into one or more patches. Otherwise, each basis surface gives birth to one patch.

erance to 0.1mm for Bézier surfaces and fillet curves approx-
imation. We set the trimming curve quadratic approximation
so that it matches either a 0.1 or 0.01mm world-space er-
ror. The results are obtained with a GeForce GTS 450 GPU
with 1GB of video RAM, on an Intel Core i7-860 CPU with
8GB of RAM. For our method, they show a performance
gain varying between 10% and 240% depending on the view
or model used.

Memory usage: Statically tessellated models require mem-
ory space that is proportional to the discretization factors.
For surface data, the memory requirements of the proposed
approach is affected by the error tolerance used to approx-
imate complex surfaces with cubic Bézier patches, and fil-
let curves with cubic Bézier curves. The memory usage of
trim structures is affected by the quadratic approximation
error used for trimming curves. Table 3 presents memory

Rendering time (ms)
(a) (b) (a) (b) (a) (b)

Airplane View 1 View 2 View 3
SF 145 130 115 101 50 56
P.M. 0.1mm 108 98 103 92 38 37
P.M. 0.01mm 109 99 93 92 40 37
Satellite View 1 View 2 View 3
SF 44 28 45 31 87 22
P.M. 0.1mm 34 21 30 21 65 14
P.M. 0.01mm 33 20 30 19 65 15
Piston View 1 View 2 View 3
SF 15 8.3 31 15 53 25
P.M. 0.1mm 8.8 3.1 19 4.5 31 8
P.M. 0.01mm 8.9 3.1 19 4.6 33 8

Table 2: Frame rendering time in ms for our proposed
method (P.M.) and Schollmeyer and Fröhlich’s (SF). Model
views used are from Figures 2 and 13. Surface approxima-
tion ε = 0.1mm; Screen-space tessellation error εs = 0.5
pixel. Results are presented using either raytracing and tes-
sellation (a) or tessellation only (b)

.

usage for both our method and Schollmeyer’s, as well as for
statically tessellated models. With an acceptable trimming
curve approximation error of ε = 0.1mm, we consume 30-
45% less memory than Schollmeyer et al. With ε = 0.01mm,
we roughly equal their memory consumption.

Limitations: On some rare occasions, the cell subdivision
process might degenerate when three or more quadratic
Bézier curves are very close, which mostly happens when
a quadratic curve extremity of a trimming loop is very close
to another trimming loop (Figure 14 left). In this case, cell
subdivision goes very deep as the quadratic curve extrem-
ity creates a multi-curve situation which we cannot handle

Airplane B.surface Trimming Total
SF 64 296 360
P.M. 0.1mm 64 197 261
P.M. 0.01mm 64 294 358
Discretization 0.1mm 246
Discretization 0.01mm 1010
Satellite B.surface Trimming Total
SF 10.5 48.1 58.6
P.M. 0.1mm 10.5 31 41.5
P.M. 0.01mm 10.5 43.7 54.2
Discretization 0.1mm 42.5
Discretization 0.01mm 139.3
Piston B.surface Trimming Total
SF 0.119 0.656 0.775
P.M. 0.1mm 0.119 0.309 0.428
P.M. 0.01mm 0.119 0.440 0.559
Discretization 0.1mm 0.629
Discretization 0.01mm 2.683

Table 3: Memory usage, in megabytes, for Schollmeyer and
Fröhlich (SF), our proposed method (P.M.), and statically
tessellated models (for which each vertex takes 36 bytes, ac-
counting for the space used by vertex coordinates, normal
and color, each defined by three floating point values and
each triangle uses three 32-bit vertex indices). Surface ap-
proximation is in all cases done using a tolerance of 0.1mm.

Authors versionThe definitive version is available at diglib.eg.orgdoi: 10.2312/PE/VMV/VMV12/031-038

http://diglib.eg.org/handle/10.2312/PE.VMV.VMV12.031-038
http://dx.doi.org/10.2312/PE/VMV/VMV12/031-038

F. Claux et al. / An Efficient Trim Structure for Rendering Large B-Rep Models

Figure 14: Left: the red circle identifies a junction point
between two quadratic curves. Quadtree subdivision some-
times has to go a long way before converging to a 2-or-less
curve situation. Right: quadtree node with 2 overlapping
curves. A suitable separating line is found after 3 control
polygon subdivisions.

Airplane 0.1mm 0.01mm
Number of patches 365 668
% of total patches 0.12 0.22
Avg. nodes per patch 2.5 4.4
Satellite
Number of patches 147 333
% of total patches 0.23 0.5
Avg. nodes per patch 1.2 3
Piston
Number of patches 0 0
% of total patches 0 0
Avg. nodes per patch 0 0

Table 4: Number of patches for which the quadtree node
level reached 13 and we gave up subdivision (See Figure 14
left). The table also shows the average number of problem-
atic nodes per problematic trimming structure, eg. 1.2 means
that, on average, a problematic trimming structure has 1.2
problematic node.

in a single cell. This situation occurs mainly because we do
not control the location of the junction points between adja-
cent quadratic segments during the approximation process.
Table 4 shows this situation is quite rare though, even for the
very large airplane model.

The method we use for calculating the separating line
(Section 5) may take some time to converge to a solution.
When the curve segments are very close to each other, con-
trol polygon subdivision has to go a long way before a suit-
able separating line is found (Figure 14 right).

9. Conclusion and future work

We have presented a rendering method based on the direct
trimming of either raytraced or dynamically tessellated B-
Rep surfaces. The multiresolution nature of our quadtree
trimming structure and the availability of the coverage value
allow us to perform shallow lookups when possible, when
trimming is done on surfaces distant from the observer, in-
creasing performance in situations where a large number of
distant fragments are to be drawn. When tessellation is used
for rendering, we propose a method to leverage dynamic tes-
sellation to speed up the classification of large sections of
screen fragments for object close-ups.

We have tested the latter technique for plane faces. Fur-
ther work needs to be done to find a reliable generalization
for any type of basis surface. In particular, cylinders, cones
and other surface types typically tessellated into [1,n] subdi-
visions can have a rendering performance that suffers from
the extra tessellation in some situations. Our tests show that
the tessellation factor being aligned on a power of two scale
that follows the quadtree structure is not always beneficial
to performance if we cannot reliably estimate at runtime the
number of fragments being rendered for a particular prim-
itive. A heuristic could be worked out to find the optimal
tessellation factors for a surface in a view-dependent con-
text so that the overall surface classification is the most ef-
ficient, taking into account the number of fragments and the
complexity of the quadtree structure. Our method may also
be applied to subdivision-based tessellation – a process our
quadtree should be friendly with. It might also be possible to
adapt our algorithm or structure so that triangles can be clas-
sified efficiently at runtime in a wider range of situations, not
just when they are known to fit in a single quadtree node.

References
[Ebe06] EBERLY D. H.: 3D Game Engine Design, Second Edi-

tion: A Practical Approach to Real-Time Computer Graphics
(The Morgan Kaufmann Series in Interactive 3D Technology).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2006. 4

[GBK05] GUTHE M., BALÁZS A., KLEIN R.: Gpu-based trim-
ming and tessellation of nurbs and t-spline surfaces. ACM Trans.
Graph. 24 (July 2005), 1016–1023. 2

[HH11] HANNIEL I., HALLER K.: Direct rendering of solid cad
models on the gpu. In Computer-Aided Design and Computer
Graphics (CAD/Graphics), 2011 12th International Conference
on (Sept. 2011), pp. 25 –32. 3

[LB05] LOOP C., BLINN J.: Resolution independent curve ren-
dering using programmable graphics hardware. ACM Trans.
Graph. 24 (July 2005), 1000–1009. 3

[LM87] LYCHE T., MØRKEN K.: Knot removal for parametric
b-spline curves and surfaces. Computer Aided Geometric Design
4, 3 (1987), 217 – 230. 3, 6

[LM88] LYCHE T., MØRKEN K.: A data-reduction strategy for
splines with applications to the approximation of functions and
data. IMA Journal of Numerical Analysis 8, 2 (1988), 185–208.
3, 6

[NH08] NEHAB D., HOPPE H.: Random-access rendering of
general vector graphics. ACM Trans. Graph. 27 (December
2008), 135:1–135:10. 3

[RNCL05] RAY N., NEIGER T., CAVIN X., LÉVY B.: Vector
Texture Maps. Tech. rep., INRIA - ALICE, 2005. 3

[SF09] SCHOLLMEYER A., FRÖHLICH B.: Direct trimming of
nurbs surfaces on the gpu. ACM Trans. Graph. 28 (July 2009),
47:1–47:9. 3

[SS09] SCHWARZ M., STAMMINGER M.: Fast gpu-based adap-
tive tessellation with cuda. Computer Graphics Forum 28, 2
(2009), 365–374. 1

[TL08] TOLEDO R., LEVY B.: Visualization of industrial struc-
tures with implicit gpu primitives. In Proceedings of the
4th International Symposium on Advances in Visual Computing
(Berlin, Heidelberg, 2008), ISVC ’08, Springer-Verlag, pp. 139–
150. 1, 6

Authors versionThe definitive version is available at diglib.eg.orgdoi: 10.2312/PE/VMV/VMV12/031-038

http://diglib.eg.org/handle/10.2312/PE.VMV.VMV12.031-038
http://dx.doi.org/10.2312/PE/VMV/VMV12/031-038

