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Flow thinning (FT) is a concept of a traffic routing and protection strategy applicable to communication

networks with variable capacity of links. In such networks the links do not attain their nominal (maximum)

capacity simultaneously, so that in a typical network state only some links are fully available while on each

of the remaining links only a fraction of its maximum capacity is usable. Every end-to-end traffic demand is

assigned a set of logical tunnels whose total capacity is dedicated to carry the demand’s traffic. The nominal

(i.e., maximum) capacity of the tunnels, supported by the nominal (maximum) link capacity, is subject

to state-dependent thinning to account for variable capacity of the links fluctuating below the maximum.

Accordingly, the capacity available on the tunnels is also fluctuating below their nominal levels and hence the

instantaneous traffic sent between the demand’s end nodes must accommodate to the current total capacity

available on its dedicated tunnels. The related multi-commodity flow optimization problem is NP-hard and

its non-compact linear programming formulation requires path generation. For that, we formulate an integer

programming pricing problem, at the same time showing the cases when the pricing is polynomial. We also

consider an important variant of FT, affine thinning, that may lead to practical FT implementations. We

present a numerical study illustrating traffic efficiency of FT and computational efficiency of its optimization

models. Our considerations are relevant, among others, for wireless mesh networks utilizing MPLS tunnels.

Key words : Survivable network design; Multiple partial link failures; Mixed-integer programming;

Multicommodity flows; Path generation; Robust optimization
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1. Introduction

The paper is devoted to optimization models for flow thinning (FT)—a concept of a generic traffic

routing and protection strategy applicable to communication networks with variable link capacity.

The concept of FT, preliminarily presented in Pióro et al. (2013), is as follows.

FT (abbreviations are listed in Section EC.1 of the electronic companion) assumes that at any

instant of time the network is in some (link availability) state characterized, for each link, by the

fraction of its currently available nominal (maximal) capacity. Typically, nominal capacity is not

simultaneously available on all links, as the usable capacity of each link fluctuates between zero

and its nominal value. The state with all links fully available is called the nominal state.

FT makes use of logical tunnels. Each traffic demand is assigned a fixed set of tunnels, each

realized along a selected path connecting the end nodes of the demand, whose joint capacity is

dedicated to carry the demand (packet) traffic. The maximum (logical) capacity reserved on a

tunnel is called its nominal capacity. The actual capacity of every tunnel is state-dependent and

controlled on-line at its originating node in response to fluctuations in the capacity currently

available on the network links. For that, FT requires a mechanism (protocol) for broadcasting

link-status messages. When a change in a link availability occurs, its originating node sends an

appropriate message to the network nodes that require this information tunnel capacity adjustment.

The adjustment of the tunnel capacity consists in thinning, to the degree depending on the current

link availability state, its nominal capacity. Clearly, capacity of the tunnels should be controlled

in a consistent way, so that in each state the link loads (link load is the sum of the capacity of

all the tunnels using the link) will not exceed their current capacity when the capacity currently

assigned to the tunnels is fully utilized by the packet traffic.

For each demand, the instantaneous traffic admitted to each of its dedicated tunnels at the

originating node cannot exceed the current tunnel capacity. Hence, FT operation requires a traffic

admission mechanism that enables the demand originating node to locally control the amount of

the demand traffic admitted to enter each of its dedicated tunnels.

The instantaneous traffic realized for a given demand is limited by the current overall capacity

of its dedicated tunnels. In order to satisfy the demands, the tunnels, and consequently the links,

should be properly dimensioned so that the state-dependent overall capacity of the dedicated

tunnels is always sufficient to carry a fraction of the nominal traffic volume acceptable for every

demand. Certainly, if the nominal traffic is to be always carried regardless of the state, the nominal

capacity of the tunnels (and hence the nominal capacity of links) has to be made redundant so that

after any thinning the tunnel capacity will still be sufficient to carry the nominal traffic. In fact,

to avoid substantial network over-dimensioning, and hence excessive network cost, the demands
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should in general accept a reasonable decrease of their nominal traffic volumes, at least in the states

with significant capacity reduction, and the state-dependent reductions of demands’ nominal traffic

volumes should reflect the fractions of the nominal link capacity available in a given state. Such

reductions, acceptable for the users, should be determined by the operator using the optimization

models like those developed in the paper assuming realistic link availability state scenarios.

We defer the discussion of the FT application, implementation and practicality issues to Section

9, where we in particular discuss an important FT implementation applicable to Wireless Mesh

Networks (WMN) (Mogre et al. 2007)), based on Label Switched Paths (LSP), i.e., logical tunnels

realized in the Multiprotocol Label Switching (MPLS) technology (Minei and Lucek 2011), with

link-status information exchange realized by means of an adjusted version of the Resource Reser-

vation Protocol – Traffic Engineering (RSVP-TE) (Minei and Lucek 2011)) and a packet traffic

admission control mechanism based on low-level QoS packet flow shaping and policing mechanism

such as for example leaky bucket (Harhira and Pierre 2007)).

The main body of our paper deals with multi-state optimization of resilient multicommodity

flow networks. The advances in this area are remarkable, see for example Wessäly (2000), Grover

(2003), Pióro and Medhi (2004), and the references therein. However, most of the reported research

is not well fit to our purposes since in our optimization models we look at resilience from a non-

standard angle: we treat partial availability of multiple links as typical and deal with a large set of

link availability states (associated with appropriate reduction of traffic demand) that can occur in

network operation. This viewpoint is valid, and even necessary, for dealing with wireless networks

in general, and with WMNs in particular (see Section 9.2). The reason is two-fold. First, the

notion of the state has typically been limited to total failures (when a link fails then its entire

capacity is lost) of single links (all the links can fail but only one at a time). The multiple link

failure case has also been studied but again assuming totally failing links (shared-risk link group—

SRLG (Strand et al. 2001)), for a discussion see for example Orlowski and Pióro (2012)). In fact,

the only problem relevant to ours that we have found in the literature is the problem studied in

Classen et al. (2011) in the context of microwave links. It uses chance constrained programming

with independent random variables characterizing links’ availability (our approach assumes explicit

description of the state space). The problem assumes static routing and realization (with a given

probability) of nominal traffic in all the states, thus considerably simplifying the problem.

The second reason of limited practicability of the research reported in the literature is that it

has been focussed on traffic protection strategies, mostly on traffic flow rerouting strategies (Dahl

and Stoer 1998, Wessäly 2000, Pióro and Medhi 2004) that are not applicable to multiple partial

failures. To the best of our knowledge, only the so called global rerouting (GR) has been studied

in the partial multiple failure context, see Pióro and Medhi (2004) and the references therein. GR
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restores the demand traffic by establishing path-flows (path-flow corresponds to capacity of a FT

tunnel) from scratch in the surviving link capacity, i.e., through a mechanism quite impractical in

communication networks due to excessive end-to-end flow rerouting (see Section 9.4).

FT can be considered as an extension of demand-wise shared protection (DWSP) developed in

Koster et al. (2005) and Wessäly et al. (2005) (DWSP was also studied in Tomaszewski et al.

(2010), Orlowski and Pióro (2012) under the name path diversity protection) to multiple partial

link failure scenarios. DWSP assumes multiple total link failures. In a failure state the path-flows

using the failed links are simply disconnected and the surviving path-flows must be sufficient to

realize the demand traffic volumes, possibly decreased with respect to the nominal volumes. FT is

also related to elastic rerouting (ER) (Shinko et al. 2013). As DWSP, ER assumes multiple total

link failures but allows for decreasing path-flows of the demands unaffected by a failure, as well as

for increasing (to a limited extent) path-flows of the affected demands.

The main purpose of this paper is to study in detail original, theoretically interesting optimization

problems for FT—a concept of novel generic traffic routing and protection strategy. We consider

two versions of the problem. The first version (FTOP) corresponds to the basic version of FT which

does not impose any restrictions on the tunnel capacity thinning. The second version (AFTOP)

is related to affine flow thinning (AFT), a modification of FT that imposes (affine) restrictions on

flow thinning and thanks to that leads to practical implementations of FT.

The paper is organized as follows. In Section 2 we study the basic optimization problem (FTOP)

related to FT, consisting in selection of the sets of tunnels (and their nominal and state-dependent

capacities) and link dimensioning, minimizing the cost of links for a given list of link availability

states and the traffic volumes to be carried at each state. As FTOP is NP-hard, we approach it

using a non-compact linear programming formulation accompanied with an appropriate (unavoid-

ably NP-hard) pricing problem (Section 3) used for path generation (Section 4). In Section 5, we

exploit specific properties of FTOP to obtain polynomial solution algorithms for certain special

cases and discuss complexity computational complexity of the pricing problem. In Section 6 we

present a compact linear lower bound formulation for FTOP. In Section 7, we study AFTOP using

new kind of uncertainty sets, derived from the budgeted uncertainty set notion of Bertsimas and

Sim (2004), that allow to partially relax some of the problem constraints when the uncertainty (in

regard to link capacity in our case) is profound. In this way AFTOP effectively covers more general

sets of link availability states. These theoretical investigations are illustrated in Section 8 with the

results of an extensive numerical study on traffic and cost efficiency of FT and AFT in comparison

with GR (global rerouting—a benchmark protection strategy), as well as computational efficiency

of the developed optimization approaches to FTOP and AFTOP. Application, implementation and

practicality issues of FT are discussed in Section 9, followed by concluding remarks given in Section

10. The electronic companion complements and extends the considerations of the paper.
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2. FTOP—flow thinning optimization problem

Below, after introducing the notation, we formulate the basic problem studied in this paper. In

the problem, we minimize the cost of nominal link capacity that supports a set of nominal tunnel

capacities (i.e., path-flows) that are subject to thinning in each of the considered network states.

2.1 Notation

The network graph G = (V,E) (undirected or directed) is composed of the set of nodes V and

the set of links E . We will by default assume directed graphs where each link e ∈ E represents a

directed pair (v,w) of nodes v,w ∈ V. The set of links incident to node v ∈ V is denoted by δ(v)

and δ(v) := δ−(v)∪ δ+(v) where δ−(v) and δ+(v) are the sets of all links incoming to and outgoing,

respectively, from node v. Each link e is assigned a unit capacity cost ξe (a parameter) and the

nominal capacity y0
e (an optimization variable). Traffic demands are represented by the set D.

Each demand d ∈ D is characterized by a directed pair (o(d), t(d)), composed of the originating

and the terminating node, respectively, and a given value h0
d (a parameter) of the nominal traffic

volume. Traffic volumes and link capacities are expressed in the same units.

Each demand d is assigned a set of admissible paths Pd (called the path-list) composed of

selected elementary paths from o(d) to t(d). (Recall that an elementary path does not traverse

any node more than once.) Paths in Pd, used to realize the demand (traffic) volumes, are assigned

nominal flows x0
dp, p∈Pd, which are optimization variables. Each x0

dp specifies the nominal capacity

(expressed in the same units as link capacity and demand volume) reserved on the tunnel realized

by path p∈Pd. The set of all admissible paths is denoted by P :=
⋃
d∈DPd. The maximum path-

lists, i.e., path-lists Pd containing all the elementary paths from o(d) to t(d), will be denoted by

P̂d, d∈D, with P̂ :=
⋃
d∈D P̂d.

Since we assume elementary paths, the paths will sometimes be identified with the sets of links

they traverse: p ⊆ E , p ∈ P. The given sets of admissible paths define the link-path incidence

coefficients δedp, e∈ E , d∈D, p∈Pd, where δedp = 1 if path p∈Pd traverses link e, i.e., if e∈ p, and

δedp = 0 otherwise. It is important to note that the sets of admissible paths Pd are parameters in

the problem formulations considered in the sequel, although in general we assume that all possible

elementary paths can potentially be used if this is required to achieve the optimum.

The capacity of links is variable, and typically not all the links reach their maximum (nominal)

capacity simultaneously. At any time instant, nominal link capacities defined by the vector y0 =

(y0
e , e ∈ E) are typically available only for a subset of links, and the remaining links have the

available capacity reduced. We thus specify a set of link availability states S, referred to as the

state scenario. Each state s ∈ S is characterized by the two fixed vectors with the components
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between 0 and 1: the link availability coefficient vector αs := (αse, e∈ E), and the demand reduction

coefficient vector βs := (βsd, d∈D). By definition, the capacity of link e available in state s is equal

to yse := αsey
0
e while the traffic volume of demand d to be carried in s is given by hsd := βsdh

0
d.

Any state s with all link coefficients αse equal to 1 is called the maximum (availability) state, and

the subset of all such states in the given scenario S is denoted by S0. Note that the states in S0

differ by the vectors βs only, so that the case S = S0 can be used to model a network without link

capacity reduction but taking into account different traffic demand vectors. In general, however, in

a given state s∈ S, one or more links can have their availability coefficients smaller than 1 so our

model includes multiple partial failures of the network links under varying state-dependent traffic.

The set of links that are not fully available in state s∈ S will be denoted by Es := {e∈ E : αse < 1},

and, symmetrically, the set of states in which link e ∈ E is not fully available, by Se := {s ∈ S :

αse < 1}. Note that Es = ∅ for each s∈ S0. The particular maximum state s0 with βs0d = 1, d∈D, is

called the nominal state. It is the state with all links fully available that realizes the nominal traffic

demand vector h0 := (h0
d, d ∈ D). We do not necessarily require that s0 ∈ S0 since the nominal

state may never occur during network operation. In fact, we do not even require that S0 6= ∅.

In general, not all nominal path-flows x0
dp, d ∈ D, p ∈ Pd, can be realized when the network is

in state s ∈ S \ S0, as the available link capacity ys := (yse, e ∈ E) is decreased with respect to the

nominal link capacity y0. To account for that, the nominal flows must be thinned (decreased) to fit

the reduced link capacity. Still, the thinned flows must be sufficient to carry the (reduced) demand

vector hs := (hsd, d ∈ D). The thinned nominal path-flows for state s ∈ S are denoted by xsdp, d ∈

D, p ∈ Pd. These flows are reserved on the admissible paths for the duration of the state and are

optimization variables. As only thinned nominal flows are allowed, xsdp ≤ x0
dp, s∈ S, d∈D, p∈Pd.

An illustration of the above considerations is given in the electronic companion (Example EC.1).

2.2 Basic problem formulation

Below we will introduce a formulation of FTOP (flow thinning optimization problem)– an optimiza-

tion problem for FT. For given admissible path-lists Pd, d ∈D, the considered problem is denoted

by P(P) (where P =
⋃
d∈DPd) and represented by the following link-path linear programming (LP)

formulation involving variables x0
dp (d∈D, p∈Pd), xsdp (d∈D, p∈Pd, s∈ S) and y0

e (e∈ E):

Problem P(P): C(P) = min
∑
e∈E

ξey
0
e (1a)

[π0
e ≥ 0]

∑
d∈D

∑
p∈Pd

δedpx
0
dp ≤ y0

e , e∈ E (1b)

[λsd ≥ 0]
∑
p∈Pd

xsdp ≥ hsd, d∈D, s∈ S (1c)
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[πse ≥ 0]
∑
d∈D

∑
p∈Pd

δedpx
s
dp ≤ αsey0

e , e∈ E , s∈ Se (1d)

[σsdp ≥ 0] xsdp ≤ x0
dp, d∈D, p∈Pd, s∈ S (1e)

x0, xs, y0 ≥ 0 and continuous (1f)

(where the quantities in the square brackets on the left-hand side are dual variables to be used

later). Objective (1a) minimizes the overall cost of links. The first capacity constraint (1b) makes

sure that the nominal link loads do not exceed the nominal link capacities. Next, the demand

constraint (1c) assures that in each state s∈ S, the thinned nominal flows are sufficient to realize

the volume of each demand d∈D assumed for this state. Then, the second capacity constraint (1d)

assures that in each state s∈ S, the available capacity of each link e∈ Es is not exceeded. Finally,

constraint (1e) assures thinning. Note that constraint (1d) is, for each link e∈ E , written down only

for s ∈ Se, and not for all s ∈ S. This is because for any state s ∈ S \ Se (in which the capacity of

the considered link e is fully available, αse = 1) such a constraint would be redundant—it is implied

by (1b), as the link load
∑

d∈D
∑

p∈Pd
δedpx

s
dp does not exceed its nominal load

∑
d∈D

∑
p∈Pd

δedpx
0
dp

due to constraint (1e). The optimal value of the cost (1a) of P(P) is denoted by C(P).

Observe that our assumption of admitting only elementary paths on the path-lists made in

Section 2.1 is not limiting. If we admitted non-elementary paths in the overall path-list P, then

eliminating loops in any feasible solution of P(P) would never increase C(P). This is true because

if path p′ is an elementary version of path p ∈ Pd, then adding p′ to Pd, putting x0
dp′ := x0

dp and

xsdp′ := xsdp, s∈ S, and finally setting x0
dp and xsdp, s∈ S, to 0 would lead to a feasible solution of (1)

which does not require the capacity reserved on the links in p \ p′. The last statement also implies

that non-elementary paths will not appear in optimal solutions of (1) when ξe > 0, e∈ E .

An illustration of the above considerations is given in the electronic companion (Example EC.2).

2.3 Complexity of FTOP, global rerouting, and flow thickening

In the sequel, by FTOP we will always mean the instances of problem (1) with the full sets of

admissible paths P̂, i.e., P(P̂). (Instances of P(P) with restricted sets of admissible paths P ( P̂

will be denoted by FTOP<.) We note that problem FTOP is NP-hard (already for a polynomial

number of states) since it contains, as a special case, the corresponding DWSP optimization prob-

lem whose NP-hardness was proven by Tomaszewski et al. (2010) for multiple total link failure

scenarios. More precisely, the DWSP optimization problem (and thus FTOP) is NP-hard already

for undirected graphs with |V|= L+ 1 nodes, |E|= 2L links, one demand (|D|= 1), and |S|= L

failure states (each such state consists of simultaneous failures of a certain subset of links). Yet,

whenever the admissible paths P are restricted (predefined) and the number of paths in P is
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polynomial with the size of the network, then problem P(P) is polynomial as its LP formulation

FTOP< becomes compact (provided the number of states is polynomial).

Difficulty of FTOP stems from the thinning constraint (1e). In fact, when constraints (1e),

together with the associated nominal path-flow variables x0 and constraints (1b), are deleted

from formulation (1), then the resulting optimization problem corresponds to the so called global

rerouting (GR) flow restoration strategy, also referred to as unrestricted flow reconfiguration or

dynamic routing, see Pióro and Medhi (2004), Orlowski and Pióro (2012). In GR, the flows xs

realizing the demands in different states are independent of each other and are only coupled by

the capacity constraints (1d). This can be interpreted as if for each state s ∈ S the flows xs

were established from scratch in the currently available capacity αseye, e ∈ E . We note that the

resulting GR optimization problem (1a), (1c), (1d) is polynomial also for the full set of admissible

paths P̂, as, because of the independence of flow variables xs, s ∈ S, it can be easily formulated

as a compact linear program using the node-link notation. GR is the most flexible protection

mechanism we can think of and therefore it provides a lower bound for the network cost (1a).

Yet, for the network considered in Example EC.1 shown in the electronic companion, the optimal

FTOP solution happens to be optimal for GR as well.

A natural extension of FTOP that allows for limited tunnel thickening is discussed in Section

EC.4 of the electronic companion.

3. Dual problem and dual separation

In this section we will formulate the problem dual to the primal problem P(P) defined by (1) and

discuss the separation problem corresponding to the dual polyhedron.

3.1 Dual problem formulation

Problem D(P) dual to P(P) for a given set of admissible paths P is as follows (for derivation see

Pióro and Medhi (2004)):

Problem D(P): W (P) = max
∑
d∈D

∑
s∈S

hsdλ
s
d (2a)

π0
e +

∑
s∈Se

αseπ
s
e ≤ ξe, e∈ E (2b)∑

s∈S

σsdp ≤
∑
e∈E

δedpπ
0
e , d∈D, p∈Pd (2c)

λsd ≤ σsdp +
∑
e∈Es

δedpπ
s
e, s∈ S, d∈D, p∈Pd (2d)

π,λ,σ≥ 0 and continuous. (2e)



Pióro et al.: Optimizing flow thinning with variable link capacity
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 9

Let Π(P) denote the dual polyhedron of all feasible solutions (π,λ,σ) of D(P), where π =

(π0
e , π

s
e, e∈ E , s∈ Se), λ= (λsd, d∈D, s∈ S), σ= (σsdp, d∈D, p∈Pd, s∈ S). We treat the dual solu-

tions (π,λ,σ) as vectors in the RN space of dimension N = |E|+
∑

e∈E |Se|+ |D| · |S|+(
∑

d∈D |Pd|) ·

|S|, and observe that Π(P) is a fully dimensional subset of RN . The projection of polyhedron Π(P)

onto the (π,λ) space Rn, where n= |E|+
∑

e∈E |Se|+ |D| · |S|, is defined as Ω(P) := {(π,λ) ∈Rn :

∃ σ ∈RN−n, (π,λ,σ)∈Π(P)}. Polyhedron Ω(P) is also fully dimensional.

Assume that the linear program P(P), where P ⊆ P̂, formulated in (1) is feasible. Then, due

to the strong duality property (Lasdon 1970, Minoux 1986), the optimal objective W (P) of the

corresponding dual problem D(P) formulated in (2) is equal to the optimal primal objective C(P)

of P(P), i.e., W (P) =C(P). Moreover, P ⊆ P̂ implies that polyhedron Π(P) contains polyhedron

Π(P̂), Π(P)⊇Π(P̂), so that W (P)≥W (P̂) and hence W (P) is actually an upper bound on the

optimal objective C(P̂) of P(P̂), i.e., of FTOP.

Certainly, problem D(P̂) represented by formulation (2) is NP-hard since it is an LP dual of an

NP-hard LP problem P(P̂) represented by formulation (1).

3.2 Dual separation

In the sequel, the dual polyhedrons of FTOP, i.e., Π(P̂) and Ω(P̂), will be simply denoted by Π and

Ω, respectively. The dual separation problem for FTOP is the separation problem for polyhedron

Ω formulated as follows (see Grotschel et al. (1988), Nemhauser and Wolsey (1988)):

Dual separation problem (DSP): Given an arbitrary vector (π,λ) ∈ Rn, determine whether

(π,λ)∈Ω, and if not, find a hyperplane in Rn that separates (π,λ) from the polyhedron Ω.

Let us first notice that if (π,λ) /∈ Rn+ then it is separated from Ω trivially, by one of the non-

negativity inequalities in (2e). Hence, we can assume that (π,λ) ∈ Rn+. Then, it is easy to check

whether π fulfills all constraints in (2b). If it does not, then (π,λ) is separated from Ω by one of

the unfulfilled inequalities in (2b), i.e., by one of the hyperplanes π0
e +
∑

s∈Se α
s
eπ

s
e = ξe.

So now we can assume that (π,λ) ∈ Rn+ and π is feasible with respect to (2b). Under this

assumption (π,λ) /∈Ω if, and only if, there exists a demand d∈D and a path q ∈ P̂d such that for

any σsdq ≥ 0, s ∈ S, (π,λ) does not fulfill constraints (2c) or (2d) for path q. Before formulating a

condition for such a path q (in Proposition 1), we introduce the following useful definitions.

For a given path q ∈ P̂d, the quantity |q|0 :=
∑

e∈E δedqπ
0
e is called the nominal dual length of q,

while the quantities |q|s :=
∑

e∈Es δedqπ
s
e, s∈ S, are called the state-dependent dual lengths of path

q, where as before, δedq, e ∈ E , are the link-path incidence coefficients characterizing path q. Note

that, by definition, Es ∩ q = ∅ implies |q|s = 0, and in particular |q|s = 0 for all q ∈ P̂d and s ∈ S0.
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With these two notions we can rewrite constraints (2c) and (2d) to get the following concise system

of inequalities in variables σsdq, s∈ S: ∑
s∈S

σsdq ≤ |q|0 (3a)

λsd ≤ σsdq + |q|s, s∈ S (3b)

σsdq ≥ 0, s∈ S. (3c)

Now we can define the total dual length of path q ∈ P̂d, a crucial quantity specified for a given

vector (π,λ)∈Rn+:

〈q〉 := |q|0 +
∑

s∈Sq(π,λ)

(|q|s−λsd), (4)

where

Sq(π,λ) := {s∈ S : |q|s <λsd}. (5)

Proposition 1 Consider a given vector (π,λ)∈Rn+ with π fulfilling constraints (2b). Then (π,λ) /∈
Ω if, and only if, there exists a demand d∈D and a path q ∈ P̂d such that

〈q〉< 0. (6)

If this is the case, the inequality reverse to (6), that is,∑
e∈E

δedqπ
0
e +

∑
s∈Sq(π,λ)

(
∑
e∈Es

δedqπ
s
e −λsd)≥ 0, (7)

is not fulfilled by (π,λ) and thus the hyperplane
∑

e∈E δedqπ
0
e +

∑
s∈Sq(π,λ)(

∑
e∈Es δedqπ

s
e − λsd) = 0

separates (π,λ) from Ω. (The proof is given in Section EC.3.2 of the electronic companion.)

Proposition 1 states that (π,λ) ∈ Ω if, and only if, (i) (π,λ) ∈ Rn+, (ii) π fulfills (2b), and (iii)

for each d∈D, q ∈ P̂d, the total dual length of q with respect to (π,λ) is nonnegative, i.e., 〈q〉 ≥ 0.

The last condition, however, cannot be used as an inequality characterizing polyhedron Ω since

its form (7) depends on a particular vector (π,λ) through Sq(π,λ). Still, it directly implies such

inequalities—the explicit characterization of the projected polyhedron Ω is given in Section EC.3.1

of the electronic companion.

Finally, we observe that by equivalence of optimization and separation in linear programming,

see Grotschel et al. (1988), Nemhauser and Wolsey (1988), DSP is NP-hard since problem D(P̂)

specified in (2) isNP-hard as a problem dual to FTOP which isNP-hard (already for polynomially

bounded number of states |S|, see Section 2.3). This fact is reflected by the difficulty of finding a

path q violating inequality (7). We will come back to the complexity issues related to FTOP and

DSP in Section 5.
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4. Path generation

The link-path LP formulation (1) of FTOP is noncompact because of the presence of exponentially

many path-flow variables x (and, as a matter of fact, of exponentially many constraints (1e))

corresponding to all possible elementary paths included in the maximum admissible path-list P̂.

The formulation is potentially noncompact also because of possibly exponential number of states

in the set S (since the number of all link availability coefficient vectors is in general exponential,

equal to m|E| when each link has m levels of availability). To avoid such an additional intrinsic

hardness of the problem, we assume that |S| is polynomially bounded by the number of links.

Thus, in practice, formulation (1) of FTOP cannot be solved directly, as we are virtually not able

to include all elementary routing paths in the path-lists. In order to consider all paths in P̂, we need

to apply path generation (PG), see Ahuja et al. (1993))—a classical technique in multicommodity

flow networks related to column generation in linear programming, cf. Lasdon (1970), Minoux

(1986). With PG, starting from some initial path-lists Pd, d∈D, we iteratively generate new paths,

one per demand, and add those paths that may improve the solution to the path-lists—in effect,

we are adding the corresponding path-flow variables to the problem formulation. As discussed

below, this is done by solving an appropriate pricing problem using, as parameters, optimal dual

variables, i.e., an optimal solution (λ∗, π∗) of the current problem D(P) dual to P(P).

The application of PG to FTOP is explained below.

4.1 Pricing problem

PG is based on the so called pricing problem (PP). In essence, PP is similar to DSP (in the sequel,

by DSP we will mean its version implied by Proposition 1), but with two main differences:

• the point to be separated from polyhedron Ω is not just any vector (π,λ)∈Rn+ with π fulfilling

(2b), but one of the optimal solutions of the dual problem D(P) for some P ⊆ P̂
• in PP we need to find, for each d∈D, not just a path (if any) in P̂d which separates the current

optimal dual solution (π,λ) of D(P), but rather a path q ∈ P̂d \ Pd for which the constraints of

Ω corresponding to the given d and q are most violated by (π,λ). In the sequel, the problem of

finding such a path, i.e., PP for this setting, will be denoted by PP(P, π,λ, d).

In fact, the second property does not necessarily have to be obeyed in PG since any path q ∈ P̂d
that violates at least one of the constraints (7) provides a cut that decreases, in a valid way, the

current polyhedron Ω(P). Still, the use of the most violated cuts implied by the second property

can substantially speed up the path generation process, especially when finding the most violated

cut is not substantially more time consuming than finding an arbitrary cut.

Consider a given dual optimal solution (π,λ) of D(P) and a given path q ∈ P̂d for some d ∈D.

Let D(q) denote the degree of violation of constraints (7) (for the considered d and q) by vector

(π,λ).
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Proposition 2 D(q) = max{−〈q〉,0}. (The proof is given in Section EC.3.3 of the electronic

companion.)

Certainly, Proposition 2 is not surprising as it implies that the pricing problem PP(P, π,λ, d) is

equivalent to

minimize 〈q〉 over q ∈ P̂d, (8)

i.e., to finding the most violated separating inequality (7). Clearly, when the solution 〈q〉 of (8)

is negative, then for a given d ∈ D q /∈ Pd and D(q) = −〈q〉 is the largest degree of violation of

constraints (7) by (π,λ) corresponding to a given d∈D.

Finally, let us note that the dual separation problem and the pricing problem are similar in that

in both DSP and PP we need to find a path with a negative total dual length 〈q〉.

4.2 Binary formulation of PP

The pricing problem formulated in (8) is difficult because of the particular form of the total dual

length 〈q〉. Nevertheless, the problem can be stated as a binary programming problem by means

of formulation (9) given below. In the formulation, binary variables ue, e ∈ E , specify the path

q ∈ P̂d we are looking for: q = {e ∈ E : ue = 1}. Binary variables zs, s ∈ S, in turn, identify the set

Sq(π,λ) corresponding to the so defined path q: Sq(π,λ) = {s ∈ S : zs = 1}. Besides, δ+(v) and

δ−(v) denote the sets of all links outgoing from, and all links incoming to node v ∈ V, respectively.

Also, o(d) is the originating node of the considered demand d∈D and t(d) is its terminating node.

min L=
∑
e∈E

π0
eue +

∑
s∈Se

(
∑
e∈E

πseue−λsd)zs (9a)∑
e∈δ+(o(d))

ue−
∑

e∈δ−(o(d))

ue = 1 (9b)

∑
e∈δ+(v)

ue−
∑

e∈δ−(v)

ue = 0, v ∈ V \ {o(d), t(d)} (9c)

ue ∈ {0,1}, e∈ E ; zs ∈ {0,1}, s∈ S. (9d)

Constraints (9b) and (9c) define, through variables ue equal to 1, a routing path q from o(d)

to t(d). Note that in any optimal solution zs = 0, when the length, with respect to πs, of the

constructed path q (i.e., |qs|) is greater than λsd, and zs = 1 when |qs|<λsd. This is easily seen from

the form of the objective function (9a), which in order to be minimized should have all the terms∑
e∈E π

s
eue − λsd cancelled (through zs = 0) when positive, and maintained (through zs = 1) when

negative. Hence, an optimal solution u, z,L of (9) defines an optimal path q := {e ∈ E : ue = 1},

with L= |q|0 +
∑

s∈Sq(π,λ)(|qs| −λsd) equal to its total dual length 〈q〉.
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To get rid of bi-linearities zs · ue in the objective function, we can introduce binary variables

Zse , e∈ E , s∈ S, rewrite objective as

L=
∑
e∈E

π0
eue +

∑
e∈E

∑
s∈S

πseZ
s
e −
∑
s∈S

λsdz
s, (10)

and add the constraints

Zse ≤ ue, Zse ≤ zs, Zse ≥ 0, Zse ≥ ue + zs− 1, e∈ E , s∈ S. (11)

These constraints force the equalities Zse = zsue, e ∈ E , s ∈ S, so that Zse = 1 if, and only if, e ∈ Se

and s∈ Sq(π,λ); otherwise Zse = 0. Hence, variables Z can be assumed continuous.

4.3 PG algorithm

The algorithm for solving FTOP by path generation is as follows.

Step 1: Define initial admissible path-lists Pd, d∈D, and P :=
⋃
d∈DPd.

Step 2: Solve the dual problem D(P) given by (2) to obtain optimal dual variables π,λ.

Step 3: For each d ∈D solve PP(P, π,λ, d) formulated in (9). If optimal L is negative then add

the resulting path q to the path-list Pd. If for no demand a path has been added, then stop: the

resulting path-lists are sufficient to solve FTOP to optimality. Otherwise, go to Step 2.

When the algorithm stops, after K iterations, say, it results in a sequence of dual polyhedrons

Π(P0)⊃Π(P1)⊃ . . .⊃Π(PK), where the inclusions are proper. The corresponding optimal dual

objective values are decreasing, W (P0)≥W (P1)≥ . . .≥W (PK), and W (PK) =W (P̂) =C(P̂).

Assume that the set S0 of maximum availability states is not empty. If there exists a path q ∈ P̂d

with |q|0 <
∑

s∈S0 λ
s
d, then 〈q〉 ≤ |q|0 −

∑
s∈S0 λ

s
d < 0 (because |q|s = 0 for all s ∈ S0). Hence, for

any such path q the degree of violation D(q) is greater than or equal to
∑

s∈S0 λ
s
d−|q|0 > 0. Thus,

while the pricing problem (finding a path q with minimum 〈q〉) is in general NP-hard (see Section

5), finding a path q with minimum |q|0 is obviously polynomial. Hence, we may speed up the PG

process: in Step 2 for each d∈D we find a path q ∈ P̂d with minimum |q|0, and if |q|0 <
∑

s∈S0 λ
s
d,

then we add path q to the problem and skip solving PP(P, π,λ, d) for the current d. Certainly,

the overall time efficiency of this modification is in general hard to assess since there is a tradeoff

between the value of D(q) (the larger the better) and the time spent in Step 2.

An illustration of the above considerations is given in the electronic companion (Example EC.3).
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5. Computational complexity of PP, DSP, and special cases

Although not theoretically guaranteed, the iterative PG process described in Section 4.3 will typ-

ically terminate in a polynomial number of steps, as it is closely related to the revised simplex

method (Lasdon 1970, Minoux 1986), an exponential algorithm which exhibits this desirable prop-

erty in practical applications. Indeed, consider a path q ∈ P̂d \ Pd that solves PP(P, π,λ, d) for

d ∈D. The variables x0
dq and xsdq, s ∈ S, are by assumption non-basic as they are not seen in for-

mulation (1) of P(P), and the maximum degree of constraint violation D(q) is equal to the sum

of the reduced cost of variable x0
dq and of the reduced costs of those variables among xsdq, s ∈ S,

that have the negative reduced cost. Thus, the computational complexity of the PG algorithm is

in practice determined by the complexity of the pricing problem PP.

Let us consider the special case of state scenarios containing only partial failures of single links.

Hence, S = S0 ∪ S1, where S0 is a set of maximum states (recall that in a maximum state, all

links maintain full availability), and S1 :=
⋃
e∈E S(e) is a set of single-link partial availability states.

Each set S(e) represents a set of states in which only link e has the reduced capacity, i.e., s∈ S(e)

implies αse < 1 and αse′ = 1, e′ ∈ E \ {e}. Note that if link e is assumed to be perfectly reliable then

the set S(e) is empty. It turns out that in the considered case the pricing problem is polynomial.

Lemma 3 Consider a given single-link failure scenario S and a fixed demand d ∈ D. The total

dual length of any path q ∈ P̂d is given by the formula

〈q〉=
∑
e∈q

ω(e)−
∑
s∈S

λsd, (12)

where the (non-negative) link weights ω(e), e∈ E are defined by

ω(e) := π0
e +

∑
s∈S(e)

min{πse, λsd}. (13)

(The proof is given in Section EC.5.1 of the electronic companion.)

Since the term
∑

s∈S λ
s
d in (12) is constant, solving PP is equivalent to finding a shortest path with

respect to the link weights ω(e), e ∈ E , e.g., by the Dijkstra algorithm. Hence, PP is polynomial,

and, by equivalence of optimization and separation in linear programming (Grotschel et al. 1988,

Nemhauser and Wolsey 1988), FTOP is in this case polynomial as well (an appropriate compact

LP formulation is given in Section EC.5.2 of the electronic companion).

The same argument shows that DSP (the dual separation problem), and hence the dual to

FTOP, are polynomial as well. Moreover, the dual can be solved by the ellipsoidal method of

Khachian (1979) (a polynomial algorithm for LP) using the cuts implied by Proposition 1, i.e., by
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finding successive paths that separate the current dual solution. The paths found in this way will

constitute a polynomial set of paths required to solve FTOP to optimality.

The above weight construction applies to undirected networks as well. Also, the compact FTOP

formulation (EC.26) can be easily modified for the undirected links case. Besides, as shown in

Section EC.6 of the electronic companion, the single-node failure scenarios can be treated by

polynomial algorithms analogously as in the single-link case.

As already mentioned at the end of Section 3.2, the dual separation problem is NP-hard for

the general case of a state scenario with polynomially bounded size. Moreover, DSP is NP-hard

already for partial double-link failures, i.e., when any two links can fail simultaneously. This was

demonstrated by Coudert et al. (2007) (see also Orlowski and Pióro (2012)) for a DWSP problem

formulation analogous to (1). Thus the pricing problem (8) is most likely NP-hard in those cases

as well, as it is very similar to DSP. Yet, we cannot be sure of that as NP-hardness of DSP (and,

for that matter, NP-hardness of FTOP) does not necessarily imply NP-hardness of PP, since

formally PP is simpler than DSP (see the discussion at the beginning of Section 4.1).

6. A lower bound formulation

Since FTOP is NP-hard, it is worthwhile finding a polynomial problem that provides a lower

bound for its cost C(P̂). A compact linear program, referred to as LBP, whose solutions can be

used as the lower bound of FTOP without the necessity of generating paths is as follows.

min C ′ =
∑
e∈E

ξey
0
e (14a)∑

e∈δ+(v)

x0
ed−

∑
e∈δ−(v)

x0
ed = 0, d∈D, v ∈ V \ {o(d), t(d)} (14b)

∑
d∈D

x0
ed ≤ y0

e , e∈ E (14c)∑
e∈δ+(o(d))

xsed−
∑

e∈δ−(o(d))

xsed ≥ hsd, d∈D, s∈ S (14d)

∑
e∈δ+(v)

xsed−
∑

e∈δ−(v)

xsed = 0, d∈D, v ∈ V \ {o(d), t(d)}, s∈ S (14e)

xsed ≤ x0
ed, e∈ E , d∈D, s∈ S (14f)∑

d∈D

xsed ≤ αsey0
e , e∈ E , s∈ Se (14g)

all variables x, y0 continuous and nonnegative. (14h)

Note that for any demand d ∈ D, the value of flow x0
d = (x0

ed, e ∈ E), i.e.,
∑

e∈δ+(o(d)) x
0
ed −∑

e∈δ−(o(d)) x
0
ed, does not have to be explicitly specified in the formulation.



Pióro et al.: Optimizing flow thinning with variable link capacity
16 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

As shown in Section EC.7 of the electronic companion, the solution of formulation (14) is a lower

bound for FTOP because all constraints of (14) are obviously fulfilled by the link-flows induced by

every feasible solution of (1). It is also shown there that in general the cost of LBP is strictly lower

than the cost of FTOP so that a natural question arises: why not an LBP-based protection

strategy (i.e., a kind of link-flow thinning) instead of FT is considered in this paper?

The reason is (see Section EC.7) that (i) the link-flow solution delivered by LBP cannot in general

be transformed to a feasible path-flow solution and therefore the simple traffic control mechanism of

FT cannot be applied; (ii) as illustrated in Tables EC.2 and EC.3 in the electronic companion, the

cost advantage of LBP over FTOP is only marginal; (iii) in general the optimal nominal link-flow

x0 delivered by LBP must contain loops and this might cause problems in traffic routing.

7. Affine versions of FT

As discussed in more detail in Section 9, the practical usefulness of the FT strategy in its form

presented so far is limited for three reasons. First, broadcasting of the current link capacity

information in real time could be difficult. Next, it would be difficult to solve FTOP (and to

store the resulting solution) for an excessive (exponential) number |S| of states. Finally, even if

we managed to achieve an optimal solution (and could store it) for a given (reasonably large) set

of states S, for the valid states outside S the thinning would be undefined.

Because of that, in this section we will consider a version of FT called affine flow thinning (AFT)

that addresses the above issues. In particular, we will study a variant of FTOP (called AFTOP)

corresponding to AFT. AFTOP relies on using the decision rules largely used in multi-stage robust

optimization, and more particularly, affine decision rules (Ben-Tal et al. 2004) (application of affine

decision rules to traffic routing were introduced by Ouorou and Vial (2007) and further investigated

by Poss and Raack (2013)). In essence, AFTOP turns out to be nothing else but a particular

example of an adjustable robust linear program, where the uncertainty set is S and the adjustable

variables are xsdp. Hence, rather than letting the adjustable variables depend on each specific

state s, following Ben-Tal et al. (2004) in AFTOP we let these variables depend affinely on the

parameters that describe the state: αse, e ∈ E . We adapt these ideas by considering two special

types of FT described in Section 7.1 and Section 7.2 below.

7.1 Affine flow thinning and the related version of FTOP

With AFT, the flows x0
dp reserved on paths d ∈ D, p ∈ Pd, are thinned to xsdp for the states s ∈ S

not in an arbitrary way, as with FT, but by assumption each such flow is thinned according to its

individual affine function of the availability coefficients αs. More precisely,

xsdp =Adp(α
s) = z0

dp +
∑
e∈E

zedpα
s
e, d∈D, p∈Pd. (15)
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Note that parameters z0
dp, z

e
dp, e ∈ E , of the affine function Adp specified for the given path p ∈ Pd

do not depend on the state s. The AFT version of FTOP (formulated for FT in (1)) is referred

to as AFTOP. In AFTOP, the parameters z become optimization variables and variables xs play

only an auxiliary role. Such a formulation is obtained by adding equations (15) to (1).

Observe also that with appropriately limited cardinality of S, traffic efficiency of AFT can be

very close to traffic efficiency of FT. In fact, as shown in Poss and Raack (2013) for a similar

problem, AFT becomes equivalent to FT if, and only if, S contains at most |E|+ 1 states. In

Section 8.2 we will compare traffic efficiency of AFT and FT for state scenarios with |S|> |E|+ 1.

In the implementation aspect, AFT is more practical than FT. Although as FT, AFT must be

aware of the current link states αs, it will use the (optimized) affine functions Adp, d ∈D, p ∈ Pd,

for thinning the nominal flows. Such thinning, contrary to FT, is applicable to all possible states,

i.e., also to the states not in the set S assumed for optimization. Traffic efficiency of such extended

thinning is addressed in Section 8.2.

In spite of the above advantages, AFT suffers from two problems. First, introduction of affine

coefficients (variables) z0
dp, z

e
dp, e∈ E , for each path p∈Pd, d∈D, and each link e∈ E , leads to large

linear programs for AFTOP, both when included in formulation (1) or when using the dualized

formulation presented in Section 7.4. Second, AFT can still be hard to implement because the

affine function of each path p involves, as arguments, the link availability coefficients of all links.

Thus, disseminating the link-status information is as difficult as for FT.

7.2 Restricted affine flow thinning

As AFT, restricted affine flow thinning (RAFT) assumes that the flow on each path for each state

is an affine function of the availability coefficients αse, but only of the links that belong to path p:

xsdp =Adp(α
s(p)) = z0

dp +
∑
e∈p

zedpα
s
e, d∈D, p∈Pd, (16)

where αs(p) = (αse, e ∈ p). Clearly, RAFT involves less variables z than AFT (an advantage), but

it is not necessarily as efficient as FT, in particular for sets S with |S| ≤ |E|+ 1 (a disadvantage).

Traffic efficiency of RAFT, AFT and FT is compared in Section 8.2.

The most important advantage of RAFT over AFT (and for that matter, over FT as well) is that

with RAFT disseminating link capacity information is, as discussed in Section 9.2, not a major

issue, as a path-originating node thins the corresponding path-flow only on the basis of the current

capacities of the links along the path. In fact, we could easily use even more information on the

link availability states, namely the thinning function of a path-flow could be made dependent on
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coefficients αse of all the links e belonging to the sets δ(v) for all nodes v traversed by the considered

path, i.e.,

xsdp =Adp(α
s(p)) = z0

dp +
∑

e∈E′(p)

zedpα
s
e, d∈D, p∈Pd, (17)

where αs(p) = (αse, e∈ E ′(p)), E ′(p) :=
⋃
v∈V(p) δ(v), and V(p) is the set of all nodes visited by path

p∈Pd. However, we will not further study this opportunity, leaving it for future investigations.

7.3 Uncertainty polytope

From the computational efficiency viewpoint, the main interest in AFT and RAFT stems from

their capability of handling large sets S (referred to as uncertainty sets in this section) of link

availability states, provided S is given as the set of vertices (extreme points) of a polytope described

by a polynomial number of variables and constraints.

The objective of this section is to describe a polytope, referred to as FT uncertainty polytope,

that is a natural generalization of uncertainty sets S containing single and double-link partial

availability states considered previously. We point out that the polytope must describe the values

taken by two sets of parameters playing, in a sense, opposite roles in the optimization problems:

αse and hsd. While the values of αse describe the impact of disadvantageous events on the network, a

positive difference between h0
d and hsd can be interpreted as relaxation of the demand constraints.

The presented considerations are in the line of the framework of globalized robust counterparts

studied in Ben-Tal et al. (2006). Our approach differs in the way the set of all physically possible

scenarios is defined. While Ben-Tal et al. (2006) express the latter set as the sum of a bounded set

and a cone, we introduce in the following an uncertainty polytope that can translate the respective

roles of αse and hsd. As explained in the Section EC.8.1, the polytope is an interesting contribution in

itself, as it can provide an alternative to Ben-Tal et al. (2006) for optimization problems admitting

relaxation of some of the problem constraints when the uncertainty is profound.

The FT uncertainty polytope, denoted by S(N ), is a variant of the budgeted uncertainty poly-

tope introduced in Bertsimas and Sim (2004), a well-known object in robust network design and

other linear problems assuming uncertainty. The polytope is a subset of the R|E|+|D|+ space, and its

points (vectors) are denoted with (α,h) where α= (αe, e∈ E) and h= (hd, d∈D). The definition

of S(N ) assumes a given finite set A := {a1, a2, . . . , aK} of link availability levels, and a given set

N := {N 1,N 2, . . . ,NK} of positive integers with the following properties:

• 0≤ a1 <a2 < ... < aK = 1

• 1≤Nk ≤ |E|, k ∈K (where K := {1,2, . . . ,K}),
∑K

k=1N
k ≥ |E|.

Also, in the polytope the demand volumes and link availability coefficients are dependent, and are

related through a given sequence of fractional numbers bk, k ∈K, fulfilling the conditions:
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• 1> b1 ≥ b2 . . .≥ bK = 0

•
∑k0

k=1 b
kNk + bk0+1(|E| −

∑k0
k=1N

k) ≤ 1, where k0 is the smallest index in K for which∑k0
k=1N

k < |E| and
∑k0+1

k=1 Nk > |E|, or
∑k0

k=1N
k = |E|.

To simplify the description of the notion of uncertainty polytope, we first introduce an auxiliary

polytope S′(N )—the polytope in R|E||K| defined as the set of all vectors u = (uke , e ∈ E , k ∈ K)

fulfilling the conditions

∑
k∈K

uke = 1, e∈ E (18a)∑
e∈E

uke ≤Nk, k ∈K (18b)

u≥ 0. (18c)

Below, the quantity
∑

e∈E u
k
e will be denoted by Uk. Note that (18a) implies that

∑
k∈KU

k = |E|.

The uncertainty polytope S(N ) is the polytope in the R|E|+|D| space induced by S′(N )

S(N ) = {(α(u), h(u)) : u∈ S′(N )}, (19)

through the following (linear) mappings:

α(u)e =
∑
k∈K

akuke , e∈ E (20a)

h(u)d = h0
d(1−

∑
k∈K

bkUk), d∈D. (20b)

Note that for a given link e∈ E , if uke = 1 then α(u)e = ak, and for a binary vector u∈ S′(N ), each

quantity Uk (k ∈ K) denotes the number of links in α(u) at failure level ak. Also, equality (20b)

implies that for each point (α,h) ∈ S(N ), the demand volumes h0
d, d ∈ D, are thinned uniformly,

according to (1−
∑

k∈K b
kUk)—a measure of the ratio of the amount of unavailable capacity.

In Section EC.8.2 of the electronic companion it is discussed how the uncertainty sets describing

n-link failures can be obtained as special cases of S(N ).

7.4 A compact reformulation of AFTOP with respect to S

In this section we reformulate the problem statement given in (1) (modified for AFTOP in the

way described in Section 7.1) using FT uncertainty polytopes S(N ) instead of finite uncertainty

sets S. The reformulation is valid for AFT and RAFT, and is given in Proposition 4. (To get a

uniform formulation for both cases, below we use the notation Edp := E for AFT, and Edp := p for

RAFT (d∈D, p∈Pd).)
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Proposition 4 Consider the problem formulation (1) under the affine decision rules

xsdp = z0
dp +

∑
ē∈Edp

zēdpα
s
ē, d∈D, p∈Pd, (21)

and the uncertainty set described by polytope S(N ). Suppose that zedp = 0 for each e∈ E\Edp. Then,

(1) can be reformulated as follows:

Problem A(P): C(P) = min
∑
e∈E

ξey
0
e (22a)∑

d∈D

∑
p∈Pd

δedpx
0
dp ≤ y0

e , e∈ E (22b)∑
ē∈E

τ 1
ēd +

∑
k∈K

Nkθ1
kd +h0

d ≤
∑
p∈Pd

z0
dp, d∈D (22c)

τ 1
ēd + θ1

kd ≥−ak
∑
p∈Pd

zēdp−h0
db
k, ē∈ E , k ∈K, d∈D (22d)∑

ē∈E

τ 2
ēe +

∑
k∈K

Nkθ2
ke ≤−

∑
d∈D

∑
p∈Pd

δedpz
0
dp, e∈ E (22e)

τ 2
ēe + θ2

ke ≥ ak(
∑
d∈D

∑
p∈Pd

δedpz
ē
dp−∆(ē, e)y0

e), ē∈ E , k ∈K, e∈ E (22f)∑
ē∈E

τ 3
ēdp +

∑
k∈K

Nkθ3
kdp ≤ x0

dp− z0
dp, d∈D, p∈Pd (22g)

τ 3
ēdp + θ3

kdp ≥ akzēdp, ē∈ E , k ∈K, d∈D, p∈Pd (22h)∑
ē∈E

τ 4
ēdp +

∑
k∈K

Nkθ4
kdp ≤ z0

dp, d∈D, p∈Pd (22i)

τ 4
ēdp + θ4

kdp ≥−akzēdp, ē∈ E , k ∈K, d∈D, p∈Pd (22j)

x0, y0, θ1, θ2, θ3, θ4 cont. and nonnegative, z, τ 1, τ 2, τ 3, τ 4 cont. (22k)

Above, ∆(ē, e) = 1 if e= ē, and 0 otherwise.

The proof, based on duality, is given in Section EC.8.3 of the electronic companion. It applies

the classical dual approach of robust optimization (see for example Ben-Tal et al. (2009)), using

uncertainty polytopes S(N ) instead of finite uncertainty sets S to reformulate (1) for AFT and

RAFT.

The above formulation of AFTOP can be extended to account for an additional finite set of

states S on top of S(N )—see Section EC.8.3 of the electronic companion.

8. Efficiency of flow thinning

In this section we present the results of our numerical study carried out for three realistic undirected

network examples taken from the library of network instances SNDlib (Orlowski et al. 2010): pdh,

polska, and nobel-us. The networks have 11/12/14 nodes, 34/18/21 undirected links, and 24/66/91
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demands, respectively. The demand matrices for those networks specified in SNDlib are taken as

the nominal demand volumes in our models.

The purpose of our computational experiments is twofold. First, we assess the computational

difficulty of FTOP. Hence, in Section 8.1 we present the results of two sets of experiments which

evaluate the computational efficiency of the path generation algorithm, and the computational

efficiency of solving AFTOP—the affine version of FTOP, respectively. The second objective of

the experiments is to demonstrate the traffic efficiency of flow thinning and its affine versions.

Our results from Section 8.2 illustrate the efficiency in question by comparing the corresponding

minimum capacity allocation costs.

In the sequel we will consider undirected networks, and thus the optimization problems are

treated in their versions for undirected network graphs. The study was carried out on a computer

equipped with an Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz processor, and 132 GB of RAM,

using CPLEX 12.5 (CPLEX 2013).

8.1 Computational efficiency of flow thinning optimization

8.1.1 Path generation Recall that PG is the path generation algorithm for FTOP (i.e.,

problem (1) assuming the full set of admissible paths), based on the binary pricing problem (PP)

formulation (9) (see Section 4.3), and that FTOP< denotes instances of (1) with limited sets of

admissible paths.

Below we report results illustrating the computational efficiency of solving FTOP through PG,

and of solving FTOP< through a direct use of CPLEX for a predefined set of admissible paths.

The PG algorithm was initialized by putting only one shortest (with respect to the unit capacity

costs ξe, e∈ E) path on the path-list of each demand. (Note that such minimal path-lists determine

an optimal solution for FTOP involving only the nominal state, i.e., for FTOP with S = {s0}.) For

FTOP<, the predefined sets of admissible paths contain all elementary paths having up to 5 links.

For the reported experiments we assume a uniform availability coefficient α for all the affected

links in each failure state, i.e., αse = α,s∈ S, e∈ Es (recall that Es denotes the subset of links affected

by failure s), and αse = 1, s ∈ S, e ∈ E \ Es. Also, we use a uniform demand satisfaction coefficient

β, i.e., hsd = βh0
d, d∈D, s∈ S.

Tables 1 and 2 present results for the three networks under the single-link failure scenario (SL)

and the double-link failure scenario (DL). SL contains the nominal state plus one failure state for

each link (with the assumed α for the failing link). DL contains SL plus one failure state for each

pair of links (with the assumed α for both failing links). Each type of scenario is considered for

the four pairs (α,β) specified by all four combinations of α∈ {0.25,0.5} and β ∈ {0.75,1}.

The following quantities denote the running time (in seconds) observed in our experiments:
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• tFTOP< – solving FTOP for the predefined set of admissible paths

• tGP – generating the predefined set of admissible paths (tFTOP< includes tGP )

• tFTOP – solving FTOP through PG

• tPP – solving the pricing problems (9) within the PG algorithm (tFTOP includes tPP ).

In addition, the quantity in brackets in column “network” gives the number of predefined paths

(generated in time tGP ), column “#iter.” gives the number of iterations of the PG algorithm, and

column “#gen.paths” gives the number of paths generated by PG. We set the running time limit

to 3 hours; the cases when the timeout had to be applied (this happened only for FTOP<) are

denoted by ∗.

Table 1 Effectiveness of the path generation algorithm for SL.

network α β tFTOP< tGP tFTOP tPP #iter. #gen.paths
(seconds) (seconds) (seconds) (seconds)

0.5 0.75 467 308 28 22 8 298
pdh 0.5 1 460 299 46 35 11 335

(6 639 paths) 0.25 0.75 478 311 43 34 11 198
0.25 1 293 473 52 43 12 316
0.5 0.75 533 5 16 13 5 412

polska 0.5 1 560 6 28 22 8 466
(491 paths) 0.25 0.75 383 4 23 19 7 471

0.25 1 2451 2 27 20 5 506
0.5 0.75 4 2 29 23 6 530

nobel-us 0.5 1 4 2 43 35 8 591
(609 paths) 0.25 0.75 4 2 30 24 6 560

0.25 1 4 2 40 33 7 621

Table 2 Effectiveness of the path generation algorithm for DL.

network α β tFTOP< tGP tFTOP tPP #iter. #gen.paths
(seconds) (seconds) (seconds) (seconds)

0.5 0.75 ∗ ∗ 2914 2506 13 354
pdh 0.5 1 ∗ ∗ 3612 3034 14 391

(6 639 paths) 0.25 0.75 ∗ ∗ 1882 1524 10 354
0.25 1 ∗ ∗ 2653 2202 10 354
0.5 0.75 539 54 345 286 8 466

polska 0.5 1 667 53 387 317 8 486
(491 paths) 0.25 0.75 425 55 858 746 8 511

0.25 1 303 61 1193 1038 10 530
0.5 0.75 1798 162 755 649 8 542

nobel-us 0.5 1 2804 140 2187 1925 10 572
(609 paths) 0.25 0.75 1999 160 1719 1444 9 615

0.25 1 2741 137 2494 2020 11 646

Tables 1 and 2 show that the relative efficiency of FTOP< and of FTOP is instance-dependent.

Still, FTOP (i.e., the PG algorithm), despite the necessity of solving the binary PP subproblems,
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is faster than FTOP< (predefining the admissible set of paths plus application of the linear solver)

for 18 out of 24 instances tested, including 4 instances (pdh for DL) for which FTOP could not

solve the problem within the time limit. The results also show that a significant fraction of the

PG algorithm execution time is spent in the pricing problem.

An important aspect of the PG algorithm, illustrated in Figure EC.5 for pdh and polska (see

Section EC.9 in the electronic companion) is the number of added paths and the network cost for

the consecutive iterations. Practically, for all the considered cases the final optimum is obtained

after only several (5-7) PG iterations.

8.1.2 Running times Our second set of experiments compares the running times and the

network costs for the optimization problems corresponding to the two protection strategies con-

sidered in this paper, i.e., for FT and GR. Both strategies are studied in the three variants of flow

adjustment: general, affine and restricted affine. The study is performed for the three networks

pdf, polska and nobel-us with the predefined path-lists containing all paths up to 5 links. Thus, we

study the following six variants of protection strategies and their related problems:

• FT (flow thinning): problem (1), i.e., FTOP<

• AFT (affine flow thinning): problem (1) plus equation (15)

• RAFT (restricted affine flow thinning): problem (1) plus eq. (16)

• GR (global rerouting): problem (1) minus constraints (1b) and (1e) (see Section 2.3)

• AGR (affine GR): problem (1) minus constraint (1b) and (1e) plus eq. (15)

• RAGR (restricted affine GR): problem (1) minus constraint (1b) and (1e) plus eq. (16).

The results for affine flow thinning (AFT, RAFT) and affine flow thinning/thickening (AGR,

RAGR) presented in this section (running times) and in Section 8.2 (network costs) are obtained

by solving the compact reformulation (22) stated in Proposition 4.

We consider three kinds of state scenarios: single-link (SL), double-link (DL), and triple-

link(TL). Scenarios SL and DL are described in Section 8.1.1 (recall that SL consists of the nominal

state and failures of single links, and DL contains SL plus failures of pairs of links) while scenario

TL consist of DL and failures of triples of links. In the particular scenarios considered below,

single failures consist of one occurrence of each link with α = 0.5. Double failures encompass 2

occurrences of each pair of links, corresponding to 2 different assignments of α= 0.5 or α= 0.75

(availability coefficients assigned to the links of a pair are different). Finally, triple failures contain

all triples of links, and each triple occurs 6 times, which corresponds to 6 possible assignments of

3 different availability coefficients 0.5,0.75,0.9 to the links in a triple. For each of these settings,

we consider two cases. In the first case the traffic volume carried in each state must be equal to

the nominal volume, i.e., β = 1 for all demands in all states. Note that this means that for the
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Table 3 Solution times in seconds for different routing variants.

scenario network GR FT AGR AFT RAGR RAFT

SL
pdh 5 100 440 2972 386 594

polska 0 1 4 6 1 1
nobel-us 1 2 7 9 4 5

DL
pdh 2262 ∗ 1519 9802 704 1279

polska 6 269 9 13 1 2
nobel-us 12 2367 17 25 7 11

TL
pdh ∗ ∗ 3664 11942 693 1774

polska 389 ∗ 16 22 5 6
nobel-us 281 ∗ 37 67 10 17

uncertainty polytope we assume bk = 0, k ∈K, see (20b). In the second case all demand coefficients

are equal to 0.9 for SL, to 0.8 for DL, and to 0.7 for TL. This means that bk = 0.1, k ∈K.

Table 3 reports the running times in seconds, taking the averages of the times corresponding to

the two cases of β coefficients described above. We set the time limit to 10 hours—the cases when

the timeout occurred are denoted by ∗. Table 3 reveals that the running times for the general flow

thinning procedure (FT) are highly impacted by the number of the simultaneously failing links. In

particular, all instances assuming TL could not be solved to optimality within the time limit. On

the contrary, affine flow thinning (AFT), and even to a larger extent restricted affine flow thinning

(RAFT), can easily cope with the increased number of simultaneous link failures. Also, increase

in the running time when passing from SL to DL, and to TL, is moderate.

8.2 Cost efficiency of flow thinning

Tables 4 and 5 compare the optimal cost C =
∑

e∈E ξey
0
e for polska and nobel-us for the six protection

variants and the six state scenarios described in Section 8.1.2. Let the quantity CGR denote the

optimal cost for GR (recall that GR implies the cheapest networks and is thus taken as the reference

value), while the cost increase with respect to GR (in percents) for each of the remaining variants

is given by fM := CM−CGR
CGR

100, where CM is the cost for all remaining protection strategies, i.e., M

represents any of FT,AGR,AFT,RAGR,RAFT . The cases (for FT) that experienced timeout

are denoted by ∗. The two cases of bk correspond to two values 0.0 and 0.1 in column b.

The results show that assuming FT instead of GR increases the cost by up to 14 %. Imposing

the affine version of FT further increases the cost, up to 24 % for AFT, and up to 35 % for

RAFT. These are quite reasonable values. Note that for SL, fAGR = fGR (by definition fGR = 0),

and fAFT = fFT , confirming numerically the proven optimality of the affine protection when the

uncertainty set has |E|+ 1 extreme points (Poss and Raack 2013). Note also that some instances

could not be solved to optimality due to the time limit, but only for FT. It happened that in

all cases reported in Tables 4 and 5 the value of fRAGR is always equal to fRAFT . However, we

constructed examples (not reported here) showing that this is not the case in general.
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Table 4 Optimal network costs for polska.

scen. b fFT fAGR fAFT fRAGR fRAFT

SL
0.0 12 0 12 12 12
0.1 14 0 14 14 14

DL
0.0 6 0 16 25 25
0.1 14 1 22 26 26

TL
0.0 ∗ 3 20 35 35
0.1 ∗ 1 24 30 30

Table 5 Optimal network costs for nobel-us.

scen. b fFT fAGR fAFT fRAGR fRAFT

SL
0.0 14 0 14 14 14
0.1 16 0 16 16 16

DL
0.0 9 0 17 26 26
0.1 15 1 22 27 27

TL
0.0 ∗ 3 20 35 35
0.1 ∗ 2 24 30 30

Table 6 Average percentages of unsatisfied demand.

network
h

AFT RAFT
DL TL DL TL

polska
h0 5.6 7.8 5.6 7.8
βh0 2.3 1.2 2.2 1.2

nobel-us
h0 4.5 6.2 4.5 6.3
βh0 1.9 0.8 1.9 0.8

Table 6 illustrates efficiency of AFT and RAFT optimized for SL, when facing DL or TL. This

is an important aspect since once AFT or RAFT is implemented, the thinning formula (15) or

(16), respectively, can as well be used for any current α observed on-line in the network. Table 6

reports the average amount, in percent, of the resulting unsatisfied demand divided by the required

demand, where the average is taken over the failure states in DL and TL, respectively.

To avoid negative flows, the percentages in Table 6 are computed by defining the flow xsdp for

each path p ∈ Pd, d ∈D, and each failure state s ∈ S, in DL or TL, as the maximum of 0 and the

flow value specified by (15) or (16), respectively. Note that an analogous modification would be

necessary if xsdp became greater than x0
dp—this, however, did not happen. In order to compute

the violation of the demand constraints for DL and TL, we insert the so obtained values of xsdp

optimized for SL to formulae (1c). We note that in the considered setting, AFT and RAFT cope

very well with the unforeseen states. Analogous calculations show that capacity constraints (1d)

are never violated. We see that the average amount of the violated demand volume is less for

TL than for DL when the demand is reduced by coefficient β. This is because the states with

triple simultaneous link failures assume demand coefficients β = 0.7 while the states with double

simultaneous link failures assume β = 0.8.

9. Applications, implementation and practicality of FTOP

9.1 Applications

FT is applicable to network settings where partial availability of links is typical and the logical

tunnel layer can be established. An important example are WMN (wireless mesh networks, i.e.,

IP/MPLS over wireless networks). WMNs are composed of fixed IP routers and Internet gateways,
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interconnected by wireless links based on the radio, microwave, or free space optical (FSO) tech-

nologies. WMNs are becoming an important solution for providing broadband Internet access for

fixed and mobile users connected to the routers. The reason is that in many circumstances WMNs

are cheaper, faster and simpler to deploy, maintain and operate than their wired counterparts

(Mogre et al. 2007). This is for example the case in areas lacking network infrastructure where

WiFi radio based WMNs can provide Internet access to entire communities despite the fact that

only few nodes (gateways) have direct access to the Internet. Such WiFi networks employing fixed

mesh routers are also considered for the smart city applications. Another example is a corporate

WMN deployed in a large city using FSO links, connecting pairs of transceivers in the line-of-sight

installed on the roofs of buildings. In WMN (and, for that matter, in wireless communications in

general) a typical link availability state is characterized by a subset of those links that lose a frac-

tion of their maximum capacity (achieved under perfect signal propagation) because of the current

weather state that directly affects the radio channel condition. The links adapt to the detected

channel condition by switching to an adequate modulation and coding scheme (Goldsmith 2005)

and the current capacity is set by the scheme used. Then the IP traffic entering the end-to-end

MPLS tunnels can be controlled at the tunnel-originating nodes to fit their current virtual capacity

(i.e., nominal or thinned) determined according to the FT strategy.

Another example is an IP/MPLS over DWDM (Dense Wavelength Division Multiplexing) net-

work. In the IP/MPLS layer a typical link failure state is composed of several IP links that lose a

fraction of their capacity because of the effect of upwards propagation of the optical cable failure

(cut) in the DWDM optical transport network layer (Pióro and Medhi 2004). An IP link loses only

a part of its capacity when it is realized over diverse paths in the DWDM layer.

9.2 Implementation issues

A major implementation issue related to FT is to ensure proper on-line tunnel capacity control.

Assuming that the nodes can instantaneously determine and apply appropriate thinning factors

(thinning factor is the ratio of the tunnel capacity calculated for a given state to its nominal

capacity) once the link availability state is made known to them, we need an on-line signalling

process of informing the network nodes about the changes in the current link availability coefficients.

For the general version of FT this would call for a network protocol, like OSPF-TE (Open Shortest

Path First – Traffic Engineering) (Katz et al. 2003), enabling the originating node of a link to

broadcast a link-status message whenever the capacity of the link is changed. A difficulty is to

make the message reach all the nodes in a reasonable time.

This issue can be overcome by applying RAFT (see Section 7.2). With RAFT, the thinning

factors of each tunnel are specified by means of an affine function depending only on the availability
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coefficients of the links along the tunnel. Then the link-status message concerning a change of the

availability coefficient of a particular link is sent by its originating node backwards along all the

tunnels that traverse this node and use the link in question. In this way, by means of appropriately

extended path-error messages in Resource Reservation Protocol – Traffic Engineering (RSVP-TE,

the protocol from the TCP/IP stack that is used to establish, maintain, and erase LSPs, see Minei

and Lucek (2011) and Awduche et al. (2001)), the nodes can be quickly informed about the changes

in the links capacity they need to be aware of. Hence, the crucial mechanism for FT could be

implemented in a network composed of IP routers interconnected by IP links with logical tunnels

(LSP) realized by means of the MPLS mechanism (see Minei and Lucek (2011) and Andersson and

Swallow (2003)).

Another issue is that with FT in general only a fraction of all possible link availability states can

be directly considered in optimization, simply because the number of states can be exponential.

Hence, the thinning factors for a non-considered state must be somehow calculated at the tunnel

originating nodes, having in mind that the resulting tunnel capacity cannot overload the links

and the reduction of traffic is acceptable. For the general version of FT, finding a reasonable

algorithm for that would be difficult but this task becomes tractable with RAFT (and, for that

matter, also for AFT): for the non-considered states, the thinning factor for a given tunnel is

automatically determined by the affine function once availability coefficients for its links are known.

Moreover, the affine functions, even when optimized using a limited number of states, would tend

to ensure reasonable thinning factors also for the states not explicitly considered in optimization,

as illustrated in Table 6 in Section 8.2. This is particularly sound when thinning is based on a

special case of an affine function: xsdp = max{0, x0
dp−

∑
e∈p z

e
dp(1−αse)}, d ∈D, p ∈ Pd, where all

zdp are nonnegative.

9.3 Practicality of FTOP and its affine version related to state description

In our optimization model each link availability coefficient α (for a given link and a given state) is

a fixed parameter while the nominal capacity y of the link is an optimization variable. Using the

availability coefficients to determine the state-dependent link capacity as α ·y is a sound assumption

for the following reason. In reality, in most cases link capacity is modular, i.e., equal to M ·y where

y is a number (an integer variable) of modules of size M installed on the considered link. Referring

to the application examples discussed in Section 9.1, in the IP/MPLS over wireless case, where

the modules correspond to parallel microwave radio links or wireless optical links, coefficient α

corresponds to the modulation and coding scheme applied in the considered state. In the IP/MPLS

over DWDM case, α is the percentage of modules (for example, 0%, 33%, 66%, 100%) that are not

lost in the considered link as a result of the failure in the DWDM layer. That is, we assume the
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equal split of y modules to be realized over a given set of k disjoint DWDM paths (k = 3 paths

in our example), whatever the value of y (provided y is divisible by k, to be precise). Note that

in the paper link capacity is linearized and variables y are made continuous to avoid unnecessary

complication of the optimization model.

The state description assumed for FTOP is on purpose quite general. The implementation of FT

described in Section 9.2, however, assumes that the demand reduction coefficients depend only on

the vector αs (i.e., βs = β(αs), s∈ S), so that the state is in fact determined by the current vector

αs of link availability coefficients. This kind of state description, together with the assumption that

the demands will accept reduction in their nominal traffic volumes in the states with significant

link capacity reduction, opens a way to specify reasonable demand reduction coefficients by the

network operator to avoid substantial network over-dimensioning, and hence excessive network

cost. Clearly, the degree to which the preferable traffic volume is decreased should reflect the

fractions of the nominal link capacity available in a given state.

A simple way for achieving reasonable reductions is to divide the set of states into several classes

corresponding to several degrees of lost capacity, and to assume a certain percentage of the nominal

traffic that should be carried for each demand in a given state. For example, we may distinguish

two classes of states, one of “almost nominal” states with the entire (100%) nominal traffic to be

carried, and the second class of “degraded states” that allow for carrying only 75%, say, of nominal

traffic for each demand. A more sophisticated way, applicable in the affine version of FTOP (i.e., in

AFTOP), is to relate the demand reduction coefficients to the link availability coefficients through

the so called uncertainty polytope (see Section 7.3).

Another important practical issue is how to select a representative set of states of reasonable

(tractable) size to be assumed for FTOP (or AFTOP). These states should, on one hand, represent

a whole range of typical states, and, on the other hand, be sufficient to effectively approximate

the thinning factors in the remaining feasible states (see Section 9.2). Such a selection is network

dependent. For the IP/DWDM case the selection is basically simple. As it is a common practice to

consider only single optical cable cuts (simultaneous cuts of more than one cable are very unlikely),

the resulting multiple partial IP link failures are easy to list and include in FTOP. In the case of

WMN, the situation is more complicated. For modelling link availability states implied by weather

conditions in a metropolitan WMN, we could divide the nodes into disjoint groups and assume that

the bad whether conditions affects either all of them or a subset of them at a time. If we distinguish

only several groups then we are able to consider all the states corresponding to all subsets of the

family of these groups, i.e., the partial failures (with different levels of link availability, depending

for example on the rain intensity) of all nodes in the affected groups. The demand reduction
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coefficients would then depend on the total number of affected nodes and (demand-wise) on the

position of the demand’s end nodes. This issue, however, requires a separate study.

For everyday network operation a pure flow allocation version of FTOP (or AFTOP) becomes

important. Such a problem (let us call it FTOP/FA) arises when nominal link capacities are fixed,

i.e., y0 become given parameters. FTOP/FA has to be considered whenever the nominal traffic

matrix (assumed for FTOP) is significantly perturbed causing the nominal flows and the thinning

factors (tunnel flow-defining affine functions in the case of AFT) not fit the new traffic matrix

anymore. Hence, the nominal flows and thinning factors have to be re-optimized. In order to

properly accommodate the new traffic by the network, some kind of fairness criteria (link max-min

fairness or proportional fairness (see Chapter 8 in Pióro and Medhi (2004)) should be imposed on

the values of hsd, d ∈D, s ∈ S (these quantities would become optimization variables on top of the

tunnel flows), and reflected by an appropriate objective function used instead of (1a).

Observe that optimization of FTOP does not have to be decentralized since it could be done once

for all in a central facility before the network is set to operation. FTOP/FA, in turn, should be

resolved, using an off-line optimization algorithm, whenever the nominal traffic matrix (assumed

for FTOP) is significantly perturbed. When perturbations are not frequent, such optimization

could be done in a central facility as well. Otherwise, the computation should be decentralized and

distributed among the network nodes. This would require some information exchange mechanism,

for example an extension of the OSPF-TE. Such an algorithm, however, is outside the scope of

this paper.

9.4 Why flow thickening should be avoided

Flow thickening (see Section EC.4 in the electronic companion) leads to cheaper solutions as

compared to pure thinning, and when all td →∞ the resulting modification of FTOP becomes

equivalent to the GR optimization problem. As the corresponding modification of FT allowing for

thickening can be implemented in the same way as the original FT (including the affine versions,

see Section 9.2), and thickening can improve traffic performance of FT, a natural question arises

why we still opt for FT. The reasons are as follows. First, with FT the maximum number of

flows that are adjusted when moving from state s1 to state s2 is equal to the number of flows that

traverse links affected in state s1 plus the number flows that traverse links affected in state s2.

This number is quite small as compared to the number of all (non-zero) nominal flows. However,

with thickening this bound is not valid and the number of adjusted flows can become significant.

In general, the larger the thickening bound the more tunnel flows are adjusted, and this number

is typically the largest for GR (with GR frequently virtually all flows can be adjusted even for

modest changes in link capacity). As the flow adjustment process takes a non-negligible time, and
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some flows can be thickened before other flows are thinned, some links can get overloaded during

such a transient period inducing traffic (packet) losses. Clearly, the larger the number of adjusted

flows, the higher the chance of link overloads in the transient period. For cost comparisons and

flow adjustment issues of FT as compared with its variant allowing for thickening, the reader is

referred to the recent papers Fouquet et al. (2014a) and Fouquet et al. (2014b).

The second reason are link overloads caused by erroneous approximation of flow thickening

factors. If a certain state is not taken account in optimization, its tunnel thickening factors must

be approximated, as it is done in FT for the thinning factors (see Section 9.2 and Section 9.3).

However, since with thickening the nominal tunnel capacities are allowed to be exceeded in the

states with reduced link capacity, wrong approximation of the thickening factors in such a state

could easily lead to link overloads during the whole duration of the considered state.

To summarize, as far as unforeseen traffic losses are concerned, FT is safer than its variants

admitting flow thickening (including GR).

10. Concluding remarks

Flow thinning (FT) is an original concept of a traffic protection strategy for communication net-

works with variable link capacity. Its affine variant, AFT, opens a way for distributed implementa-

tions of FT. As such (potentially implementable) strategies working at the logical tunnel level and

reacting on-line to link capacity fluctuations have not been, to our knowledge, proposed, studying

optimization models for FT is worthwhile, the more that the related multicommodity flow problems

extend the area of resilient network design and are interesting from the OR viewpoint.

In the paper we have studied in-depth a basic FT optimization problem (referred to as FTOP,

see Section 2), and its affine version (AFTOP, see Section 7). FTOP turns out to be NP-hard

and its non-compact link-path LP formulation requires path generation for which we have found a

quite effectively solvable (though NP-hard) pricing problem. We have also exhibited some special

cases when path generation is polynomial and found a polynomially solvable algorithm for finding

accurate lower bounds for FTOP. As FTOP supports FT, where the way flow can be thinning is

not restricted, its solutions deliver a lower bound for the solutions of AFTOP—the optimization

problem supporting potentially implementable affine versions of FT where the flows are thinned

according to affine functions depending on the link availability coefficients characterizing a given

network state. This makes FTOP important in evaluating traffic efficiency of AFT. Our AFTOP

formulation is based on the notion of uncertainty polytope and because of that is capable of

encompassing larger sets of link availability states in comparison with FTOP.

The numerical study shows that in terms of cost/traffic efficiency, AFT is almost as good as

FT. FT, in turn, exhibits cost not significantly inferior to that of GR—the theoretically most cost

efficient strategy, at least when (reasonable) demand reduction coefficients are allowed.
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Examples, proofs, derivations, and additional results

EC.1. List of abbreviations

Table EC.1 Paper-specific list of abbreviations

AFT affine flow thinning
AFTOP affine flow thinning optimization problem
AGR affine global rerouting
DL double-link (failure scenario), includes SL
DSP dual separation problem
DWSP demand-wise shared protection
ER elastic rerouting
FT flow thinning
FTOP flow thinning optimization problem
FTOP< flow thinning optimization problem with predefined admissible paths
GR global rerouting
LBP lower bound problem
LP linear programming
PG path generation
PP pricing problem
RAFT restricted affine flow thinning
RAGR restricted affine global rerouting
SL single-link (failure scenario)
SN single-node (failure scenario)
TL triple-link (failure scenario), includes DL

EC.2. Examples related to FTOP

Example EC.1. Consider the network depicted in Figure EC.1. It is a 3-node, 4-link directed

network with V = {v,w, t} and E = {1,2,3,4}. The unit link costs are all equal to 1: ξe = 1, e ∈ E .

There are two demands (D= {1,2}), demand d= 1 from node v to node t, and demand d= 2 from

node w to node t, with the nominal traffic volumes h0
1 = h0

2 = 1. Each demand has two admissible

paths: P1 = {p11, p12} where p11 = {1}, p12 = {3,2}, and P2 = {p21, p22} where p21 = {2}, p12 = {4,1}.
We assume that links 3 and 4 are always fully available while links 1 and 2 can fail, but only

one at a time. When link e= 1 or e= 2 fails, it losses half of its capacity. Thus, there are three

availability states S = {1,2,3} and we assume that in each state the nominal traffic volumes are to

be realized so that the demand coefficients are all equal to 1 (βsd = 1, d∈D, s∈ S). State s= 3 is a

maximum state (S0 = {3}) with all links fully available: α3
e = 1, e∈ E . In state s= 1, link e= 1 fails:

α1
1 = 1

2
, α1

e = 1, e= 2,3,4. Symmetrically, in state s= 2, link e= 2 fails: α2
2 = 1

2
, α2

e = 1, e= 1,3,4.

A feasible solution is as follows. The nominal capacity of the four tunnels is defined as

x0
11 = 1, x0

12 =
1

3
, x0

21 = 1, x0
22 =

1

3
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Figure EC.1 A simple network example

and hence the (minimal) nominal capacity of the links that realizes the nominal flows is equal to

y0
1 = y0

2 = 4
3
, y0

3 = y0
4 = 1

3
. The cost of the network is then equal to C = 10

3
. The path flows (i.e., the

capacity of the tunnels) in the three considered availability states is as follows:

x1
11 =

2

3
, x1

12 =
1

3
, x1

21 = 1, x1
22 = 0

x2
11 = 1, x2

12 = 0, x2
21 =

2

3
, x2

22 =
1

3

x3
11 = 1, x3

12 = 0, x3
21 = 1, x3

22 = 0.

Note that the nominal capacity of the tunnels could carry the traffic volume h= 4
3

simultaneously

for both demands, i.e., the volume greater than the nominal volume h0 = 1.

Example EC.2. For the network depicted in Figure EC.1, the solution given in Example EC.1 is

feasible and optimal for (1). Note that the flows x0, x1, x2 of Example EC.1 are unique at optimality

while x3 are not. For example, the flows x3 = x0 are also optimal.

If we change the unit costs of links 3 and 4 to M , where M is a large number (M � 1), then the

optimal solution of FTOP will change. The optimal cost will increase to C = 4 and the optimal

tunnel capacities will be as follows:

x0
11 = 2, x0

12 = 0, x0
21 = 2, x0

22 = 0

y0
1 = 2, y0

2 = 2, y0
3 = 0, y0

4 = 0

x1
11 = 1, x1

12 = 0, x1
21 = 1, x1

22 = 0

x2
11 = 1, x2

12 = 0, x2
21 = 1, x2

22 = 1

1≤ x3
11 ≤ 2, x3

12 = 0,1≤ x3
21 ≤ 2, x3

22 = 0.
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Example EC.3. Consider for the network described in Example EC.1 and depicted in Figure EC.1

with the two sets of admissible paths reduced to P = P1 ∪ P2 where P1 = {p11} and P2 = {p21}.
One of the optimal solutions of the resulting instance P(P) is as follows:

x0
11 = x0

21 = 2, xs11 = xs12 = 1, s∈ S, y0
1 = y0

2 = 2, y0
3 = y0

4 = 0, C = 4.

The corresponding optimal solution of the dual problem D(P) (see (2)) is in turn given by:

π1
1 = π2

2 = 2, π0
3 = π0

4 = 1, λ1
1 = λ2

2 = 2,W = 4,

and all other dual variables π0
1, π

0
2, λ

2
1, λ

1
2, λ

3
1, λ

3
1, σ

s
d, s ∈ S, d ∈ D, equal to 0. Hence, applying PG,

we find out that paths p12 and p22 have their total dual lengths (defined by (4)) equal to 〈p12〉=

〈p22〉=−1. Since these values are negative, both paths are added to the problem so that the set of

admissible paths P becomes set equal to P̂, i.e., the set of all (loop-less) paths in the network graph

for the considered two demands. An optimal solution of the resulting instance P(P̂) of FTOP is

given in Example EC.1.

EC.3. Polyhedron Ω and proofs of the separation and pricing propositions

EC.3.1 Projected polyhedron Ω

The explicit characterization of the projected polyhedron Ω is as follows:

π0
e +

∑
s∈Se

αseπ
s
e ≤ ξe, e∈ E (EC.1a)∑

e∈E

δedpπ
0
e ≥

∑
s∈S′

(λsd−
∑
e∈Es

δedpπ
s
e), d∈D, p∈ P̂d, S ′ ⊆S (EC.1b)

π≥ 0, λ≥ 0. (EC.1c)

The above characterization follows from the fact that for a fixed path q ∈ P̂d, the quantity on

the right hand side of (EC.1b) computed for any given (π,λ) ∈Rn+ attains its maximum for S ′ =
Sq(π,λ). This means that for the given path, the proper inequality, i.e., inequality (7), dominates

the remaining inequalities in (EC.1b) for each (π,λ)∈Rn+. Clearly, characterization (EC.1) can be

easily obtained with Fourier-Motzkin elimination (see Motzkin (1951)).

EC.3.2 Proof of Proposition 1

Consider vector (π,λ) ∈ Rn+ with π fulfilling constraints (2b) and a given path q ∈ P̂d. We will

show that system of inequalities (3) is infeasible if, and only if, inequality (6) holds. Clearly, this

implies that (7) separates (π,λ) from Ω.

Suppose 〈q〉 ≥ 0, that is, |q|0 ≥
∑

s∈Sq(π,λ)(λ
s
d− |q|s). Then, obviously,

σsdq :=

{
λsd− |q|s, if s∈ Sq(π,λ)
0, if s∈ S \Sq(π,λ)

(EC.2)
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is a feasible solution of the system of inequalities (3).

Now suppose 〈q〉< 0, that is, ∑
s∈Sq(π,λ)

(λsd− |q|s)> |q|0. (EC.3)

Then, assuming feasibility of (3), due to (5), (3b), (3c), (3a), and (EC.3), respectively, the following

sequence of inequalities must hold:

0≤
∑

s∈Sq(π,λ)

(λsd− |q|s)≤
∑

s∈Sq(π,λ)

σsdq ≤
∑
s∈S

σsdq ≤ |q|0 <
∑

s∈Sq(π,λ)

(λsd− |q|s). (EC.4)

This is a contradiction since in (EC.4) the second term is strictly less that the last term but they

are identical. Thus, system (3) is infeasible.

EC.3.3 Proof of Proposition 2

Since (π,λ) is a solution of D(P), (π,λ) ∈ Rn+ and hence, as already noticed when introducing

characterization (EC.1) of the projected dual polyhedron Ω, the equality∑
s∈Sq(π,λ)

(λsd−
∑
e∈Es

δedqπ
s
e) = max{

∑
s∈S′

(λsd−
∑
e∈Es

δedqπ
s
e) : S ′ ⊆S} (EC.5)

holds. Assume that for some S ′ ⊆ S, the corresponding constraint (EC.1b) is broken, i.e.,∑
e∈E δedqπ

0
e <

∑
s∈S′(λ

s
d −

∑
e∈Es δedqπ

s
e). Then, due to (EC.5), also the constraint

∑
e∈E δedqπ

0
e <∑

s∈Sq(π,λ)(λ
s
d−
∑

e∈Es δedqπ
s
e) is broken, and, for the same reason, the degree of violation of the lat-

ter constraint, i.e., D(q) =
∑

s∈Sq(π,λ)(λ
s
d−
∑

e∈Es δedqπ
s
e)−

∑
e∈E δedqπ

0
e =−〈q〉 is the largest among

all the constraints (EC.1b) corresponding to path q.

EC.4. The flow thickening extension of FTOP

A natural extension of FT, and thus of FTOP, allows for tunnel thickening limited by additional

parameters td ≥ 1, d ∈ D, called the thickening bounds. The extension is obtained by modifying

constraint (1e):

xsdp ≤ tdx0
dp, d∈D, p∈Pd, s∈ S. (EC.6)

Clearly, with td > 1 a (limited) path-flow thickening for demand d ∈ D is permissible, not only

thinning. In fact, this modification (even when the thickening factor is made tunnel-dependent)

has virtually the same properties as FTOP and can be approached essentially in the way discussed

in the rest of the paper.

Flow thickening leads to cheaper solutions as compared to pure thinning, and when all td→∞

the resulting modification of FTOP becomes equivalent to the GR optimization problem discussed

above. Yet, as discussed in Section 9.4, flow thickening may impose implementation problems.
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When the thickening bounds td, d∈D, are considered (constraint (1e) is substituted by (EC.6))

then constraint (2c) in the related dual problem takes the form∑
s∈S

σsdp ≤
1

td

∑
e∈E

δedpπ
0
e , d∈D, p∈Pd (EC.7)

while the rest of the constraints remain unchanged. When all td→∞, i.e., when the primal problem

becomes the GR optimization problem, the right-hand side of constraint (EC.7) becomes equal to

0 which forces all dual variables σsdp, s ∈ S, d ∈D, p ∈ Pd, to be equal to 0. Hence, constraint (2d)

takes the form

λsd ≤
∑
e∈Es

δedpπ
s
e, s∈ S, d∈D, p∈Pd (EC.8)

and this makes the related dual separation (and path generation) problem polynomial. This could

be expected, as the GR problem is polynomial.

EC.5. Selected results for single-link failures

EC.5.1 Single-link failures - proof of Lemma 3

First, we observe that the total dual length of path q ∈ P̂d defined by (4) can be (in fact also in

the general case of S) equivalently expressed as

〈q〉= (|q|0 +
∑
s∈S

dqes)−
∑
s∈S

λsd, (EC.9)

where the modified dual length dqes of path q in state s∈ S is defined as

dqes :=

{
|q|s, if |q|s ≤ λsd
λsd, otherwise.

(EC.10)

Since for the considered states s ∈ S, the state-dependent dual length of a path q can take only

two values:

|q|s =

{
0, if s∈ S0, or s∈ S(e) and e /∈ q
πse, if s∈ S(e) and e∈ q (EC.11)

the modified dual path lengths are equal to:

dqes =

 0, if s∈ S0, or s∈ S(e) and e /∈ q
πse, if s∈ S(e) and e∈ q and πse ≤ λsd
λsd, if s∈ S(e) and e∈ q and πse >λ

s
d.

(EC.12)

Now we make use of the link weights ω(e), e∈ E , specified by (13) in the formulation of Lemma 3:

ω(e) = π0
e +

∑
s∈S(e)

max{πse, λsd}. (EC.13)

By (EC.13) and (EC.12) we have∑
e∈q

ω(e) = |q|0 +
∑
e∈q

∑
s∈S(e)

dqes = |q|0 +
∑
s∈S

dqes, (EC.14)
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where the quantity on the left-hand side is equal the length of path q with respect to the link

weights defined by (EC.13) (and (13)). Hence, by (EC.9) we finally obtain the equality∑
e∈q

ω(e) = 〈q〉+
∑
s∈S

λsd, (EC.15)

which is equivalent to (12).

EC.5.2 Single-link failures – compact FTOP formulation

A compact node-link FTOP formulation for a given single-link failure scenario S = S0 ∪S1, where

S1 =
⋃
e∈E S(e), is as follows.

min C =
∑
e∈E

ξey
0
e (EC.16a)∑

e∈δ+(o(d))

x0
ed−

∑
e∈δ−(o(d))

x0
ed =X0

d , d∈D (EC.16b)

∑
e∈δ+(v)

x0
ed−

∑
e∈δ−(v)

x0
ed = 0, d∈D, v ∈ V \ {o(d), t(d)} (EC.16c)

∑
d∈D

x0
ed ≤ y0

e , e∈ E (EC.16d)

X0
d ≥ hsd, d∈D, s∈ S0 (EC.16e)

X0
d − zsed ≥ hsd, d∈D, e∈ E , s∈ S(e) (EC.16f)∑

d∈D

(x0
ed− zsed)≤ αsey0

e , e∈ E , s∈ S(e) (EC.16g)

zsed ≤ x0
ed, d∈D, e∈ E , s∈ S(e) (EC.16h)

all variables x0,X0, z, y0 continuous and nonegative. (EC.16i)

In the formulation, variables x0
ed, e ∈ E , are the link-flows of demand d ∈ D (realizing its nominal

path-flows), while variable X0
d expresses the overall flow of demand d from o(d) to t(d) (realized

by its nominal path-flows). Variables zsed, e ∈ E , d ∈ D, s ∈ S(e), in turn, specify the amount of

link-flow by which the nominal link-flow x0
ed is reduced in state s ∈ S(e). Constraints (EC.16b)

and (EC.16c) are conservation equations for the nominal link-flows. Capacity constraint (EC.16d)

assures that the nominal link loads do not exceed the maximum link capacities, and constraint

(EC.16g) assures that the capacity available on link e∈ E is not exceeded by its loads in its failure

states. Demand constraints (EC.16e) and (EC.16f) take care about satisfaction of the assumed

demand volumes in the maximum states and the single-link failure states, respectively. Finally,

constraint (EC.16h) bounds the possible link-flow reductions.

In the case of a failure of a single link, say of link e′ ∈ E in one of its failure states s∈ S(e′), any

given pattern of nominal path-flows realizing the nominal link-flows x0
ed, e∈ E , for a given demand
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d∈D, can be properly thinned according to the values of zse′d, d∈D. Let Pd and Ld be the sets of

elementary o(d)− t(d) paths and loops, respectively, assigned non-zero path/loop-flows x0
dp when

realizing the nominal link-flows x0
ed, e ∈ E , of a given demand d ∈D (such sets of paths and loops

exist, see Theorem 8.8 in Korte and Vygen (2012)). Because
∑

p∈Pd
x0
dp =X0

d , due to constraints

(EC.16f) and (EC.16g), we can apply thinning for any given failure state s ∈ S(e′) only to the

nominal path-flows in Pd (and not to the loops in Ld) containing the failing link e′. Let then

Qe′d ⊆Pd denote the set of paths that contain the considered link e′, so that
∑

p∈Qe′d
x0
dp = x0

e′d. We

can consistently thin down the nominal path-flows through link e′ in the considered state s∈ S(e′)

according to the formula

xsdp := x0
dp−

zse′d
x0
e′d

·x0
dp, p∈Qe′d. (EC.17)

Note that possible loops in the optimal solutions can be eliminated as their capacity is not used

by the state-dependent path-flows xsdp, p ∈ Pd, s ∈ S, realizing the demand volume hsd defined by

(EC.17). Since, as discussed Section 2.2, FTOP (1) does not require non-elementary paths (and

thus loops in the link-flows), formulation (EC.16) is correct. In fact, when all link unit capacity

costs ξe, e∈ E , are strictly positive, the loops will not appear in the optimal solutions of (EC.16).

It is interesting to note that for the single-link failure scenarios the LBP formulation (14) remains

to be only a lower bound for the exact formulation (EC.16). In fact, when an optimal solution

x0, xs, s ∈ S, y0 of (14) does not contain loops in the flow x0 then the optimal values of (14)

determine the corresponding feasible solution x0, zs, s ∈ S, y0 of (EC.16) with the same x0, y0 and

zsed := x0
ed − xsed, d ∈ D, e ∈ E , s ∈ S(e). Since LBP is a lower bound for FTOP, its optimum is

at the same time the optimum for FTOP. However, if the link-flow x0 contains loops, then the

solution C ′ of LBP can be strictly smaller than the optimal solution C of FTOP, as illustrated in

Example EC.4 below. This is because no counterpart of constraint (EC.16f) is present in (14) and

hence we may thin the loops without thinning the realized overall demand volume X0
d .

Example EC.4. Consider the network depicted in Figure EC.2. There is one demand (from o to

t) and two states, s= 1 and s= 2, with link 1 and link 2 failing, respectively. In both states the

failing link has the same availability coefficient α, and the demand volume to be realized is equal

to h. The unit link costs are as follows: ξ1 = ξ2 = ξ3 = 1, ξ4 =M , where M � 1.

In the considered cost setting with ξ4� 1, optimal solutions of (EC.16) (and hence of FTOP)

are induced by the nominal path/loop-flows of the form: x0
1 = f (on the upper path (o, v, t)), x0

2 = f

(on the lower path (o, v, t)), x0
3 = 0 (on the upper loop (o, v, o)), x0

4 = 0 (on the lower loop (o, v, o)).

There are two cases to consider.

Case 1: 0≤ α< 1
M

. The optimal solutions is given by f = h
1+α

and y0 = ( h
1+α

, h
1+α

,0, 2Mh
1+α

). Hence,

C = 2h(M+1)

1+α
. �
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o v t

2

1

3 4

Figure EC.2 A network example with a loop in the optimum link-flow

Case 2: 1
M
≤ α ≤ 1. One of the optimal solutions, a symmetric one, is given by f = h

2
and y0 =

( h
2α
, h

2α
,0, h). Hence, C = h

α
+Mh. �

The optimal solution of LBP (14), in turn, is induced by the two nominal path-flows equal to h
2
,

and by the two nominal loop-flows equal to ( 1
1+α
− 1

2
)h= (1−α)h

2(1+α)
. Then the corresponding nominal

link-flows are equal to x0 = ( h
1+α

, h
1+α

, (1−α)h

1+α
, h), and the resulting cost is equal to C ′ = (3−α)h

1+α
+Mh.

In the availability state s= 1, the link-flows become equal to x1 = ( αh
1+α

, h
1+α

,0, h), and in s= 2, the

link-flows are symmetric and equal to x2 = ( h
1+α

, αh
1+α

,0, h).

Certainly, for M � 1, the LBP cost C ′ will be strictly smaller that the FTOP cost C.

We observe that in the considered example the loops (o, v, o) could be eliminated by putting

x0
ed = 0 (d ∈ D and e ∈ δ−(o(d)) or e ∈ δ+(t(d)) and xsed = 0(, s ∈ S, xsed = 0 (s ∈ S, d ∈ D and

e∈ δ−(o(d)) or e∈ δ+(t(d)) in (14). Yet, this does not help much as in the general case loops will

appear anyhow, only they will not involve the demands’ origins and destinations.

In the case of undirected links the situation ia analogous to the directed case. The standard

counterpart of formulation (EC.16) for the undirected links (with two oppositely directed link-

flows corresponding to each undirected link) remains correct, and the LBP formulation modified

for undirected links is still not equivalent to the modified formulation (EC.16).

EC.6. Single-node failures

A single-node failures scenario consists of the states with limited availability of the links incident

to one single node. Thus, a single-node failure scenario S is composed of a set of maximum states

and a set of single-node failure states: S = S0 ∪ S2, where S0 is a set of maximum states, and

S2 :=
⋃
v∈V S(v) is a set of single-node failure states. Each set S(v), if not empty, represents a set of

states in which only node v fails. That is, s∈ S(v) implies that αse ≤ 1, e∈ δ(v), αse = 1, e∈ E \ δ(v),

and αs(v)
e < 1 for at least one e ∈ δ(v) (where δ(v) := δ−(v)∪ δ+(v)). If node v does not fail at all,

then the set S(v) is empty.

EC.6.1 Single-node failures – the pricing problem

In the single-node failure scenario the pricing problem (8) is also polynomial. To apply shortest

path computation to solve PP, we consider, for each d∈D, a transformed graph Ĝ(d) = (V̂(d), Ê(d)),
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o
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t o v̂(e1)

v̂(e2) v̂(e3)

v̂(e4) v̂(e5)

te1

e3e2

e4 e5

Figure EC.3 Original graph G and transformed graph Ĝ(d)

constructed from the original network graph G = (V,E) by exchanging, in a way, the roles of nodes

and links. The transformation is illustrated in Figure EC.3 for a demand d from node o to node t.

The original graph G is depicted on the left-hand side while the transformed graph Ĝ(d) is shown

on the right-hand side.

Graph Ĝ(d) is defined by the following conditions:

V̂(d) := {v̂(e) : e∈ E}∪{o(d), t(d)}; (v̂(e), v̂(f))∈ Ê(d)⇔∃v ∈ V\{o(d), t(d)}, e∈ δ−(v)∧f ∈ δ+(v);

(o(d), v̂(f))∈ Ê(d), f ∈ δ+(o(d)); (v̂(e), t(d))∈ Ê(d), e∈ δ−(t(d)).

In graph Ĝ(d), all links of the form (v̂(e), v̂(f)), where e ∈ δ−(v), f ∈ δ+(v) for a given (original)

node v ∈ V \{o(d), t(d)}, represent all possible two-link passages through this node in the (original)

graph G. On top of that, all links of the form (o(d), v̂(f)) reproduce δ+(o(d)) in the transformed

graph, while all links (v̂(e), t(d)) reproduce δ−(t(d)). Finally, paths q ∈ P̂d in G are transformed to

their counterparts q̂ in Ĝ(d), and vice versa, in a natural way.

Lemma 5 Consider a given single-node failure scenario S and a fixed demand d ∈ D. The total

dual length of any path q ∈ P̂d is given by the formula

〈q〉=
∑
ê∈q̂

ω(ê)−
∑
s∈S

λsd, (EC.18)

where the (non-negative) link weights ω(ê) are defined for each link ê in Ê(d) as follows:

ω(v̂(e), v̂(f)) := π0
f +

∑
s∈S(v)

min{πse +πsf , λ
s
d}, v ∈ V \ {o(d), t(d)}, e∈ δ−(v), f ∈ δ+(v) (EC.19a)

ω(o(d), v̂(f)) := π0
f +

∑
s∈S(o(d))

min{πsf , λsd}, f ∈ δ+(o(d)) (EC.19b)

ω(v̂(e), t(d)) :=
∑

s∈S(t(d))

min{πse, λsd}, e∈ δ−(t(d)). (EC.19c)
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As in the proof of Lemma 3 (see (EC.9)), the total dual length of path q ∈ P̂d defined by (4) can

be expressed as:

〈q〉= (|q|0 +
∑
s∈S

dqes)−
∑
s∈S

λsd. (EC.20)

In the considered case, for a given path q ∈ P̂d, its dual lengths in the considered states s∈ S can

take one of the three values:

|q|s =

 0, if s∈ S0, or s∈ S(v) and q ∩ δ(v) = ∅
πse, if s∈ S(v) and q ∩ δ(v) = {e}
πse′ +πse′′ , if s∈ S(v) and q ∩ δ(v) = {e′, e′′}.

(EC.21)

Thus, the modified dual lengths, defined in (EC.10), are as follows:

dqes =


0, if s∈ S0, or s∈ S(v) and q ∩ δ(v) = ∅
πse, if s∈ S(v) and q ∩ δ(v) = {e} and πs(v)

e ≤ λs(v)
d

λsd, if s∈ S(v) and q ∩ δ(v) = {e} and πs(v)
e >λ

s(v)
d

πse′ +πse′′ , if s∈ S(v) and q ∩ δ(v) = {e′, e′′} and π
s(v)

e′ +π
s(v)

e′′ ≤ λ
s(v)
d

λsd, if s∈ S(v) and q ∩ δ(v) = {e′, e′′} and π
s(v)

e′ +π
s(v)

e′′ >λ
s(v)
d .

(EC.22)

Let q̂ be a path from o(d) to t(d) in graph Ĝ represented by the sequence of nodes in V̂,

q̂ = (o(d), v̂(e1), v̂(e2), . . . , v̂(en), t(d)). Then the corresponding sequence of links from E , q :=

(e1, e2, . . . , en), is a path from o(d) to t(d) in graph G, i.e., q ∈ Pd. Conversely, if we specify path

q = (e1, e2, . . . , en) from o(d) to t(d) in graph G, then q̂(o(d), v̂(e1), v̂(e2), . . . , v̂(en), t(d)) will be a

path from o(d) to t(d) in graph Ĝ. This establishes a one-to-one correspondence of o(d)− t(d)

paths q̂ and q in graphs Ĝ and G, respectively.

Now we make use of the link weights ω(ê), ê ∈ Ê , specified by (EC.19) in the formulation of

Lemma 5:

ω(v̂(e), v̂(f)) := π0
f +

∑
s∈S(v)

min{πse +πsf , λ
s
d}, v ∈ V \ {o(d), t(d)}, e∈ δ−(v), f ∈ δ+(v) (EC.23a)

ω(o(d), v̂(f)) := π0
f +

∑
s∈S(o(d))

min{πsf , λsd}, f ∈ δ+(o(d)) (EC.23b)

ω(v̂(e), t(d)) :=
∑

s∈S(t(d))

min{πse, λsd}, e∈ δ−(t(d)) (EC.23c)

and consider a path q̂ = (o(d), v̂(e1), v̂(e2), . . . , v̂(en), t(d)). We observe that the length
∑

ê∈q̂ ω(ê)

of path q̂ with respect to the link weights (EC.23) obeys the equality∑
ê∈q̂

ω(ê) = |q|0 +
∑
s∈S

dqes (EC.24)

where q= (e1, e2, . . . , en) is the path in graph G corresponding to q̂. Hence,∑
ê∈q̂

ω(ê) = 〈q〉+
∑
s∈S

λsd, (EC.25)
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which is equivalent to (EC.18).

In consequence, and due to the one-to-one correspondence of the paths in the original graph and

the transformed graph, the pricing problem in the considered case of single-node failures can be

solved by a shortest path algorithm applied to graph Ĝ.

The above construction can be applied, after a slight modification, to undirected graphs. In

the undirected case we first define the transformed graph as an undirect graph, similarly as in

the directed case. Then we transform it to a bi-directed graph, with two oppositely directed arcs

corresponding to each undirected link. The two arcs in each such pair are assigned non-symmetric

arc weights, differing in the π0
f value that is determined by the direction of the arc (see definition

(EC.19a)).

Since the term
∑

s∈S λ
s
d in (12) is constant, solving PP is equivalent to finding a shortest path

in the transformed graph with respect to the link weights ω(ê), ê ∈ Ê . Hence, PP is polynomial,

and so is FTOP. A compact LP formulation for the considered case of FTOP is given in Section

EC.6.2.

EC.6.2 Single-node failures – compact FTOP formulation

A compact node-link FTOP formulation for a given single-node failure scenario S = S0∪S2, where

S2 =
⋃
v∈V S(v), is as follows.

min C =
∑
e∈E

ξey
0
e (EC.26a)∑

e∈δ+(o(d))

x0
ed−

∑
e∈δ−(o(d))

x0
ed =X0

d , d∈D (EC.26b)

∑
e∈δ+(v)

x0
ed−

∑
e∈δ−(v)

x0
ed = 0, d∈D, v ∈ V \ {o(d), t(d)} (EC.26c)

∑
d∈D

x0
ed ≤ y0

e , e∈ E (EC.26d)

X0
d ≥ hsd, d∈D, s∈ So (EC.26e)∑

e−∈δ−(v)

wve−ed = x0
ed, d∈D, v ∈ V \ {o(d), t(d)}, e∈ δ+(v) (EC.26f)

∑
e+∈δ+(v)

wvee+d = x0
ed, d∈D, v ∈ V \ {o(d), t(d)}, e∈ δ−(v) (EC.26g)

zse−e+d ≤w
v
e−e+d, d∈D, v ∈ V \ {o(d), t(d)}, e− ∈ δ−(v), e+ ∈ δ+(v), s∈ S(v) (EC.26h)

X0
d −

∑
e−∈δ−(v)

∑
e+∈δ+(v)

zse−e+d ≥ h
s
d, d∈D, v ∈ V \ {o(d), t(d)}, s∈ S(v) (EC.26i)

Zsed ≤ x0
ed, d∈D, e∈ δ+(o(d)), s∈ S(o(d)) (EC.26j)

X0
d −

∑
e∈δ+(o(d))

Zsed ≥ hsd, d∈D, s∈ S(o(d)) (EC.26k)
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Zsed ≤ x0
ed, d∈D, e∈ δ−(t(d)), s∈ S(t(d)) (EC.26l)

X0
d −

∑
e∈δ−(t(d))

Zsed ≥ hsd, d∈D, s∈ S(t(d)) (EC.26m)

∑
d∈D

x0
ed−

∑
d∈D(v)

∑
e−∈δ−(v)

zse−ed−
∑

d∈D+(v)

Zsed ≤ αsey0
e , v ∈ V, e∈ δ+(v), s∈ S(v) (EC.26n)

∑
d∈D

x0
ed−

∑
d∈D(v)

∑
e+∈δ+(v)

zsee+d−
∑

d∈D−(v)

Zsed ≤ αsey0
e , v ∈ V, e∈ δ−(v), s∈ S(v) (EC.26o)

all variables x0,X0,w, z,Z, y0 continuous and nonnegative. (EC.26p)

Above, D(v) := {d ∈ D : v /∈ {o(d), t(d)}} denotes the set of all demands for which node v is a

transit node. Similarly D−(v) := {d ∈ D : v = t(d)} and D+(v) := {d ∈ D : v = o(d)} denote the

sets of demands with v as the destination node and the originating node, respectively. Transit flow

variables wv
e−e+d, v ∈ V \ {o(d), t(d)}, e− ∈ δ−(v), e+ ∈ δ+(v), specify the amount of nominal flow

realizing demand d traversing its transit node v via links e− and e+. Next, variables zs
e−e+d, v ∈

V \{o(d), t(d)}, e− ∈ δ−(v), e+ ∈ δ+(v), s∈ S(v), specify the amount of flow by which the portion of

the nominal flow X0
d of demand d traversing its transit node v via links e− and e+ is reduced when

node v fails in state s ∈ S(v). Further, variables Zsed, d ∈ D, e ∈ δ−(t(d)), s ∈ S(t(d)), specify the

amount of flow by which the portion of the nominal flow X0
d of demand d entering its destination

node t(d) via link e is reduced when node t(d) fails in state s∈ S(t(d)). Finally, variables Zsed, d∈

D, e ∈ δ+(o(d)), s ∈ S(o(d)), specify the amount of flow by which the portion of the nominal flow

X0
d of demand d leaving its originating node o(d) via link e is reduced when node o(d) fails in state

s∈ S(o(d)).

The values of transit variables wv
e−e+d can be used to define the overall flow on the paths p∈ P̂d

traversing a transit node v of a demand d ∈ D containing two particular links e− and e+, where

e− ∈ δ−(v) and e+ ∈ δ+(v). When node v fails, the flows on these paths can be consistently thinned

using the value of zs
e−e+d instead of zse′d in a formula analogous to (EC.17). A similar observation

applies to variables Z.

For a fixed d ∈ D, an elementary path-flow pattern x0
dp > 0, p ∈ Pd (for some Pd ⊆ P̂d),

that realizes the link-flows x0
ed, e ∈ E , and is consistent with the values of variables w can be

found recursively as follows. Initially, we set Pd equal to ∅, and find a (elementary) path

q = (v0, e1, v1, e2, . . . , en−1, vn−1, en, vn) in P̂d, where v0 = o(d) and vn = t(d), such that the val-

ues of all variables x0
e1d
,wv1e1e2d,w

v2
e2e3d

, . . . ,w
vn−1
en−1end

, x0
end

are strictly greater than 0. Then we

define x0
dq := min{x0

e1d
,wv1e1e2d,w

v2
e2e3d

, . . . ,w
vn−1
en−1end

, x0
end
}, subtract the flow x0

dq from variables

x0
e1d
,wv1e1e2d,w

v2
e2e3d

, . . . ,w
vn−1
en−1end

, x0
end

, add the so found path q to Pd, and repeat the procedure

until no such path q for d can be found. This observation justifies the correctness of formulation

(EC.26).
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It turns out that the LBP formulation becomes exact when it has loop-less optimal solutions

and each node can fail at most once (i.e., |S(v)| ≤ 1, v ∈ V). This is because only then any feasible

loop-less solution of (14) determines a feasible solution of (EC.26) with the same cost. (Note that

this is true for an arbitrary single-link failure scenario.) For single-node failure scenarios admitting

|S(v)|> 1 for some v ∈ V, the above observation is not true anymore because of constraint (EC.26h)

which implies that for each value of wv
e−e+d (for v, e−, e+, d fixed) must be in this case an upper

bound for the set of values zs
e−e+d, s∈ S(v) with more than one element. This is illustrated by the

following example.

Example EC.5. Consider the network depicted in Figure EC.4 with 4 links e = 1,2,3,4. The

unit capacity cost of all four links is equal to 1. The single demand (with demand volume h)

between nodes o and t can be realized on 4 paths: p1 = {1,3}, p2 = {1,4}, p3 = {2,3}, p4 = {2,4}.

We consider a single-node failure scenario with 4 states s = 1,2,3,4 characterized by the sets of

failing links E1 = {2,4},E2 = {2,3},E3 = {1,4},E4 = {1,3}. (Note that the four availability states

can be considered as four different failures of node v.) The availability coefficients of all the failing

links in all the states are equal to α. The demand has the nominal volume and the volumes in the

states all equal to h. Note that in each state s= 1,2,3,4 only path ps remains unaffected.

o v t

2

1

4

3

Figure EC.4 A network example

It is clear that in terms of link capacity the optimal solution of the lower bound formulation

(14) is unique and symmetric. Hence, a simple cut-based argumentation implies that the common

optimal value y0 of the link capacity must fulfil the equality y0 +αy0 = h, that is, y0 = h
1+α

. The

common value x0 for the optimal nominal link-flows is equal to y0. In each state, the optimal

link-flows on the links with reduced capacity are equal to hα
1+α

, while on the fully available links—to

h
1+α

. Hence, the optimal LBP objective function value is equal to C ′ = 4h
1+α

.

The optimal solution for FTOP is obtained by considering the two following cases.

Case 1: 0≤ α < 1
2
. The optimal FTOP solution is as follows: f = h

1+4α
, y0 = 2h

1+4α
, C = 8h

1+4α
. All

four nominal path-flows are equal to f . In each state s, the nominal flow f on the unaffected path

ps is maintained, the flow on the path with both links affected is deleted (thinned to 0), and the

flows on the two remaining paths are thinned from f to 2hα
1+4α

. �



ec14 e-companion to Pióro et al.: Optimizing flow thinning with variable link capacity

Case 2: 1
2
≤ α≤ 1. The optimal FTOP solution is as follows: f = h

2(1+α)
, y0 = h

1+α
, C = 4h

1+α
. In

state s, the nominal flow f on the unaffected path pk is maintained, the flows on the two paths

with only one link affected are also maintained, and the flow on the path with both links affected

is thinned to h(2α−1)

2(1+α)
. �

Note that in Case 2 the optimal solutions of LBP and of FTOP have the same cost, i.e., C ′ =C.

In Case 1, however, C ′ <C and C−C′
C

= 1−2α
2(1+α)

. For α= 0, the difference of the FTOP cost and the

LBP cost constitutes 50% of the FTOP cost. For α= 1
4
, this value decreases to 20%.

We note that for the single-node failures, the relation between the exact formulation (EC.26)

and the lower bound formulation (14) in the undirected case is the same as for the directed case.

EC.7. Comparing LBP and FTOP

The solution of formulation (14) is a lower bound for FTOP because all constraints of (14) are

obviously fulfilled by the link-flows defined by any feasible solution x0
dp, x

s
dp, d ∈D, p ∈ P̂d, s ∈ S of

(1), that is, by the link-flows

x0
ed :=

∑
p∈P̂d

x0
dp, x

s
ed :=

∑
p∈P̂d

xsdp, e∈ E , d∈D, s∈ S.

Conversely, an optimal solution x0
ed, x

s
ed, e∈ E , d∈D, s∈ S, of (14) could be translated to an optimal

solution of FTOP only if there existed elementary path-flows that would realize the nominal link-

flows x0
ed, and at the same time could be appropriately thinned to realize the state-dependent

link-flows xsed for each state s.

However, this is in general not possible and hence optimal LBP solutions may in this sense be

infeasible for FTOP already for the single-link failure scenarios (Section EC.5.2, Example EC.4)

and for the single-node failure scenarios (Section EC.6.2, Example EC.5).

We evaluated the lower bound of FTOP resulting from compact formulation (14) for state

scenarios SL, DL and SN (single-node failures) for the four cases of (α,β) considered in Section

8.1.1. As the tests were made for undirected networks, we implemented a version of formulation

(14) with undirected links.

It turned out that for SL and SN, the cost of the LBP solution in all the considered was smaller

than the optimal cost of FTOP by 2–8 percent. The solution times of both approaches where

comparable for SL. In the case of SN, however, the running time for LBP was much longer than

that of the PG algorithm for FTOP—the LBP running time was always at least 30 times longer.

A comparison of LBP and FTOP in terms of the network cost and the running time assuming

DL is presented in Tables EC.2 and EC.3 for polska and nobel-us, respectively. The tables show

the ratios CFTOP/CLBP and TFTOP/TLBP . The quantities CFTOP and CLBP are the optimal costs
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for FTOP and for LBP, respectively, while TFTOP and TLBP are the respective running times. The

results indicate that for the DL case the LBP cost is only marginally smaller than the FTOP cost,

and that LBP becomes extremely time consuming.

Table EC.2 LBP vs. FTOP for polska under DL.

α β CFTOP/CLBP TFTOP/TLBP
0.25 0.75 1.04 0.011
0.25 1 1.05 0.013
0.5 0.75 1.08 0.017
0.5 1 1.07 0.029

Table EC.3 LBP vs. FTOP for nobel-us under DL.

α β CFTOP/CLBP TFTOP/TLBP
0.25 0.75 1.02 0.03
0.25 1 1.02 0.01
0.5 0.75 1.04 0.007
0.5 1 1.03 0.002

Finally let us address the question raised in Section 6: why we consider FT instead of an LBP-

based strategy (i.e., a kind of link-flow thinning) despite the fact that in general solutions of FTOP

are strictly more expensive than solutions of LBP. The reason is three-fold.

First, as discussed earlier in this section, in general the state-dependent link-flows optimized

with LBP do not correspond to any path-flows (tunnels) that obey the assumptions of FT. Thus,

the simple tunnel thinning and traffic control mechanism that with FT is performed at the traf-

fic/tunnel originating nodes cannot be directly applied. Certainly, a link-flow thinning mechanism

could be applied at the link originating nodes—this, however, would most likely lead to a substan-

tially more complicated traffic control mechanism as compared to FT.

Second, as shown below, the cost advantage of LBP over FTOP is only marginal. In addition,

except for small networks the running time required to solve LBP is significantly larger than that

required by the PG algorithm of FTOP. The reason is as follows. Assuming the common case

|D| ∼ |V|2 and |E| ∼ |V|, in the node-link formulation (14) the number of variables and constraints

is of the order of O(|V||D||S|) =O(|V|3|S|). At the same time, for a given set of admissible paths

P with |Pd| ≤ P,d ∈D (where P is bounded and does not increase with the size of the network),

the FTOP formulation (1) requires O(P |D||S|) =O(|V|2|S|) variables and constraints, that is |V|
times less.

Third, as shown in Example EC.4, in general the optimal nominal link-flow x0 delivered by LBP

must contain loops. This can cause serious problems for traffic routing protocols.

EC.8. Uncertainty polytopes

EC.8.1 Budgeted uncertainty polytope with controlled relaxation

The objective of this appendix is to generalize the FT uncertainty polytope from Section 7.3 to

arbitrary linear programs subject to uncertainty. Hence, in what follows we consider a linear

constraint ∑
i∈I

wixi ≤ b, (EC.27)
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where I := {1,2, . . . , I}, x ∈ RI is a vector of optimization variables, and w ∈ RI is a vector of

coefficients, being the parameter defining instances of (EC.27). Robust optimization considers

uncertainty imposed by parameter w by assuming that w can take any value in a given compact

convex (uncertainty) set S. Thus, in robust optimization, constraint (EC.27) is replaced by the

infinite set of constraints ∑
i∈I

wixi ≤ b, w ∈ S.

This framework was extended by Ben-Tal et al. (2006) who proposed to control also what happens

when the uncertain parameter w takes values outside the uncertainty set S. Namely, they use

a larger set, S+, that contains all “physically possible” realizations of the uncertain parameter,

defined as the sum of S and a closed convex cone C, S+ := {w′ = w+ λ : w ∈ S, λ ∈ C}, and they

allow for a controlled violation of the constraint when w takes values in S+:∑
i∈I

wixi ≤ b+ γ‖w,S‖, w ∈ S+,

where γ ≥ 0 is a given sensibility parameter and ‖w,S‖ denotes the distance of w from S.

Here we propose an alternative construction for S+. Rather than building S+ from general

convex sets S and C, we focus on extending the budgeted uncertainty polytope introduced in

Bertsimas and Sim (2004), remarkably popular in the fields of integer programming, combinatorial

optimization and network optimization. The budgeted uncertainty polytope assumes that each

parameter wi can deviate from its nominal value wi by a value not greater than ŵi and that

at most N of the parameters can simultaneously take extreme values. Recent papers by Büsing

and D’Andreagiovanni (2012) and Mattia (2012) have independently proposed an extension of

such polytopes where more parameters playing the role of N are used. Such extended budgeted

uncertainty polytopes are defined as follows.

Suppose K := {1,2, . . . ,K} and assume a given finite set Wi := {ŵ1
i , ŵ

2
i , . . . , ŵ

K
i } of deviations

levels for each parameter wi, and a finite set N := {N 1,N 2 . . . ,NK} of positive integers that satisfy

conditions 1 ≤ Nk ≤ |I|, k ∈ K and
∑

k∈KN
k ≥ |I|. Using an approach similar to the one from

Section 7.3, we first introduce an auxiliary polytope S ′ that is defined as the set of all vectors

u= (u+, u−) for u+, u− ∈RI×K+ fulfilling the conditions∑
k∈K

(u+k
i +u−ki )≤ 1, i∈ I;

∑
i∈I

(u+k
i +u−ki )≤Nk, k ∈K.

The uncertainty polytope SB from Mattia (2012) is then obtained through the affine mapping

w(u)i =wi +
∑
k∈K

ŵki (u+k
i −u−ki ), i∈ I.
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The asymmetric polytope from Büsing and D’Andreagiovanni (2012) is defined analogously, by

considering distinct positive and negative deviations levels.

For our construction, we suppose that the above set SB has been defined to be as large as possible

so that it contains all physically possible realizations of the uncertain parameter w. Hence SB plays

the role of set S+ introduced by Ben-Tal et al. (2006). Since enforcing constraint
∑

i∈I wixi ≤ b for

all w ∈ SB would be too conservative, we select a subset of SB for which the constraint must hold

strictly. Outside of the subset, we allow a controlled violation of
∑

i∈I wixi ≤ b. This is achieved by

considering b as another uncertain parameter whose reference value is b, and introducing a finite

set {b̂1, b̂2, . . . , b̂K} of its nonnegative deviations. The robust constraint becomes∑
i∈I

wixi ≤ b, (w,b)∈ S,

where S is obtained through the following (linear) mappings:

w(u)i =wi +
∑
k∈K

ŵki (u+k
i −u−ki ), i∈ I; b(u) = b+

∑
k∈K

b̂kUk, (EC.28)

where Uk =
∑

e∈I(u
+k
i + u−ki ), k ∈ K. The subset of indices of K whose deviations b̂k are equal

to 0 corresponds to the classical uncertainty set for which the constraint must hold firmly. The

remaining indices correspond to an extension of the uncertainty set, SB, for which some controlled

relaxation of the constraint is permitted.

We finally note that the polytope defined through (EC.28) leads to a linear programming for-

mulation, being a straightforward generalization of formulation (22).

EC.8.2 Uncertainty polytopes for single, double, and n-link failures

Observe that in polytope S ′(N ) defined by (18) the vertices are binary. This is because constraints

(18) are implied by a coefficient matrix identical to the one used for the assignment problem

constraints. The latter matrix is known to be totally unimodular (Nemhauser and Wolsey 1988).

This actually means that for each vertex (α,h) of the uncertainty polytope S(N ) defined by

(19), αe ∈ {a1, a2, . . . , aK}, e ∈ E . Because of that, we can model the single-link failure scenarios

and, more generally, n-link failure scenarios, as the vertices of the corresponding, appropriately

defined uncertainty polytopes.

Single-link failures (with availability coefficient a) are modeled by assuming K = {1,2} with

a1 = a,a2 = 1 and N 1 = 1,N 2 = |E| − 1. The so defined polytope S(N ) contains all the single-link

failure states but not the nominal state. For each single-link failure, hd = h0
d(1− b1), d ∈D. If we

wished to include the nominal state into S(N ) then we would change N 2 to |E| and then for the

nominal state (U 1 = 0,U 2 = |E|), the vector h would be equal to h0.
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The double-link failures case has several subcases. The simplest is when we assume the same

failure level a for both failing links. Then we put K= {1,2} with a1 = a,a2 = 1 and N 1 = 2,N 2 =

|E| − 2. The so defined polytope S(N ) contains all double-link failure states, but not the nominal

state nor the single-link failures. For each double-link failure, hd = h0
d(1−2b1), d∈D. If we wished

to include single-link failures (with availability level a) then we would change N 2 to |E|−1. Then for

the single-link failures (U 1 = 1,U 2 = |E|−1), the vector h would be equal to h0(1−b1). Moreover, by

putting N 2 = |E| we would include the nominal state to S(N ) as well. Finally, when we assume two

different failure levels, a1 < a2, for the two failing links we put K= {1,2,3}, 0< a1 < a2 < a3 = 1,

and N 1 =N 2 = 1 and N 3 = |E|−2. This setting makes S(N ) contain only double-link failures with

h= h0(1− b1− b2). Adding all single-link failures (with the demand requirement dependent on the

availability level of the failing link) and the nominal state can be done analogously.

Note that when both nominal state and the double-link failure states belong to the uncertainty

polytope, then, necessarily, also all single-link failures must belong to it. Hence, if we do not

wish to consider single-link failures, we need to treat the nominal state, and for that matter any

other state outside the considered uncertainty polytope, in an individual way, as discussed after

Proposition 4 in Section 7.4.

The n-link failures case (with n≥ 3) can be treated analogously. It is important that when we

decide to include all the k-link failures (with k < n) into the constructed polytope, then all the

i-link failures (with k < i < n) will be included automatically.

EC.8.3 Proof of Proposition 4

In order to derive the reformulation stated in Proposition 4 we will make use of the dual formula-

tions of linear programs defined over S(N ), i.e., linear programs from the class

max
(α,h)∈S(N )

Fc(α,h), (EC.29)

where Fc(α,h) :=
∑

ē∈E c
′
ēαē+

∑
d∈D c

′′
dhd for any given vector c∈R|E|+|D|, c= (c′, c′′), c′ ∈R|E|, c′′ ∈

R|D|.

Lemma 6 The optimal objective value F ∗c of (EC.29) is bounded and equal to W ∗ +
∑

d∈D c
′′
dh

0
d,

where W ∗ is the optimal objective value of the following linear program in variables τ := (τē, ē∈ E)

and θ := (θk, k ∈K):

min W =
∑
ē∈E

τē +
∑
k∈K

Nkθk (EC.30a)

τē + θk ≥ c′ēak−
∑
d∈D

c′′dh
0
db
k, ē∈ E , k ∈K (EC.30b)

θ≥ 0. (EC.30c)
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Proof. Clearly, F ∗c is bounded since S(N ) is bounded and nonempty. Now we note that the

considered problem (EC.29) can equivalently be reformulated as:

max
u∈S′(N )

Fc(u), (EC.31)

where S′(N ) is defined by (18), and the objective function

Fc(u) :=
∑
ē∈E

c′ē(
∑
k∈K

akukē) +
∑
d∈D

c′′d(h
0
d(1−

∑
k∈K

bk(
∑
ē∈E

ukē))) (EC.32)

is obtained using (20a) and (20b). After transformation we get

Fc(u) =
∑
d∈D

c′′dh
0
d +
∑
ē∈E

∑
k∈K

(c′ēa
k−
∑
d∈D

c′′dh
0
db
k)ukē , (EC.33)

where the first term on the right-hand side is constant. Hence, instead of (EC.31) we can consider

its modification

max F ′c(u) =
∑
ē∈E

∑
k∈K

(c′ēa
k−
∑
d∈D

c′′dh
0
db
k)ukē (EC.34a)

[τē]
∑
k∈K

ukē = 1, ē∈ E (EC.34b)

[θk ≥ 0]
∑
ē∈E

ukē ≤Nk, k ∈K (EC.34c)

u≥ 0. (EC.34d)

It is easy to check that (EC.30), with the dual variables specified on the left-hand sides of constraints

(EC.34b) and (EC.34c), defines the problem dual to (EC.34), and this proves Lemma 6. �

Proof of Proposition 4 Denote the polyhedron in the (τ, θ)-space R|E|+|K| defined by (EC.30b)

and (EC.30c) for a given vector c= (c′, c′′)∈R|E|+|D| with D(c), and define expressions

f(τ, θ, c) :=
∑
ē∈E

τē +
∑
k∈K

Nkθk +
∑
d∈D

c′′dh
0
d. (EC.35)

Let A(N ) denote the projection of the uncertainty polytope S(N ) onto the α-space R|E|. Formula-

tion (1), modified for S := S(N ) and the affine decision rules xsdp = z0
dp +

∑
ē∈Edp

zēdpα
s
ē, α ∈A(N ),

is as follows:

min C =
∑
e∈E

ξey
0
e (EC.36a)∑

d∈D

∑
p∈Pd

δedpx
0
dp ≤ y0

e , e∈ E (EC.36b)∑
p∈Pd

(z0
dp +

∑
ē∈Edp

zēdpαē)≥ hd, d∈D, (α,h)∈ S(N ) (EC.36c)
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d∈D

∑
p∈Pd

δedp(z
0
dp +

∑
ē∈Edp

zēdpαē)≤ αey0
e , e∈ E , α∈A(N ) (EC.36d)

z0
dp +

∑
ē∈Edp

zēdpαē ≤ x0
dp, d∈D, p∈Pd, α∈A(N ) (EC.36e)

z0
dp +

∑
ē∈Edp

zēdpαē ≥ 0, d∈D, p∈Pd, α∈A(N ) (EC.36f)

x0, y0 continuous and nonnegative, z continuous. (EC.36g)

Assuming zēdp := 0, ē∈ E \ Edp, we can transform (EC.36) to a more convenient form:

min C =
∑
e∈E

ξey
0
e (EC.37a)∑

d∈D

∑
p∈Pd

δedpx
0
dp ≤ y0

e , e∈ E (EC.37b)∑
ē∈E

(−
∑
p∈Pd

zēdp)αē +hd ≤
∑
p∈Pd

z0
dp, d∈D, (α,h)∈ S(N ) (EC.37c)∑

ē∈E

(
∑
d∈D

∑
p∈Pd

δedpz
ē
dp−∆(ē, e)y0

e)αē ≤−
∑
d∈D

∑
p∈Pd

δedpz
0
dp, e∈ E , α∈A(N ) (EC.37d)∑

ē∈E

zēdpαē ≤ x0
dp− z0

dp, d∈D, p∈Pd, α∈A(N ) (EC.37e)∑
ē∈E

(−zēdp)αē ≤ z0
dp, d∈D, p∈Pd, α∈A(N ) (EC.37f)

x0, y0 continuous and nonnegative, z continuous. (EC.37g)

Now, due to Lemma 6, we can substitute the left-hand side of each of the constraints (EC.37c)–

(EC.37f) by an appropriate expression (EC.35) and an appropriate constraint (EC.30b). In detail,

the substitutions are as follows.

Constraint (EC.37c): c1 := (c′, c′′), c′ := (−
∑

p∈Pd
zēdp, ē∈ E), c′′ := (∆(d, d̄), d̄∈D)

f(τ 1
d , θ

1
d, c

1)≤
∑
p∈Pd

z0
dp, d∈D (EC.38a)

(τ 1
d , θ

1
d)∈D(c1), d∈D. (EC.38b)

Constraint (EC.37d): c2 := (c′, c′′), c′ := (
∑

d∈D
∑

p∈Pd
zēdp−∆(ē, e)y0

e , ē∈ E), c′′ := 0

f(τ 2
ē , θ

2
ē , c

2)≤−
∑
d∈D

∑
p∈Pd

δedpz
0
dp, e∈ E (EC.39a)

(τ 2
ē , θ

2
ē)∈D(c2), ē∈ E . (EC.39b)

Constraint (EC.37e): c3 := (c′, c′′), c′ := (zēdp, ē∈ E), c′′ := 0

f(τ 3
dp, θ

3
dp, c

3)≤ x0
dp− z0

dp, d∈D, p∈Pd (EC.40a)

(τ 3
dp, θ

3
dp)∈D(c3), d∈D, p∈Pd. (EC.40b)
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Constraint (EC.37f): c4 := (c′, c′′), c′ := (−zēdp, ē∈ E), c′′ := 0

fc4(τ 4
dp, θ

4
dp, c

4)≤ z0
dp, d∈D, p∈Pd (EC.41a)

(τ 4
dp, θ

4
dp)∈D(c4), d∈D, p∈Pd. (EC.41b)

These substitutions lead directly to formulation (22). �

We finally note that we can explicitly extend formulation (22) for a given finite set of states S,

S ∩S(N ) = ∅. This is achieved by adding the following constraints to formulation (22).∑
p∈Pd

(z0
dp +

∑
ē∈Edp

zēdpα
s
ē)≥ hd, d∈D, s∈ S (EC.42a)

z0
dp +

∑
ē∈Edp

zēdpα
s
ē ≤ x0

dp, d∈D, p∈Pd, s∈ S (EC.42b)

∑
d∈D

∑
p∈Pd

δedp(z
0
dp +

∑
ē∈Edp

zēdpα
s
ē)≤ αey0

e , e∈ E , s∈ S (EC.42c)

z0
dp +

∑
ē∈Edp

zēdpα
s
ē ≥ 0, d∈D, p∈Pd, s∈ S. (EC.42d)

EC.9. Number of paths generated by the PG algorithm

Figure EC.5 illustrates an important aspect of the PG algorithm, namely the evolution of the

number of added paths and the network cost for the consecutive iterations. Two α cases for SL

with β = 1 are considered for pdh and polska. For all these cases the final optimum is obtained

after only 5-7 PG iterations.
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Figure EC.5 Value of the objective function and number of paths added at each iteration.


