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Abstract With the emergence of the High Efficiency

Video Coding (HEVC) standard, a dataflow description

of the decoder part was developed as part of the MPEG-

B standard. This dataflow description presented modest

framerate results which led us to propose methodolo-

gies to improve the performance. In this paper, we in-

troduce architectural improvements by exposing more

parallelism using YUV and frame-based parallel decod-

ing. We also present platform optimizations based on

the use of SIMD functions and cache efficient FIFOs.

Results show an average acceleration factor of 5.8 in

the decoding framerate over the reference architecture.

1 Introduction

The availability of high resolution screens supporting

4K and 8K Ultra High Definition TV formats, has raised

the requirements for better performing video compres-

sion algorithms. With this objective MPEG and ITU

have recently finalized the development of the new High

Efficiency Video Coding (HEVC) video compression stan-

dard [1] successfully addressing these demands in terms

of higher compression and increased potential paral-
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lelism when compared to previous standards. So as to

guarantee real-time processing for such extremely high

data rates, exploiting the parallel capabilities of re-

cent many/multi-core processing platforms is becom-

ing compulsary for implementing both encoders and

decoders. In this context, dataflow programming is a

particularly attractive approach because its intrinsic

properties allow natural decomposition for parallel plat-

forms.

The MPEG-RVC framework [2] is an ISO/IEC stan-

dard conceived to address these needs. It is essentially

constituted by the RVC-CAL actor dataflow language [3]

and a network language, and aims at replacing the tra-

ditional monolithic standard specification of video codecs

with a dataflow specification that better satisfies the

implementation challenges. The library of actors is writ-

ten in RVC-CAL and provides the components that

are configured using the network language to build a

dataflow program implementing an MPEG decoder.

The main contributions of this work are: 1) the de-

velopment of an RVC-based dataflow program imple-

menting the HEVC decoder; 2) the optimization of the

dataflow architecture by exposing an higher level of po-

tential parallelism; 3) the optimization of the program

for the execution on x86 architectures using SIMD func-

tions and efficient FIFO cache implementations. The

paper is organized as follows: in Section 2, we present

an overview on the RVC framework. Section 3 details

the dataflow HEVC decoder developed according to the

RVC formalism. Section 4, details the methodologies

used to improve the performance of the decoder. Fi-

nally, Section 5 shows the implementation results on

multi-core software platform.
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2 Reconfigurable Video Coding

The emergence of massively parallel architectures, along

with the need for modularity in software design, has

revived the interest in dataflow programming. Indeed,

designing processing systems using a dataflow approach

presents several advantages when dealing with complex

algorithms and targeting parallel and possibly hetero-

geneous platforms.

The MPEG-RVC framework is an ISO/IEC stan-

dard aiming at replacing the monolithic representations

of video codecs by a library of components. The frame-

work allows the development of video coding tools, among

other applications, in a modular and reusable fashion by

using a dataflow programming approach. RVC presents

a modular library of elementary components (actors).

An RVC-based design is a dataflow directed graph with

actors as vertices and unidirectional FIFO channels as

edges. An example of a graph is shown in Figure 1. Ev-

ery directed graph executes an algorithm on sequences

of tokens read from the input ports and produces se-

quences of tokens in the output ports.

A 

B 

C 

D 

E 

Actions 

state 

Fig. 1: A dataflow network of five processes, the vertices

named from A to E, that communicate through a set

of communication channels, represented by the directed

edges.

Actually, defining several implementations of video

processing algorithms using elementary components is

very easy and fast with RVC since the internal state

of every actor is completely independent from the rest

of the actors of the network. Every actor has its own

scheduler, variables and behavior. The only way of com-

munication of an actor with the rest of the network

are its input ports connected to the FIFO channels to

check the presence of tokens. Then, an internal sched-

uler enables or not the execution of elementary func-

tions called actions depending on their corresponding

firing rules. Thus, RVC ensures concurrency, modular-

ity, reuse, scalable parallelism and encapsulation. To

manage all the presented concepts of the standard, RVC

presents a framework based on the use of a subset of

the CAL actor language called RVC-CAL that describes

the behavior of the actors.

The RVC framework is supported by a set of tools

such as the Open RVC-CAL Compiler (Orcc). Orcc1

[4] is an open-source toolkit dedicated to the develop-

ment of RVC applications. Orcc is a complete Eclipse-

based IDE that embeds two editors for both actor and

network programming, a functional simulator and a

dedicated multi-target compiler. The compiler is able

to translate the RVC-based description of an applica-

tion into an equivalent description in both hardware

[5,6] and software languages [7,8] for various platforms

(FPGA, GPP, DSP, etc). A specific compiler back-end

has been written to tackle each configuration case such

as presented in Figure 2.

RVC CAL compiler 

C C-HLS 

C compiler 
C-to-gate 

synthesizer 

FPGA Multi-core processor 

.EXE 

Orcc 

Hardware flow Software flow 

Fig. 2: Multi-target compilation infrastructure

3 Dataflow-based HEVC decoder

HEVC is the last born video coding standard, devel-

oped conjointly by ISO and ITU, as a successor to AVC

/ H.264. HEVC is improving the data compression rate,

as well as the image quality, in order to handle mod-

ern video constraints such as the high image resolutions

4K and 8K [1]. Another key feature of this new video

coding standard is its capability for parallel processing

that offers scalable performance on the trendy parallel

architectures.
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Fig. 3: Standard RVC specification of the MPEG HEVC

decoder

3.1 Reference design

With the parallel capabilities, HEVC offers a great op-

portunity to show the merits of the RVC approach.

Consequently, the RVC working group has developed,

in parallel with the standardization process, an imple-

mentation of the HEVC decoder using the RVC frame-

work, which is presented in Figure 3. The description

is decomposed in 4 main parts:

1. the parser: it extracts values needed by the next pro-

cessing from the compressed data stream so called

bitstream. The stream is decompressed with en-

tropy decoding techniques, then the syntax elements

composing the stream are extracted in order to be

transmitted to the actors that they may concern.

The parser applies a Context-adaptive binary arith-

metic coding (CABAC) to extract the syntax ele-

ment of the bitstream.

2. the residual: it decodes the error resulting of the im-

age prediction using Inverse integer Transform (IT),

which is no other than an integer implementation of

the well-known IDCT. The transform allows spatial

redundancy reduction within the encoded residual

image. As presented in figure 3, the IT can be ap-

plied on different blocks sizes (4x4 .. 32x32) and

the dataflow description allows parallelizing the pro-

cesses.

3. the prediction part: it performs the intra and inter

prediction. Intra prediction is done with neighbour-

ing blocks in the same picture (spatial prediction)

whereas inter prediction is performed as a motion

compensation with other pictures (temporal predic-

tion). The inter predication also implies the use of

a buffer, known as Decoding Picture Buffer (DPB),

containing decoding pictures, needed to perform the

temporal prediction.

4. the filter: it is used to reduce the impact of the pre-

diction on the image rendering. This part contains

two different filters. On the one hand, the DeBlock-

ing Filter (DBF) [9] is used to smooth the sharp

1 Orcc is available at http://orcc.sf.net

edges between the macro-blocks. On the other hand,

the Sample Adaptive Offset filter (SAO) [10] is used

to better restore the original signal using an offset

look up table.

3.2 Design profiling

In order to assess the performance of the dataflow HEVC

decoder presented above, Orcc has been used to gener-

ate a C implementation. The generated project is com-

piled with GCC and executed on a Xeon CPU at 3,2

Ghz. The preliminary results on 1080x1920 HD streams

showed a low throughput of 6.1 Frames/second. The

mapping of the actors on multi-core for parallel execu-

tion did not bring scalable results.

In order to better understand the bottlenecks of the

design, profiling tools have been used to evaluate the

workload of each actor and the obtained results have

been reported in Figure 4. Results show that only 3 ac-

Parser 
6% 

Deblocking 
filter 
8% 

Decoding 
Picture 
Buffer 
14% 

Inter-
Prediction 

38% 

Intra-
Prediction 

2% 

SAO filter 
8% 

Reconstruct 
7% 

Inverse 
transforms 

15% 

Others 
2% 

Fig. 4: Actors workload of the HEVC decoder

tors (Inter Prediction, DPB and SAO filter) consume

60% of the whole workload which means that these ac-

tors require an optimization stage and a refactoring to

expose an higher potential of parallelism.

4 Methodologies for performance improvement

In the following, an architecture optimization based on

the split of the decoding process into luminance com-

ponent (Y) and chrominance components (U and V)

separately is presented. The same architecture is dupli-

cated to enable a frame-based parallel decoding of the

frames. Then, optimization methodologies dedicated to

x86 platforms are introduced.
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4.1 Architecture optimizations

4.1.1 YUV components parallel decoding

In the first version of the decoder, sequential decod-

ing of the image luminance and chrominance compo-

nents was applied. This description is changed to split

the processes into independent actors for each image

component as illustrated in Figure 5. The impact of

such architecture is detailed by Weiwei et. al in [11].

Only the parser could not be split since the 3 compo-

nents are put sequentially in the bitstream. Splitting

the parser results in complex actors since the state of

the CABAC has to be shared between those actors. The
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Fig. 5: YUV split of the HEVC decoder: example of

split of the intra decoder at finer granularity; the same

split is applied on most actors.

application of this transformation had a direct impact

on the workload as shown in Figure 6 where most of

the critical actors workloads became close to the rest

of the design, such as 6% for the DPB-Y and 11% for

SAO-Y. Concerning the Luminance component of the

Inter Prediction, a 23% is still considered to be a major

bottleneck. In the following,a local optimization of this

actor by linking with optimized functions from MPEG

libraries has been applied.

4.1.2 Frame-based parallel decoding

Thanks to the modularity of dataflow modeling, the

frame-based parallelization is theoretically, a duplica-

tion of the whole decoding actors. The principle is that

the compressed stream is sent to n decoders and, fol-

lowing a selection strategy, a decoder is going to de-

code some frames and bypass others that are decoded

by other decoders. Figure 7 shows the frame-based ar-

chitecture where a set of decoders coexist. Some data

9% 
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6% 

2% 
2% 
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5% 

5% 
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Reconstruct 

Inverse quant. & 
transform 

Others 

Fig. 6: Actors workload of Post YUV split

from a frame is needed to decode another frame such

as motion vectors and reference lists. This problem was

raised by Zhou et. al in [12] For that reason, a com-

mon parser and motion vector generator is added to

communicate a correct stream of common data to the

decoding picture buffer and also to the inter prediction

actors of all decoders. The frame-based does not ex-

culde the YUV split which means that it is possible to

use N decoders all containing YUV components paral-

lel decoding. In the following, we assume that FBn is

a frame-based architecture with n decoders.

Figure 8 presents the distribution of the computa-

tional load within the software implementation of the

frame-based description composed of 2 decoders (FB2).

The results show that the distribution is consistent

among the tested implementations, as well as among

the distribution observed in more traditional implemen-

tations [13],[14]. Motion compensation performed within

the Inter-predition and the Decoded Picture Buffer is

the most consuming part with about 50% of the com-

putation load. Loops filters represent about 25% of the

computation load. Entropy decoding and inverse quan-

tization, perform both in the Parser, contributes to 10%

of the global computation load on average. In FB2 de-

sign, this load increases to 17% since the parsing is

duplicated in the Main Parser and each Parser. The

Inverse Transforms represent between 3% to 12% of

the computation load depending on code optimization

of the designs. The last significant part, about 10% of

the computation load, is specific to dataflow descrip-

tion: Known as Reconstruction, it adds the residual to

the predicted blocks.
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Fig. 7: Data flow frame-based design of HEVC decoder
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Fig. 8: Average load distribution in 3 dataflow HEVC implementations: Kimono, Low Delay, all QP values.

4.2 Platform-specific optimizations

Beside the possibility of using different dataflow net-

work structures, the standard RVC dataflow program

can also be implemented with platform-specific opti-

mizations. In particular, a new methodology to use platform-

specific optimized kernels to accelerate the internal pro-

cessing of actors (i.e. actions) has been introduced, and

an optimized FIFO channels implementation to speed-

up the communication between processor cores that

share a common cache memory has been developed.

4.2.1 Optimized SIMD kernels

Considering the compiler limitations to perform low-

level optimization on high-level code, we propose a new

technique to insert optimized architecture-specific ker-

nel code within high-level descriptions of dataflow ap-

plication. In this work, we used Intel SIMD instructions

to target x86 architectures. Our techniques relies on an

annotation mechanism in order to keep the portability

of the high-level description over multiple platforms:
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1. First, the developer identifies the code to optimize

and move it in its own procedure, knowing that

the optimized kernels have to use the same param-

eters than their equivalents in CAL. The optimized

version should be available into an external library

(such as FFMPEG).

2. Then, the developer adds the directive @optimize on

top of the CAL procedure to identify the optimized

version of the procedure (see Listing 1). The di-

rective is based on the following syntax @optimize(

condition=”CONDITION”, name=”NAME”) where NAME is

the name of the optimized kernel and CONDITION

is a predefined condition that enable the execution

of the kernel.

3. Finally, the generated code can use the optimized

kernels when they are available (see Listing 2).

@optimize(condition=”defined (
OPENHEVCENABLE)”, name=”
put hevc qpel h”)

procedure put_hevc_qpel_h_cal(int(
size =16) arg1 [64*64] , int arg2)

begin
// Kernel body in CAL
(...)
end

Listing 1: CAL code

void put_hevc_qpel_h_cal(i16 arg1
[4096] , i32 arg2) {

#if defined(OPENHEVC_ENABLE)
// Optimized kernel
put_hevc_qpel_h(arg1 , arg2);
#else
// Standard kernel
(...)
#endif

}

Listing 2: Generated code

As a result, optimized applications easily stay compat-

ible with all backends and platforms.

To link with SIMD functions, the CAL code under-

goes small modifications by adding annotations and by

corresponding functions they become identical to SIMD

ones (arguments number and types). As explained in

Figure 9, the FFMPEG library is compiled to allow the

external use of SSE functions. Then, a correct link of

the C project with the dynamic library is guaranteed

by our build system.

4.2.2 Cache-efficient FIFO channels

In software, FIFO channels are traditionally implemented

by a circular buffer allocated in shared memory. Read

and write are then achieved by accessing the buffer ac-

cording to read and write indexes that are updated af-

terwards. The state of FIFO channels is known by com-

parison of their indexes. Using circular buffer to imple-

FFMPEG  
Library with 

accessible SSE 
functions 

Compile once 

.DLL 

CAL CAL* 
Correspond functions 
Add annotations 

RVC-CAL 
compilation 

C project 
C compiler 

Optimized implementation 

Fig. 9: Conception flow of the SIMD linked implemen-

tation shows a compilation of a RVC-CAL code with

annotations linked with a DLL library generated from

the compilation of FFMPEG.

ment FIFO channels avoids side shuffles of data after

each reading, but implies an advanced management of

memory indexes that may ultimately lead to poor per-

formance. Indeed, the functions that read data from

a predecessor actor and the functions that write data

to a successor actor are completely independent which

means that, following the model of computation, it is

impossible to read and write data in the same FIFO at

the same time. In modern general-purpose processors,

the processor cores usually communicates through com-

mon shared memory accessed using cache mechanism.

When accessing a line of cache a processor has to check

if there are fields that have been changed. In that case,

to be sure of using the last stored data, it makes a re-

fresh of the line of cache. When the read and the write

indexes are set into different lines of cache, the refresh

of the line containg the read index is applied only when
reading and the same for writing. Naive implementation

of FIFO channels (see Figure 10-a) results in cache inef-

ficiency because of false sharing. As a result, a memory

padding is added on each FIFO index [15] in order not

to share the same cache line as explained in Figure 10-b.

5 Results

To apply the optimization methodologies evoked above,

an Intel Xeon CPU at 3.2 GHz with 6 cores has been

used. The experiments were applied on the streams of

table 1:

Table 2 presents the decoding framerate of the YUV

design on test streams using an increasing number of

processor cores and 4 different encoding configurations

(LD with QP=27 and 37, LP with QP=27 and 37).

To apply the frame-based design we reduced the

configurations to QP=27 and LD encode since all 1080x1920

streams have almost equal results. This choice can be
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Fig. 10: A smart FIFO implementation in the cache of the processor. In (a), the classic definition of the indexes

results in setting indexes in the same line of cache which requires useless waits for refresh. In (b), by adding the

paddings, the indexes are set into distinct lines of cache.

Table 1: Video sequences considered in the experiments

Sequences Resolution Framerate(FPS)
Kimono

1920x1080

24
BasketBallDrive 50
ParkScene 24
Cactus 50
BQTerrace 60
PeopleOnStreet

2560x1600
30

Traffic 30

explained by the fact that a QP=27 is an average be-

tween QP=22 and QP=37 with a really good image

quality and realistic bitrate for industry usage. We con-

sidered three designs: FB2, FB3, and FB4. All the fram-

erate (FPS) results are summarized in Table 3. For all

streams, the framerate decreases in the mono-core de-

sign. This is due to the increasing number of actors

since we duplicate almost the whole decoder. Conse-

quently, the global actors scheduler is slowing down the

application when actor number grows.

For a better study of dataflow implementation of

HEVC decoder, we analyzed the multi-threaded imple-

mentation of the OpenHEVC decoder. We could not use

the HM reference because it does not support multi-

threading or multi-core mapping. In the OpenHEVC

implementation, the thread parallelism is mainly based

on frames. With a predefined number of threads, the

decoder assigns a frame for each thread. When there

is a dependency from blocks that belong to another

frame the threads are able to wait until the required

block is decoded. Once a thread is free it starts a new

frame. Table 4 presents the framerate obtained while

decoding the same test streams with OpenHEVC on

the same platform. Results showed that OpenHEVC is

Table 2: Decoding framerate of the YUV design on

multi-core processor (in FPS)

Number of processor cores
Sequence info Conf QP 1 2 3 4 5 6
Kimono LD 27 20 33 48 51 48 47

37 27 46 54 65 85 83
RA 27 22 34 50 53 54 52

37 30 44 54 62 79 89
BasketBallDrive LD 27 16 29 44 48 39 37

37 25 37 51 58 85 82
RA 27 17 27 38 49 44 39

37 27 41 49 57 86 87
ParkScene LD 27 17 26 35 37 43 43

37 25 40 53 57 60 82
RA 27 20 28 44 43 43 41

37 28 46 55 61 67 81
Cactus LD 27 19 30 37 47 46 48

37 25 44 56 59 66 82
RA 27 22 32 37 48 45 49

37 27 45 59 60 69 89
BQTerrace LD 27 19 27 38 42 40 39

37 26 44 59 63 85 87
RA 27 19 26 33 38 40 35

37 29 47 62 67 86 90

PeopleOnStreet LD 27 5 10 15 13 14 12
37 9 16 20 18 25 23

RA 27 7 13 18 18 16 16
37 12 18 26 24 25 30

Traffic LD 27 11 17 20 24 25 26
37 15 24 32 34 38 37

RA 27 13 21 24 25 28 26
37 17 28 37 40 39 38

already much more efficient on single-core execution:

This can be explained by the large use of assembly-

level optimizations. It is also noticeable that the max-

imal performance is reached at 5 cores then remains

stable. Since multi-threading enables the minimization

of the communication cost on shared-memory architec-

ture, the performance stays stable even if the maximal

parallelism is already reached with fewer threads.
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Table 3: Decoding framerate of the dataflow HEVC de-

signs on multi-core processor (in FPS): Low Delay, and

QP=27.

Number of processor cores
Sequence Architecture 1 2 3 4 5 6
Kimono Ref 11 16 20 23 22 19

YUV 20 33 48 51 48 47
FB2 18 29 47 54 64 53
FB3 15 25 38 40 51 55
FB4 14 20 35 42 44 59

BasketBallDrive Ref 10 14 17 18 20 17
YUV 16 29 44 48 39 37
FB2 14 21 38 42 56 52
FB3 11 16 21 25 32 35
FB4 9 14 19 29 45 38

ParkScene Ref 10 15 19 20 19 17
YUV 17 26 35 37 43 43
FB2 15 24 34 36 50 48
FB3 12 19 28 34 35 42
FB4 11 15 25 35 44 45

Cactus Ref 12 16 18 21 22 20
YUV 19 30 37 47 46 48
FB2 18 24 34 42 60 50
FB3 15 19 32 38 41 44
FB4 13 18 27 35 55 52

BQTerrasse Ref 10 15 19 20 22 21
YUV 19 27 38 42 40 39
FB2 17 23 35 36 32 49
FB3 15 19 28 38 44 42
FB4 11 16 23 37 51 58

PeopleOnStreet Ref 4 6 9 11 12 10
YUV 5 10 15 13 14 12
FB2 4 8 11 12 21 14
FB3 4 7 10 11 13 16
FB4 3 5 8 12 14 12

Traffic Ref 7 9 12 13 13 11
YUV 11 17 20 24 25 26
FB2 9 15 21 24 28 33
FB3 7 12 18 23 22 19
FB4 6 10 15 22 21 22

Table 4: Decoding framerate using OpenHEVC (in

FPS): Low Delay, and QP=27.

Number of threads
Sequences 1 2 3 4 5 6
Kimono 59 96 136 145 144 144
BasketBallDrive 51 85 115 122 123 122
ParkScene 51 78 105 112 111 112
Cactus 63 102 142 152 150 151
BQTerrace 54 82 109 115 113 114
PeopleOnStreet 17 30 46 51 61 61
Traffic 33 51 73 77 91 92

For comparison, Figure 11 presents the framerate

evolution with a various number of processor cores on

the different designs. The FB2, FB3, and FB4 designs

overstep the performance of the reference design respec-

tively at 3, 4, and 5 cores. Which confirms that the more

actors we have, the more cores we need to overcome the

overhead of the scheduler. Due to the communications

cost explained above, the FB2 design reaches a peak

at 5 cores then it starts decreasing with more cores.

FB3 and FB4 designs continue increasing with the 6

available cores. This framerate matches an acceleration

peak of 5.81 as shown in Table 5. The rising curve of the

framerate performance of FB3 and FB4 designs shows

a potential continuous increase that can be established

using more processing cores.
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Fig. 11: Evolution of the decoding framerate with

dataflow designs on multi-core platform: Kimono, Low

Delay, and QP=27.

Table 5: Acceleration ratio: for the RVC designs be-

tween the multi-threaded design and the single-thread

version of the ref design, and for OpenHEVC between

its multi-threaded versus its single-threaded (Low De-

lay and QP=27)

Number of threads
Sequences Design 2 3 4 5 6
Kimono OpenHEVC 1.62 2.35 2.45 2.44 2.44

YUV 1.81 3.00 4.36 4.63 4.36
FB2 2.63 4.27 4.90 5.81 4.81
FB3 2.27 3.45 3.63 4.63 5.00
FB4 1.81 3.18 3.81 4.00 5.36

Traffic OpenHEVC 1.54 2.21 2.33 2.75 2.78
YUV 1.57 2.42 3.42 3.57 3.71
FB2 2.13 2.98 3.42 3.99 4.71
FB3 1.71 2.56 3.28 3.14 2.70
FB4 1.41 2.13 3.14 2.98 3.14

6 Discussion

Considering the above results, the performance of the

RVC decoder remains lower than the openHEVC which

is expected since openHEVC is a native C application

while the RVC decoder implementation is automatically

generated. Basically, the purpose of this work is not to

present a performance that oversteps a native applica-

tion but to show that using a modular high level de-

scription it is possible to reach real time processing of

high resolutions.
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More generally, we underline that for high complex-

ity applications RVC allows to go at least 3 times faster

than C languages for example and even if the perfor-

mance is lower than native codes, this framework is very

attractive for developping complex applications that do

not have hard real time constraints.

Moreover, the RVC-CAL code is target agnostic and

current compilers allow the automatic generation of

several languages such as C, C++, LLVM, C-HLS, Ver-

ilog etc, from a unique description. This feature is very

important for hardware developpers since the validation

of the application can be achieved in a software context

and finally the hardware generation is performed so the

prototyping goes faster.

7 Conclusion

In this paper, a dataflow description of the HEVC de-

coder based on the RVC framework has been presented.

To improve the performance of the decoder, more par-

allelism in the architecture has been achieved by split-

ting most of the decoding processes into independent

Y, U and V components separately and also by dupli-

cating the decoding processes to enable a frame-based

parallelism. Platform specific x86 optimizations have

been developed and they consist of using a smart FIFO

cache implementation and substituting some critical

functions with SIMD ones. Results show an acceleration

that reaches a factor of 5.8 over the initial dataflow im-

plementation standardized by MPEG, which allows real

time decoding for 1080x1920 streams at 60 Hz. Some

critical actors, considered as bottlenecks, are also under

consideration for improving their processing efficiency.
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