Khaled Jerbi

Hervé Yviquel

Alexandre Sanchez

Daniele Renzi

Damien De Saint Jorre

Claudio Alberti

Marco Mattavelli

Mickael Raulet

Saint Jorre • Damien De

Mickaël Raulet

Jerbi

Yviquel

Raulet

Sanchez

De Saint Jorre Renzi

Alberti

On the Development and Optimization of HEVC Video Decoders Using High-Level Dataflow Modeling

With the emergence of the High Efficiency Video Coding (HEVC) standard, a dataflow description of the decoder part was developed as part of the MPEG-B standard. This dataflow description presented modest framerate results which led us to propose methodologies to improve the performance. In this paper, we introduce architectural improvements by exposing more parallelism using YUV and frame-based parallel decoding. We also present platform optimizations based on the use of SIMD functions and cache efficient FIFOs. Results show an average acceleration factor of 5.8 in the decoding framerate over the reference architecture.

Introduction

The availability of high resolution screens supporting 4K and 8K Ultra High Definition TV formats, has raised the requirements for better performing video compression algorithms. With this objective MPEG and ITU have recently finalized the development of the new High Efficiency Video Coding (HEVC) video compression standard [START_REF] Sullivan | Overview of the High Efficiency Video Coding (HEVC) Standard[END_REF] successfully addressing these demands in terms of higher compression and increased potential paral-lelism when compared to previous standards. So as to guarantee real-time processing for such extremely high data rates, exploiting the parallel capabilities of recent many/multi-core processing platforms is becoming compulsary for implementing both encoders and decoders. In this context, dataflow programming is a particularly attractive approach because its intrinsic properties allow natural decomposition for parallel platforms.

The MPEG-RVC framework [START_REF] Mattavelli | MPEG reconfigurable video coding[END_REF] is an ISO/IEC standard conceived to address these needs. It is essentially constituted by the RVC-CAL actor dataflow language [START_REF] Eker | CAL Language Report[END_REF] and a network language, and aims at replacing the traditional monolithic standard specification of video codecs with a dataflow specification that better satisfies the implementation challenges. The library of actors is written in RVC-CAL and provides the components that are configured using the network language to build a dataflow program implementing an MPEG decoder.

The main contributions of this work are: 1) the development of an RVC-based dataflow program implementing the HEVC decoder; 2) the optimization of the dataflow architecture by exposing an higher level of potential parallelism; 3) the optimization of the program for the execution on x86 architectures using SIMD functions and efficient FIFO cache implementations. The paper is organized as follows: in Section 2, we present an overview on the RVC framework. Section 3 details the dataflow HEVC decoder developed according to the RVC formalism. Section 4, details the methodologies used to improve the performance of the decoder. Finally, Section 5 shows the implementation results on multi-core software platform.

Reconfigurable Video Coding

The emergence of massively parallel architectures, along with the need for modularity in software design, has revived the interest in dataflow programming. Indeed, designing processing systems using a dataflow approach presents several advantages when dealing with complex algorithms and targeting parallel and possibly heterogeneous platforms.

The MPEG-RVC framework is an ISO/IEC standard aiming at replacing the monolithic representations of video codecs by a library of components. The framework allows the development of video coding tools, among other applications, in a modular and reusable fashion by using a dataflow programming approach. RVC presents a modular library of elementary components (actors). An RVC-based design is a dataflow directed graph with actors as vertices and unidirectional FIFO channels as edges. An example of a graph is shown in Figure 1. Every directed graph executes an algorithm on sequences of tokens read from the input ports and produces sequences of tokens in the output ports. Actually, defining several implementations of video processing algorithms using elementary components is very easy and fast with RVC since the internal state of every actor is completely independent from the rest of the actors of the network. Every actor has its own scheduler, variables and behavior. The only way of communication of an actor with the rest of the network are its input ports connected to the FIFO channels to check the presence of tokens. Then, an internal scheduler enables or not the execution of elementary functions called actions depending on their corresponding firing rules. Thus, RVC ensures concurrency, modularity, reuse, scalable parallelism and encapsulation. To manage all the presented concepts of the standard, RVC presents a framework based on the use of a subset of the CAL actor language called RVC-CAL that describes the behavior of the actors.

The RVC framework is supported by a set of tools such as the Open RVC-CAL Compiler (Orcc). Orcc 1 [START_REF] Yviquel | Orcc: Multimedia development made easy[END_REF] is an open-source toolkit dedicated to the development of RVC applications. Orcc is a complete Eclipsebased IDE that embeds two editors for both actor and network programming, a functional simulator and a dedicated multi-target compiler. The compiler is able to translate the RVC-based description of an application into an equivalent description in both hardware [START_REF] Jerbi | Automatic Generation of Synthesizable Hardware Implementation from High Level RVC-CAL Description[END_REF][START_REF] Abid | System Level Synthesis Of Dataflow Programs: HEVC Decoder Case Study[END_REF] and software languages [START_REF] Yviquel | Efficient software synthesis of dynamic dataflow programs[END_REF][START_REF] Wipliez | Software Code Generation for the RVC-CAL Language[END_REF] for various platforms (FPGA, GPP, DSP, etc). A specific compiler back-end has been written to tackle each configuration case such as presented in Figure 2. HEVC is the last born video coding standard, developed conjointly by ISO and ITU, as a successor to AVC / H.264. HEVC is improving the data compression rate, as well as the image quality, in order to handle modern video constraints such as the high image resolutions 4K and 8K [START_REF] Sullivan | Overview of the High Efficiency Video Coding (HEVC) Standard[END_REF]. Another key feature of this new video coding standard is its capability for parallel processing that offers scalable performance on the trendy parallel architectures. With the parallel capabilities, HEVC offers a great opportunity to show the merits of the RVC approach. Consequently, the RVC working group has developed, in parallel with the standardization process, an implementation of the HEVC decoder using the RVC framework, which is presented in Figure 3. The description is decomposed in 4 main parts:

1. the parser: it extracts values needed by the next processing from the compressed data stream so called bitstream. The stream is decompressed with entropy decoding techniques, then the syntax elements composing the stream are extracted in order to be transmitted to the actors that they may concern.

The parser applies a Context-adaptive binary arithmetic coding (CABAC) to extract the syntax element of the bitstream. 2. the residual: it decodes the error resulting of the image prediction using Inverse integer Transform (IT), which is no other than an integer implementation of the well-known IDCT. The transform allows spatial redundancy reduction within the encoded residual image. As presented in figure 3, the IT can be applied on different blocks sizes (4x4 .. 32x32) and the dataflow description allows parallelizing the processes. 3. the prediction part: it performs the intra and inter prediction. Intra prediction is done with neighbouring blocks in the same picture (spatial prediction) whereas inter prediction is performed as a motion compensation with other pictures (temporal prediction). The inter predication also implies the use of a buffer, known as Decoding Picture Buffer (DPB), containing decoding pictures, needed to perform the temporal prediction. 4. the filter: it is used to reduce the impact of the prediction on the image rendering. This part contains two different filters. On the one hand, the DeBlocking Filter (DBF) [START_REF] Norkin | Hevc deblocking filter. Circuits and Systems for Video Technology[END_REF] is used to smooth the sharp edges between the macro-blocks. On the other hand, the Sample Adaptive Offset filter (SAO) [START_REF] Fu | Sample adaptive offset for hevc[END_REF] is used to better restore the original signal using an offset look up table.

Design profiling

In order to assess the performance of the dataflow HEVC decoder presented above, Orcc has been used to generate a C implementation. The generated project is compiled with GCC and executed on a Xeon CPU at 3,2 Ghz. The preliminary results on 1080x1920 HD streams showed a low throughput of 6.1 Frames/second. The mapping of the actors on multi-core for parallel execution did not bring scalable results.

In order to better understand the bottlenecks of the design, profiling tools have been used to evaluate the workload of each actor and the obtained results have been reported in

Methodologies for performance improvement

In the following, an architecture optimization based on the split of the decoding process into luminance component (Y) and chrominance components (U and V) separately is presented. The same architecture is duplicated to enable a frame-based parallel decoding of the frames. Then, optimization methodologies dedicated to x86 platforms are introduced.

Architecture optimizations

YUV components parallel decoding

In the first version of the decoder, sequential decoding of the image luminance and chrominance components was applied. This description is changed to split the processes into independent actors for each image component as illustrated in Figure 5. The impact of such architecture is detailed by Weiwei et. al in [START_REF] Shen Weiwei | A 64 cycles/mb, luma-chroma parallelized h. 264/avc deblocking filter for 4 k¡ cd0215f. gif¿ 2 k applications[END_REF].

Only the parser could not be split since the 3 components are put sequentially in the bitstream. Splitting the parser results in complex actors since the state of the CABAC has to be shared between those actors. The application of this transformation had a direct impact on the workload as shown in Figure 6 where most of the critical actors workloads became close to the rest of the design, such as 6% for the DPB-Y and 11% for SAO-Y. Concerning the Luminance component of the Inter Prediction, a 23% is still considered to be a major bottleneck. In the following,a local optimization of this actor by linking with optimized functions from MPEG libraries has been applied.

Frame-based parallel decoding

Thanks to the modularity of dataflow modeling, the frame-based parallelization is theoretically, a duplication of the whole decoding actors. The principle is that the compressed stream is sent to n decoders and, following a selection strategy, a decoder is going to decode some frames and bypass others that are decoded by other decoders. Figure 7 shows the frame-based architecture where a set of decoders coexist. Some data Fig. 6: Actors workload of Post YUV split from a frame is needed to decode another frame such as motion vectors and reference lists. This problem was raised by Zhou et. al in [START_REF] Zhou | A frame-parallel 2 gpixel/s video decoder chip for uhdtv and 3-dtv/ftv applications. Very Large Scale Integration[END_REF] For that reason, a common parser and motion vector generator is added to communicate a correct stream of common data to the decoding picture buffer and also to the inter prediction actors of all decoders. The frame-based does not exculde the YUV split which means that it is possible to use N decoders all containing YUV components parallel decoding. In the following, we assume that F Bn is a frame-based architecture with n decoders.

Figure 8 presents the distribution of the computational load within the software implementation of the frame-based description composed of 2 decoders (FB2).

The results show that the distribution is consistent among the tested implementations, as well as among the distribution observed in more traditional implementations [START_REF] Bossen | HEVC Complexity and Implementation Analysis[END_REF], [START_REF] Viitanen | Complexity Analysis of Next-Generation HEVC Decoder[END_REF]. Motion compensation performed within the Inter-predition and the Decoded Picture Buffer is the most consuming part with about 50% of the computation load. Loops filters represent about 25% of the computation load. Entropy decoding and inverse quantization, perform both in the Parser, contributes to 10% of the global computation load on average. In FB2 design, this load increases to 17% since the parsing is duplicated in the Main Parser and each Parser. The Inverse Transforms represent between 3% to 12% of the computation load depending on code optimization of the designs. The last significant part, about 10% of the computation load, is specific to dataflow description: Known as Reconstruction, it adds the residual to the predicted blocks.

Platform-specific optimizations

Beside the possibility of using different dataflow network structures, the standard RVC dataflow program can also be implemented with platform-specific optimizations. In particular, a new methodology to use platformspecific optimized kernels to accelerate the internal processing of actors (i.e. actions) has been introduced, and an optimized FIFO channels implementation to speedup the communication between processor cores that share a common cache memory has been developed.

Optimized SIMD kernels

Considering the compiler limitations to perform lowlevel optimization on high-level code, we propose a new technique to insert optimized architecture-specific kernel code within high-level descriptions of dataflow application. In this work, we used Intel SIMD instructions to target x86 architectures. Our techniques relies on an annotation mechanism in order to keep the portability of the high-level description over multiple platforms:

1. First, the developer identifies the code to optimize and move it in its own procedure, knowing that the optimized kernels have to use the same parameters than their equivalents in CAL. The optimized version should be available into an external library (such as FFMPEG). 2. Then, the developer adds the directive @optimize on top of the CAL procedure to identify the optimized version of the procedure (see Listing 1). The directive is based on the following syntax @optimize(condition="CONDITION", name="NAME") where NAME is the name of the optimized kernel and CONDITION is a predefined condition that enable the execution of the kernel. 3. Finally, the generated code can use the optimized kernels when they are available (see Listing 2).

@ optimize (condition =" d e f i n e d (OPENHEVC ENABLE) " , name =" p u t h e v c q p e l h ") procedure p u t _ h e v c _ q p e l _ h _ c a l (int (size =16) arg1 Listing 2: Generated code As a result, optimized applications easily stay compatible with all backends and platforms.

To link with SIMD functions, the CAL code undergoes small modifications by adding annotations and by corresponding functions they become identical to SIMD ones (arguments number and types). As explained in Figure 9, the FFMPEG library is compiled to allow the external use of SSE functions. Then, a correct link of the C project with the dynamic library is guaranteed by our build system.

Cache-efficient FIFO channels

In software, FIFO channels are traditionally implemented by a circular buffer allocated in shared memory. Read and write are then achieved by accessing the buffer according to read and write indexes that are updated afterwards. The state of FIFO channels is known by comparison of their indexes. Using circular buffer to imple- ment FIFO channels avoids side shuffles of data after each reading, but implies an advanced management of memory indexes that may ultimately lead to poor performance. Indeed, the functions that read data from a predecessor actor and the functions that write data to a successor actor are completely independent which means that, following the model of computation, it is impossible to read and write data in the same FIFO at the same time. In modern general-purpose processors, the processor cores usually communicates through common shared memory accessed using cache mechanism. When accessing a line of cache a processor has to check if there are fields that have been changed. In that case, to be sure of using the last stored data, it makes a refresh of the line of cache. When the read and the write indexes are set into different lines of cache, the refresh of the line containg the read index is applied only when reading and the same for writing. Naive implementation of FIFO channels (see Figure 10-a) results in cache inefficiency because of false sharing. As a result, a memory padding is added on each FIFO index [START_REF] Patrick Pc Lee | A Lock-Free , Cache-Efficient Shared Ring Buffer for Multi-Core Architectures[END_REF] in order not to share the same cache line as explained in Figure 10-b.

Results

To apply the optimization methodologies evoked above, an Intel Xeon CPU at 3.2 GHz with 6 cores has been used. The experiments were applied on the streams of table 1:

Table 2 presents the decoding framerate of the YUV design on test streams using an increasing number of processor cores and 4 different encoding configurations (LD with QP=27 and 37, LP with QP=27 and 37).

To apply the frame-based design we reduced the configurations to QP=27 and LD encode since all 1080x1920 streams have almost equal results. This choice can be explained by the fact that a QP=27 is an average between QP=22 and QP=37 with a really good image quality and realistic bitrate for industry usage. We considered three designs: FB2, FB3, and FB4. All the framerate (FPS) results are summarized in Table 3. For all streams, the framerate decreases in the mono-core design. This is due to the increasing number of actors since we duplicate almost the whole decoder. Consequently, the global actors scheduler is slowing down the application when actor number grows.

For a better study of dataflow implementation of HEVC decoder, we analyzed the multi-threaded implementation of the OpenHEVC decoder. We could not use the HM reference because it does not support multithreading or multi-core mapping. In the OpenHEVC implementation, the thread parallelism is mainly based on frames. With a predefined number of threads, the decoder assigns a frame for each thread. When there is a dependency from blocks that belong to another frame the threads are able to wait until the required block is decoded. Once a thread is free it starts a new frame. Table 4 presents the framerate obtained while decoding the same test streams with OpenHEVC on the same platform. Results showed that OpenHEVC is already much more efficient on single-core execution: This can be explained by the large use of assemblylevel optimizations. It is also noticeable that the maximal performance is reached at 5 cores then remains stable. Since multi-threading enables the minimization of the communication cost on shared-memory architecture, the performance stays stable even if the maximal parallelism is already reached with fewer threads. For comparison, Figure 11 presents the framerate evolution with a various number of processor cores on the different designs. The FB2, FB3, and FB4 designs overstep the performance of the reference design respectively at 3, 4, and 5 cores. Which confirms that the more actors we have, the more cores we need to overcome the overhead of the scheduler. Due to the communications cost explained above, the FB2 design reaches a peak at 5 cores then it starts decreasing with more cores. FB3 and FB4 designs continue increasing with the 6 available cores. This framerate matches an acceleration peak of 5.81 as shown in Table 5. The rising curve of the framerate performance of FB3 and FB4 designs shows a potential continuous increase that can be established using more processing cores.

Discussion

Considering the above results, the performance of the RVC decoder remains lower than the openHEVC which is expected since openHEVC is a native C application while the RVC decoder implementation is automatically generated. Basically, the purpose of this work is not to present a performance that oversteps a native application but to show that using a modular high level description it is possible to reach real time processing of high resolutions.

More generally, we underline that for high complexity applications RVC allows to go at least 3 times faster than C languages for example and even if the performance is lower than native codes, this framework is very attractive for developping complex applications that do not have hard real time constraints.

Moreover, the RVC-CAL code is target agnostic and current compilers allow the automatic generation of several languages such as C, C++, LLVM, C-HLS, Verilog etc, from a unique description. This feature is very important for hardware developpers since the validation of the application can be achieved in a software context and finally the hardware generation is performed so the prototyping goes faster.

Conclusion

In this paper, a dataflow description of the HEVC decoder based on the RVC framework has been presented. To improve the performance of the decoder, more parallelism in the architecture has been achieved by splitting most of the decoding processes into independent Y, U and V components separately and also by duplicating the decoding processes to enable a frame-based parallelism. Platform specific x86 optimizations have been developed and they consist of using a smart FIFO cache implementation and substituting some critical functions with SIMD ones. Results show an acceleration that reaches a factor of 5.8 over the initial dataflow implementation standardized by MPEG, which allows real time decoding for 1080x1920 streams at 60 Hz. Some critical actors, considered as bottlenecks, are also under consideration for improving their processing efficiency.

Fig. 1 :

 1 Fig.1:A dataflow network of five processes, the vertices named from A to E, that communicate through a set of communication channels, represented by the directed edges.

Fig. 2 :

 2 Fig. 2: Multi-target compilation infrastructure

Fig. 3 :

 3 Fig. 3: Standard RVC specification of the MPEG HEVC decoder

Figure 4 .Fig. 4 :

 44 Fig. 4: Actors workload of the HEVC decoder

Fig. 5 :

 5 Fig.5: YUV split of the HEVC decoder: example of split of the intra decoder at finer granularity; the same split is applied on most actors.

Fig. 7 :Fig. 8 :

 78 Fig. 7: Data flow frame-based design of HEVC decoder

Fig. 9 :

 9 Fig. 9: Conception flow of the SIMD linked implementation shows a compilation of a RVC-CAL code with annotations linked with a DLL library generated from the compilation of FFMPEG.

Fig. 10 :

 10 Fig.10:A smart FIFO implementation in the cache of the processor. In (a), the classic definition of the indexes results in setting indexes in the same line of cache which requires useless waits for refresh. In (b), by adding the paddings, the indexes are set into distinct lines of cache.

FB4Fig. 11 :

 11 Fig. 11: Evolution of the decoding framerate with dataflow designs on multi-core platform: Kimono, Low Delay, and QP=27.

Parser Deblocking filter Decoding Picture Buffer Inter-Prediction Intra-Prediction SAO filter Reconstruct Inverse quant. & transform Others

	5%	3%	5%	9%	2% 2%
	3% 3%				2% 2% 6%
	11%				6%
	2% 2% 2% 1% 1%				5% 5%
			23%		

Table 1 :

 1 Video sequences considered in the experiments

	Sequences	Resolution Framerate(FPS)
	Kimono		24
	BasketBallDrive		50
	ParkScene	1920x1080	24
	Cactus		50
	BQTerrace		60
	PeopleOnStreet Traffic	2560x1600	30 30

Table 2 :

 2 Decoding framerate of the YUV design on multi-core processor (in FPS)

					Number of processor cores
	Sequence info	Conf QP 1	2	3	4	5	6
	Kimono	LD	27	20 33 48 51 48 47
			37	27 46 54 65 85 83
		RA	27	22 34 50 53 54 52
			37	30 44 54 62 79 89
	BasketBallDrive	LD	27	16 29 44 48 39 37
			37	25 37 51 58 85 82
		RA	27	17 27 38 49 44 39
			37	27 41 49 57 86 87
	ParkScene	LD	27	17 26 35 37 43 43
			37	25 40 53 57 60 82
		RA	27	20 28 44 43 43 41
			37	28 46 55 61 67 81
	Cactus	LD	27	19 30 37 47 46 48
			37	25 44 56 59 66 82
		RA	27	22 32 37 48 45 49
			37	27 45 59 60 69 89
	BQTerrace	LD	27	19 27 38 42 40 39
			37	26 44 59 63 85 87
		RA	27	19 26 33 38 40 35
			37	29 47 62 67 86 90
	PeopleOnStreet	LD	27	5	10 15 13 14 12
			37	9	16 20 18 25 23
		RA	27	7	13 18 18 16 16
			37	12 18 26 24 25 30
	Traffic	LD	27	11 17 20 24 25 26
			37	15 24 32 34 38 37
		RA	27	13 21 24 25 28 26
			37	17 28 37 40 39 38

Table 3 :

 3 Decoding framerate of the dataflow HEVC designs on multi-core processor (in FPS): Low Delay, and QP=27.

				Number of processor cores
	Sequence	Architecture 1	2	3	4	5	6
	Kimono	Ref	11 16 20 23 22 19
		YUV	20 33 48 51 48 47
		FB2	18 29 47 54 64 53
		FB3	15 25 38 40 51 55
		FB4	14 20 35 42 44 59
	BasketBallDrive	Ref	10 14 17 18 20 17
		YUV	16 29 44 48 39 37
		FB2	14 21 38 42 56 52
		FB3	11 16 21 25 32 35
		FB4	9	14 19 29 45 38
	ParkScene	Ref	10 15 19 20 19 17
		YUV	17 26 35 37 43 43
		FB2	15 24 34 36 50 48
		FB3	12 19 28 34 35 42
		FB4	11 15 25 35 44 45
	Cactus	Ref	12 16 18 21 22 20
		YUV	19 30 37 47 46 48
		FB2	18 24 34 42 60 50
		FB3	15 19 32 38 41 44
		FB4	13 18 27 35 55 52
	BQTerrasse	Ref	10 15 19 20 22 21
		YUV	19 27 38 42 40 39
		FB2	17 23 35 36 32 49
		FB3	15 19 28 38 44 42
		FB4	11 16 23 37 51 58
	PeopleOnStreet	Ref	4	6	9	11 12 10
		YUV	5	10 15 13 14 12
		FB2	4	8	11 12 21 14
		FB3	4	7	10 11 13 16
		FB4	3	5	8	12 14 12
	Traffic	Ref	7	9	12 13 13 11
		YUV	11 17 20 24 25 26
		FB2	9	15 21 24 28 33
		FB3	7	12 18 23 22 19
		FB4	6	10 15 22 21 22

Table 4 :

 4 Decoding framerate using OpenHEVC (in FPS): Low Delay, and QP=27.

			Number of threads	
	Sequences	1	2	3	4	5	6
	Kimono	59	96 136 145 144 144
	BasketBallDrive 51	85 115 122 123 122
	ParkScene	51	78 105 112 111 112
	Cactus	63 102 142 152 150 151
	BQTerrace	54	82 109 115 113 114
	PeopleOnStreet	17	30	46	51	61	61
	Traffic	33	51	73	77	91	92

Table 5 :

 5 Acceleration ratio: for the RVC designs between the multi-threaded design and the single-thread version of the ref design, and for OpenHEVC between its multi-threaded versus its single-threaded (Low Delay and QP=27)

				Number of threads
	Sequences Design	2	3	4	5	6
	Kimono	OpenHEVC 1.62 2.35 2.45 2.44 2.44
		YUV	1.81 3.00 4.36 4.63 4.36
		FB2	2.63 4.27 4.90 5.81 4.81
		FB3	2.27 3.45 3.63 4.63 5.00
		FB4	1.81 3.18 3.81 4.00 5.36
	Traffic	OpenHEVC 1.54 2.21 2.33 2.75 2.78
		YUV	1.57 2.42 3.42 3.57 3.71
		FB2	2.13 2.98 3.42 3.99 4.71
		FB3	1.71 2.56 3.28 3.14 2.70
		FB4	1.41 2.13 3.14 2.98 3.14

Orcc is available at http://orcc.sf.net

This work is done as part of 4EVER, a French national project with support from Europe (FEDER), French Ministry of Industry, from French Regions of Brittany, Ile-de-France and Provence-Alpes-Côte-d'Azur, from Competitivity clusters