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Abstract
Model-Driven Engineering (MDE) proposes to modularize com-
plex software-intensive systems using multiple models where each
module serves a specific concern. These concerns of a system might
be diverse and the use of multiple heterogeneous models often
becomes inevitable. These models adhere to different paradigms
and use distinct formalisms, which makes it hard to ensure con-
sistency among them. Moreover, these models might contain cer-
tain concepts (at times overlapping) that are reused for building
cross-concern views/models. Maintaining models using separation
of concerns in a heterogeneous modeling space becomes difficult.
Traditional MDE suggests the use of model transformations to
maintain the mappings between heterogeneous models. In this pa-
per, we introduce a different approach based on model federation
to map heterogeneous models. In contrast to traditional approaches
where heterogeneous models are gathered in a single technologi-
cal space, model federation keeps them in their own technological
spaces. We provide a mechanism so that elements of these models
are accessible for the development of cross-concern views/models
from their respective technological spaces.

Categories and Subject Descriptors D.2.2 [Design Tools and
Techniques]: Computer-aided software engineering (CASE); D.2.2
[Design Tools and Techniques]: Modules and interfaces; D.2.13
[Reusable software]: Reuse models

Keywords Model Driven Engineering, Model Federation, Modu-
larity, Multi-model systems, Abstraction

1. Introduction
Models form the core of software development processes in the
context of Model Driven Engineering (MDE). This increasingly
important role of modeling has led to a plethora of domain specific
modeling languages (DSLs/DSMLs) (Mernik et al. 2005). Each
DSL captures the specific knowledge involving a certain domain
to provide adapted features. This specialization contributes to im-
proved efficiency and enhanced quality of systems. The design of
complex software-intensive systems might require several DSLs to

handle various concerns. Heterogeneity of models in the model-
ing space leads to multiple issues for synchronizing models, main-
taining traceability and managing global consistency of the system.
Complex software intensive systems usually need to integrate the
viewpoints of various stakeholders and system experts (Tyree and
Akerman 2005). These viewpoints of different stakeholders might
be related to multiple models, each taking care of a specific con-
cern. Adding those cross concerns to the equation makes modeling
of these systems even more difficult. One way to handle this com-
plexity is to improve the modularity of the modeling space that
already seems modular because of multiple heterogeneous models.

Considering this situation, current approaches are typically ori-
ented towards translation/model transformations to bring all DSLs
under one operating paradigm (Eclipse 2016; Jézéquel et al. 2011),
composition of (meta)models (France et al. 2007; Eker et al. 2003;
Hardebolle and Boulanger 2008; Kong and Alexander 2003; Berg
and Møller-Pedersen 2015) and unification through intermediate
languages (Vernadat 2002). All these endeavors aim at providing a
single language, (meta)model, modeling paradigm to cover all het-
erogeneous concerns that one can come across in the development
of a complex software system. We argue that these DSLs should be
kept in their own paradigms and modeling element redundancies
should not be created by transforming them to a single paradigm
through integration, composition or unification. A better approach
would be to create bridges between these distinct paradigms and
maintain a dynamic link so that these different models can be syn-
chronized for global consistency, traced from one another and used
for the development of cross-concern viewpoints/models.

It might seem that our view of modularity is the antithesis of
separation of concerns, which advocates loose coupling between
the modules. In reality, taking care of the cross-cutting concerns
in multiple models of a modeling space ensures a better modular-
ization, much like aspect oriented modeling (Masuhara and Kicza-
les 2003). These models can have considerable overlapping fea-
tures that need to be synchronized for the global consistency. Multi-
Dimensional Separation of concerns (MDSOC) defines modularity
in multi-dimensional spaces of units, where dimensions represent
different modularizations (Tarr et al. 1999). We consider two di-
mensions of modularity for our proposal. The structural modular-
ity places all features, primarily serving for a common concern, in
a single model (a module). The conceptual modularity looks for
the projections of secondary concerns of these features in concep-
tual space and creates modules out of the overlapping or tightly
coupled features from different models. A multi-model system is
structurally well modularized because each model serves a specific
concern. However, the overlapping features and tight semantic cou-
pling between them in the context of heterogeneous models, call



for conceptual modularity as well. For the system to work as a
whole, well-defined interfaces should guarantee the contracts be-
tween these modules. By modularizing complex software-intensive
systems in both these dimensions, we expect strong impacts on the
reduction of complexity for modeling heterogeneous systems. We
believe that our approach will favor reuse, synchronization, flexi-
bility, maintainability and conceptual alignment of existing/legacy
(meta)models in the modeling space.

The rest of this paper is organized as follows. First, we present
our approach of model federation in Section 2. Then, in Section 3,
we explain the proposed approach in the context of modularity
for the design of multi-models systems that face the problem of
heterogeneity. Then, Section 4 discusses the state of the art in
multi-paradigm modeling in the context of modularity. Finally, we
conclude this paper in Section 5.

2. Model Federation
Software Industry needs methods for seamless integration of spe-
cialized formalisms and tools that they use for the development
of complex software systems. These specialized formalisms, tools
and DSLs used in the development process add to the heterogene-
ity of modeling space. These models needs to be synchronized for
the global consistency of the system. Synchronization of different
models in the modeling space is handled through the co-evolution
techniques (Hebig et al. 2013). However when these models belong
to different paradigms, their co-evolution becomes difficult. Before
going into the details of how we propose to deal with these issues,
lets take a look at the concepts of model federation.

Model federation provides a mechanism for the integration of
heterogeneous models. This integration of models may serve to
develop new cross-concern viewpoints / models from several ex-
isting models or to synchronize the models that are used in the
modeling space for designing a system. We propose to keep het-
erogeneous models in their own paradigms. Hence, we divide the
modeling space in two distinct spaces i.e. the technological space
and the conceptual space, as shown in the Figure 1. Technological
spaces are defined environments that allow heterogeneous models
to use their own paradigm, formalism and tooling within their pri-
vate modeling space. For the design of a complex system, a con-
ceptual space may be surrounded by many technological spaces.
Each technological space contains the models that follow a specific
modeling paradigm to serve specific concerns. A conceptual space
is where a set of models can be federated to develop a new cross
concern viewpoint/model, called a virtual model. Virtual models
are made up of features, which are reused from the models of tech-
nological space. New features can also be developed for the virtual
model, which do not belong to any of the existing technological
spaces. Each of these features, called a flexo concept, serves as a
building block for a virtual model. A virtual model is responsible
for managing the life cycle of the flexo concepts that it contains. A
virtual model can be serialized back into a new or existing techno-
logical space for the development of a complex system.

The virtual models in the conceptual space follow the for-
malisms defined by our methodology. We have developed a generic
modeling language to define virtual models. Technological mod-
els follow their own paradigm or formalisms depending on their
specific technological space. A virtual model can not access the
features of a technological model, unless it knows what paradigm
or formalism it is following. A connection is needed between these
spaces for making the features of a technological model available in
the conceptual space. A connection between a specific technologi-
cal space and the conceptual space is realized using technological
connectors. These connectors allow access for reading, writing and
eventually synchronizing the information between virtual models
and the technological models.

Conceptual Space Technological Space A

Technological Space B

EMF

XML

B

A

Legend:

Model Model element
(technological space)

Technological connector

Model slot Flexo concept (remote)

Flexo concept (local)

Figure 1. Modeling space in Openflexo

Once a technological connector is available for a specific tech-
nological space, all the models in that space and their respective
elements become accessible from within the conceptual space. A
virtual model is composed of the concepts precisely developed for
it and the ones reused from other technological models. The con-
cepts specifically developed for the virtual model are the local flexo
concepts. The concepts from a technological model can be reused
in two distinct ways. First, the designer can create a dynamic link
between a local flexo concept and the technological model con-
cept that it wants to use, as shown in virtual model A of Figure 1.
Once created, this connection is maintained to synchronize any fur-
ther changes. Second, the designer can also choose to create a local
’proxy’ of that concept in the virtual model by translating it into a
remote flexo concept. A remote flexo concept, as depicted in virtual
model B of Figure 1, is a proxy of the technological model concept
and thus introduces some redundancy. We suggest and prefer to use
the first method of maintaining a dynamic link. Even in the second
method, a link is maintained between the local proxy and the re-
mote feature to ensure their synchronization.

The connection between the conceptual and technological
spaces is bi-directional. A virtual model in the conceptual space can
be updated when a corresponding technological model is evolved
and conversely, a technological model can also be updated, once
the corresponding virtual model is modified. The mechanism for
updating the information in both directions is kept flexible. The
designer can choose to get notified when a corresponding model
is evolved or to get automatically synchronized, depending on the
semantics defined in the technological connector.

A model slot is the modeling element that realizes a connection
between a virtual model and a technological model. As already ex-
plained, technology connectors connect the conceptual space with a
specific technological space. These connectors allow the creation of
a dynamic link (using model slots) between a specific virtual model
and a specific technological model of the connected technological
space. If a virtual model is considered as a component, model slot
serves as its interface. The model slot exposes a view on the struc-
tural and behavioral contents of the technological model to the vir-
tual model. Once a virtual model is connected, it can read/modify
the attributes using roles and execute the actions using edition-
Action. Roles and editionActions are to a flexo concept, what at-
tributes and methods are to a class, except that roles and editionAc-
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Figure 2. Mapping between concepts

tions are associated to attributes and methods of a model adhering
to an entirely different paradigm. An example of this scenario is a
flexo concept Actor, whose name is taken from a BPMN process
model and his salary is taken from an xlsx1 file, as shown in Fig-
ure 2. Actor is a local flexo concept. The name from the BPMN
model is translated into a remote flexo concept, which makes it
accessible to the virtual model. A dynamic link between the flexo
concept (name) and the technological model concept (name ) keeps
them synchronized. Actor is also connected with the salary in
the excel file using another dynamic link. In this example, actor in
the virtual model can update the salary in the technological model
using editionAction setCellValue(). Furthermore, any common
piece of information can be synchronized between the BPMN pro-
cess model and the excel file.

Tooling support for our methodology is provided through our
open source project initiative, Openflexo (Openflexo 2016). This
tool started as a business process modeling workbench, but by inte-
grating our recent research endeavors it has evolved into a generic
collaborative platform for multifaceted modeling. It provides sup-
port for model federation across multiple technological spaces. It
uses the concept of model federation and introduces connectors for
diagramming to support both graphical and textual models.

3. Modeling Space Modularity
A modeling space with heterogeneous models seems to be modular,
because each model affects a distinct concern for the system un-
der development. Our methodology places all those heterogeneous
models in multiple technological spaces. Each technological space
adheres to a specific paradigm, so a technological space may end
up containing multiple models. A separate conceptual space allows
the development of new models. Figure 3 illustrates four different
perspectives from a scenario that we are going to use as a running
example to explain the key notions of our methodology. In Fig-
ure 3a, a technological model for missile system and another for
a radar system are placed in their respective technological spaces
TS-M and TS-R. Placement of both these models in separate tech-
nological spaces illustrates that they use different paradigms. A vir-
tual model for the development of a ship is under-development in
the conceptual space, CS. To this point our modeling space is mod-
ular, all three models are serving their specific concerns and it does
not really matter if they belong to different paradigms. We argue
that this modularity of the modeling space is structural i.e. all re-
lated modeling elements are placed in a single model to take care of
a particular concern. This specific concern may be quite different
from other concerns, and thus a specialized modeling language, a

1 XML based spreadsheet file. We consider all files as models.

DSL, might be required. So lets consider that the models of radar
system and missile system are developed in two distinct DSLs. The
user wants to develop a model for ship, which shall use the model-
ing language described by our language. Once developed, it is pos-
sible to serialize the ship model to any other technological space.

Development of some specialized views of the system or new
models might need to access multiple modeling elements from dif-
ferent existing models belonging to distinct technological spaces.
These new views/models are created as virtual models in the con-
ceptual space and the technological models are considered as their
resources. As resources, they allow the virtual models to extract
information from them. Connecting information from varying re-
sources allows the generation of new meaningful concepts. Model-
ing the concepts, whose building blocks are coming from multiple
resources, needs to ”cross-cut” the existing heterogeneous models.
This seems to create additional couplings between the modular ar-
chitecture of modeling space with models serving as distinct mod-
ules. In reality, these couplings between the modules already exist
at a conceptual level, they are just reified in our approach. These
existing semantic links are shown in Figure 3b.

Using multi-dimensional separation of concerns, we propose to
use structural and conceptual dimensions for modularity. Figure 3a
depicts a structural modularization of the modeling space. Struc-
tural modularization means that each modeling element is placed in
a single structure, a model in our case, to achieve its primary con-
cern. The other concerns of a modeling element can be projected to
the conceptual dimension, which are used to identify meaningful
semantic links between the modeling elements of different mod-
els. These semantic links might, for example, represent that two
modeling elements from models following different paradigms are
conceptually identical. In our scenario, the modeling element rep-
resenting weight in TS-M and TS-R is identical, as shown in Fig-
ure 3b. Using such conceptual links between different modeling
elements, our methodology can ensure a conceptual alignment of
their respective models. Some semantic links between modeling
elements of different paradigms might not make sense in their re-
spective technological spaces. However combining those elements
in a common conceptual space might yield new concepts. For ex-
ample, the modeling element representing a missile in TS-M when
linked to the modeling element representing radar in TS-R can help
develop a model for a battleship that uses both missiles and radars.
Figure 3b depicts this case, where the conceptual space is in need of
these two concepts and a third concept of weight which is identical
between the two technological models.

We like the definition of modularity as, “a continuum describ-
ing the degree to which a system’s components can be separated
and recombined” (Schilling 2000). It has two main considerations:
1) the partition of a system into smaller modules which serve spe-
cific concerns and, 2) to establish an interaction contract between
them, so that they can serve as one whole. Figure 3c shows our
scenario where our virtual model can be developed by reusing the
concepts missile, radar and weight in TS-M and TS-R. This fig-
ure shows the conceptual projection of TS-M and TS-R on the CS.
The features of the virtual model, depicted in grey, are the concep-
tual projections of the model elements that are still placed in their
respective technological spaces. This conceptual projection means
that the features of radar and missile models continue to serve their
primary concern in their respective models. However their projec-
tion on the virtual model allows to use the secondary concerns of
those features. It seems as if instead of modularizing the system,
the proposed methodology is actually combining it. The actual ar-
chitecture of the system after conceptual modularity is better rep-
resented by Figure 3d. Here, the original modules are kept intact
and the development of the virtual model in the conceptual space
is carried out by linking it to the cross concerns from other models.
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The proposed methodology provides mechanisms for establishing
a dynamic link between the virtual model and the technological
models. These mechanisms are offered by the use of technological
connectors and model slots, as explained in the previous section.
The overlapping nature of a cross-cutting concern forms an inher-
ent coupling between models, and model federation offers a mean
to conceptualize it in a single module, the virtual model.

Figure 4 describes the informal process to use model federation
to create mappings between heterogeneous models. The develop-
ment of a virtual model starts by developing local flexo concepts
according to the specifications. This produces a virtual model has
all local flexo concepts and needs the cross cutting concerns from
other models for its completion, as shown in Figure 4a. Then the
concepts needed to complete the virtual model are identified in the
available technological spaces, as shown in Figure 4b. Finally, map-
ping are created between the flexo concepts and the concepts of
technological models, based on either dynamic links (Figure 4-c1)
or developing remote flexo concepts as proxies for the technologi-
cal model elements(Figure 4-c2).

Software requirements evolve over time, resulting in model evo-
lution for design and subsequent phases. It becomes hard to main-
tain multiple heterogeneous models in the modeling space when
they are evolving over time. Evolution of a source model results
in the evolution of all the target models. When traditional model
driven approaches like transformations or model compositions are
used, these target models need to be ”regenerated”. A typical draw-
back of model transformation and model composition techniques
is that they do not allow independent modifications to individual
parts of source/target models. The modeling elements of the output
models in these techniques do not maintain any dynamic link with
the corresponding elements of input models. Model federation does
not adhere to the concepts of source and target models. It rather ad-
vocates the synchronization of multiple federated models. In case
of evolution, the complete model does not need to be regenerated,
only the concerned elements are updated. If a model in a specific
technological space evolves over time, changes are synchronized

to the virtual model and vice versa. The user remains in control
whether to opt for automatic synchronization or to demand an alert-
based configuration to remain in control. Openflexo platform takes
care of maintaining the dynamic link between the heterogeneous
models and their synchronization. Simultaneous changes to com-
mon parts of the models at both ends can cause conflicts. For the
moment, it is the designers responsibility to resolve such conflicts.
However, we are looking forward to develop some mechanism, in-
spired from version control and content management systems, that
can assist the designer for resolving such conflicts.

4. Related Approaches
There are several approaches that address the integration challenges
for domain viewpoints while trying to keep the modeling space
as modular as possible. With new DSLs coming to prominence,
the problem of model heterogeneity is being highlighted more than
ever before. The most commonly used approach is the UML pro-
filing mechanism that allows the customization of UML for any
specific domain (Selic 2007). Even though this approach is rather
easy to implement with case tool customizations using UML pro-
files, it has its drawbacks. This technique forces us to the world
of UML and MOF conformity, which might not be an efficient
solution for many heterogeneous models. For example, we have
come across models for process engineering that do not adhere to
MOF paradigm, and so its impossible to extend them using UML
profiles. Furthermore the designer will face the usual problems
linked to UML profile mechanisms (France et al. 2006). There
are other approaches that deal with model heterogeneity by ex-
tending existing metamodels, like EMF facets (Eclipse 2016) and
KerMeta (Jézéquel et al. 2011), but they pose the same problems
of MOF conformity. EMF facets provide a non-intrusive extension
mechanism to add additional attributes, references or operations on
a model without modifying it or its metamodel i.e. these exten-
sions can be loaded or unloaded on the fly (Eclipse 2016). On the
other hand, KerMeta provides the functionality for weaving con-
cerns to existing metamodels using aspect-oriented metamodeling
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(AOM) (Jézéquel et al. 2011). Besides this, it also allows the def-
inition of execution operations (semantics) for the elements of its
meta-model at a ”meta” level, thus providing the flexibility to ma-
nipulate any model which conforms to the metamodel. Generally,
these profiling/metamodel extension mechanisms are quite restric-
tive to force conformity to their specific metamodels/MOF, which
makes it difficult to handle multi-paradigm modeling languages
that do not adhere to their specific paradigm. This issue is known
to the OMG community and thus, MEF RFP solicits proposals for
a mechanism of extending and integrating any metamodel without
confining to UML (OMG 2011). We think that our proposal can be
a good candidate to respond to this RFP.

There are other approaches that provide ways to combine sev-
eral (meta)models into a single modeling space. Some of the tech-
niques consider the composition of metamodels as a viable solution
for addressing heterogeneity in multi-model systems (France et al.
2007). These techniques use several operator (equivalence, merge,
etc.) to assemble the modeling elements of multiple metamodels in
a single composite metamodel. However such approaches are not
scalable, because they require modification of the composite meta-
model, every time a new paradigm is added to the modeling space.
Furthermore, a single composite metamodel is not an optimal way
to modularize the modeling space even for structural modularity.
On the contrary, our approach is scalable because of the modu-
lar structure and synchronization mechanisms. Some other tech-
niques that use composition of models instead of metamodels, to
deal with model heterogeneity are Ptolemny II (Eker et al. 2003),
ModHel’X (Hardebolle and Boulanger 2008) and Rosetta (Kong
and Alexander 2003). Ptolemy II and ModHel’X organize hetero-
geneous models in multiple hierarchical layers, where each layer
corresponds to one modeling paradigm. Ptolemy II uses a white-
box composition, whereas ModHel’X uses a black-box composi-
tion. Even though hierarchical composition of heterogeneous mod-
els seems to be a good modular proposition, it has its drawbacks.
It results in redundancy of modeling elements when cross concern
concepts are modeled in their own technological spaces and then
again in the composite model. Managing modularity with added re-
dundancy and without synchronization mechanisms for redundant
concepts may not be a viable solution, specially if the technolog-
ical models are actively used in their own technological spaces.
Approaches that allow the composition of both models and meta-

models together (Berg and Møller-Pedersen 2015), experience the
same issues faced by other (meta)model composition approaches.

Approaches like megamodels for model management provide
structures for managing the global relationships (decomposition,
representation, belonging, conformance, transformation and se-
mantics) between models, metamodels, modeling languages and
the transformation definitions in a modeling space (Favre and
NGuyen 2005). Megamodeling and model weaving techniques
together, allow the definition of semantic relationships between
(meta)models (Jouault et al. 2010). This approach can be used to
synchronize heterogeneous models but provides no support for the
definition of cross concern models from them. Similarly, methods
for automatic co-evolution of metamodels and models deal with
the issue of global consistency in a modeling space (Hebig et al.
2013), but they do not consider the possibility of defining new con-
cepts by identifying the semantic links between the elements of
heterogeneous models.

Another recent approach, EMF Views, uses existing heteroge-
neous models to extract new views from them (Bruneliere et al.
2015). Inspired from SQL, it offers three constructs (select, project
and join) for selecting some elements from the models, projecting
chosen properties from those elements and joining them together
to form new virtual (meta)models. It also defines weaving mod-
els to describe the links between the elements of different models.
This approach comes closest to our definition of conceptual mod-
ularity. The SQL based DSL of EMF Views creates light-weight
proxies of the remote modeling elements, using existing transfor-
mation approaches. We also allow the creation of proxies in our
virtual models, however our preferred approach is to link the flexo
concepts directly to the concepts placed in their own technolog-
ical spaces. Moreover we have developed a graphical editor that
provides access to the concepts of multiple models in their own
technical spaces. Hence, our tooling support (Openflexo) provides
an intuitive way of mapping the concepts between conceptual and
technological spaces.

5. Conclusions
This paper addresses the issues faced by software designers when
heterogeneous models are used during the design phase of com-
plex software-intensive systems. We proposed a modular approach



to handle such issues using model federation. The underlying con-
cepts of model federation were explained, with a particular em-
phasis on modularity. Modularity of multi-concern systems is pre-
sented in two dimensional perspective i.e. structural modularity and
conceptual modularity. Modeling elements are usually combined
together to form a complete model that caters for a specific concern,
which we call structural modularity. However, the same modeling
elements might serve other secondary concerns, in respect to the
model that they are placed in. Our approach proposes a mechanism
to group these secondary concerns together to form a distinct model
serving a particular concern, keeping modularity in mind. Model
federation is particularly addressing modularity for heterogeneous
modeling spaces, where multiple models come from different tech-
nological spaces. A limitation of our approach is the availability
of different technological connectors. We have already developed
the technological connectors for various paradigms (EMF, OWL,
XML/XSD, MS Office document formats, etc.). Associated tooling
is implemented as an open source project, Openflexo. This enables
the users to develop new technological connectors for their specific
needs. We are looking forward to develop a high level language
that can replace Java code to type the interfaces of the modules for
defining the contracts.
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