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THE SYMMETRIC INVARIANTS OF CENTRALIZERS AND
SLODOWY GRADING II

JEAN-YVES CHARBONNEL AND ANNE MOREAU

ABSTRACT. Let g be a finite-dimensional simple Lie algebra of rank ¢ over an al-
gebraically closed field k of characteristic zero, and let (e, &, f) be an sl,-triple of
g. Denote by ¢¢ the centralizer of e in g and by S(g")“ﬂ the algebra of symmetric
invariants of g°. We say that e is good if the nullvariety of some ¢ homogenous
elements of S(g°)* in (g¢)* has codimension £. If e is good then S(g®)* is a poly-
nomial algebra. In this paper, we prove that the converse of the main result of
[CM16] is true. Namely, we prove that e is good if and only if for some homoge-
nous generating sequence ¢, . . . , g¢ of S(g)*, the initial homogenous components
of their restrictions to e + g/ are algebraically independent over k.
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1. INTRODUCTION

1.1. Let g be a finite-dimensional simple Lie algebra of rank ¢ over an alge-
braically closed field k of characteristic zero, let (.,.) be the Killing form of g
and let G be the adjoint group of g. If a is a subalgebra of g, we denote by S(a) the
symmetric algebra of a. For x € g, we denote by g* the centralizer of x in g and by
G~ the stabilizer of x in G. Then Lie(G") = Lie(Gp) = g* where Gy is the identity
component of G*. Moreover, S(g*) is a g*-module and S(g¥)Y" = S(gx)Gg.

In [CM16], we continued the investigations of [PPY(07] and we studied the ques-
tion on whether the algebra S(g*)" is polynomial in £ variables; see [Y07, CM10,
JS10] for other references related to the topic.
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2 JEAN-YVES CHARBONNEL AND ANNE MOREAU

1.2. Let us first summarize the main results of [CM16].

Definition 1.1 ((CM 16, Definition 1.3]). Anelement x € g is called a good element
of g if for some homogenous sequence (py,..., pe) in S(g*)Y", the nullvariety of
P1,--.,pein (¢¥)" has codimension £ in (g%)*.

Thus an element x € g is good if the nullcone of S(g*), that is, the nullvariety
in (¢¥)* of the augmentation ideal S(gx)ix of S(g*)¥, is a complete intersection in
(¢)* since the transcendence degree over k of the fraction field of S(g%)8" is ¢ by
the main result of [CM10].

For example, regular nilpotent elements are good; see the introduction of [CM16]
for more details and other examples.

Theorem 1.2 ([(CM16, Theorem 3.3]). Let x be a good element of 9. Then S(g)%"
is a polynomial algebra and S(g%) is a free extension of S(g¥)s".

Furthermore, x is good if and only if so is its nilpotent component in the Jordan
decomposition [CM16, Proposition 3.5]. As a consequence, we can restrict the
study to the case of nilpotent elements.

Let e be a nilpotent element of g. By the Jacobson-Morosov Theorem, e is
embedded into a sl-triple (e, A, f) of g. Denote by S, := e + g the Slodowy slice
associated with e. Identify g* with g, and (g°)* with o, through the Killing form
(.,.yof g. For pin S(g) =~ k[g*] ~ k[g], denote by ¢p the initial homogenous
component of its restriction to S,. According to [PPY07, Proposition 0.1], if p is
in S()?, then ¢p is in S(g°)%".

Theorem 1.3 ([CM16, Theorem 1.5]). Suppose that for some homogenous gen-
erators qi, . . .,q¢ of S(9)%, the polynomial functions °q, ..., °q, are algebraically
independent over k. Then e is a good element of a. In particular, S(5°)% is a poly-
nomial algebra and S(g°) is a free extension of S(g°)%. Moreover, q1,---,qpisa
regular sequence in S(g°).

In other words, Theorem 1.3 provides a sufficient condition for that S(g9)% is
polynomial. By [PPY07], one knows that for homogenous elements g, ..., g of

S(g)%, the polynomial functions 9%y,..., %, are algebraically independent if and
only if
‘ :
dimg® + ¢
e . _ =
(D Z deg q; = —

So we have a practical criterion to verify the sufficient condition of Theorem 1.3.
However, note that even if the condition of Theorem 1.3 holds, that is, if (1) holds,
S(g®)%" is not necessarily generated by the polynomial functions gy, ..., ;. As
a matter of fact, there are nilpotent elements e satisfying this condition and for
which S(g®)%" is not generated by some g, ..., %, for any choice of homogenous
generators ¢, . .., q¢ of S(g)% (cf. [CM16, Remark 2.25]).
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Theorem 1.3 can be applied to a great number of nilpotent orbits in the simple
classical Lie algebras, and for some nilpotent orbits in the exceptional Lie algebras,
see [CM16, Sections 5 and 6]. We also provided in [CM16, Example 7.8] an
example of a nilpotent element e for which S(g¢)*" is not polynomial.

1.3. In this note, we prove that the converse of Theorem 1.3 also holds. Namely,
we prove the following result.

Theorem 1.4. The nilpotent element e of g is good if and only if for some ho-
mogenous generating sequence qj,...,qc of S(8)%, the elements %q,, ..., °q, are
algebraically independent over k.

Theorem 1.4 was conjectured in [CM16, Conjecture 7.11]. Notice that it may
happen that for some ry, ..., r, in S(g)?, the elements 1, ..., “, are algebraically
independent over k, and that however e is not good. This is the case for instance for
the nilpotent elements in so(klz) associated with the partition (5, 3, 2, 2), cf. [CM 16,
Example 7.6]. In fact, according to [PPY07, Corollary 2.3], for any nilpotent el-
ement e of g, there exist ry,...,r, in S(g)® such that %,..., %, are algebraically
independent over k.

1.4.  We introduce in this subsection the main notations of the paper and explain
our approach to prove Theorem 1.4.

Let xq1,...,x, be a basis of g° such that fori = 1,...,r, [k, x;] = n;x; with n; a
nonnegative integer. For j = (ji, ..., j,) in N’ set:

il = ikt g il = i +2) 4+ iy +2), xi=xa

There are two gradations on S(g°)%", the standard one and the Slodowy gradation.
For all j in N”, x has standard degree |j| and Slodowy degree |jl,. Denoting by
t — h(t) the one parameter subgroup of G generated by adh, the Slodowy slice
e + g/ is invariant under the one parameter subgroup ¢ > ¢~2h(t) and for all j in N"
and for all y in ¢/,

D@ 2ht) e +y) = r il d(e +y).

Let ¢ be an indeterminate and let R be the polynomial algebra k[¢]. The polyno-

mial algebra

S(g°)I1] == k1] ® S(g°)
identifies with the algebra of polynomial functions on g/ x k. The gradation of
S(g®) induces a gradation of S(g®)[¢] such that ¢ has degree 0.

Denote by ¢ the evaluation map at ¢t = 0 so that € is a graded morphism from
S(g®)[t] onto S(g®). For p in S(g), denote by x(p) the polynomial function x
ple + x) on g/ so that x(p) € S(g¢). Then ¢p is the homogeneous component of
k(p) of minimal degree with respect to the standard gradation on S(g°). Let 7 be
the embedding of S(g®) into S(g°)[#] such that 7(x;) :=tx; fori=1,...,r.
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Denote by A the intersection of S(g°)[#] with the sub-k[z, t~1]-module of
(et '] = Kt '] @ S(o%)

generated by 1ok(S(g)?). Let V be the nullvariety of A, in o/ x k where A, is the
augmentation ideal of A. Let V, be the union of the irreducible components of V
which are not contained in g/ x {0} and let N be the nullvariety of £(A); in g/, with
&(A), the augmentation ideal of £(A). Then V is the union of V, and N x {0}. Using
properties of the varieties V and V.., we prove the following result (see Section 2).

Theorem 1.5. Suppose that N has dimension r — {. Then for some homogeneous
generating sequence qy, . . ., qe of S(8)°, the elements °q, . .., °q, are algebraically
independent over k.

The key point is to show that, under the hypothesis of Theorem 1.5, £(A) is
the subalgebra of S(g°) generated by the family °p, p € S(g)% and hence that N
coincides with the nullvariety in of of Qys- - - °qp- So, if N has dimension r — ¢,
then the elements %, ..., °q, must be algebraically independent over k.

The proof of Theorem 1.5 is done in Section 2. Then Theorem 1.4 will be a
consequence of Theorem 1.5 and it will be proven in Section 3. In Appendix A,
we state general facts on commutative algebra that are used throughout the paper.

Acknowledgments. The second author is partially supported by the ANR Project
GeoLie Grant number ANR-15-CE40-0012.

2. ProOOF oF THEOREM 1.5

In this section, unless otherwise specified, the gradation on S(g) is the Slodowy
gradation.

For m a nonnegative integer, S(g°)!”"! denotes the space of degree m of S(g°). We
retain the notations of the introduction, in particular of Subsection 1.4.

2.1. Let R be the ring k[#]. As in Appendix A, for M a graded subspace of
S(@)[f] = R & S(g°), its subspace of degree m is denoted by M. In particu-
lar, S(g®)[#]"! is equal to S(a®)"[f] and it is a free R-module of finite rank. As a
result, for all graded R-submodule M of S(g°)[¢], its Hilbert series is well defined.

For m a nonnegative integer, denote by F,, the space of elements of x(S(g)%)
whose component of minimal standard degree is at least m. Then Fy, Fy,...is a
decreasing filtration of the algebra x(S(g)®). Let dy, ..., d, be the standard degrees
of a homogeneous generating sequence of S(g)%. We assume that the sequence
di,...,dy is increasing.

Recall that A is the intersection of S(g¢)[r] with the sub-k[z, 7 ']-module of
S(g%)[t, £~ '] generated by Tox(S(g)?), and that A, is the augmentation ideal of A.

Lemma 2.1. (1) For p a homogeneous element of standard degree d in S(g)*,
the element k(p) and °p have degree 2d.
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(i1) For some homogeneous sequence ay, . ..,acin A, the elements t,ay, ..., ae
are algebraically independent over k, and A is the intersection of S(g°)[t]
withk[t,t ", ay, ..., al.

(iii) The Hilbert series of the R-algebra A is equal to
Lo
Par(T) = 1—[ -2
i=1
(iv) The Hilbert series of the k-algebra £(A) is equal to
Lo
Peayu(T) = 1—[ —

— T2d;°
i:ll T

(v) The subalgebra £(A) is the graded algebra associated with the filtration
Fo,Fyq,...
Proof. (i) For y in g/ and s in k*,
p(sh(s)(e +y)) = s p(h(s)(e +y) = s ple +y)

since p is invariant under the one parameter subgroup s — h(s). Hence «(p) is
homogeneous of degree 2d. Since the monomials x} are homogeneous, ¢p has
degree 2d.

(ii) Let ¢1,...,q¢ be a homogeneous generating sequence of S(g)?. By a well
known fact [CM16, Lemma 4.4,(i)], the morphism

Gx(e+g')—g (g% r— gk

is dominant. Then «(S(g)%) is a polynomial algebra generated by «(g1), ..., «(q¢).
So, setting a; := Tok(g;) fori = 1,...,¢, the sequence ay,...,ar is a homogeneous
sequence in A, such that

k(SN =K1 ar, . agl.
Let T be the automorphism of S(g¢)[#, 7"!] extending 7 and such that 7(f) = . Then
k(SO 17'] = T(k(S(@))I1, 1),

Since «(S(g)*)[t, '] has dimension £+ 1, Tox(S(g)*)[#, '] has dimension £+ 1 too,
and t,ay,...,ac are algebraically independent over k. By definition, A = S(g°)[¢] N
7ok(S()%)[1, '] Hence

Alr Y =k, ay,...,a)] and A =S Nklr, Y ay,...,a].

(iii) Since ¢ has degree 0, the gradation of S(g°)[f] extends to a gradation of
S(g9)[t, 1] such that for all m, its space of degree m is equal to S(gOM™M s, 171.
Then for all k[z, 7 !]-submodule M of S(g°)[,7~'], M has a Hilbert series:

Paragey(T) = Z rk MM

meN
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with MU the subspace of degree m of M. From the equality Al =k, Y ay,. .. a.),
we deduce ,
1
Pz = | | =52
i=1
since for i = 1,...,¢, the element a; has degree 2d; by (i). For all m, the rank of
the R-module A" is equal to the rank of the k[z, 7~ ']-module A[r~']!"], whence
Lo
Par(T) = 1—[ -2
i=1

(iv) Let m be a nonnegative integer. The R-module A" is free of finite rank and
for (v, ..., v,) abasis of this module, (fvy, ..., fv,) is a basis of the R-module A",
Since &(A)" is the quotient of A" by Al

dime(A)™ = n = rkAl™,

whence the assertion by (iii).

(v) Let grpA be the graded algebra associated with the filtration Fy, Fy,... of
k(S(g)%). Denote by a — a(l) the evaluation map at r = 1 from S(g®)[] to S(g°).
For a in A such that (a) # 0, a(1) is in x(S(g)?) and &(a) is the component of
minimal degree of a(l) with respect to the standard gradation, whence &(A) C
grpA. Conversely, let @ be a homogeneous element of degree m of grpA and let a
be a representative of @ in F,,. Then 7(a) = t"b with b in A such that £(b) = a,
whence gr-A C £(A) and the assertion. m|

Let R, be the localization of R at the prime ideal R and set
R:=k[[f]l, A.:=R.®A, A:=Re&gA.

The gradation of A extends to gradations on A, and A such that AIY' = R, and
AR

Proposition 2.2. (1) The algebra £(A) is polynomial if and only if for some
standard homogeneous generating sequence qi,...,qe of S(8)%, the ele-
ments “qy, ..., °q; are algebraically independent over k. Moreover, in this
case, A is a polynomial algebra.

(i) IfA. is a polynomial algebra, then for some homogeneous sequence py, ..., p¢
in Ay, we have A, = R.[pi1,...,pel, the elements t, py, ..., pe are alge-
braically independent over k and p, ..., p¢ have degree 2dy,...,2d; re-
spectively.

Proof. (i) Let qi,...,q, be a homogeneous generating sequence of S(g)® such
that %,..., °q, are algebraically independent over k. We can assume that for
i =1,...,¢, g; has standard degree d;. Fori = 1,...,¢, ¢q; has degree 2d; by
Lemma 2.1,(i), and we set

Q; = 1 *ok(q).
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Fori = (i1,...,ip) In N, set:
qi = qill'”qi’{’ Qi = QlllQl[{’ eqi = eqlil...eq?,

|i|min = 2i1d1 + -+ 2l'gdg.

Then, for all i in N¢,
TOK(qi) = t|i|min Qi‘
Moreover,
-1 -1
Tok(S(@))[t, ¢ 1 =klt, 1, 01,..., Ofl.

Let a be in A. For some / in N and for some sequence c¢;,,, (i,m) € N’ x N in k, of
finite support,

fla = Z ci,mthi whence Z Cium =0
(i,m)eNI XN ieN?
for m < I. Hence a is in R[Q1,..., Q] since the sequence eqi, ieN’ is linearly
free over k. As a result,

A=R[0},...,0¢ and &(A)=k[%,,...,q]

so that A and £(A) are polynomial algebras over k since g,..., °q, are alge-
braically independent over k.

Conversely, suppose that £(A) is a polynomial algebra. By Lemma 2.1,(i) and
(iv), the algebra £(A) is Slodowy graded and standard graded. Let d be the di-
mension of £(A). As &(A) is a polynomial algebra, it is regular so that the k-space
g(A)y/ e(A)i has dimension d. Moreover, the two gradations on &(A) induce grada-
tions on &(A)./ s(A)i. Hence £(A)../ s(A)i has a bihomogeneous basis. Then some
bihomogeneous sequence uj, ..., uy in £(A), represents a basis of £(A), /8(A)i. As
aresult, the k-algebra £(A) is generated by the bihomogeneous sequence uy, .. ., ug.
Fori=1,...,d, denote by ¢; the Slodowy degree of u;. As £ is homogeneous with
respect to the Slodowy gradation, u; = &(r;) for some homogeneous element r;
of degree 9; of A. Let m; be the smallest nonnegative integer such that "r; is in
Tok(S(g)%). According to Lemma 2.1,(i), d; is even and for some standard homoge-
neous element p; of standard degree 6;/2 of S(g)%, ™ir; = Tok(p;). Then u; = p;
since p; is standard homogeneous.

Let B be the subalgebra of S(g) generated by pi,...,ps. Suppose that P is
strictly contained in S(g)?. A contradiction is expected. For some positive integer
m, the space S(g)j, of standard degree m of S(g)? is not contained in . Let g be
in (S(g)%);» \ ¥ such that % has maximal standard degree. By Lemma 2.1,(i), % is
a polynomial in uy, ..., uy, of degree 2m. So, for some polynomial ¢’ of degree m
in P, g — ¢’) has standard degree bigger than the standard degree of “%g. So, by
maximality of the standard degree of ¢, the elements g — ¢’ and g are in 3, whence
the contradiction. As a result, 8 = S(g)® and d = ¢.
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(i1) Suppose that A, is a polynomial algebra. Denoting by J the ideal of A,
generated by ¢ and A,, the k-space J/J? is a graded space of dimension ¢ since
A, is a regular algebra of dimension ¢ + 1. Then for some homogeneous sequence
Pl,...,pe in Ay, (t,p1,...,pe) is a basis of J modulo J2. Since Pi,...,pe have
positive degree, we prove by induction on d that

A Rpis. .. pel @ + A
Then by induction on m, we get
A cRpts. .. e + A,
So, since the R,-module A is finitely generated,
AY cRip,....pd"

whence A = E[pl, ....,peland A, = R.[p1,...,pe] by Lemma A.3.
Denote by 61, . ..,0¢ the respective degrees of py,..., p,. We can suppose that

P1,...,pe is ordered so that ;< - - - <. Prove by induction on i that 6; = 2d; for
j=1,...,i. By Lemma 2.1,(iii), 2d; is the smallest positive degree of the elements
of A. Moreover, 0, is the smallest positive degree of the elements of R[py, ..., p¢l,

whence 61 = 2d,. Suppose 6; = 2d; for j = 1,...,i— 1. Set A; := R[p;,...,p¢l.
Then, by induction hypothesis and Lemma 2.1,(iii),
¢ ¢

paed = [ 1= = [ 7=

Jj=i J=i
By the first equality, ¢; is the smallest positive degree of the elements of A; and by
the second equality, 2d; is the smallest positive degree of the elements of A; too,
whence 0; = 2d;. Then with i = ¢, we get that 6; = 2d; for j=1,...,¢. O

Recall that R = k[[7]].

Corollary 2.3. Suppose that A, is a polynomial algebra. Then for some standard
homogeneous generating sequence qi,. .., qe in S(g)9,

A = RN rok(qr), .o 2 Tor(g)].

Proof. For m nonnegative integer, denote by S(g)}, the space of standard degree m
of S(g)3. By Proposition 2.2,(ii), for some homogeneous sequence py, ..., pein A
such that p1, ..., p, have degree 2d1, . .., 2d, respectively,

As =R.dp1.....pel

Fori = 1,...,¢, let m; be the smallest integer such that ™ p; is in Tok(S(g)?). By
Lemma 2.1,(i), #™ p; has an expansion

o= Y drectas)

JEN



THE SYMMETRIC INVARIANTS 9

with g; ;, j € N, in S(g)fl. of finite support. Denoting by ¢; ; the standard degree of
e
4qij> set:

J={jeN; m;=j+6} 6; :=inf{6;; ; j € Jj},

Ji :=m; = 2d;, Qi = 1*"7oK(gi j)-

Fori=1,...,¢, since p; is not divisible by # in A,

pi— Qi € 1A,

whence

A, CRIQ1,...,00 +tA..

Then, by induction m,
A* C R*[Qh ceey Qm] + th*

for all m. As a result,
A=RIQi,.... 0,
since for all d, the R,-module A is finitely generated. Then, by Lemma A.3,

A, = R*[Qla s Qf]

As aresult, since A has dimension €+ 1, the elements ¢, Oy, ..., Q¢ are algebraically
independent over k and so are gy j,, ..., qe,j,. Moreover the algebra S(g)* is gener-
ated by q1,j,,...,qc,j, since they have degree di, ..., d, respectively. |

2.2. Denote by V the nullvariety of A, in ¢/ x k. Let V, be the union of the irre-
ducible components of V which are not contained in g/ x {0}. The following result
is proven in [CM 16, Corollary 4.4,(i)]. Indeed, the proof of this result does not
use the assumption of [CM 16, Section 4] that for some homogeneous generators
qi,.-.,q¢ of S(g)%, the elements %y,..., %, are algebraically independent.

Lemma 2.4 ([CM16, Corollary 4.4,(i)]). (1) Thevariety V, is equidimensional
of dimension r + 1 — €.
(ii) For all irreducible component X of V. and for all z ink, X is not contained
in o
in g/ x{z}.

Let N be the nullvariety of &(A), in g/. Then V is the union of V, and N x {0}.

Lemma 2.5. (1) All irreducible component of N has dimension at least r — €
and all irreducible component of V has dimension at least r + 1 — €.

(ii) Assume that N has dimension r — €. Then for some homogeneous sequence

Dls -« Pr—t i1 S(a%)+, the nullvariety of t, p1, ..., pr—¢ in 'V is equal to {0}.
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Proof. (i) By Lemma 2.1,(ii), for some homogeneous sequence ay,...,ay in A,,
the elements ¢, ay, ..., ay are algebraically independent over k. Let by,...,b,, be a
homogeneous sequence in A, generating the ideal S(g°)[f]A+ of S(g®)[¢]. Set:

B :=XKlay,...,ap,b1,...,by], B, .= Ba;+---+Bay;+ Bbi+---+ Bb,,,

Then B and C are graded subalgebras of A and B, and C.. are maximal ideals of
B and C respectively. Moreover, C has dimension ¢ + 1. We have a commutative
diagram

o xk
RS
Specm(C) z Specm(B)

with «, B, 7 the morphisms whose comorphisms are the canonical injections

C— S, B— S@)[t], B—C

respectively. Since C has dimension £ + 1, the irreducible components of the fibers
of @ have dimension at least r—¢, whence the result for N since Nx{0} = ¢~ 1(C,.).
Moreover, V = 8~'(B,) and 7~'(B.) is a subvariety of dimension 1 of Specm(C).
Hence all irreducible component of V has dimension at least r + 1 — £.

(ii) Prove by induction on i that there exists a homogeneous sequence py, ..., p;
in S(g°); such that the minimal prime ideals of S(g¢) containing £(4), and py, ..., p;
have height ¢ + i. First of all, S(g®)e(A) is graded. Then the minimal prime ideals
of S(g°) containing &(A), are graded too. By, (i), p1,..., P, have height £ since
N has dimension r — £ by hypothesis. In particular, they are strictly contained in
S(g%)+. Hence, by Lemma A.1,(ii), for some homogeneous element p; in S(g°), p;
is not in the union of these ideals so that the statement is true for i = 1 by [Ma86,
Ch. 5, Theorem 13.5]. Suppose that it is true for i — 1. Then the minimal prime
ideals containing £(A)4 and py,..., p;— are graded and strictly contained in S(g°).
by the induction hypothesis. So, by Lemma A.1,(ii), for some homogeneous ele-
ment p; in S(g°), p; is not in the union of these ideals and the sequence py,..., p;
verify the condition of the statement by [Ma86, Ch. 5, Theorem 13.5]. Fori = r—¢,
the nullvariety of py,..., p,_¢ in N has dimension 0. Then it is equal to {0} as the
nullvariety of a graded ideal, whence the assertion since N X {0} is the nullvariety
of tin V. |

2.3.  We assume in this subsection that N has dimension r—¢£. Let py,..., p,_¢ be
as in Lemma 2.5,(ii), and set

C:=Alp1,...,prcl

Then py, ..., pr—¢ are algebraically independent over A since N has dimension r—¢.
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Lemma 2.6. The ideal S(g°)[t]+ of S(g°)[t] is the radical of S(g°)[t]C.

Proof. Let Y be an irreducible component of the nullvariety of C, in g/ x k. Then
Y has dimension at least 1. By definition the nullvariety of 7 in Y is equal to {0}.
Hence Y has dimension 1. The gradation on S(g°)[#] induces an action of the one-
dimensional multiplicative group Gy, on g/ xk such that for all (x, z) in ¢/ xk, (0, 2)
is in the closure of the orbit of (x, z) under Gy,. Since C, is graded, Y is invariant
under G,,. As aresult, Y = {0} X k or for some x in ¢/ x k, Y is the closure of
the orbit of (x,0) under Gy, since 0 is the nullvariety of 7 in Y. In the last case, x
is a zero of py,...,p,—¢ in N, that is x = 0. Hence ¥ = {0} X k. As a result, the
nullvariety of C, in of xkis equal to {0} X k that is the nullvariety of S(g°)[7]+,
whence the assertion since S(g°)[#]; is a prime ideal of S(g°)[¢]. m]

For p a prime ideal of A, denote by A, the localization of A at p and by P the
ideal of C generated by p. Since C is a polynomial algebra over A, p is a prime
ideal of C and the localization Cy of C at p is a localization of the polynomial
algebra Ay[pi,...,pr—¢]. According to [Ma86, Ch. 6, Theorem 17.4], if C5 is
Cohen-Macaulay so is A, as a quotient of Cy by an ideal generated by a regular
sequence.

Proof of Theorem 1.5. By Lemma 2.6 and Proposition A.2, the algebra C is finitely
generated. Then A is finitely generated as a quotient of C. So, by Lemma A.7,(ii),
A is a factorial ring and so is C as a polynomial ring over A. As a result, C is
normal so that S(g®)[¢] and C verify Conditions (1), (2), (3) of Proposition A.6.
Hence by Proposition A.6, for all prime ideal p of A, containing ¢, C; is Cohen-
Macaulay, whence A, is Cohen-Macaulay. By Lemma 2.1,(ii), for p a prime ideal
of A, not containing ¢, A, is the localization of k[z, t1ay,...,a;] at the prime ideal
generated by p. Hence A, is Cohen-Macaulay since the algebra k[?, a,. .. a
isregular. As aresult A is Cohen-Macaulay. In particular, A verifies Conditions (1),
(2), (3) of Subsection A.2. So, by Proposition A.10, A, is a polynomial algebra.
Then by Corollary 2.3, for some homogeneous generating sequence ¢i, .. .,g¢ in
S(9)*,

A = RV rok(qy), .o 2 Tor(g)].

Form the above equality, we deduce that any element of A is the product of an
element of the algebra R[4 Tok(q1), - . -, 24 Tok(qr)] by a polynomial in ¢ with
nonzero constant term, whence

A =R rok(qy), ..., 1% 1ok(qs)]  andso  &(A) = k[%q,...., %q,]

sincefori=1,...,¢,

gi = e 7ox(g))).
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Since N X {0} is the nullvariety of # and A, in g/ xk, Nis the nullvariety in of of
qi»--->qp.- Hence %, ..., °q, are algebraically independent over k since N has
dimension r — ¢£. m|

3. Proor orF THEOREM 1.4

Let (e, h, f) be an slp-triple in g. We use the notations « and “p, p € S(g)%, as in
Introduction. In this section, we use the standard gradations on S(g) and S(g°). Let
Ay be the subalgebra of S(g¢) generated by the family ¢p, p € S(g)%, and let Ny be
the nullvariety of Ag ; in o/ where Ay + denotes the augmentation ideal of Ag.

Letay,...,a, be a homogeneous sequence in Ag ;. generating the ideal of S(g)
generated by Ap.. According to [PPY07, Corollary 2.3], Ag contains a homoge-
neous sequence by, ..., by algebraically free over k.

Lemma 3.1. Let N be the integral closure ofklay, . ..,an,b1,...,be] in the fraction
field of S(g°).
(i) The algebra U is contained in S(5°)% and its fraction field is the fraction
field of S(g°)%".
(ii) Letain S(ge)‘f. If a is equal to 0 on Ny, then a is in U..
(iii) The ideal S(a¢)% A, of S(a°)" is equal to U,.
(iv) The algebra W is the integral closure of Ag in the fraction field of S(g°).

Proof. (i) Let Ky be the field of invariant elements under the adjoint action of
g¢ in the fraction field of S(g°). According to [CM16, Lemma 3.1], Ky is the
fraction field of S(g¢)*. Since ay,...,am, b1, ...,bs are in S(g°)*, A is contained
in Ky. Moreover, % is contained in S(g¢)* since S(g¢)* is integrally closed in Kj.

Since K has transcendence degree ¢ over k and since by, ..., b, are algebraically
independent over k, K is the fraction field of 2.
(i) Since Ny is the nullvariety of ay, ..., ay, b1, ..., b, in g/, Np is the nullvariety

of A, in ¢/ Leta be in S(ge)‘f such that a is equal to 0 on Ny. Since Ny is a cone,
all homgogeneous components of a is equal to 0 on Ny. So it suffices to prove the
assertion for @ homogeneous. We have a commutative diagram

4

Specm(Afa])

N

Specm()

of

with 7, @, 8 the comorphisms of the canonical injections
Ala] — S(g°), A — S(g°), A — Ala].

Since Nj is the nullvariety of A[a], and A, in o, ,8‘1(‘21+) = Ula]+. The gradations
of A and A[a] induce actions of G, on Specm(A) and Specm(A[a]) such that 3 is
equivariant. Moreover, 2, is in the closure of all orbit under Gy, in Specm(2).
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Hence £ is a quasi finite morphism. Moreover, (5 is a birational since 2 and Ala]
have the same fraction field by (i). Hence, by Zariski’s main theorem [Mu88], 8 is
an open immersion from Specm([a]) into Specm(A). So, S is surjective since A,
is in the image of 8 and since it is in the closure of all Gy,-orbit in Specm(2). As a
result, B is an isomorphism and a is in 2, whence the assertion.

(iii) For a in A, and b in S(g°), ab is equal to 0 on Ny. Hence ab is in U, by (ii).

(iv) By (ii), Ag is contained in A. Moreover, since ay,...,ay, by, ...,be are in
Ay, U is contained in the integral closure of A in the fraction field of S(g¢), whence
the assertion. O

Corollary 3.2. Suppose that the algebra S(a¢)* is finitely generated. Then U is
equal to S(a€)%".

Proof. Let C be the quotient of S(a®)%" by the ideal S(g°)% U, . By hypothesis, C is
finitely generated. Then it has finitely many minimal prime ideals. Denote them by
Pl,..., Dy For a in the radical of S(g©)* U, a is equal to 0 on Ny. Moreover, it is
in S(g")f. Then, by Lemma 3.1,(ii), a is in UA,. As aresult, C is a reduced algebra
and the canonical map

Ao — Ao/P1X - XAo/Pp

is injective. Since A and S(g°)* have the same fraction field, they have the same
Krull dimension. Then, by Lemma 3.1,(iii), py,..., P, are maximal ideals of C.
As a result, the k-algebra C is finite dimensional. Let V be a graded complement
to S(g°)% U, in S(g°). According to Lemma 3.1,(iii), S(a¢)* = VU so that S(g°)* is
a finite extension of 2. Since 2 is integrally closed in the fraction field of S(g%)%,
A = S(g°)". o

Proof of Theorem 1.4. The “if” part results from [CM16, Theorem 1.5] (see here
Theorem 1.3).

Suppose that e is good. By Definition 1.1 and Theorem 1.2, S(g¢)% is a polyno-
mial algebra and the nullvariety of S(ge)ﬂe in ¢/ is equidimensional of dimension
r — £. On the other hand, by Lemma 3.1,(iv), U is the integral closure of A in the
fraction field of S(g¢). Hence the nullvarieties of 2, and Ag . in g/ are the same.
But by Corollary 3.2, % = S(a°)%", so Ny has dimension r—¢ since e is good. On the
other hand, Ay is contained in £(A) by construction of &(A), and &(A) is contained
in S(g9)% by [PPYO07, Proposition 0.1], whence N = Np.

As aresult, N has dimension r—¢ and so by Theorem 1.5, for some homogeneous
generating sequence ¢, ..., q¢ of S(g)?, the element g, ..., %, are algebraically
independent over k. m|

APPENDIX A. GENERAL FACTS ON COMMUTATIVE ALGEBRA

In this section 7 is an indeterminate and the base ring R is k, k[¢] or k[[¢]]. For
M a graded space over N and for j in N, denote by MU the space of degree j and
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by M, the sum of MU/, j > 0. Let A be a finitely generated graded R-algebra over
N such that A®! = R and such that AUl is a free R-module of finite rank for any
j € N. Moreover, A is an integral domain. Denoting by dim A the Krull dimension
of A, we set:
f:{dimA if R=k
' dimA-1 if reR
As arule, for B an integral algebra, we denote by K(B) its fraction field.

A.l. Let B be a graded subalgebra of A.

Lemma A.1. (1) Letpy,...,Pm be pairwise different graded prime ideals con-
tained in A.. If they are the minimal prime ideals containing their inter-
section, then for some homogeneous element p of A, the element p is not
in the union of p1,..., Pm.

(ii) For some homogeneous sequence pi,...,pe in A, A, is the radical of the
ideal generated by py, ..., pe.

(iii) Suppose that A, is the radical of AB.. Then for some homogeneous se-
quence py,...,pcin By, Ay is the radical of the ideal generated by py, . .., pe.

Proof. (i) Prove by induction on j that for some homogeneous element p; of A,,
p; is not in the union of py,...,p;. Since p; is a graded ideal strictly contained in
A, itis true for j = 1. Suppose that it is true for j — 1. If p;_; is not in p;, there
is nothing to prove. Suppose that p;_; is in p;. According to the hypothesis, p; is

stricly contained in A, and it does not contain the intersection of py,...,p;_1. So,
since Py, ..., p; are graded ideals, for some homogeneous sequence r,gin A,
j-1
re pe\pj, and geA;\p;.
k=1

Denoting by m and n the respective degrees of p;_1 and rg, p"_

Lt (rg)™ is homo-

geneous of degree mn and it is not in py, ..., p; since these ideals are prime.
(ii) Prove by induction on i that for some homogeneous sequence py,...,p; in
A, the minimal prime ideals of A containing py, ..., p; have height i. Let p; be in

A, \ {0}. By [Ma86, Ch. 5, Theorem 13.5], all minimal prime ideal containing p;
has height 1. Suppose that it is true for i — 1. Let py, ..., p, be the minimal prime
ideals containing pj,..., pi—1. Since A, has height £ > i — 1, A, strictly contains
P1,...,Pm. By (i), there exists a homogeneous element p; in A, not in the union
of py,...,py. Then, by [Ma86, Ch. 5, Theorem 13.5], the minimal prime ideals
containing py,..., p; have height i. For i = £, the minimal prime ideals containing
P1,--.,pe have height €. Hence they are equal to A, since A, is a prime ideal of
height ¢ containing py, ..., pe, whence the assertion.

(iii) The ideal AB, is generated by a homogeneous sequence ay,...,a, in B.,.
Denote by B’ the subalgebra of A generated by ay,...,a,. Then B’ is a finitely
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generated graded subalgbera of A such that A, is the radical of AB’.. If R =k,
denote by d its dimension and if ¢ € R, denote by d + 1 its dimension. By (ii),
for some homogeneous sequence py,...,pq in B, B’ is the radical of the ideal
generated by pi,...,ps. Then A, is the radical of the ideal of A generated by
Pl,...,Pp4. Since A, has height £, £ < d by [Ma86, Ch. 5, Theorem 3.5]. Since B’
is a subalgebra of A, its dimension is at most dimA. Hence d = ¢. m|

Proposition A.2. Suppose that A, is the radical of AB.. Then B is finitely gener-
ated and A is a finite extension of B.

Proof. Since A is a noetherian ring, for some homogeneous sequence ajy, .. ., a, in
B, AB, is the ideal generated by this sequence. Denote by C the R-subalgebra of
A generated by ay,...,a,. Then C is a graded subalgebra of A. Denote by x the
morphism

4

Specm(A)

Specm(C)

whose comorphism is the canonical injection C —s A. Let A and C be the integral
closures of A and C in K(A). Since C is contained in A, C is contained in A. Let
and S be the morphisms

a

Specm(Z) Specm(A) and Specm(f) Specm(C)

whose comorphisms are the canonical injections A — A and C — C respectively.
Then there is a commutative diagram

Specm(Z) T Specm(f)
| |
Specm(A) z Specm(C)

with 7 the morphism whose comorphism is the canonical injection C — A.

The action of G,(k) in A extends to an action of K(A), and A is invariant under
this action. Denoting by R the integral closure of R in K(A), R is the set of fixed
points under the action of Gy (k) in A. Since C is invariant under G,(k) so is C.
For m a maximal ideal of R, the ideal m + 6+ is the maximal ideal of C containing
m and invariant under G,(k). Then, for p a maximal ideal of C,pNR+C, isin
the closure of the orbit of p under G,,(k). Moreover,

m+A) =7 Ym+C,)

for all maximal ideal m of R. Hence 7 is quasi finite. Moreover 7 is birational.
Then, by Zariski’s main theorem [Mu88], 7 is an open immersion. As a result, 7
is surjective. Hence 7 is an isomorphism and A = C. As a result, A is a finite
extension of C since f is a finite morphism. As submodules of the finite module
A over the noetherian ring C, A and B are finite C-modules. Hence A is a finite
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extension of B. Denoting by wy, ..., wy a generating family of the C-module B, B
is the subalgebra of A generated by ay,...,a,, wi,...,w,. m]

Denote by k|z]. the localization of k[¢] at the prime ideal rk[] and set:

k if R=k k if R=k
R.:=1{ k[f], if R=Kk[f] , R:={K[[f]] if R=k[]
R if R =X[[]] R if R =X[[]]

For M a R-module, set M= E@R M.

Lemma A.3. Suppose R = k[t]. Let M be a torsion free R-module and let N be a
submodule of M. Then for ain NN M, rais in N for some r in R such that r(0) # 0.

Proof. Since M is torsion free, the canonical map M — M is an embedding. More-
over, the canonical map N - Misan embedding since R is flat over R. Let a be
in N N M and let @ be its image in M/N by the quotient map. Denote by J, the
annihilator of @ in R, whence a commutative diagram

0 N—om d M/N 0
6T 6T

0 J,—L R d Ra 0
0 0

with exact lines and columns. Since R is a flat extension of R, tensoring this dia-
gram by R gives the following diagram with exact lines and columns:

0 N— M 4  R®xM/N —>=0
| |

0 RI, LR d Ra 0
0 0

For b in R (6ed)b = (d=d)b = 0 since a is in N by (i), whence db = 0. As a result,
RJ = R. Hence J, contains an element r, invertible in R that is r(0) # 0, whence
the lemma. a

For p = (p1, ..., pr) ahomogeneous sequence in A, we set:

if R=k

p — —
= . , A. =R.Q®rA, A:=RQ®pA,
d {(t,m,...,m if R =Kk[[] R R
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and we denote by J, the ideal of A generated by the sequence p. Since A0l = R,

the gradation on A extends to a gradation on A, and A such that A”! = R, and
Al = R When R =k or R = k[[f]], then A, = A and A = A.

Lemma A.4. Suppose that A is Cohen-Macaulay. Let p = py,..., pe be a homo-
geneous sequence in A, such that A, is the radical of the ideal of A generated by
P1,...,pcand let V be a graded complement in A to the k-subspace J,,.

(1) The space V has finite dimension.
(1) The space A, is equal to VR.[p1, ..., pel-
(iii) The algebra A is a flat extension of R[p1, ..., pel.
(iv) For all homogeneous sequence ay,...,a, in A, linearly free over k modulo
Jp, ai,...,a, is linearly free over R[p1, ..., p¢l.
(V) The linear map

V & R.p1,...,pe]l — A, vRa — va
is an isomorphism.

Proof. According to Lemma A.1,(ii), the sequence p does exist.

(i) Let J, be the ideal of A generated by pi,...,p,. Since A, is the radical
of Jp, Al = Jl[,d] for d sufficiently big. When ¢t € R, for all d, then tAldl hag
finite codimension in A since A!! is a finite free R-module. Hence J » has finite
codimension in A so that V has finite dimension. -

(i1) Suppose that ¢ is in R. First of all, we prove by induction on d the inclusion

A (VR[p1, ..., p DD + 1Al

when ¢ € R. Since A" is the direct sum of V1% and JI[,O], V101l i contained in k + tR,
whence the inclusion for d = 0. Suppose that it is true for all j smaller than d.
Since p1, ..., p¢ have positive degree, by induction hypothesis,

J[Bd] c (VRIp1, ..., pe )™ + 1A,
whence the inclusion for d. Then, by induction on m,
A (VR[p1, ..., peD!? + AL,
As a result, since Al9! is a finite R-module,
Al (VRIp1,.... p D',

whence A = Vﬁ[pl, ..., pe]. This equality remains true when R = k by an analo-
gous and simpler argument.

When R = k[¢], according to Lemma A.3, for @ in A, ra is in VR[py, ..., p] for
some r in R such that 7(0) # 0 by Lemma A.3. As aresult, A, = VR.[p1, ..., pel.
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(iii) By Proposition A.2, A is a finite extension of R[py,..., p¢]. In particular,
R[pi1,...,pe] has dimension € + dimR so that py,..., p; are algebraically inde-
pendent over R. Hence R[p1, ..., p¢] is a regular algebra, whence the assertion by
[Ma86, Ch. 8, Theorem 23.1].

(iv) Prove the assertion by induction on n. Since A is an integral domain, the
assertion is true for n = 1. Suppose the assertion true for n — 1. Let (by,...,b,) be
a homogeneous sequence in R[py, ..., p¢] such that

biay + -+ bya, =0.
Let K and I be the kernel and the image of the linear map
RIp1,...spel® — RIp1,....pel,  (c1s-..scn) ko cibr + -+ + cuby,
whence the short exact sequence of R[p;, ..., p¢] modules
0— K— R[p1,....,pe]I" — 1 — 0.

The gradation of R[py,..., p¢] induces a gradation of R[pi,...,p¢]" and K is a
graded submodule of R[py,..., p¢]" since by,...,b, is a homogeneous sequence
in R[p1,..., p¢]. Denote by y,...,y, a generating homogeneous sequence of the
R[p1,..., pel-module K. By (iii), the short sequence of A-modules

0— A@rp,...pn K — A" — A@rip,...pn 1 — 0.

is exact. So, for some homogeneous sequence Xxi, ..., X, in A,
m
ai = Z XjYji
=1
fori=1,...,n. Since a, is not in J, for some j., the element y;_; is an invertible

element of R.., whence

n—1

n—1
bnyjn =~ Z biyj,; and bi(yj, na;i — anyj, ;) = 0.
i=1 i=1

So, by induction hypothesis,
bi=---=by-1=0

since the sequence

Yj.n@1 — AplYj, 15> Yj,.nln-1 — AnlYj, n-1

is linearly free over k modulo J,,. Then b, = 0 since a,, # 0.

(v) Let (vy,...,v,) be a homBgeneous basis of V. Since the space of relations
of linear dependence over R[p1, ..., p¢] of v1,...,v, is graded, it is equal to {0} by
(iv), whence the assertion by (ii). m|
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Corollary A.S. (i) The algebra A, is Cohen-Macaulay if and only if for some

homogeneous sequence pi,...,pe in A, the algebra A, is a finite free
extension of R.[pi,...,pel.
(i1) Suppose that A, is Cohen-Macaulay. For a homogeneous sequence q, . .., qr¢

in Ay, A, is a finite free extension of R.[q1,...,qc] if and only if R.A, is
the radical of the ideal of A, generated by q., ... ,qy.

Proof. (i) The “only if” part results from Lemma A.4,(v). Suppose that for some
homogeneous sequence py,...,p¢ in Ay, the algebra A, is a finite free extension
of R.[pi,...,pe]. In particular, R.[p1,...,p¢] is a polynomial algebra over R.
since A, has dimension dimA. Let p be a prime ideal of A, and let q be its in-
tersection with R.[pi, ..., p¢]. Denote by A, and R[py,..., pc]l, the localizations
of A, and R.[p1,...,pe] at p and q respectively. Since A, is a finite extension of
R.[p1,..., pel, these local rings have the same dimension. Denote by d this dimen-
sion. By flatness, all regular sequence ay,...,aq in R[py, ..., pcl, is regular in A,
so that A, is Cohen-Macaulay. Hence A, is Cohen-Macaulay.

(i1) The “only if” part results from (i) and Proposition A.2. Suppose that A,
is a finite free extension of R.[qi,...,qr]. Let p be a minimal prime ideal of A.
containing ¢y, ...,q¢ and let g be its intersection with R.[q;,...,q¢]. Then q is
generated by ¢, ...,q¢. In particular it has height £. So p has height ¢ since A. is
a finite extension of R.[q,...,q¢]. As aresult, p = R.A, since R,A, is a prime
ideal of height ¢, containing ¢, ..., gs, Whence the assertion. O

Set B.. := R, ®g B and for p a prime ideal of B denote by B,, its localization at p.

Proposition A.6. Suppose that the following conditions are verified:

(1) B is normal,

(2) A, is the radical of AB,,

(3) A is Cohen-Macaulay.

(i) Let py,...,pe be a homogeneous sequence in B such that B, is the rad-
ical of the ideal of B generated by this sequence. Then for some graded
subspace V of A, having finite dimension, the linear morphisms

V & R:[pi1,...,pe]l — A, vea — va,

(VN B)® R.p1,...,pc] — B., v®a — va

are isomorphisms.
(i1) If R =k or R = K[[t]], the algebra B, is Cohen-Macaulay.
(iii) For p prime ideal of B, containing t, the local ring B, is Cohen-Macaulay.

Proof. (i) By Proposition A.2 and by Condition (2), B is finitely generated and
A is a finite extension of B. By Condition (2) and by Lemma A.1,(iii), for some
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homogeneous sequence (py, ..., pg) in B, A, is the radical of the ideal generated
by pi,..., pe. Set:

t,pl,...,pe if dimA={+1
Pie... pe if dimA=¢

Denote by m the degree of the extension K(A) of K(B). For a in A,, set:

a# = —tra
m

with tr the trace map. By Condition (1), B, is normal and the map a + a” is a
projection from A, onto B, whose restriction to A is a projection onto B. Moreover,
it is a graded morphism of B-modules. Let M be its kernel. Let Jy and J be the
ideals of B and A generated by p respectively. Since ¢, p1,..., p¢ are in B, J is the
direct sum of Jy and M J,. Let T/O be a graded complement in B to the k-space Jy
and let V| be a graded complement in M to the k-space M Jy. Setting V := Vo + V|,
V is a graded complement in A to the k-space J. By Condition (3) and Lemma A .4,

V has finite dimension and the linear map

V& R.Api,...,pe]l — A, v®a —> va
is an isomorphism. So, since V = V*, the linear map

Vo ®« R.[p1,...,pc]l — B, v®a — va

is an isomorphism, whence the assertion.

(ii) results from (i) and Corollary A.5.

(iii) By (i) and Corollary A.5, A, is Cohen-Macaulay. For p a prime ideal of
B, containing ¢, B, is the localization of B, at the prime ideal B.p, whence the
assertion by (ii). |

A.2. In this subsection R = k[¢] and set R = k[[¢]]. For M a graded module over
R such that M1/ is a free submodule of finite rank for all j, we denote by Py r(T)
its Hilbert series:
Pyp(T) = ) tk MU,
JEN
For V a graded space over k such that V/ has finite dimension, we denote by
Pyx(T) its Hilbert series:

Pyi(T) := )" dim VT,
JjeN

Let S be a graded polynomial algebra over k such that S°! = k and SU! has finite
dimension for all j. Consider on S [¢] and S [[¢]] the gradations extending that of S
and such that # has degree 0. Consider the following conditions on A:

(1) A is graded subalgebra of S[¢],
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(2) for some homogeneous sequence ay,...,asinA;, A = k[t, Yay, ..., a/]n
S,
(3) A is Cohen-Macaulay.

If Condition (2) holds, then A[r"'] = R[ay,...,a/[t"']. Moreover, if so, since A
has dimension ¢ + 1, then the elements ¢, ay,...,a, are algebraically independent
overk. Set A := R®g A.

Lemma A.7. Assume that Conditions (1) and (2) hold.

(1) The element t is a prime element of A.
(ii) The algebra A is a factorial ring.
(iii) The Hilbert series of the R-module A is equal to

1

L L - pa”

i=

Pyr(T) =

I~

with dy,...,d; the degrees of ay, . . .,ap respectively.

Proof. (i) Let a and b be in A such that ab is in tA. Since #S [¢] is a prime ideal of
S[t], a or b is in tS[t]. Suppose a = ta’ for some a’ in S[f]. Then &’ is in A[+"!].
By Condition (2), Alr™"] = Rlay,...,a,[t""]. Hence o is in A by Condition (2)
again. As aresult, Az is a prime ideal of A.

(i1) Since A is finitely generated, it suffices to prove that all prime ideal of height
1 is principal by [Ma86, Ch. 7, Theorem 20.1]. Let p be a prime ideal of height 1.
If ¢ is in p, then p = Az by (i). Suppose that ¢ is not in p and set p = A[t"']p. Then
P is a prime ideal of height 1 of R[a, ..., ac][t"'] by Condition (2). For a in p, t"a
is in p for some nonnegative integer m. Hence

P=pPNA

since p is prime. As a polynomial ring over the principal ring k[z,¢7'], the ring
Rlay,...,a/][t""] is a factorial ring. Then P is generated by an element a in p.
Since § is a polynomial ring, S[¢] is a factorial ring. So, for some nonnegative
integer m and for some @’ in S [z], prime to ¢, a = t"a’. By Condition (2), @’ is in
A. Then o’ is an element of p, generating p and not divisible by ¢ in A. Let b and
¢ be in A such that bc is in Aa’. Then b or c is in A[t']a’. Suppose b in A[t"!]a’.
So, for some in N, #'b = b’a’ for some b’ in A. We choose ! minimal verifying
this condition. By (i), since a’ is not divisible by 7 in A, b’ is divisible by ¢ in A if
[ > 0. By minimality of [, / = 0 and b is in Aa’. As a result, Ad’ is a prime ideal
and p = Ad’ since p has height 1.
(iii) By Condition (2),

A[t_l] =klz, t_l] ®x klay,...,as] whence kAl = dimk[al,...,a,g][d]
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for all nonnegative integer d. Since ay,...,a, are algebraically independent over
ks
£
Pyay,....anx(T) = [1[ A
whence the assertion. m|
Let p1,..., pr be ahomogeneous sequence in A such that A, is the radical of the

ideal of A generated by this sequence. By Lemma A.1,(ii), such a sequence does
exist. Denote by C the integral closure of k[py,..., p¢] ink(t,ay,...,ar).

Lemma A.8. Assume that Conditions (1), (2) and (3) hold.
(1) The algebra C is a graded subalgebra of A and t is not algebraic over C.
(ii) The algebra C is Cohen-Macaulay. Moreover, C is a finite free extension

of k[p1,...,pcl
(iii) The algebra C + tA is normal.

Proof. (i) By Lemma A.7,(ii), A is a normal ring such that K(A) = k(¢t,ay,...,ar)
by Condition (2). Then C is contained in A since k[p, ..., p¢] is contained in A.
Moreover, C is a graded algebra since so is k[ p1, ..., p¢]. By Proposition A.2, A is

a finite extension of R[py,..., p¢]. So, since A has dimension £ + 1, the elements
t,p1,...,pe are algebraically independent over k. As a result, ¢ is not algebraic
over C.

(i1) By (i), C[¢] is a polynomial ring over C. So, by [Ma86, Ch. 8, Corollary
of Theorem 23.9], C[[#]] is a normal ring. By definition, A, is the radical of the
ideal of A generated by py,..., ps. So A: is the radical of AC[[f]]- since py,..., p¢
are in C[[t]]+. Since R is a flat extension of R, the algebra Ais Cohen-Macaulay
by Condition (3). Then, by Proposition A.6,(ii), C[[¢]] is Cohen-Macaulay. Let V
be a graded complement in C to the ideal of C generated by py,..., p,. Since ¢
is not algebraic over C, the space V is a complement in C[¢] to the ideal of C[¢]
generated by ¢, p1,...,pe. Then, by Lemma A.4, V has finite dimension and the
linear morphism

V& R.[p1,...,pe] — R.C, vea — va
is an isomorphism. As a result, the linear morphism
Vexkipi,...,pel — C, vea — va

is an isomorphism, whence the assertion by Corollary A.5,(ii).

(iii) Set A := C + tA. At first, A is a graded subalgebra of A since C is a graded
algebra and tA is a graded ideal of A. According to Proposition A.6,(i), for some
graded subspace V of A, having finite dimension, the linear morphisms

V & R:[pi1,...,pe]l — A, vea — va,

V1) & R.[p1,...,pc] — R.C, v8a > va
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are isomorphisms. Let vy,...,v, be a basis of V such that vy,...,v, is a basis of
V N C[t]. For a in A,, the element a has unique expansion

a=una+---+vya,

with ay,...,a, in R.[p1,...,pel. If ais in tA,, ay,...,a, are in tR.[pi,..., pcl
and if a is in R,C, ay,...,a, are in k[py,..., p¢] and a;;41,...,a, are equal to 0,
whence R.C NtA, = tR,.C and C N tA = {0}. In particular, C is the quotient of A
by ¢A.

For p a prime ideal of A, denote by A, the localization of A at p. If ¢ is not in
p, then A[r!] is contained in Ap so that Ap is a localization of the regular algebra
Rlai,...,a[t"'] by Condition (2). Hence Ap is a regular local algebra. Suppose
that ¢ is in p. Denote by P the image of p in C by the quotient map. Then A,/¢A,
is the localization C; of C at the prime ideal p. Since C is Cohen-Macaulay, so are
Cs and Ap. As aresult, A is Cohen-Macaulay.

Let p be a prime ideal of height 1 of A. If ¢ is not in p, A, is a regular local
algebra as it is already mentioned. Suppose that ¢ is in p. By Lemma A.7,(i),
tA = p so that all element of C \ {0} is invertible in Ap, whence

A, =K(C)+1A, and A, =tK(C)+*A,.

Hence A, is a regular local ring of dimension 1. As a result, A is regular in codi-
mension 1. Then, by Serre’s normality criterion [B98, §1, n°10, Théoréme 4], Ais
normal since A is Cohen-Macaulay. m|

Corollary A.9. Assume that Conditions (1), (2) and (3) hold.

(1) The algebra Ais equal to C[[t]].
(ii) For ain A, the element ra is in C[t] for some r in k[t] such that r(0) # 0.

Proof. (i) Since A is contained in A, we have K(A) = K(A). Since C, is contained
in A,, A, is the radical of AA,. Then, by Proposition A.2, A is a finite extension
of A. So, by Lemma A.8,(iii), A = A and by induction on m,

AcCC[t]+1"A

for all positive integer m. Since A and C[f] are graded and since the R-module A
is finitely generated for all d, A = C[[¢]].
(i1) The assertion results from (i) and Lemma A.3. m|

Proposition A.10. Assume that Conditions (1), (2) and (3) hold. Then the algebra
A, is polynomial over R.. Moreover, for some homogeneous sequence qi, .. .,q¢ in
A, such that q1, ..., q¢ have degree d,, . . .,d; respectively, A, = R.[q1,...,qc].

Proof. According to Corollary A.9 and Lemma A.8,(i), it suffices to prove that C is
a polynomial algebra over k generated by a homogeneous sequence ¢y, . .., g¢ such
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that g, ..., q¢ have degree di, . . ., dy respectively. According to Corollary A.9,(i),
Lemma A.8,(i) and Lemma A.7,(iii),
Lo
Pex(T) = l_[ —

_Td;’
i=11 T

By Corollary A.9,(ii), fori = 1,...,¢, for some r; in R such that r;(0) # 0, r;a; has

an expansion
ria; = Z Ci,ml‘m

meN
with ¢;,,m € Nin Cl4il | with finite support. Forzinkandi=1,...,¢, set:
bi(z) = Z CimZ"
meN
so that b;(z) is in C ] for all z. As already mentioned, ¢, ay, ..., a, are algebraically
independent over k by Condition (2) since A has dimension ¢ + 1. Then, so are
rai,...,rea; and for some z in k, b1(2),...,bs(z) are algebraically independent

over k. Denoting by C’ the subalgebra of C generated by this sequence,

4

1
Pox®) = [ [ —=.
g 1 - Td

whence C = C’ so that C is a polynomial algebra. O
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