THE SYMMETRIC INVARIANTS OF CENTRALIZERS AND SLODOWY GRADING II

Jean-Yves Charbonnel, Anne Moreau

To cite this version:

Jean-Yves Charbonnel, Anne Moreau. THE SYMMETRIC INVARIANTS OF CENTRALIZERS
AND SLODOWY GRADING II. 2016. hal-01298516

HAL Id: hal-01298516

https://hal.science/hal-01298516

Preprint submitted on 6 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE SYMMETRIC INVARIANTS OF CENTRALIZERS AND SLODOWY GRADING II

JEAN-YVES CHARBONNEL AND ANNE MOREAU

Abstract

Let \mathfrak{g} be a finite-dimensional simple Lie algebra of rank ℓ over an algebraically closed field \mathbb{k} of characteristic zero, and let (e, h, f) be an $\mathfrak{s l}_{2}$-triple of \mathfrak{g}. Denote by \mathfrak{g}^{e} the centralizer of e in \mathfrak{g} and by $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}$ the algebra of symmetric invariants of \mathfrak{g}^{e}. We say that e is good if the nullvariety of some ℓ homogenous elements of $S\left(g^{e}\right)^{g^{e}}$ in $\left(g^{e}\right)^{*}$ has codimension ℓ. If e is good then $S\left(g^{e}\right)^{g^{e}}$ is a polynomial algebra. In this paper, we prove that the converse of the main result of [CM16] is true. Namely, we prove that e is good if and only if for some homogenous generating sequence q_{1}, \ldots, q_{ℓ} of $S(\mathfrak{g})^{\mathfrak{g}}$, the initial homogenous components of their restrictions to $e+\mathfrak{g}^{f}$ are algebraically independent over \mathbb{k}.

Contents

1. Introduction 1
2. Proof of Theorem 1.5 4
3. Proof of Theorem $1.4 \quad 12$

Appendix A. General facts on commutative algebra 13
References 24

1. Introduction

1.1. Let \mathfrak{g} be a finite-dimensional simple Lie algebra of rank ℓ over an algebraically closed field \mathbb{k} of characteristic zero, let $\langle.,$.$\rangle be the Killing form of \mathfrak{g}$ and let G be the adjoint group of \mathfrak{g}. If \mathfrak{a} is a subalgebra of \mathfrak{g}, we denote by $\mathrm{S}(\mathfrak{a})$ the symmetric algebra of \mathfrak{a}. For $x \in \mathfrak{g}$, we denote by \mathfrak{g}^{x} the centralizer of x in \mathfrak{g} and by G^{x} the stabilizer of x in G. Then $\operatorname{Lie}\left(G^{x}\right)=\operatorname{Lie}\left(G_{0}^{x}\right)=\mathfrak{g}^{x}$ where G_{0}^{x} is the identity component of G^{x}. Moreover, $\mathrm{S}\left(\mathfrak{g}^{x}\right)$ is a \mathfrak{g}^{x}-module and $\mathrm{S}\left(\mathfrak{g}^{x}\right)^{\mathrm{g}^{x}}=\mathrm{S}\left(\mathfrak{g}^{x}\right)^{G_{0}^{x}}$.

In [CM16], we continued the investigations of [PPY07] and we studied the question on whether the algebra $\mathrm{S}\left(\mathrm{g}^{x}\right)^{\mathrm{g}^{x}}$ is polynomial in ℓ variables; see [Y07, CM10, JS10] for other references related to the topic.

[^0]1.2. Let us first summarize the main results of [CM16].

Definition 1.1 ([CM16, Definition 1.3]). An element $x \in \mathfrak{g}$ is called a good element of \mathfrak{g} if for some homogenous sequence $\left(p_{1}, \ldots, p_{\ell}\right)$ in $\mathrm{S}\left(\mathfrak{g}^{x}\right)^{\mathfrak{g}^{x}}$, the nullvariety of p_{1}, \ldots, p_{ℓ} in $\left(\mathrm{g}^{x}\right)^{*}$ has codimension ℓ in $\left(\mathrm{g}^{x}\right)^{*}$.

Thus an element $x \in \mathfrak{g}$ is good if the nullcone of $S\left(\mathfrak{g}^{x}\right)$, that is, the nullvariety in $\left(\mathfrak{g}^{x}\right)^{*}$ of the augmentation ideal $S\left(\mathfrak{g}^{x}\right)_{+}^{\mathfrak{g}^{x}}$ of $S\left(\mathfrak{g}^{x}\right)^{\mathfrak{g}^{x}}$, is a complete intersection in $\left(\mathfrak{g}^{x}\right)^{*}$ since the transcendence degree over \mathbb{k} of the fraction field of $S\left(\mathfrak{g}^{x}\right)^{\mathfrak{g}^{x}}$ is ℓ by the main result of [CM10].

For example, regular nilpotent elements are good; see the introduction of [CM16] for more details and other examples.
Theorem 1.2 ([CM16, Theorem 3.3]). Let x be a good element of \mathfrak{g}. Then $\mathrm{S}\left(\mathfrak{g}^{x}\right)^{\mathfrak{g}^{x}}$ is a polynomial algebra and $\mathrm{S}\left(\mathfrak{g}^{x}\right)$ is a free extension of $\mathrm{S}\left(\mathrm{g}^{x}\right)^{\mathfrak{g}^{x}}$.

Furthermore, x is good if and only if so is its nilpotent component in the Jordan decomposition [CM16, Proposition 3.5]. As a consequence, we can restrict the study to the case of nilpotent elements.

Let e be a nilpotent element of \mathfrak{g}. By the Jacobson-Morosov Theorem, e is embedded into a $\mathfrak{s l}_{2}$-triple (e, h, f) of \mathfrak{g}. Denote by $\mathcal{S}_{e}:=e+\mathfrak{g}^{f}$ the Slodowy slice associated with e. Identify \mathfrak{g}^{*} with \mathfrak{g}, and $\left(\mathfrak{g}^{e}\right)^{*}$ with \mathfrak{g}^{f}, through the Killing form $\langle.,$.$\rangle of \mathfrak{g}$. For p in $\mathrm{S}(\mathfrak{g}) \simeq \mathbb{k}\left[\mathfrak{g}^{*}\right] \simeq \mathbb{k}[\mathfrak{g}]$, denote by ${ }^{e} p$ the initial homogenous component of its restriction to \mathcal{S}_{e}. According to [PPY07, Proposition 0.1], if p is in $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$, then ${ }^{e} p$ is in $\mathrm{S}\left(\mathrm{g}^{e}\right)^{g^{e}}$.

Theorem 1.3 ([CM16, Theorem 1.5]). Suppose that for some homogenous generators q_{1}, \ldots, q_{ℓ} of $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$, the polynomial functions ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$ are algebraically independent over \mathbb{k}. Then e is a good element of \mathfrak{g}. In particular, $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}$ is a polynomial algebra and $\mathrm{S}\left(\mathfrak{g}^{e}\right)$ is a free extension of $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}$. Moreover, ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$ is a regular sequence in $\mathrm{S}\left(\mathrm{g}^{e}\right)$.

In other words, Theorem 1.3 provides a sufficient condition for that $S\left(g^{e}\right)^{g^{e}}$ is polynomial. By [PPY07], one knows that for homogenous elements q_{1}, \ldots, q_{ℓ} of $S(\mathfrak{g})^{\mathfrak{g}}$, the polynomial functions ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$ are algebraically independent if and only if

$$
\begin{equation*}
\sum_{i=1}^{\ell} \operatorname{deg}^{e} q_{i}=\frac{\operatorname{dim} g^{e}+\ell}{2} \tag{1}
\end{equation*}
$$

So we have a practical criterion to verify the sufficient condition of Theorem 1.3. However, note that even if the condition of Theorem 1.3 holds, that is, if (1) holds, $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathrm{g}^{e}}$ is not necessarily generated by the polynomial functions ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$. As a matter of fact, there are nilpotent elements e satisfying this condition and for which $S\left(\mathfrak{g}^{e}\right)^{g^{e}}$ is not generated by some ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$, for any choice of homogenous generators q_{1}, \ldots, q_{ℓ} of $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ (cf. [CM16, Remark 2.25]).

Theorem 1.3 can be applied to a great number of nilpotent orbits in the simple classical Lie algebras, and for some nilpotent orbits in the exceptional Lie algebras, see [CM16, Sections 5 and 6]. We also provided in [CM16, Example 7.8] an example of a nilpotent element e for which $\mathrm{S}\left(\mathrm{g}^{e}\right)^{g^{e}}$ is not polynomial.
1.3. In this note, we prove that the converse of Theorem 1.3 also holds. Namely, we prove the following result.

Theorem 1.4. The nilpotent element e of \mathfrak{g} is good if and only if for some homogenous generating sequence q_{1}, \ldots, q_{ℓ} of $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$, the elements ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$ are algebraically independent over \mathbb{k}.

Theorem 1.4 was conjectured in [CM16, Conjecture 7.11]. Notice that it may happen that for some r_{1}, \ldots, r_{ℓ} in $\mathrm{S}(\mathfrak{g})^{9}$, the elements ${ }^{e} r_{1}, \ldots,{ }^{e} r_{\ell}$ are algebraically independent over \mathbb{k}, and that however e is not good. This is the case for instance for the nilpotent elements in $\mathfrak{s o}\left(\mathbb{K}^{12}\right)$ associated with the partition $(5,3,2,2)$, cf. [CM16, Example 7.6]. In fact, according to [PPY07, Corollary 2.3], for any nilpotent element e of \mathfrak{g}, there exist r_{1}, \ldots, r_{ℓ} in $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ such that ${ }^{e} r_{1}, \ldots,{ }^{e} r_{\ell}$ are algebraically independent over \mathbb{k}.
1.4. We introduce in this subsection the main notations of the paper and explain our approach to prove Theorem 1.4.

Let x_{1}, \ldots, x_{r} be a basis of \mathfrak{g}^{e} such that for $i=1, \ldots, r,\left[h, x_{i}\right]=n_{i} x_{i}$ with n_{i} a nonnegative integer. For $\mathbf{j}=\left(j_{1}, \ldots, j_{r}\right)$ in \mathbb{N}^{r}, set:

$$
|\mathbf{j}|:=j_{1}+\cdots+j_{r}, \quad|\mathbf{j}|_{e}:=j_{1}\left(n_{1}+2\right)+\cdots+j_{r}\left(n_{r}+2\right), \quad x^{\mathbf{j}}:=x_{1}^{j_{1}} \cdots x_{r}^{j_{r}} .
$$

There are two gradations on $\mathrm{S}\left(\mathrm{g}^{e}\right)^{g^{e}}$, the standard one and the Slodowy gradation. For all \mathbf{j} in $\mathbb{N}^{r}, x^{\mathbf{j}}$ has standard degree $|\mathbf{j}|$ and Slodowy degree $|\mathbf{j}|$. Denoting by $t \mapsto h(t)$ the one parameter subgroup of G generated by ad h, the Slodowy slice $e+\mathfrak{g}^{f}$ is invariant under the one parameter subgroup $t \mapsto t^{-2} h(t)$ and for all \mathbf{j} in \mathbb{N}^{r} and for all y in g^{f},

$$
x^{\mathbf{j}}\left(t^{-2} h(t)(e+y)\right)=t^{-\mathbf{b} \mid \boldsymbol{l} e} x^{\mathbf{j}}(e+y) .
$$

Let t be an indeterminate and let R be the polynomial algebra $\mathbb{k}[t]$. The polynomial algebra

$$
\mathrm{S}\left(\mathfrak{g}^{e}\right)[t]:=\mathbb{k}[t] \otimes_{\underline{k}} \mathrm{~S}\left(\mathfrak{g}^{e}\right)
$$

identifies with the algebra of polynomial functions on $\mathfrak{g}^{f} \times \mathbb{k}$. The gradation of $\mathrm{S}\left(\mathrm{g}^{e}\right)$ induces a gradation of $\mathrm{S}\left(\mathrm{g}^{e}\right)[t]$ such that t has degree 0 .

Denote by ε the evaluation map at $t=0$ so that ε is a graded morphism from $\mathrm{S}\left(\mathfrak{g}^{e}\right)[t]$ onto $\mathrm{S}\left(\mathfrak{g}^{e}\right)$. For p in $\mathrm{S}(\mathfrak{g})$, denote by $\kappa(p)$ the polynomial function $x \mapsto$ $p(e+x)$ on \mathfrak{g}^{f} so that $\kappa(p) \in \mathrm{S}\left(\mathrm{g}^{e}\right)$. Then ${ }^{e} p$ is the homogeneous component of $\kappa(p)$ of minimal degree with respect to the standard gradation on $\mathrm{S}\left(\mathrm{g}^{e}\right)$. Let τ be the embedding of $\mathrm{S}\left(\mathrm{g}^{e}\right)$ into $\mathrm{S}\left(\mathfrak{g}^{e}\right)[t]$ such that $\tau\left(x_{i}\right):=t x_{i}$ for $i=1, \ldots, r$.

Denote by A the intersection of $S\left(g^{e}\right)[t]$ with the sub- $\mathbb{k}\left[t, t^{-1}\right]$-module of

$$
\mathrm{S}\left(\mathfrak{g}^{e}\right)\left[t, t^{-1}\right]:=\mathbb{k}\left[t, t^{-1}\right] \otimes_{\mathbb{k}} \mathrm{S}\left(\mathfrak{g}^{e}\right)
$$

generated by $\tau \circ \kappa\left(\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}\right)$. Let \mathcal{V} be the nullvariety of A_{+}in $\mathfrak{g}^{f} \times \mathbb{k}$ where A_{+}is the augmentation ideal of A. Let \mathcal{V}_{*} be the union of the irreducible components of \mathcal{V} which are not contained in $\mathfrak{g}^{f} \times\{0\}$ and let \mathcal{N} be the nullvariety of $\varepsilon(A)_{+}$in \mathfrak{g}^{f}, with $\varepsilon(A)_{+}$the augmentation ideal of $\varepsilon(A)$. Then \mathcal{V} is the union of \mathcal{V}_{*} and $\mathcal{N} \times\{0\}$. Using properties of the varieties \mathcal{V} and \mathcal{V}_{*}, we prove the following result (see Section 2).

Theorem 1.5. Suppose that \mathcal{N} has dimension $r-\ell$. Then for some homogeneous generating sequence q_{1}, \ldots, q_{ℓ} of $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$, the elements ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$ are algebraically independent over \mathbb{k}.

The key point is to show that, under the hypothesis of Theorem $1.5, \varepsilon(A)$ is the subalgebra of $S\left(\mathfrak{g}^{e}\right)$ generated by the family ${ }^{e} p, p \in \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}$, and hence that \mathcal{N} coincides with the nullvariety in g^{f} of ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$. So, if \mathcal{N} has dimension $r-\ell$, then the elements ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$ must be algebraically independent over \mathbb{k}.

The proof of Theorem 1.5 is done in Section 2. Then Theorem 1.4 will be a consequence of Theorem 1.5 and it will be proven in Section 3. In Appendix A, we state general facts on commutative algebra that are used throughout the paper.

Acknowledgments. The second author is partially supported by the ANR Project GeoLie Grant number ANR-15-CE40-0012.

2. Proof of Theorem 1.5

In this section, unless otherwise specified, the gradation on $S\left(\mathfrak{g}^{e}\right)$ is the Slodowy gradation.

For m a nonnegative integer, $S\left(\mathfrak{g}^{e}\right)^{[m]}$ denotes the space of degree m of $\mathrm{S}\left(\mathfrak{g}^{e}\right)$. We retain the notations of the introduction, in particular of Subsection 1.4.
2.1. Let R be the ring $\mathbb{k}[t]$. As in Appendix A, for M a graded subspace of $\mathrm{S}\left(\mathfrak{g}^{e}\right)[t]=R \otimes_{\mathbb{K}} \mathrm{S}\left(\mathfrak{g}^{e}\right)$, its subspace of degree m is denoted by $M^{[m]}$. In particular, $\mathrm{S}\left(\mathrm{g}^{e}\right)[t]^{[m]}$ is equal to $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{[m]}[t]$ and it is a free R-module of finite rank. As a result, for all graded R-submodule M of $S\left(g^{e}\right)[t]$, its Hilbert series is well defined.

For m a nonnegative integer, denote by F_{m} the space of elements of $\kappa\left(\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}\right)$ whose component of minimal standard degree is at least m. Then F_{0}, F_{1}, \ldots is a decreasing filtration of the algebra $\kappa\left(\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}\right)$. Let d_{1}, \ldots, d_{ℓ} be the standard degrees of a homogeneous generating sequence of $S(\mathfrak{g})^{\mathfrak{g}}$. We assume that the sequence d_{1}, \ldots, d_{ℓ} is increasing.

Recall that A is the intersection of $S\left(\mathfrak{g}^{e}\right)[t]$ with the sub- $\mathbb{k}\left[t, t^{-1}\right]$-module of $\mathrm{S}\left(\mathfrak{g}^{e}\right)\left[t, t^{-1}\right]$ generated by $\tau \circ K\left(\mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}\right)$, and that A_{+}is the augmentation ideal of A.

Lemma 2.1. (i) For p a homogeneous element of standard degree d in $S(\mathfrak{g})^{\mathfrak{g}}$, the element $\kappa(p)$ and ${ }^{e} p$ have degree $2 d$.
(ii) For some homogeneous sequence a_{1}, \ldots, a_{ℓ} in A_{+}, the elements $t, a_{1}, \ldots, a_{\ell}$ are algebraically independent over \mathbb{k}, and A is the intersection of $S\left(\mathfrak{g}^{e}\right)[t]$ with $\mathbb{k}\left[t, t^{-1}, a_{1}, \ldots, a_{\ell}\right]$.
(iii) The Hilbert series of the R-algebra A is equal to

$$
P_{A, R}(T)=\prod_{i=1}^{\ell} \frac{1}{1-T^{2 d_{i}}}
$$

(iv) The Hilbert series of the \mathbb{k}-algebra $\varepsilon(A)$ is equal to

$$
P_{\varepsilon(A), \mathbb{k}}(T)=\prod_{i=1}^{\ell} \frac{1}{1-T^{2 d_{i}}} .
$$

(v) The subalgebra $\varepsilon(A)$ is the graded algebra associated with the filtration F_{0}, F_{1}, \ldots

Proof. (i) For y in \mathfrak{g}^{f} and s in \mathbb{k}^{*},

$$
p\left(s^{-2} h(s)(e+y)\right)=s^{-2 d} p(h(s)(e+y))=s^{-2 d} p(e+y)
$$

since p is invariant under the one parameter subgroup $s \mapsto h(s)$. Hence $\kappa(p)$ is homogeneous of degree $2 d$. Since the monomials $x^{\mathbf{j}}$ are homogeneous, ${ }^{e} p$ has degree $2 d$.
(ii) Let q_{1}, \ldots, q_{ℓ} be a homogeneous generating sequence of $S(\mathfrak{g})^{\mathfrak{g}}$. By a well known fact [CM16, Lemma 4.4,(i)], the morphism

$$
G \times\left(e+\mathfrak{g}^{f}\right) \longrightarrow \mathfrak{g}, \quad(g, x) \longmapsto g(x)
$$

is dominant. Then $\kappa\left(\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}\right)$ is a polynomial algebra generated by $\kappa\left(q_{1}\right), \ldots, \kappa\left(q_{\ell}\right)$. So, setting $a_{i}:=\tau \circ \kappa\left(q_{i}\right)$ for $i=1, \ldots, \ell$, the sequence a_{1}, \ldots, a_{ℓ} is a homogeneous sequence in A_{+}such that

$$
\tau \circ K\left(\mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}\right)\left[t, t^{-1}\right]=\mathbb{k}\left[t, t^{-1}, a_{1}, \ldots, a_{\ell}\right]
$$

Let $\bar{\tau}$ be the automorphism of $\mathrm{S}\left(\mathfrak{g}^{e}\right)\left[t, t^{-1}\right]$ extending τ and such that $\bar{\tau}(t)=t$. Then

$$
\tau \circ \kappa\left(\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}\right)\left[t, t^{-1}\right]=\bar{\tau}\left(\kappa\left(\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}\right)\left[t, t^{-1}\right]\right)
$$

Since $\kappa\left(\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}\right)\left[t, t^{-1}\right]$ has dimension $\ell+1, \tau \circ \kappa\left(\mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}\right)\left[t, t^{-1}\right]$ has dimension $\ell+1$ too, and $t, a_{1}, \ldots, a_{\ell}$ are algebraically independent over \mathbb{k}. By definition, $A=\mathrm{S}\left(\mathfrak{g}^{e}\right)[t] \cap$ $\tau \circ \kappa\left(\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}\right)\left[t, t^{-1}\right]$. Hence

$$
A\left[t^{-1}\right]=\mathbb{k}\left[t, t^{-1}, a_{1}, \ldots, a_{\ell}\right] \quad \text { and } \quad A=\mathrm{S}\left(\mathfrak{g}^{e}\right)[t] \cap \mathbb{k}\left[t, t^{-1}, a_{1}, \ldots, a_{\ell}\right]
$$

(iii) Since t has degree 0 , the gradation of $\mathrm{S}\left(\mathfrak{g}^{e}\right)[t]$ extends to a gradation of $\mathrm{S}\left(\mathfrak{g}^{e}\right)\left[t, t^{-1}\right]$ such that for all m, its space of degree m is equal to $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{[m]}\left[t, t^{-1}\right]$. Then for all $\mathbb{k}\left[t, t^{-1}\right]$-submodule M of $\mathrm{S}\left(\mathrm{g}^{e}\right)\left[t, t^{-1}\right], M$ has a Hilbert series:

$$
P_{M, \mathbb{k}\left[t, t^{-1}\right]}(T):=\sum_{m \in \mathbb{N}} \operatorname{rk} M^{[m]} T^{m}
$$

with $M^{[m]}$ the subspace of degree m of M. From the equality $A\left[t^{-1}\right]=\mathbb{k}\left[t, t^{-1}, a_{1}, \ldots, a_{\ell}\right]$, we deduce

$$
P_{A\left[t^{-1}\right], \mathbb{k}\left[t, t^{-1}\right]}(T)=\prod_{i=1}^{\ell} \frac{1}{1-T^{2 d_{i}}}
$$

since for $i=1, \ldots, \ell$, the element a_{i} has degree $2 d_{i}$ by (i). For all m, the rank of the R-module $A^{[m]}$ is equal to the rank of the $\mathbb{k}\left[t, t^{-1}\right]$-module $A\left[t^{-1}\right]^{[m]}$, whence

$$
P_{A, R}(T)=\prod_{i=1}^{\ell} \frac{1}{1-T^{2 d_{i}}}
$$

(iv) Let m be a nonnegative integer. The R-module $A^{[m]}$ is free of finite rank and for $\left(v_{1}, \ldots, v_{n}\right)$ a basis of this module, $\left(t v_{1}, \ldots, t v_{n}\right)$ is a basis of the R-module $t A^{[m]}$. Since $\varepsilon(A)^{[m]}$ is the quotient of $A^{[m]}$ by $t A^{[m]}$,

$$
\operatorname{dim} \varepsilon(A)^{[m]}=n=\operatorname{rk} A^{[m]}
$$

whence the assertion by (iii).
(v) Let $\operatorname{gr}_{F} A$ be the graded algebra associated with the filtration F_{0}, F_{1}, \ldots of $\kappa\left(\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}\right)$. Denote by $a \mapsto a(1)$ the evaluation map at $t=1$ from $\mathrm{S}\left(\mathfrak{g}^{e}\right)[t]$ to $\mathrm{S}\left(\mathfrak{g}^{e}\right)$. For a in A such that $\varepsilon(a) \neq 0, a(1)$ is in $\kappa\left(\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}\right)$ and $\varepsilon(a)$ is the component of minimal degree of $a(1)$ with respect to the standard gradation, whence $\varepsilon(A) \subset$ $\operatorname{gr}_{F} A$. Conversely, let \bar{a} be a homogeneous element of degree m of $\operatorname{gr}_{F} A$ and let a be a representative of \bar{a} in F_{m}. Then $\tau(a)=t^{m} b$ with b in A such that $\varepsilon(b)=\bar{a}$, whence $\operatorname{gr}_{F} A \subset \varepsilon(A)$ and the assertion.

Let R_{*} be the localization of R at the prime ideal $t R$ and set

$$
\widehat{R}:=\mathbb{K}[[t]], \quad A_{*}:=R_{*} \otimes_{R} A, \quad \widehat{A}:=\widehat{R} \otimes_{R} A
$$

The gradation of A extends to gradations on A_{*} and \widehat{A} such that $A_{*}^{[0]}=R_{*}$ and $\widehat{A}^{[0]}=\widehat{R}$.

Proposition 2.2. (i) The algebra $\varepsilon(A)$ is polynomial if and only if for some standard homogeneous generating sequence q_{1}, \ldots, q_{ℓ} of $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$, the elements ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$ are algebraically independent over \mathbb{k}. Moreover, in this case, A is a polynomial algebra.
(ii) If A_{*} is a polynomial algebra, then for some homogeneous sequence p_{1}, \ldots, p_{ℓ} in A_{+}, we have $A_{*}=R_{*}\left[p_{1}, \ldots, p_{\ell}\right]$, the elements $t, p_{1}, \ldots, p_{\ell}$ are algebraically independent over \mathbb{k} and p_{1}, \ldots, p_{ℓ} have degree $2 d_{1}, \ldots, 2 d_{\ell}$ respectively.

Proof. (i) Let q_{1}, \ldots, q_{ℓ} be a homogeneous generating sequence of $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ such that ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$ are algebraically independent over \mathbb{k}. We can assume that for $i=1, \ldots, \ell, q_{i}$ has standard degree d_{i}. For $i=1, \ldots, \ell,{ }^{e} q_{i}$ has degree $2 d_{i}$ by Lemma 2.1,(i), and we set

$$
Q_{i}:=t^{-2 d_{i}} \tau \circ \kappa\left(q_{i}\right)
$$

For $\mathbf{i}=\left(i_{1}, \ldots, i_{\ell}\right)$ in \mathbb{N}^{ℓ}, set:

$$
\begin{gathered}
q^{\mathbf{i}}:=q_{1}^{i_{1}} \cdots q_{\ell}^{i_{\ell}}, \quad Q^{\mathbf{i}}:=Q_{1}^{i_{1}} \cdots Q_{\ell}^{i_{\ell}}, \quad{ }^{e} q^{\mathbf{i}}:={ }^{e} q_{1}^{i_{1}} \cdots{ }^{e} q_{\ell}^{i_{\ell}} \\
|\mathbf{i}|_{\min }:=2 i_{1} d_{1}+\cdots+2 i_{\ell} d_{\ell}
\end{gathered}
$$

Then, for all i in \mathbb{N}^{ℓ},

$$
\tau \circ K\left(q^{\mathbf{i}}\right)=t^{\mid \mathbf{i}_{\min }} Q^{\mathbf{i}}
$$

Moreover,

$$
\tau \circ \kappa\left(\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}\right)\left[t, t^{-1}\right]=\mathbb{k}\left[t, t^{-1}, Q_{1}, \ldots, Q_{\ell}\right]
$$

Let a be in A. For some l in \mathbb{N} and for some sequence $c_{\mathbf{i}, m},(\mathbf{i}, m) \in \mathbb{N}^{\ell} \times \mathbb{N}$ in \mathbb{k}, of finite support,

$$
t^{l} a=\sum_{(\mathbf{i}, m) \in \mathbb{N}^{\ell} \times \mathbb{N}} c_{\mathbf{i}, m} t^{m} Q^{\mathbf{i}} \quad \text { whence } \quad \sum_{\mathbf{i} \in \mathbb{N}^{\ell}} c_{\mathbf{i}, m} e^{\mathbf{i}} q^{\mathbf{i}}=0
$$

for $m<l$. Hence a is in $R\left[Q_{1}, \ldots, Q_{\ell}\right]$ since the sequence ${ }^{e} q^{\mathbf{i}}, \mathbf{i} \in \mathbb{N}^{\ell}$, is linearly free over \mathbb{k}. As a result,

$$
A=R\left[Q_{1}, \ldots, Q_{\ell}\right] \quad \text { and } \quad \varepsilon(A)=\mathbb{k}\left[{ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}\right]
$$

so that A and $\varepsilon(A)$ are polynomial algebras over \mathbb{k} since ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$ are algebraically independent over \mathbb{k}.

Conversely, suppose that $\varepsilon(A)$ is a polynomial algebra. By Lemma 2.1,(i) and (iv), the algebra $\varepsilon(A)$ is Slodowy graded and standard graded. Let d be the dimension of $\varepsilon(A)$. As $\varepsilon(A)$ is a polynomial algebra, it is regular so that the \mathbb{k}-space $\varepsilon(A)_{+} / \varepsilon(A)_{+}^{2}$ has dimension d. Moreover, the two gradations on $\varepsilon(A)$ induce gradations on $\varepsilon(A)_{+} / \varepsilon(A)_{+}^{2}$. Hence $\varepsilon(A)_{+} / \varepsilon(A)_{+}^{2}$ has a bihomogeneous basis. Then some bihomogeneous sequence u_{1}, \ldots, u_{d} in $\varepsilon(A)_{+}$represents a basis of $\varepsilon(A)_{+} / \varepsilon(A)_{+}^{2}$. As a result, the \mathbb{k}-algebra $\varepsilon(A)$ is generated by the bihomogeneous sequence u_{1}, \ldots, u_{d}. For $i=1, \ldots, d$, denote by δ_{i} the Slodowy degree of u_{i}. As ε is homogeneous with respect to the Slodowy gradation, $u_{i}=\varepsilon\left(r_{i}\right)$ for some homogeneous element r_{i} of degree δ_{i} of A. Let m_{i} be the smallest nonnegative integer such that $t^{m_{i}} r_{i}$ is in $\tau \circ \kappa\left(\mathrm{S}(\mathrm{g})^{\mathfrak{g}}\right)$. According to Lemma 2.1,(i), δ_{i} is even and for some standard homogeneous element p_{i} of standard degree $\delta_{i} / 2$ of $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}, t^{m_{i}} r_{i}=\tau \circ \kappa\left(p_{i}\right)$. Then $u_{i}={ }^{e} p_{i}$ since p_{i} is standard homogeneous.

Let \mathfrak{P} be the subalgebra of $S(\mathfrak{g})$ generated by p_{1}, \ldots, p_{d}. Suppose that \mathfrak{P} is strictly contained in $S(\mathfrak{g})^{\mathfrak{g}}$. A contradiction is expected. For some positive integer m, the space $S(\mathfrak{g})_{m}^{\mathfrak{g}}$ of standard degree m of $S(\mathfrak{g})^{\mathfrak{g}}$ is not contained in \mathfrak{P}. Let q be in $\left(\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}\right)_{m} \backslash \mathfrak{P}$ such that ${ }^{e} q$ has maximal standard degree. By Lemma 2.1,(i), ${ }^{e} q$ is a polynomial in u_{1}, \ldots, u_{d}, of degree $2 m$. So, for some polynomial q^{\prime} of degree m in $\mathfrak{P},{ }^{e}\left(q-q^{\prime}\right)$ has standard degree bigger than the standard degree of ${ }^{e} q$. So, by maximality of the standard degree of ${ }^{e} q$, the elements $q-q^{\prime}$ and q are in \mathfrak{P}, whence the contradiction. As a result, $\mathfrak{P}=\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ and $d=\ell$.
(ii) Suppose that A_{*} is a polynomial algebra. Denoting by J the ideal of A_{*} generated by t and A_{+}, the \mathbb{k}-space J / J^{2} is a graded space of dimension ℓ since A_{*} is a regular algebra of dimension $\ell+1$. Then for some homogeneous sequence p_{1}, \ldots, p_{ℓ} in $A_{+},\left(t, p_{1}, \ldots, p_{\ell}\right)$ is a basis of J modulo J^{2}. Since p_{1}, \ldots, p_{ℓ} have positive degree, we prove by induction on d that

$$
A_{*}^{[d]} \subset R_{*}\left[p_{1}, \ldots, p_{\ell}\right]^{[d]}+t A_{*}^{[d]}
$$

Then by induction on m, we get

$$
A_{*}^{[d]} \subset R_{*}\left[p_{1}, \ldots, p_{\ell}\right]+t^{m} A_{*}^{[d]}
$$

So, since the R_{*}-module $A_{*}^{[d]}$ is finitely generated,

$$
A_{*}^{[d]} \subset \widehat{R}\left[p_{1}, \ldots, p_{\ell}\right]^{[d]}
$$

whence $\widehat{A}=\widehat{R}\left[p_{1}, \ldots, p_{\ell}\right]$ and $A_{*}=R_{*}\left[p_{1}, \ldots, p_{\ell}\right]$ by Lemma A.3.
Denote by $\delta_{1}, \ldots, \delta_{\ell}$ the respective degrees of p_{1}, \ldots, p_{ℓ}. We can suppose that p_{1}, \ldots, p_{ℓ} is ordered so that $\delta_{1} \leqslant \cdots \leqslant \delta_{\ell}$. Prove by induction on i that $\delta_{j}=2 d_{j}$ for $j=1, \ldots, i$. By Lemma 2.1,(iii), $2 d_{1}$ is the smallest positive degree of the elements of A. Moreover, δ_{1} is the smallest positive degree of the elements of $R\left[p_{1}, \ldots, p_{\ell}\right]$, whence $\delta_{1}=2 d_{1}$. Suppose $\delta_{j}=2 d_{j}$ for $j=1, \ldots, i-1$. Set $A_{i}:=R\left[p_{i}, \ldots, p_{\ell}\right]$. Then, by induction hypothesis and Lemma 2.1,(iii),

$$
P_{A_{i}, R}(T)=\prod_{j=i}^{\ell} \frac{1}{1-T^{\delta_{j}}}=\prod_{j=i}^{\ell} \frac{1}{1-T^{2 d_{j}}} .
$$

By the first equality, δ_{i} is the smallest positive degree of the elements of A_{i} and by the second equality, $2 d_{i}$ is the smallest positive degree of the elements of A_{i} too, whence $\delta_{i}=2 d_{i}$. Then with $i=\ell$, we get that $\delta_{j}=2 d_{j}$ for $j=1, \ldots, \ell$.

Recall that $\widehat{R}=\mathbb{k}[[t]]$.
Corollary 2.3. Suppose that A_{*} is a polynomial algebra. Then for some standard homogeneous generating sequence q_{1}, \ldots, q_{ℓ} in $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$,

$$
A_{*}=R_{*}\left[t^{-2 d_{1}} \tau \circ \kappa\left(q_{1}\right), \ldots, t^{-2 d_{\ell}} \tau \circ \kappa\left(q_{\ell}\right)\right]
$$

Proof. For m nonnegative integer, denote by $\mathrm{S}(\mathfrak{g})_{m}^{\mathfrak{g}}$ the space of standard degree m of $\mathrm{S}(\mathrm{g})^{\mathfrak{g}}$. By Proposition 2.2,(ii), for some homogeneous sequence p_{1}, \ldots, p_{ℓ} in A_{+} such that p_{1}, \ldots, p_{ℓ} have degree $2 d_{1}, \ldots, 2 d_{\ell}$ respectively,

$$
A_{*}=R_{*}\left[p_{1}, \ldots, p_{\ell}\right]
$$

For $i=1, \ldots, \ell$, let m_{i} be the smallest integer such that $t^{m_{i}} p_{i}$ is in $\tau \circ \kappa\left(\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}\right)$. By Lemma 2.1,(i), $t^{m_{i}} p_{i}$ has an expansion

$$
t^{m_{i}} p_{i}=\sum_{j \in \mathbb{N}} t^{j} \tau \circ \kappa\left(q_{i, j}\right)
$$

with $q_{i, j}, j \in \mathbb{N}$, in $\mathrm{S}(\mathfrak{g})_{d_{i}}^{\mathfrak{g}}$ of finite support. Denoting by $\delta_{i, j}$ the standard degree of ${ }^{e} q_{i, j}$, set:

$$
\begin{gathered}
J_{i}^{\prime}:=\left\{j \in \mathbb{N} ; m_{i}=j+\delta_{i, j}\right\}, \quad \delta_{i}:=\inf \left\{\delta_{i, j} ; j \in J_{i}^{\prime}\right\}, \\
j_{i}:=m_{i}-2 d_{i}, \quad Q_{i}:=t^{-2 d_{i}} \tau \circ \kappa\left(q_{i, j_{i}}\right),
\end{gathered}
$$

For $i=1, \ldots, \ell$, since p_{i} is not divisible by t in A,

$$
p_{i}-Q_{i} \in t A
$$

whence

$$
A_{*} \subset R\left[Q_{1}, \ldots, Q_{\ell}\right]+t A_{*}
$$

Then, by induction m,

$$
A_{*} \subset R_{*}\left[Q_{1}, \ldots, Q_{m}\right]+t^{m} A_{*}
$$

for all m. As a result,

$$
\widehat{A}=\widehat{R}\left[Q_{1}, \ldots, Q_{\ell}\right]
$$

since for all d, the R_{*}-module $A_{*}^{[d]}$ is finitely generated. Then, by Lemma A.3,

$$
A_{*}=R_{*}\left[Q_{1}, \ldots, Q_{\ell}\right]
$$

As a result, since A has dimension $\ell+1$, the elements $t, Q_{1}, \ldots, Q_{\ell}$ are algebraically independent over \mathbb{k} and so are $q_{1, j_{1}}, \ldots, q_{\ell, j_{\ell}}$. Moreover the algebra $S(\mathfrak{g})^{\mathfrak{g}}$ is generated by $q_{1, j_{1}}, \ldots, q_{\ell, j_{\ell}}$ since they have degree d_{1}, \ldots, d_{ℓ} respectively.
2.2. Denote by \mathcal{V} the nullvariety of A_{+}in $\mathfrak{g}^{f} \times \mathbb{k}$. Let \mathcal{V}_{*} be the union of the irreducible components of \mathcal{V} which are not contained in $\mathfrak{g}^{f} \times\{0\}$. The following result is proven in [CM16, Corollary 4.4,(i)]. Indeed, the proof of this result does not use the assumption of [CM16, Section 4] that for some homogeneous generators q_{1}, \ldots, q_{ℓ} of $S(\mathfrak{g})^{\mathfrak{g}}$, the elements ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$ are algebraically independent.

Lemma 2.4 ([CM16, Corollary 4.4,(i)]). (i) The variety \mathcal{V}_{*} is equidimensional of dimension $r+1-\ell$.
(ii) For all irreducible component X of \mathcal{V}_{*} and for all z in \mathbb{k}, X is not contained in $\mathfrak{g}^{f} \times\{z\}$.

Let \mathcal{N} be the nullvariety of $\varepsilon(A)_{+}$in \mathfrak{g}^{f}. Then \mathcal{V} is the union of \mathcal{V}_{*} and $\mathcal{N} \times\{0\}$.
Lemma 2.5. (i) All irreducible component of \mathcal{N} has dimension at least $r-\ell$ and all irreducible component of \mathcal{V} has dimension at least $r+1-\ell$.
(ii) Assume that \mathcal{N} has dimension $r-\ell$. Then for some homogeneous sequence $p_{1}, \ldots, p_{r-\ell}$ in $\mathrm{S}\left(\mathrm{g}^{e}\right)_{+}$, the nullvariety of $t, p_{1}, \ldots, p_{r-\ell}$ in \mathcal{V} is equal to $\{0\}$.

Proof. (i) By Lemma 2.1,(ii), for some homogeneous sequence a_{1}, \ldots, a_{ℓ} in A_{+}, the elements $t, a_{1}, \ldots, a_{\ell}$ are algebraically independent over \mathbb{k}. Let b_{1}, \ldots, b_{m} be a homogeneous sequence in A_{+}, generating the ideal $\mathrm{S}\left(\mathfrak{g}^{e}\right)[t] A_{+}$of $\mathrm{S}\left(\mathfrak{g}^{e}\right)[t]$. Set:

$$
\begin{aligned}
B:=\mathbb{k}\left[a_{1}, \ldots, a_{\ell}, b_{1}, \ldots, b_{m}\right], & B_{+}:=B a_{1}+\cdots+B a_{\ell}+B b_{1}+\cdots+B b_{m}, \\
C:=B[t], & C_{++}:=B_{+}[t]+C t .
\end{aligned}
$$

Then B and C are graded subalgebras of A and B_{+}and C_{++}are maximal ideals of B and C respectively. Moreover, C has dimension $\ell+1$. We have a commutative diagram

with α, β, π the morphisms whose comorphisms are the canonical injections

$$
C \longrightarrow \mathrm{~S}\left(\mathrm{~g}^{e}\right)[t], \quad B \longrightarrow \mathrm{~S}\left(\mathrm{~g}^{e}\right)[t], \quad B \longrightarrow C
$$

respectively. Since C has dimension $\ell+1$, the irreducible components of the fibers of α have dimension at least $r-\ell$, whence the result for \mathcal{N} since $\mathcal{N} \times\{0\}=\alpha^{-1}\left(C_{++}\right)$. Moreover, $\mathcal{V}=\beta^{-1}\left(B_{+}\right)$and $\pi^{-1}\left(B_{+}\right)$is a subvariety of dimension 1 of $\operatorname{Specm}(C)$. Hence all irreducible component of \mathcal{V} has dimension at least $r+1-\ell$.
(ii) Prove by induction on i that there exists a homogeneous sequence p_{1}, \ldots, p_{i} in $\mathrm{S}\left(\mathrm{g}^{e}\right)_{+}$such that the minimal prime ideals of $\mathrm{S}\left(\mathrm{g}^{e}\right)$ containing $\varepsilon(A)_{+}$and p_{1}, \ldots, p_{i} have height $\ell+i$. First of all, $\mathrm{S}\left(\mathfrak{g}^{e}\right) \varepsilon(A)_{+}$is graded. Then the minimal prime ideals of $\mathrm{S}\left(\mathfrak{g}^{e}\right)$ containing $\varepsilon(A)_{+}$are graded too. By, (i), $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ have height ℓ since \mathcal{N} has dimension $r-\ell$ by hypothesis. In particular, they are strictly contained in $\mathrm{S}\left(\mathrm{g}^{e}\right)_{+}$. Hence, by Lemma A.1,(ii), for some homogeneous element p_{1} in $\mathrm{S}\left(\mathrm{g}^{e}\right)$, p_{1} is not in the union of these ideals so that the statement is true for $i=1$ by [Ma86, Ch. 5, Theorem 13.5]. Suppose that it is true for $i-1$. Then the minimal prime ideals containing $\varepsilon(A)_{+}$and p_{1}, \ldots, p_{i-1} are graded and strictly contained in $\mathrm{S}\left(\mathfrak{g}^{e}\right)_{+}$ by the induction hypothesis. So, by Lemma A.1,(ii), for some homogeneous element p_{i} in $\mathrm{S}\left(\mathrm{g}^{e}\right), p_{i}$ is not in the union of these ideals and the sequence p_{1}, \ldots, p_{i} verify the condition of the statement by [Ma86, Ch. 5, Theorem 13.5]. For $i=r-\ell$, the nullvariety of $p_{1}, \ldots, p_{r-\ell}$ in \mathcal{N} has dimension 0 . Then it is equal to $\{0\}$ as the nullvariety of a graded ideal, whence the assertion since $\mathcal{N} \times\{0\}$ is the nullvariety of t in \mathcal{V}.
2.3. We assume in this subsection that \mathcal{N} has dimension $r-\ell$. Let $p_{1}, \ldots, p_{r-\ell}$ be as in Lemma 2.5,(ii), and set

$$
C:=A\left[p_{1}, \ldots, p_{r-\ell}\right] .
$$

Then $p_{1}, \ldots, p_{r-\ell}$ are algebraically independent over A since \mathcal{N} has dimension $r-\ell$.

Lemma 2.6. The ideal $\mathrm{S}\left(\mathrm{g}^{e}\right)[t]_{+}$of $\mathrm{S}\left(\mathrm{g}^{e}\right)[t]$ is the radical of $\mathrm{S}\left(\mathrm{g}^{e}\right)[t] C_{+}$.
Proof. Let Y be an irreducible component of the nullvariety of C_{+}in $\mathfrak{g}^{f} \times \mathbb{K}$. Then Y has dimension at least 1. By definition the nullvariety of t in Y is equal to $\{0\}$. Hence Y has dimension 1. The gradation on $\mathrm{S}\left(\mathrm{g}^{e}\right)[t]$ induces an action of the onedimensional multiplicative group G_{m} on $\mathfrak{g}^{f} \times \mathbb{k}$ such that for all (x, z) in $\mathfrak{g}^{f} \times \mathbb{k},(0, z)$ is in the closure of the orbit of (x, z) under G_{m}. Since C_{+}is graded, Y is invariant under G_{m}. As a result, $Y=\{0\} \times \mathbb{k}$ or for some x in $\mathfrak{g}^{f} \times \mathbb{k}, Y$ is the closure of the orbit of $(x, 0)$ under G_{m} since 0 is the nullvariety of t in Y. In the last case, x is a zero of $p_{1}, \ldots, p_{r-\ell}$ in \mathcal{N}, that is $x=0$. Hence $Y=\{0\} \times \mathbb{k}$. As a result, the nullvariety of C_{+}in $\mathfrak{g}^{f} \times \mathbb{k}$ is equal to $\{0\} \times \mathbb{k}$ that is the nullvariety of $S\left(\mathfrak{g}^{e}\right)[t]_{+}$, whence the assertion since $S\left(\mathrm{~g}^{e}\right)[t]_{+}$is a prime ideal of $\mathrm{S}\left(\mathrm{g}^{e}\right)[t]$.

For \mathfrak{p} a prime ideal of A, denote by $A_{\mathfrak{p}}$ the localization of A at \mathfrak{p} and by $\overline{\mathfrak{p}}$ the ideal of C generated by \mathfrak{p}. Since C is a polynomial algebra over A, \bar{p} is a prime ideal of C and the localization $C_{\bar{p}}$ of C at $\overline{\mathfrak{p}}$ is a localization of the polynomial algebra $A_{\mathrm{p}}\left[p_{1}, \ldots, p_{r-\ell}\right]$. According to [Ma86, Ch. 6, Theorem 17.4], if $C_{\overline{\mathrm{p}}}$ is Cohen-Macaulay so is $A_{\mathfrak{p}}$ as a quotient of $C_{\overline{\mathfrak{p}}}$ by an ideal generated by a regular sequence.

Proof of Theorem 1.5. By Lemma 2.6 and Proposition A.2, the algebra C is finitely generated. Then A is finitely generated as a quotient of C. So, by Lemma A.7,(ii), A is a factorial ring and so is C as a polynomial ring over A. As a result, C is normal so that $\mathrm{S}\left(\mathrm{g}^{e}\right)[t]$ and C verify Conditions (1), (2), (3) of Proposition A.6. Hence by Proposition A.6, for all prime ideal \mathfrak{p} of A, containing $t, C_{\bar{p}}$ is CohenMacaulay, whence $A_{\mathfrak{p}}$ is Cohen-Macaulay. By Lemma 2.1,(ii), for \mathfrak{p} a prime ideal of A, not containing $t, A_{\mathfrak{p}}$ is the localization of $\mathbb{k}\left[t, t^{-1}, a_{1}, \ldots, a_{\ell}\right]$ at the prime ideal generated by \mathfrak{p}. Hence $A_{\mathfrak{p}}$ is Cohen-Macaulay since the algebra $\mathbb{k}\left[t, t^{-1}, a_{1}, \ldots, a_{\ell}\right]$ is regular. As a result A is Cohen-Macaulay. In particular, A verifies Conditions (1), (2), (3) of Subsection A.2. So, by Proposition A.10, A_{*} is a polynomial algebra. Then by Corollary 2.3, for some homogeneous generating sequence q_{1}, \ldots, q_{ℓ} in $\mathrm{S}(\mathrm{g})^{\mathfrak{g}}$,

$$
A_{*}=R_{*}\left[t^{-2 d_{1}} \tau \circ \kappa\left(q_{1}\right), \ldots, t^{-2 d_{\ell}} \tau \circ \kappa\left(q_{\ell}\right)\right] .
$$

Form the above equality, we deduce that any element of A is the product of an element of the algebra $R\left[t^{-2 d_{1}} \tau \circ \kappa\left(q_{1}\right), \ldots, t^{-2 d_{\ell}} \tau \circ \kappa\left(q_{\ell}\right)\right]$ by a polynomial in t with nonzero constant term, whence

$$
A=R\left[t^{-2 d_{1}} \tau \circ \kappa\left(q_{1}\right), \ldots, t^{-2 d_{\ell}} \tau \circ \kappa\left(q_{\ell}\right)\right] \quad \text { and so } \quad \varepsilon(A)=\mathbb{k}\left[{ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}\right]
$$

since for $i=1, \ldots, \ell$,

$$
{ }^{e} q_{i}:=\varepsilon\left(t^{-2 d_{i}} \tau \circ \kappa\left(q_{i}\right)\right) .
$$

Since $\mathcal{N} \times\{0\}$ is the nullvariety of t and A_{+}in $\mathfrak{g}^{f} \times \mathbb{k}, \mathcal{N}$ is the nullvariety in \mathfrak{g}^{f} of ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$. Hence ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$ are algebraically independent over \mathbb{k} since \mathcal{N} has dimension $r-\ell$.

3. Proof of Theorem 1.4

Let (e, h, f) be an $\mathfrak{s l}_{2}$-triple in \mathfrak{g}. We use the notations κ and ${ }^{e} p, p \in \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}$, as in Introduction. In this section, we use the standard gradations on $\mathrm{S}(\mathrm{g})$ and $\mathrm{S}\left(\mathrm{g}^{e}\right)$. Let A_{0} be the subalgebra of $\mathrm{S}\left(\mathrm{g}^{e}\right)$ generated by the family ${ }^{e} p, p \in \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}$, and let \mathcal{N}_{0} be the nullvariety of $A_{0,+}$ in g^{f} where $A_{0,+}$ denotes the augmentation ideal of A_{0}.

Let a_{1}, \ldots, a_{m} be a homogeneous sequence in $A_{0,+}$ generating the ideal of $\mathrm{S}\left(\mathfrak{g}^{e}\right)$ generated by $A_{0,+}$. According to [PPY07, Corollary 2.3], A_{0} contains a homogeneous sequence b_{1}, \ldots, b_{ℓ} algebraically free over \mathbb{k}.

Lemma 3.1. Let \mathfrak{A} be the integral closure of $\mathbb{K}\left[a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{\ell}\right]$ in the fraction field of $\mathrm{S}\left(\mathrm{g}^{e}\right)$.
(i) The algebra \mathfrak{A} is contained in $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}$ and its fraction field is the fraction field of $\mathrm{S}\left(\mathrm{g}^{e}\right)^{g^{e}}$.
(ii) Let a in $\mathrm{S}\left(\mathrm{g}^{e}\right)_{+}^{\mathrm{g}^{e}}$. If a is equal to 0 on \mathcal{N}_{0}, then a is in \mathfrak{H}_{+}.
(iii) The ideal $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{g^{e}} \mathfrak{A}_{+}$of $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{g^{e}}$ is equal to \mathfrak{H}_{+}.
(iv) The algebra \mathfrak{A} is the integral closure of A_{0} in the fraction field of $\mathrm{S}\left(\mathrm{g}^{e}\right)$.

Proof. (i) Let K_{0} be the field of invariant elements under the adjoint action of g^{e} in the fraction field of $\mathrm{S}\left(\mathrm{g}^{e}\right)$. According to [CM16, Lemma 3.1], K_{0} is the fraction field of $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathrm{g}^{e}}$. Since $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{\ell}$ are in $\mathrm{S}\left(\mathrm{g}^{e}\right)^{\mathfrak{g}^{e}}, \mathfrak{M}$ is contained in K_{0}. Moreover, \mathfrak{A} is contained in $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{g^{e}}$ since $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}$ is integrally closed in K_{0}. Since K_{0} has transcendence degree ℓ over \mathbb{k} and since b_{1}, \ldots, b_{ℓ} are algebraically independent over \mathbb{k}, K_{0} is the fraction field of \mathfrak{A}.
(ii) Since \mathcal{N}_{0} is the nullvariety of $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{\ell}$ in $\mathrm{g}^{f}, \mathcal{N}_{0}$ is the nullvariety of \mathfrak{A}_{+}in \mathfrak{g}^{f}. Let a be in $\mathrm{S}\left(\mathfrak{g}^{e}\right)_{+}^{\mathfrak{g}^{e}}$ such that a is equal to 0 on \mathcal{N}_{0}. Since \mathcal{N}_{0} is a cone, all homgogeneous components of a is equal to 0 on \mathcal{N}_{0}. So it suffices to prove the assertion for a homogeneous. We have a commutative diagram

with π, α, β the comorphisms of the canonical injections

$$
\mathfrak{A}[a] \longrightarrow \mathrm{S}\left(\mathfrak{g}^{e}\right), \quad \mathfrak{H} \longrightarrow \mathrm{S}\left(\mathfrak{g}^{e}\right), \quad \mathfrak{A} \longrightarrow \mathfrak{A}[a] .
$$

Since \mathcal{N}_{0} is the nullvariety of $\mathfrak{A}[a]_{+}$and \mathfrak{H}_{+}in $\mathfrak{g}^{f}, \beta^{-1}\left(\mathfrak{H}_{+}\right)=\mathfrak{A}[a]_{+}$. The gradations of \mathfrak{A} and $\mathfrak{A}[a]$ induce actions of G_{m} on $\operatorname{Specm}(\mathfrak{A})$ and $\operatorname{Specm}(\mathfrak{U}[a])$ such that β is equivariant. Moreover, \mathfrak{H}_{+}is in the closure of all orbit under G_{m} in $\operatorname{Specm}(\mathfrak{H})$.

Hence β is a quasi finite morphism. Moreover, β is a birational since \mathfrak{M} and $\mathfrak{A}[a]$ have the same fraction field by (i). Hence, by Zariski’s main theorem [Mu88], β is an open immersion from $\operatorname{Specm}(\mathfrak{H}[a])$ into $\operatorname{Specm}(\mathfrak{H})$. So, β is surjective since \mathfrak{A}_{+} is in the image of β and since it is in the closure of all G_{m}-orbit in $\operatorname{Specm}(\mathfrak{A})$. As a result, β is an isomorphism and a is in \mathfrak{A}, whence the assertion.
(iii) For a in \mathfrak{U}_{+}and b in $\mathrm{S}\left(\mathfrak{g}^{e}\right)$, $a b$ is equal to 0 on \mathcal{N}_{0}. Hence $a b$ is in \mathfrak{H}_{+}by (ii).
(iv) By (ii), A_{0} is contained in \mathfrak{A}. Moreover, since $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{\ell}$ are in A_{0}, \mathfrak{H} is contained in the integral closure of A_{0} in the fraction field of $S\left(g^{e}\right)$, whence the assertion.

Corollary 3.2. Suppose that the algebra $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}$ is finitely generated. Then \mathfrak{A} is equal to $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}$.

Proof. Let C be the quotient of $S\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}$ by the ideal $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}} \mathfrak{A}_{+}$. By hypothesis, C is finitely generated. Then it has finitely many minimal prime ideals. Denote them by $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$. For a in the radical of $S\left(\mathfrak{g}^{e}\right)^{g^{e}} \mathfrak{A}_{+}, a$ is equal to 0 on \mathcal{N}_{0}. Moreover, it is in $\mathrm{S}\left(\mathfrak{g}^{e}\right)_{+}^{\mathfrak{g}^{e}}$. Then, by Lemma 3.1,(ii), a is in \mathfrak{H}_{+}. As a result, C is a reduced algebra and the canonical map

$$
A_{0} \longrightarrow A_{0} / \mathfrak{p}_{1} \times \cdots \times A_{0} / \mathfrak{p}_{m}
$$

is injective. Since \mathfrak{A} and $S\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}$ have the same fraction field, they have the same Krull dimension. Then, by Lemma 3.1,(iii), $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ are maximal ideals of C. As a result, the \mathbb{k}-algebra C is finite dimensional. Let V be a graded complement to $S\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}} \mathfrak{A}_{+}$in $\mathrm{S}\left(\mathfrak{g}^{e}\right)$. According to Lemma 3.1,(iii), $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}=V \mathfrak{A}$ so that $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}$ is a finite extension of \mathfrak{H}. Since \mathfrak{H} is integrally closed in the fraction field of $\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}$, $\mathfrak{A}=S\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}$.

Proof of Theorem 1.4. The "if" part results from [CM16, Theorem 1.5] (see here Theorem 1.3).

Suppose that e is good. By Definition 1.1 and Theorem $1.2, S\left(\mathfrak{g}^{e}\right)^{\mathfrak{g}^{e}}$ is a polynomial algebra and the nullvariety of $S\left(\mathfrak{g}^{e}\right)_{+}^{\mathfrak{g}^{e}}$ in \mathfrak{g}^{f} is equidimensional of dimension $r-\ell$. On the other hand, by Lemma 3.1,(iv), \mathfrak{A} is the integral closure of A_{0} in the fraction field of $\mathrm{S}\left(\mathfrak{g}^{e}\right)$. Hence the nullvarieties of \mathfrak{A}_{+}and $A_{0,+}$ in \mathfrak{g}^{f} are the same. But by Corollary 3.2, $\mathfrak{H}=\mathrm{S}\left(\mathfrak{g}^{e}\right)^{\mathrm{g}^{e}}$, so \mathcal{N}_{0} has dimension $r-\ell$ since e is good. On the other hand, A_{0} is contained in $\varepsilon(A)$ by construction of $\varepsilon(A)$, and $\varepsilon(A)$ is contained in $\mathrm{S}\left(\mathrm{g}^{e}\right)^{\mathrm{g}^{e}}$ by [PPY07, Proposition 0.1], whence $\mathcal{N}=\mathcal{N}_{0}$.

As a result, \mathcal{N} has dimension $r-\ell$ and so by Theorem 1.5, for some homogeneous generating sequence q_{1}, \ldots, q_{ℓ} of $\mathrm{S}(\mathrm{g})^{\mathfrak{g}}$, the element ${ }^{e} q_{1}, \ldots,{ }^{e} q_{\ell}$ are algebraically independent over \mathbb{k}.

Appendix A. General facts on commutative algebra

In this section t is an indeterminate and the base ring R is $\mathbb{k}, \mathbb{k}[t]$ or $\mathbb{k}[[t]]$. For M a graded space over \mathbb{N} and for j in \mathbb{N}, denote by $M^{[j]}$ the space of degree j and
by M_{+}the sum of $M^{[j]}, j>0$. Let A be a finitely generated graded R-algebra over \mathbb{N} such that $A^{[0]}=R$ and such that $A^{[j]}$ is a free R-module of finite rank for any $j \in \mathbb{N}$. Moreover, A is an integral domain. Denoting by $\operatorname{dim} A$ the Krull dimension of A, we set:

$$
\ell:=\left\{\begin{array}{lll}
\operatorname{dim} A & \text { if } & R=\mathbb{k} \\
\operatorname{dim} A-1 & \text { if } & t \in R
\end{array}\right.
$$

As a rule, for B an integral algebra, we denote by $K(B)$ its fraction field.
A.1. Let B be a graded subalgebra of A.

Lemma A.1. (i) Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ be pairwise different graded prime ideals contained in A_{+}. If they are the minimal prime ideals containing their intersection, then for some homogeneous element p of A_{+}, the element p is not in the union of $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$.
(ii) For some homogeneous sequence p_{1}, \ldots, p_{ℓ} in A_{+}, A_{+}is the radical of the ideal generated by p_{1}, \ldots, p_{ℓ}.
(iii) Suppose that A_{+}is the radical of $A B_{+}$. Then for some homogeneous sequence p_{1}, \ldots, p_{ℓ} in B_{+}, A_{+}is the radical of the ideal generated by p_{1}, \ldots, p_{ℓ}.

Proof. (i) Prove by induction on j that for some homogeneous element p_{j} of A_{+}, p_{j} is not in the union of $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{j}$. Since \mathfrak{p}_{1} is a graded ideal strictly contained in A_{+}, it is true for $j=1$. Suppose that it is true for $j-1$. If p_{j-1} is not in p_{j}, there is nothing to prove. Suppose that p_{j-1} is in \mathfrak{p}_{j}. According to the hypothesis, \mathfrak{p}_{j} is stricly contained in A_{+}and it does not contain the intersection of $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{j-1}$. So, since $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{j}$ are graded ideals, for some homogeneous sequence r, q in A_{+},

$$
r \in \bigcap_{k=1}^{j-1} \mathfrak{p}_{k} \backslash \mathfrak{p}_{j}, \quad \text { and } \quad q \in A_{+} \backslash \mathfrak{p}_{j}
$$

Denoting by m and n the respective degrees of p_{j-1} and $r q, p_{j-1}^{n}+(r q)^{m}$ is homogeneous of degree $m n$ and it is not in $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{j}$ since these ideals are prime.
(ii) Prove by induction on i that for some homogeneous sequence p_{1}, \ldots, p_{i} in A_{+}, the minimal prime ideals of A containing p_{1}, \ldots, p_{i} have height i. Let p_{1} be in $A_{+} \backslash\{0\}$. By [Ma86, Ch. 5, Theorem 13.5], all minimal prime ideal containing p_{1} has height 1 . Suppose that it is true for $i-1$. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ be the minimal prime ideals containing p_{1}, \ldots, p_{i-1}. Since A_{+}has height $\ell>i-1, A_{+}$strictly contains $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$. By (i), there exists a homogeneous element p_{i} in A_{+}not in the union of $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$. Then, by [Ma86, Ch. 5, Theorem 13.5], the minimal prime ideals containing p_{1}, \ldots, p_{i} have height i. For $i=\ell$, the minimal prime ideals containing p_{1}, \ldots, p_{ℓ} have height ℓ. Hence they are equal to A_{+}since A_{+}is a prime ideal of height ℓ containing p_{1}, \ldots, p_{ℓ}, whence the assertion.
(iii) The ideal $A B_{+}$is generated by a homogeneous sequence a_{1}, \ldots, a_{m} in B_{+}. Denote by B^{\prime} the subalgebra of A generated by a_{1}, \ldots, a_{m}. Then B^{\prime} is a finitely
generated graded subalgbera of A such that A_{+}is the radical of $A B_{+}^{\prime}$. If $R=\mathbb{k}$, denote by d its dimension and if $t \in R$, denote by $d+1$ its dimension. By (ii), for some homogeneous sequence p_{1}, \ldots, p_{d} in $B_{+}^{\prime}, B_{+}^{\prime}$ is the radical of the ideal generated by p_{1}, \ldots, p_{d}. Then A_{+}is the radical of the ideal of A generated by p_{1}, \ldots, p_{d}. Since A_{+}has height $\ell, \ell \leqslant d$ by [Ma86, Ch. 5, Theorem 3.5]. Since B^{\prime} is a subalgebra of A, its dimension is at most $\operatorname{dim} A$. Hence $d=\ell$.

Proposition A.2. Suppose that A_{+}is the radical of $A B_{+}$. Then B is finitely generated and A is a finite extension of B.

Proof. Since A is a noetherian ring, for some homogeneous sequence a_{1}, \ldots, a_{m} in $B_{+}, A B_{+}$is the ideal generated by this sequence. Denote by C the R-subalgebra of A generated by a_{1}, \ldots, a_{m}. Then C is a graded subalgebra of A. Denote by π the morphism

$$
\operatorname{Specm}(A) \xrightarrow{\pi} \operatorname{Specm}(C)
$$

whose comorphism is the canonical injection $C \longrightarrow A$. Let \bar{A} and \bar{C} be the integral closures of A and C in $K(A)$. Since C is contained in A, \bar{C} is contained in \bar{A}. Let α and β be the morphisms

$$
\operatorname{Specm}(\bar{A}) \xrightarrow{\alpha} \operatorname{Specm}(A) \quad \text { and } \quad \operatorname{Specm}(\bar{C}) \xrightarrow{\beta} \operatorname{Specm}(C)
$$

whose comorphisms are the canonical injections $A \rightarrow \bar{A}$ and $C \rightarrow \bar{C}$ respectively. Then there is a commutative diagram

with $\bar{\pi}$ the morphism whose comorphism is the canonical injection $\bar{C} \rightarrow \bar{A}$.
The action of $\mathrm{G}_{\mathrm{m}}(\mathbb{K})$ in A extends to an action of $K(A)$, and \bar{A} is invariant under this action. Denoting by \bar{R} the integral closure of R in $K(A), \bar{R}$ is the set of fixed points under the action of $\mathrm{G}_{\mathrm{m}}(\mathbb{k})$ in \bar{A}. Since C is invariant under $\mathrm{G}_{\mathrm{m}}(\mathbb{k})$ so is \bar{C}. For \mathfrak{m} a maximal ideal of \bar{R}, the ideal $\mathfrak{m}+\bar{C}_{+}$is the maximal ideal of \bar{C} containing \mathfrak{m} and invariant under $\mathrm{G}_{\mathfrak{m}}(\mathbb{K})$. Then, for \mathfrak{p} a maximal ideal of $\bar{C}, \mathfrak{p} \cap \bar{R}+\bar{C}_{+}$is in the closure of the orbit of \mathfrak{p} under $G_{m}(\mathbb{k})$. Moreover,

$$
\left\{\mathfrak{m}+\bar{A}_{+}\right\}=\bar{\pi}^{-1}\left\{\mathfrak{m}+\bar{C}_{+}\right\}
$$

for all maximal ideal \mathfrak{m} of \bar{R}. Hence $\bar{\pi}$ is quasi finite. Moreover $\bar{\pi}$ is birational. Then, by Zariski's main theorem [Mu88], $\bar{\pi}$ is an open immersion. As a result, $\bar{\pi}$ is surjective. Hence $\bar{\pi}$ is an isomorphism and $\bar{A}=\bar{C}$. As a result, \bar{A} is a finite extension of C since β is a finite morphism. As submodules of the finite module \bar{A} over the noetherian ring C, A and B are finite C-modules. Hence A is a finite
extension of B. Denoting by $\omega_{1}, \ldots, \omega_{d}$ a generating family of the C-module B, B is the subalgebra of A generated by $a_{1}, \ldots, a_{m}, \omega_{1}, \ldots, \omega_{d}$.

Denote by $\mathbb{k}[t] *$ the localization of $\mathbb{k}[t]$ at the prime ideal $t \mathbb{k}[t]$ and set:

$$
R_{*}:=\left\{\begin{array}{lll}
\mathbb{k} & \text { if } & R=\mathbb{k} \\
\mathbb{k}[t]]_{*} & \text { if } & R=\mathbb{k}[t] \\
R & \text { if } & R=\mathbb{k}[[t]]
\end{array} \quad, \quad \widehat{R}:=\left\{\begin{array}{lll}
\mathbb{k} & \text { if } & R=\mathbb{k} \\
\mathbb{k}[[t]] & \text { if } & R=\mathbb{k}[t] \\
R & \text { if } & R=\mathbb{k}[[t]]
\end{array} .\right.\right.
$$

For M a R-module, set $\widehat{M}:=\widehat{R} \otimes_{R} M$.
Lemma A.3. Suppose $R=\mathbb{k}[t]$. Let M be a torsion free R-module and let N be a submodule of M. Then for a in $\widehat{N} \cap M$, ra is in N for some r in R such that $r(0) \neq 0$.

Proof. Since M is torsion free, the canonical map $M \rightarrow \widehat{M}$ is an embedding. Moreover, the canonical map $\widehat{N} \rightarrow \widehat{M}$ is an embedding since \widehat{R} is flat over R. Let a be in $\widehat{N} \cap M$ and let \bar{a} be its image in M / N by the quotient map. Denote by J_{a} the annihilator of \bar{a} in R, whence a commutative diagram

with exact lines and columns. Since \widehat{R} is a flat extension of R, tensoring this diagram by R gives the following diagram with exact lines and columns:

For b in $\widehat{R},(\delta \circ \mathrm{~d}) b=(\mathrm{d} \circ \delta) b=0$ since a is in \widehat{N} by (i), whence $\mathrm{d} b=0$. As a result, $\widehat{R} J_{a}=\widehat{R}$. Hence J_{a} contains an element r, invertible in \widehat{R}, that is $r(0) \neq 0$, whence the lemma.

For $p=\left(p_{1}, \ldots, p_{\ell}\right)$ a homogeneous sequence in A_{+}, we set:

$$
\underline{p}:=\left\{\begin{array}{ccc}
p & \text { if } & R=\mathbb{k} \\
\left(t, p_{1}, \ldots, p_{\ell}\right) & \text { if } & R=\mathbb{k}[[t]]
\end{array}, \quad A_{*}:=R_{*} \otimes_{R} A, \quad \widehat{A}:=\widehat{R} \otimes_{R} A,\right.
$$

and we denote by $J_{\underline{p}}$ the ideal of A generated by the sequence \underline{p}. Since $A^{[0]}=R$,
 $\widehat{A}^{[0]}=\widehat{R}$. When $R=\mathbb{k}$ or $R=\mathbb{k}[[t]]$, then $A_{*}=A$ and $\widehat{A}=A$.

Lemma A.4. Suppose that A is Cohen-Macaulay. Let $p=p_{1}, \ldots, p_{\ell}$ be a homogeneous sequence in A_{+}such that A_{+}is the radical of the ideal of A generated by p_{1}, \ldots, p_{ℓ} and let V be a graded complement in A to the \mathbb{k}-subspace $J_{\underline{p}}$.
(i) The space V has finite dimension.
(ii) The space A_{*} is equal to $V R_{*}\left[p_{1}, \ldots, p_{\ell}\right]$.
(iii) The algebra A is a flat extension of $R\left[p_{1}, \ldots, p_{\ell}\right]$.
(iv) For all homogeneous sequence a_{1}, \ldots, a_{n} in A, linearly free over \mathbb{k} modulo $J_{p}, a_{1}, \ldots, a_{n}$ is linearly free over $R\left[p_{1}, \ldots, p_{\ell}\right]$.
(v) The linear map

$$
V \otimes_{\mathbb{k}} R_{*}\left[p_{1}, \ldots, p_{\ell}\right] \longrightarrow A_{*}, \quad v \otimes a \longmapsto v a
$$

is an isomorphism.
Proof. According to Lemma A.1,(ii), the sequence p does exist.
(i) Let J_{p} be the ideal of A generated by p_{1}, \ldots, p_{ℓ}. Since A_{+}is the radical of $J_{p}, A^{[d]}=J_{p}^{[d]}$ for d sufficiently big. When $t \in R$, for all d, then $t A^{[d]}$ has finite codimension in $A^{[d]}$ since $A^{[d]}$ is a finite free R-module. Hence $J_{\underline{p}}$ has finite codimension in A so that V has finite dimension.
(ii) Suppose that t is in R. First of all, we prove by induction on d the inclusion

$$
A^{[d]} \subset\left(V R\left[p_{1}, \ldots, p_{\ell}\right]\right)^{[d]}+t A^{[d]}
$$

when $t \in R$. Since $A^{[0]}$ is the direct sum of $V^{[0]}$ and $J_{\underline{p}}^{[0]}, V^{[0]}$ is contained in $\mathbb{k}+t R$, whence the inclusion for $d=0$. Suppose that it is true for all j smaller than d. Since p_{1}, \ldots, p_{ℓ} have positive degree, by induction hypothesis,

$$
J_{\underline{p}}^{[d]} \subset\left(V R\left[p_{1}, \ldots, p_{\ell}\right]\right)^{[d]}+t A^{[d]}
$$

whence the inclusion for d. Then, by induction on m,

$$
A^{[d]} \subset\left(V R\left[p_{1}, \ldots, p_{\ell}\right]\right)^{[d]}+t^{m} A^{[d]}
$$

As a result, since $A^{[d]}$ is a finite R-module,

$$
A^{[d]} \subset\left(V \widehat{R}\left[p_{1}, \ldots, p_{\ell}\right]\right)^{[d]}
$$

whence $\widehat{A}=V \widehat{R}\left[p_{1}, \ldots, p_{\ell}\right]$. This equality remains true when $R=\mathbb{k}$ by an analogous and simpler argument.

When $R=\mathbb{k}[t]$, according to Lemma A.3, for a in A, $r a$ is in $V R\left[p_{1}, \ldots, p_{\ell}\right]$ for some r in R such that $r(0) \neq 0$ by Lemma A.3. As a result, $A_{*}=V R_{*}\left[p_{1}, \ldots, p_{\ell}\right]$.
(iii) By Proposition A.2, A is a finite extension of $R\left[p_{1}, \ldots, p_{\ell}\right]$. In particular, $R\left[p_{1}, \ldots, p_{\ell}\right]$ has dimension $\ell+\operatorname{dim} R$ so that p_{1}, \ldots, p_{ℓ} are algebraically independent over R. Hence $R\left[p_{1}, \ldots, p_{\ell}\right]$ is a regular algebra, whence the assertion by [Ma86, Ch. 8, Theorem 23.1].
(iv) Prove the assertion by induction on n. Since A is an integral domain, the assertion is true for $n=1$. Suppose the assertion true for $n-1$. Let $\left(b_{1}, \ldots, b_{n}\right)$ be a homogeneous sequence in $R\left[p_{1}, \ldots, p_{t}\right]$ such that

$$
b_{1} a_{1}+\cdots+b_{n} a_{n}=0 .
$$

Let K and I be the kernel and the image of the linear map

$$
R\left[p_{1}, \ldots, p_{\ell}\right]^{n} \longrightarrow R\left[p_{1}, \ldots, p_{\ell}\right], \quad\left(c_{1}, \ldots, c_{n}\right) \longmapsto c_{1} b_{1}+\cdots+c_{n} b_{n}
$$

whence the short exact sequence of $R\left[p_{1}, \ldots, p_{\ell}\right]$ modules

$$
0 \longrightarrow K \longrightarrow R\left[p_{1}, \ldots, p_{\ell}\right]^{n} \longrightarrow I \longrightarrow 0
$$

The gradation of $R\left[p_{1}, \ldots, p_{\ell}\right]$ induces a gradation of $R\left[p_{1}, \ldots, p_{\ell}\right]^{n}$ and K is a graded submodule of $R\left[p_{1}, \ldots, p_{\ell}\right]^{n}$ since b_{1}, \ldots, b_{n} is a homogeneous sequence in $R\left[p_{1}, \ldots, p_{\ell}\right]$. Denote by y_{1}, \ldots, y_{m} a generating homogeneous sequence of the $R\left[p_{1}, \ldots, p_{\ell}\right]$-module K. By (iii), the short sequence of A-modules

$$
0 \longrightarrow A \otimes_{R\left[p_{1}, \ldots, p_{\ell}\right]} K \longrightarrow A^{n} \longrightarrow A \otimes_{R\left[p_{1}, \ldots, p_{\ell}\right]} I \longrightarrow 0
$$

is exact. So, for some homogeneous sequence x_{1}, \ldots, x_{m} in A,

$$
a_{i}=\sum_{j=1}^{m} x_{j} y_{j, i}
$$

for $i=1, \ldots, n$. Since a_{n} is not in $J_{\underline{p}}$, for some j_{*}, the element $y_{j_{*}, i}$ is an invertible element of R_{*}, whence

$$
b_{n} y_{j_{*}, n}=-\sum_{i=1}^{n-1} b_{i} y_{j_{*}, i} \text { and } \sum_{i=1}^{n-1} b_{i}\left(y_{j_{*, n}} a_{i}-a_{n} y_{j_{*}, i}\right)=0 .
$$

So, by induction hypothesis,

$$
b_{1}=\cdots=b_{n-1}=0
$$

since the sequence

$$
y_{j_{*, n}} a_{1}-a_{n} y_{j_{*}, 1}, \ldots, y_{j_{*, n}} a_{n-1}-a_{n} y_{j_{*}, n-1}
$$

is linearly free over \mathbb{k} modulo $J_{\underline{p}}$. Then $b_{n}=0$ since $a_{n} \neq 0$.
(v) Let $\left(v_{1}, \ldots, v_{n}\right)$ be a homogeneous basis of V. Since the space of relations of linear dependence over $R\left[p_{1}, \ldots, p_{\ell}\right]$ of v_{1}, \ldots, v_{n} is graded, it is equal to $\{0\}$ by (iv), whence the assertion by (ii).

Corollary A.5. (i) The algebra A_{*} is Cohen-Macaulay if and only if for some homogeneous sequence p_{1}, \ldots, p_{ℓ} in A_{+}, the algebra A_{*} is a finite free extension of $R_{*}\left[p_{1}, \ldots, p_{\ell}\right]$.
(ii) Suppose that A_{*} is Cohen-Macaulay. For a homogeneous sequence q_{1}, \ldots, q_{ℓ} in A_{+}, A_{*} is a finite free extension of $R_{*}\left[q_{1}, \ldots, q_{\ell}\right]$ if and only if $R_{*} A_{+}$is the radical of the ideal of A_{*} generated by q_{1}, \ldots, q_{ℓ}.

Proof. (i) The "only if" part results from Lemma A.4,(v). Suppose that for some homogeneous sequence p_{1}, \ldots, p_{ℓ} in A_{+}, the algebra A_{*} is a finite free extension of $R_{*}\left[p_{1}, \ldots, p_{\ell}\right]$. In particular, $R_{*}\left[p_{1}, \ldots, p_{\ell}\right]$ is a polynomial algebra over R_{*} since A_{*} has dimension $\operatorname{dim} A$. Let \mathfrak{p} be a prime ideal of A_{*} and let \mathfrak{q} be its intersection with $R_{*}\left[p_{1}, \ldots, p_{\ell}\right]$. Denote by A_{p} and $R\left[p_{1}, \ldots, p_{\ell}\right]_{q}$ the localizations of A_{*} and $R_{*}\left[p_{1}, \ldots, p_{\ell}\right]$ at \mathfrak{p} and \mathfrak{q} respectively. Since A_{*} is a finite extension of $R_{*}\left[p_{1}, \ldots, p_{\ell}\right]$, these local rings have the same dimension. Denote by d this dimension. By flatness, all regular sequence a_{1}, \ldots, a_{d} in $R\left[p_{1}, \ldots, p_{\ell}\right]_{q}$ is regular in A_{p} so that $A_{\mathfrak{p}}$ is Cohen-Macaulay. Hence A_{*} is Cohen-Macaulay.
(ii) The "only if" part results from (i) and Proposition A.2. Suppose that A_{*} is a finite free extension of $R_{*}\left[q_{1}, \ldots, q_{\ell}\right]$. Let \mathfrak{p} be a minimal prime ideal of A_{*} containing q_{1}, \ldots, q_{ℓ} and let \mathfrak{q} be its intersection with $R_{*}\left[q_{1}, \ldots, q_{\ell}\right]$. Then \mathfrak{q} is generated by q_{1}, \ldots, q_{ℓ}. In particular it has height ℓ. So \mathfrak{p} has height ℓ since A_{*} is a finite extension of $R_{*}\left[q_{1}, \ldots, q_{\ell}\right]$. As a result, $\mathfrak{p}=R_{*} A_{+}$since $R_{*} A_{+}$is a prime ideal of height ℓ, containing q_{1}, \ldots, q_{ℓ}, whence the assertion.

Set $B_{*}:=R_{*} \otimes_{R} B$ and for \mathfrak{p} a prime ideal of B denote by $B_{\mathfrak{p}}$ its localization at \mathfrak{p}.
Proposition A.6. Suppose that the following conditions are verified:
(1) B is normal,
(2) A_{+}is the radical of $A B_{+}$,
(3) A is Cohen-Macaulay.
(i) Let p_{1}, \ldots, p_{ℓ} be a homogeneous sequence in B_{+}such that B_{+}is the radical of the ideal of B generated by this sequence. Then for some graded subspace V of A, having finite dimension, the linear morphisms

$$
\begin{aligned}
V \otimes_{\mathbb{k}} R_{*}\left[p_{1}, \ldots, p_{\ell}\right] \longrightarrow A_{*}, & v \otimes a & \longmapsto v a, \\
(V \cap B) \otimes_{\mathbb{k}} R_{*}\left[p_{1}, \ldots, p_{\ell}\right] \longrightarrow B_{*}, & v \otimes a & \longmapsto v a
\end{aligned}
$$

are isomorphisms.
(ii) If $R=\mathbb{k}$ or $R=\mathbb{k}[[t]]$, the algebra B_{*} is Cohen-Macaulay.
(iii) For \mathfrak{p} prime ideal of B, containing t, the local ring $B_{\mathfrak{p}}$ is Cohen-Macaulay.

Proof. (i) By Proposition A. 2 and by Condition (2), B is finitely generated and A is a finite extension of B. By Condition (2) and by Lemma A.1,(iii), for some
homogeneous sequence (p_{1}, \ldots, p_{ℓ}) in B_{+}, A_{+}is the radical of the ideal generated by p_{1}, \ldots, p_{ℓ}. Set:

$$
\underline{p}:=\left\{\begin{array}{lll}
t, p_{1}, \ldots, p_{\ell} & \text { if } & \operatorname{dim} A=\ell+1 \\
p_{1}, \ldots, p_{\ell} & \text { if } & \operatorname{dim} A=\ell
\end{array}\right.
$$

Denote by m the degree of the extension $K(A)$ of $K(B)$. For a in A_{*}, set:

$$
a^{\#}:=\frac{1}{m} \operatorname{tr} a
$$

with tr the trace map. By Condition (1), B_{*} is normal and the map $a \mapsto a^{\#}$ is a projection from A_{*} onto B_{*} whose restriction to A is a projection onto B. Moreover, it is a graded morphism of B-modules. Let M be its kernel. Let J_{0} and J be the ideals of B and A generated by p respectively. Since $t, p_{1}, \ldots, p_{\ell}$ are in B, J is the direct sum of J_{0} and $M J_{0}$. Let \bar{V}_{0} be a graded complement in B to the \mathbb{k}-space J_{0} and let V_{1} be a graded complement in M to the \mathbb{k}-space $M J_{0}$. Setting $V:=V_{0}+V_{1}$, V is a graded complement in A to the \mathbb{k}-space J. By Condition (3) and Lemma A.4, V has finite dimension and the linear map

$$
V \otimes_{\underline{K}} R_{*}\left[p_{1}, \ldots, p_{\ell}\right] \longrightarrow A_{*}, \quad v \otimes a \longmapsto v a
$$

is an isomorphism. So, since $V_{0}=V^{\#}$, the linear map

$$
V_{0} \otimes_{\mathbb{k}} R_{*}\left[p_{1}, \ldots, p_{\ell}\right] \longrightarrow B_{*}, \quad v \otimes a \longmapsto v a
$$

is an isomorphism, whence the assertion.
(ii) results from (i) and Corollary A. 5 .
(iii) By (i) and Corollary A.5, A_{*} is Cohen-Macaulay. For \mathfrak{p} a prime ideal of B, containing $t, B_{\mathfrak{p}}$ is the localization of B_{*} at the prime ideal $B_{*} \mathfrak{p}$, whence the assertion by (ii).
A.2. In this subsection $R=\mathbb{k}[t]$ and set $\widehat{R}=\mathbb{k}[[t]]$. For M a graded module over R such that $M^{[j]}$ is a free submodule of finite rank for all j, we denote by $P_{M, R}(T)$ its Hilbert series:

$$
P_{M, R}(T):=\sum_{j \in \mathbb{N}} \operatorname{rk} M^{[j]} T^{j} .
$$

For V a graded space over \mathbb{k} such that $V^{[j]}$ has finite dimension, we denote by $P_{V, k}(T)$ its Hilbert series:

$$
P_{V, \mathbb{k}}(T):=\sum_{j \in \mathbb{N}} \operatorname{dim} V^{[j]} T^{j} .
$$

Let S be a graded polynomial algebra over \mathbb{k} such that $S^{[0]}=\mathbb{k}$ and $S^{[j]}$ has finite dimension for all j. Consider on $S[t]$ and $S[[t]]$ the gradations extending that of S and such that t has degree 0 . Consider the following conditions on A :
(1) A is graded subalgebra of $S[t]$,
(2) for some homogeneous sequence a_{1}, \ldots, a_{ℓ} in $A_{+}, A=\mathbb{k}\left[t, t^{-1}, a_{1}, \ldots, a_{\ell}\right] \cap$ $S[t]$,
(3) A is Cohen-Macaulay.

If Condition (2) holds, then $A\left[t^{-1}\right]=R\left[a_{1}, \ldots, a_{\ell}\right]\left[t^{-1}\right]$. Moreover, if so, since A has dimension $\ell+1$, then the elements $t, a_{1}, \ldots, a_{\ell}$ are algebraically independent over \mathbb{k}. Set $\widehat{A}:=\widehat{R} \otimes_{R} A$.

Lemma A.7. Assume that Conditions (1) and (2) hold.
(i) The element tis a prime element of A.
(ii) The algebra A is a factorial ring.
(iii) The Hilbert series of the R-module A is equal to

$$
P_{A, R}(T)=\prod_{i=1}^{\ell} \frac{1}{1-T^{d_{i}}}
$$

with d_{1}, \ldots, d_{ℓ} the degrees of a_{1}, \ldots, a_{ℓ} respectively.
Proof. (i) Let a and b be in A such that $a b$ is in $t A$. Since $t S[t]$ is a prime ideal of $S[t], a$ or b is in $t S[t]$. Suppose $a=t a^{\prime}$ for some a^{\prime} in $S[t]$. Then a^{\prime} is in $A\left[t^{-1}\right]$. By Condition (2), $A\left[t^{-1}\right]=R\left[a_{1}, \ldots, a_{\ell}\right]\left[t^{-1}\right]$. Hence a^{\prime} is in A by Condition (2) again. As a result, $A t$ is a prime ideal of A.
(ii) Since A is finitely generated, it suffices to prove that all prime ideal of height 1 is principal by [Ma86, Ch. 7, Theorem 20.1]. Let \mathfrak{p} be a prime ideal of height 1. If t is in \mathfrak{p}, then $\mathfrak{p}=A t$ by (i). Suppose that t is not in \mathfrak{p} and set $\bar{p}=A\left[t^{-1}\right] \mathfrak{p}$. Then $\overline{\mathfrak{p}}$ is a prime ideal of height 1 of $R\left[a_{1}, \ldots, a_{\ell}\right]\left[t^{-1}\right]$ by Condition (2). For a in $\overline{\mathfrak{p}}, t^{m} a$ is in \mathfrak{p} for some nonnegative integer m. Hence

$$
\mathfrak{p}=\overline{\mathfrak{p}} \cap A
$$

since \mathfrak{p} is prime. As a polynomial ring over the principal ring $\mathbb{k}\left[t, t^{-1}\right]$, the ring $R\left[a_{1}, \ldots, a_{\ell}\right]\left[t^{-1}\right]$ is a factorial ring. Then $\overline{\mathfrak{p}}$ is generated by an element a in \mathfrak{p}. Since S is a polynomial ring, $S[t]$ is a factorial ring. So, for some nonnegative integer m and for some a^{\prime} in $S[t]$, prime to $t, a=t^{m} a^{\prime}$. By Condition (2), a^{\prime} is in A. Then a^{\prime} is an element of \mathfrak{p}, generating $\overline{\mathfrak{p}}$ and not divisible by t in A. Let b and c be in A such that $b c$ is in $A a^{\prime}$. Then b or c is in $A\left[t^{-1}\right] a^{\prime}$. Suppose b in $A\left[t^{-1}\right] a^{\prime}$. So, for some l in $\mathbb{N}, t^{l} b=b^{\prime} a^{\prime}$ for some b^{\prime} in A. We choose l minimal verifying this condition. By (i), since a^{\prime} is not divisible by t in A, b^{\prime} is divisible by t in A if $l>0$. By minimality of $l, l=0$ and b is in $A a^{\prime}$. As a result, $A a^{\prime}$ is a prime ideal and $\mathfrak{p}=A a^{\prime}$ since \mathfrak{p} has height 1 .
(iii) By Condition (2),

$$
A\left[t^{-1}\right]=\mathbb{k}\left[t, t^{-1}\right] \otimes_{\mathbb{k}} \mathbb{K}\left[a_{1}, \ldots, a_{\ell}\right] \quad \text { whence } \quad \operatorname{rk} A^{[d]}=\operatorname{dim} \mathbb{k}\left[a_{1}, \ldots, a_{\ell}\right]^{[d]}
$$

for all nonnegative integer d. Since a_{1}, \ldots, a_{ℓ} are algebraically independent over \mathbb{k},

$$
P_{\mathrm{k}\left[a_{1}, \ldots, a_{\ell}\right], \mathbb{k}}(T)=\prod_{i=1}^{\ell} \frac{1}{1-T^{d_{i}}},
$$

whence the assertion.
Let p_{1}, \ldots, p_{ℓ} be a homogeneous sequence in A such that A_{+}is the radical of the ideal of A generated by this sequence. By Lemma A.1,(ii), such a sequence does exist. Denote by C the integral closure of $\mathbb{k}\left[p_{1}, \ldots, p_{\ell}\right]$ in $\mathbb{k}\left(t, a_{1}, \ldots, a_{\ell}\right)$.

Lemma A.8. Assume that Conditions (1), (2) and (3) hold.
(i) The algebra C is a graded subalgebra of A and t is not algebraic over C.
(ii) The algebra C is Cohen-Macaulay. Moreover, C is a finite free extension of $\mathbb{k}\left[p_{1}, \ldots, p_{\ell}\right]$.
(iii) The algebra $C+t A$ is normal.

Proof. (i) By Lemma A.7,(ii), A is a normal ring such that $K(A)=\mathbb{k}\left(t, a_{1}, \ldots, a_{\ell}\right)$ by Condition (2). Then C is contained in A since $\mathbb{k}\left[p_{1}, \ldots, p_{\ell}\right]$ is contained in A. Moreover, C is a graded algebra since so is $\mathbb{k}\left[p_{1}, \ldots, p_{\ell}\right]$. By Proposition A.2, A is a finite extension of $R\left[p_{1}, \ldots, p_{\ell}\right]$. So, since A has dimension $\ell+1$, the elements $t, p_{1}, \ldots, p_{\ell}$ are algebraically independent over \mathbb{k}. As a result, t is not algebraic over C.
(ii) By (i), $C[t]$ is a polynomial ring over C. So, by [Ma86, Ch. 8, Corollary of Theorem 23.9], $C[[t]]$ is a normal ring. By definition, A_{+}is the radical of the ideal of A generated by p_{1}, \ldots, p_{ℓ}. So \widehat{A}_{+}is the radical of $A C[[t]]_{+}$since p_{1}, \ldots, p_{ℓ} are in $C[[t]]_{+}$. Since \widehat{R} is a flat extension of R, the algebra \widehat{A} is Cohen-Macaulay by Condition (3). Then, by Proposition A.6,(ii), $C[[t]]$ is Cohen-Macaulay. Let V be a graded complement in C to the ideal of C generated by p_{1}, \ldots, p_{ℓ}. Since t is not algebraic over C, the space V is a complement in $C[t]$ to the ideal of $C[t]$ generated by $t, p_{1}, \ldots, p_{\ell}$. Then, by Lemma A.4, V has finite dimension and the linear morphism

$$
V \otimes_{\underline{k}} R_{*}\left[p_{1}, \ldots, p_{\ell}\right] \longrightarrow R_{*} C, \quad v \otimes a \longmapsto v a
$$

is an isomorphism. As a result, the linear morphism

$$
V \otimes_{\mathbb{K}} \mathbb{K}\left[p_{1}, \ldots, p_{\ell}\right] \longrightarrow C, \quad v \otimes a \longmapsto v a
$$

is an isomorphism, whence the assertion by Corollary A.5,(ii).
(iii) Set $\tilde{A}:=C+t A$. At first, \tilde{A} is a graded subalgebra of A since C is a graded algebra and $t A$ is a graded ideal of A. According to Proposition A.6,(i), for some graded subspace V of A, having finite dimension, the linear morphisms

$$
\begin{aligned}
V \otimes_{\mathbb{k}} R_{*}\left[p_{1}, \ldots, p_{\ell}\right] \longrightarrow A_{*}, \quad v \otimes a & \longmapsto v a, \\
(V \cap C[t]) \otimes_{\mathbb{k}} R_{*}\left[p_{1}, \ldots, p_{\ell}\right] \longrightarrow R_{*} C, \quad v \otimes a & \longmapsto v a
\end{aligned}
$$

are isomorphisms. Let v_{1}, \ldots, v_{n} be a basis of V such that v_{1}, \ldots, v_{m} is a basis of $V \cap C[t]$. For a in A_{*}, the element a has unique expansion

$$
a=v_{1} a_{1}+\cdots+v_{n} a_{n}
$$

with a_{1}, \ldots, a_{n} in $R_{*}\left[p_{1}, \ldots, p_{\ell}\right]$. If a is in $t A_{*}, a_{1}, \ldots, a_{n}$ are in $t R_{*}\left[p_{1}, \ldots, p_{\ell}\right]$ and if a is in $R_{*} C, a_{1}, \ldots, a_{m}$ are in $\mathbb{k}\left[p_{1}, \ldots, p_{\ell}\right]$ and a_{m+1}, \ldots, a_{n} are equal to 0 , whence $R_{*} C \cap t A_{*}=t R_{*} C$ and $C \cap t A=\{0\}$. In particular, C is the quotient of \tilde{A} by $t \tilde{A}$.

For \mathfrak{p} a prime ideal of \tilde{A}, denote by $\tilde{A}_{\mathfrak{p}}$ the localization of \tilde{A} at \mathfrak{p}. If t is not in \mathfrak{p}, then $A\left[t^{-1}\right]$ is contained in $\tilde{A}_{\mathfrak{p}}$ so that $\tilde{A}_{\mathfrak{p}}$ is a localization of the regular algebra $R\left[a_{1}, \ldots, a_{\ell}\right]\left[t^{-1}\right]$ by Condition (2). Hence $\tilde{A}_{\mathfrak{p}}$ is a regular local algebra. Suppose that t is in \mathfrak{p}. Denote by $\overline{\mathfrak{p}}$ the image of \mathfrak{p} in C by the quotient map. Then $\tilde{A}_{\mathfrak{p}} / t \tilde{\mathcal{p}}_{\mathfrak{p}}$ is the localization $C_{\bar{p}}$ of C at the prime ideal $\overline{\mathfrak{p}}$. Since C is Cohen-Macaulay, so are $C_{\bar{p}}$ and \tilde{A}_{p}. As a result, \tilde{A} is Cohen-Macaulay.

Let \mathfrak{p} be a prime ideal of height 1 of \tilde{A}. If t is not in $\mathfrak{p}, \tilde{A}_{\mathfrak{p}}$ is a regular local algebra as it is already mentioned. Suppose that t is in \mathfrak{p}. By Lemma A.7,(i), $t \tilde{A}=\mathfrak{p}$ so that all element of $C \backslash\{0\}$ is invertible in \tilde{A}_{p}, whence

$$
\tilde{A}_{\mathfrak{p}}=K(C)+t \tilde{A}_{\mathfrak{p}} \quad \text { and } \quad t \tilde{A}_{\mathfrak{p}}=t K(C)+t^{2} \tilde{A}_{\mathfrak{p}} .
$$

Hence $\tilde{A}_{\mathfrak{p}}$ is a regular local ring of dimension 1. As a result, \tilde{A} is regular in codimension 1. Then, by Serre's normality criterion [B98, $\S 1, \mathrm{n}^{\circ} 10$, Théorème 4], \tilde{A} is normal since \tilde{A} is Cohen-Macaulay.

Corollary A.9. Assume that Conditions (1), (2) and (3) hold.
(i) The algebra \widehat{A} is equal to $C[[t]]$.
(ii) For a in A, the element r a is in $C[t]$ for some r in $\mathbb{k}[t]$ such that $r(0) \neq 0$.

Proof. (i) Since $t A$ is contained in A, we have $K(A)=K(\tilde{A})$. Since C_{+}is contained in \tilde{A}_{+}, A_{+}is the radical of $A \tilde{A}_{+}$. Then, by Proposition A.2, A is a finite extension of \tilde{A}. So, by Lemma A.8,(iii), $A=\tilde{A}$ and by induction on m,

$$
A \subset C[t]+t^{m} A
$$

for all positive integer m. Since A and $C[t]$ are graded and since the R-module $A^{[d]}$ is finitely generated for all $d, \widehat{A}=C[[t]]$.
(ii) The assertion results from (i) and Lemma A.3.

Proposition A.10. Assume that Conditions (1), (2) and (3) hold. Then the algebra A_{*} is polynomial over R_{*}. Moreover, for some homogeneous sequence q_{1}, \ldots, q_{ℓ} in A_{+}such that q_{1}, \ldots, q_{ℓ} have degree d_{1}, \ldots, d_{ℓ} respectively, $A_{*}=R_{*}\left[q_{1}, \ldots, q_{\ell}\right]$.

Proof. According to Corollary A. 9 and Lemma A.8,(i), it suffices to prove that C is a polynomial algebra over \mathbb{k} generated by a homogeneous sequence q_{1}, \ldots, q_{ℓ} such
that q_{1}, \ldots, q_{ℓ} have degree d_{1}, \ldots, d_{ℓ} respectively. According to Corollary A.9,(i), Lemma A.8,(i) and Lemma A.7,(iii),

$$
P_{C, k}(T)=\prod_{i=1}^{\ell} \frac{1}{1-T^{d_{i}}}
$$

By Corollary A.9,(ii), for $i=1, \ldots, \ell$, for some r_{i} in R such that $r_{i}(0) \neq 0, r_{i} a_{i}$ has an expansion

$$
r_{i} a_{i}=\sum_{m \in \mathbb{N}} c_{i, m} t^{m}
$$

with $c_{i, m}, m \in \mathbb{N}$ in $C^{\left[d_{i}\right]}$, with finite support. For z in \mathbb{k} and $i=1, \ldots, \ell$, set:

$$
b_{i}(z)=\sum_{m \in \mathbb{N}} c_{i, m} z^{m}
$$

so that $b_{i}(z)$ is in $C^{\left[d_{i}\right]}$ for all z. As already mentioned, $t, a_{1}, \ldots, a_{\ell}$ are algebraically independent over \mathbb{k} by Condition (2) since A has dimension $\ell+1$. Then, so are $r_{1} a_{1}, \ldots, r_{\ell} a_{\ell}$ and for some z in $\mathbb{k}, b_{1}(z), \ldots, b_{\ell}(z)$ are algebraically independent over \mathbb{k}. Denoting by C^{\prime} the subalgebra of C generated by this sequence,

$$
P_{C^{\prime}, \mathbb{k}}(T)=\prod_{i=1}^{\ell} \frac{1}{1-T^{d_{i}}},
$$

whence $C=C^{\prime}$ so that C is a polynomial algebra.

References

[B98] N. Bourbaki, Algèbre commutative, Chapitre 10, Éléments de mathématiques, Masson (1998), Paris.
[CM10] J.-Y. Charbonnel and A. Moreau, The index of centralizers of elements of reductive Lie algebras, Documenta Mathematica, 15 (2010), 387-421.
[CM16] J.-Y. Charbonnel and A. Moreau, The symmetric invariants of centralizers and Slodowy grading, Math. Zeitschrift 282 (2016), n ${ }^{\circ}$ 1-2, 273-339.
[JS10] A. Joseph and D. Shafrir, Polynomiality of invariants, unimodularity and adapted pairs, Transformation Groups, 15, (2010), 851-882.
[Ma86] H. Matsumura, Commutative ring theory Cambridge studies in advanced mathematics (1986), n ${ }^{\circ}$ 8, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney.
[Mu88] D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes in Mathematics (1988), \mathbf{n}° 1358, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo.
[PPY07] D.I. Panyushev, A. Premet and O. Yakimova, On symmetric invariants of centralizers in reductive Lie algebras, Journal of Algebra 313 (2007), 343-391.
[Y07] O. Yakimova, A counterexample to Premet's and Joseph's conjecture, Bulletin of the London Mathematical Society 39 (2007), 749-754.

Jean-Yves Charbonnel, Université Paris Diderot - CNRS, Institut de Mathématioues de Jussieu - Paris Rive Gauche, UMR 7586, Groupes, représentations et géométrie, Bâtiment Sophie Germain, Case 7012, 75205 Paris Cedex 13, France

E-mail address: jean-yves.charbonnel@imj-prg.fr
Anne Moreau, Laboratoire de Mathématiques et Applications, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneull Cedex, France

E-mail address: anne.moreau@math.univ-poitiers.fr

[^0]: Date: April 6, 2016.
 1991 Mathematics Subject Classification. 17B35,17B20,13A50,14L24.
 Key words and phrases. symmetric invariant, centralizer, polynomial algebra, Slodowy grading.

