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1. Introduction 1.1. Let g be a finite-dimensional simple Lie algebra of rank ℓ over an algebraically closed field k of characteristic zero, let . , . be the Killing form of g and let G be the adjoint group of g. If a is a subalgebra of g, we denote by S(a) the symmetric algebra of a. For x ∈ g, we denote by g x the centralizer of x in g and by G x the stabilizer of x in G. Then Lie(G x ) = Lie(G x 0 ) = g x where G x 0 is the identity component of G x . Moreover, S(g x ) is a g x -module and S(g x ) g x = S(g x ) G x 0 . In [START_REF] Charbonnel | The symmetric invariants of centralizers and Slodowy grading[END_REF], we continued the investigations of [START_REF] Panyushev | On symmetric invariants of centralizers in reductive Lie algebras[END_REF] and we studied the question on whether the algebra S(g x ) g x is polynomial in ℓ variables; see [START_REF] Yakimova | A counterexample to Premet's and Joseph's conjecture[END_REF][START_REF] Charbonnel | The index of centralizers of elements of reductive Lie algebras[END_REF][START_REF] Joseph | Polynomiality of invariants, unimodularity and adapted pairs[END_REF] for other references related to the topic. 1.2. Let us first summarize the main results of [START_REF] Charbonnel | The symmetric invariants of centralizers and Slodowy grading[END_REF].

Definition 1.1 ([CM16, Definition 1.3]). An element x ∈ g is called a good element of g if for some homogenous sequence (p 1 , . . . , p ℓ ) in S(g x ) g x , the nullvariety of p 1 , . . . , p ℓ in (g x ) * has codimension ℓ in (g x ) * .

Thus an element x ∈ g is good if the nullcone of S(g x ), that is, the nullvariety in (g x ) * of the augmentation ideal S(g x ) g x + of S(g x ) g x , is a complete intersection in (g x ) * since the transcendence degree over k of the fraction field of S(g x ) g x is ℓ by the main result of [START_REF] Charbonnel | The index of centralizers of elements of reductive Lie algebras[END_REF].

For example, regular nilpotent elements are good; see the introduction of [START_REF] Charbonnel | The symmetric invariants of centralizers and Slodowy grading[END_REF] for more details and other examples.

Theorem 1.2 ([CM16, Theorem 3.3]). Let x be a good element of g. Then S(g x ) g x is a polynomial algebra and S(g x ) is a free extension of S(g x ) g x . Furthermore, x is good if and only if so is its nilpotent component in the Jordan decomposition [START_REF] Charbonnel | The symmetric invariants of centralizers and Slodowy grading[END_REF]Proposition 3.5]. As a consequence, we can restrict the study to the case of nilpotent elements.

Let e be a nilpotent element of g. By the Jacobson-Morosov Theorem, e is embedded into a sl 2 -triple (e, h, f ) of g. Denote by S e := e + g f the Slodowy slice associated with e. Identify g * with g, and (g e ) * with g f , through the Killing form . , . of g. For p in S(g) ≃ k[g * ] ≃ k[g], denote by e p the initial homogenous component of its restriction to S e . According to [PPY07, Proposition 0.1], if p is in S(g) g , then e p is in S(g e ) g e .

Theorem 1.3 ([CM16, Theorem 1.5]). Suppose that for some homogenous generators q 1 , . . . , q ℓ of S(g) g , the polynomial functions e q 1 , . . . , e q ℓ are algebraically independent over k. Then e is a good element of g. In particular, S(g e ) g e is a polynomial algebra and S(g e ) is a free extension of S(g e ) g e . Moreover, e q 1 , . . . , e q ℓ is a regular sequence in S(g e ).

In other words, Theorem 1.3 provides a sufficient condition for that S(g e ) g e is polynomial. By [START_REF] Panyushev | On symmetric invariants of centralizers in reductive Lie algebras[END_REF], one knows that for homogenous elements q 1 , . . . , q ℓ of S(g) g , the polynomial functions e q 1 , . . . , e q ℓ are algebraically independent if and only if

ℓ i=1 deg e q i = dim g e + ℓ 2 . (1)
So we have a practical criterion to verify the sufficient condition of Theorem 1.3. However, note that even if the condition of Theorem 1.3 holds, that is, if (1) holds, S(g e ) g e is not necessarily generated by the polynomial functions e q 1 , . . . , e q ℓ . As a matter of fact, there are nilpotent elements e satisfying this condition and for which S(g e ) g e is not generated by some e q 1 , . . . , e q ℓ , for any choice of homogenous generators q 1 , . . . , q ℓ of S(g) g (cf. [CM16, Remark 2.25]).

Theorem 1.3 can be applied to a great number of nilpotent orbits in the simple classical Lie algebras, and for some nilpotent orbits in the exceptional Lie algebras, see [START_REF] Charbonnel | The symmetric invariants of centralizers and Slodowy grading[END_REF]Sections 5 and 6]. We also provided in [START_REF] Charbonnel | The symmetric invariants of centralizers and Slodowy grading[END_REF]Example 7.8] an example of a nilpotent element e for which S(g e ) g e is not polynomial. 1.3. In this note, we prove that the converse of Theorem 1.3 also holds. Namely, we prove the following result.

Theorem 1.4. The nilpotent element e of g is good if and only if for some homogenous generating sequence q 1 , . . . , q ℓ of S(g) g , the elements e q 1 , . . . , e q ℓ are algebraically independent over k.

Theorem 1.4 was conjectured in [START_REF] Charbonnel | The symmetric invariants of centralizers and Slodowy grading[END_REF]Conjecture 7.11]. Notice that it may happen that for some r 1 , . . . , r ℓ in S(g) g , the elements e r 1 , . . . , e r ℓ are algebraically independent over k, and that however e is not good. This is the case for instance for the nilpotent elements in so(k 12 ) associated with the partition (5, 3, 2, 2), cf. [CM16, Example 7.6]. In fact, according to [PPY07, Corollary 2.3], for any nilpotent element e of g, there exist r 1 , . . . , r ℓ in S(g) g such that e r 1 , . . . , e r ℓ are algebraically independent over k.

1.4. We introduce in this subsection the main notations of the paper and explain our approach to prove Theorem 1.4.

Let x 1 , . . . , x r be a basis of g e such that for i = 1, . . . , r, [h, x i ] = n i x i with n i a nonnegative integer. For j = ( j 1 , . . . , j r ) in N r , set:

|j| := j 1 + • • • + j r , |j| e := j 1 (n 1 + 2) + • • • + j r (n r + 2), x j := x j 1 1 • • • x j r r .
There are two gradations on S(g e ) g e , the standard one and the Slodowy gradation. For all j in N r , x j has standard degree |j| and Slodowy degree |j| e . Denoting by t → h(t) the one parameter subgroup of G generated by ad h, the Slodowy slice e + g f is invariant under the one parameter subgroup t → t -2 h(t) and for all j in N r and for all y in g f , x j (t -2 h(t)(e + y)) = t -|j| e x j (e + y).

Let t be an indeterminate and let R be the polynomial algebra k

[t]. The polyno- mial algebra S(g e )[t] := k[t] ⊗ k S(g e )
identifies with the algebra of polynomial functions on g f × k. The gradation of S(g e ) induces a gradation of S(g e )[t] such that t has degree 0. Denote by ε the evaluation map at t = 0 so that ε is a graded morphism from S(g e )[t] onto S(g e ). For p in S(g), denote by κ(p) the polynomial function x → p(e + x) on g f so that κ(p) ∈ S(g e ). Then e p is the homogeneous component of κ(p) of minimal degree with respect to the standard gradation on S(g e ). Let τ be the embedding of S(g e ) into S(g e )[t] such that τ(x i ) := tx i for i = 1, . . . , r.

Denote by A the intersection of S(g e )[t] with the sub

-k[t, t -1 ]-module of S(g e )[t, t -1 ] := k[t, t -1 ] ⊗ k S(g e )
generated by τ•κ(S(g) g ). Let V be the nullvariety of A + in g f × k where A + is the augmentation ideal of A. Let V * be the union of the irreducible components of V which are not contained in g f × {0} and let N be the nullvariety of ε(A) + in g f , with ε(A) + the augmentation ideal of ε(A). Then V is the union of V * and N × {0}. Using properties of the varieties V and V * , we prove the following result (see Section 2).

Theorem 1.5. Suppose that N has dimension rℓ. Then for some homogeneous generating sequence q 1 , . . . , q ℓ of S(g) g , the elements e q 1 , . . . , e q ℓ are algebraically independent over k.

The key point is to show that, under the hypothesis of Theorem 1.5, ε(A) is the subalgebra of S(g e ) generated by the family e p, p ∈ S(g) g , and hence that N coincides with the nullvariety in g f of e q 1 , . . . , e q ℓ . So, if N has dimension rℓ, then the elements e q 1 , . . . , e q ℓ must be algebraically independent over k.

The proof of Theorem 1.5 is done in Section 2. Then Theorem 1.4 will be a consequence of Theorem 1.5 and it will be proven in Section 3. In Appendix A, we state general facts on commutative algebra that are used throughout the paper.
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Proof of Theorem 1.5

In this section, unless otherwise specified, the gradation on S(g e ) is the Slodowy gradation.

For m a nonnegative integer, S(g e ) [m] denotes the space of degree m of S(g e ). We retain the notations of the introduction, in particular of Subsection 1.4.

Let R be the ring k[t].

As in Appendix A, for M a graded subspace of S(g e )[t] = R ⊗ k S(g e ), its subspace of degree m is denoted by M [m] . In particular, S(g e )[t] [m] is equal to S(g e ) [m] [t] and it is a free R-module of finite rank. As a result, for all graded R-submodule M of S(g e )[t], its Hilbert series is well defined.

For m a nonnegative integer, denote by F m the space of elements of κ(S(g) g ) whose component of minimal standard degree is at least m. Then F 0 , F 1 , . . . is a decreasing filtration of the algebra κ(S(g) g ). Let d 1 , . . . , d ℓ be the standard degrees of a homogeneous generating sequence of S(g) g . We assume that the sequence d 1 , . . . , d ℓ is increasing.

Recall that A is the intersection of S(g e )[t] with the sub-k[t, t -1 ]-module of S(g e )[t, t -1 ] generated by τ•κ(S(g) g ), and that A + is the augmentation ideal of A.

Lemma 2.1.

(i) For p a homogeneous element of standard degree d in S(g) g , the element κ(p) and e p have degree 2d.

(ii) For some homogeneous sequence a 1 , . . . , a ℓ in A + , the elements t, a 1 , . . . , a ℓ are algebraically independent over k, and A is the intersection of S(g e )[t] with k[t, t -1 , a 1 , . . . , a ℓ ]. (iii) The Hilbert series of the R-algebra A is equal to

P A,R (T ) = ℓ i=1 1 1 -T 2d i .
(iv) The Hilbert series of the k-algebra ε(A) is equal to

P ε(A),k (T ) = ℓ i=1 1 1 -T 2d i .
(v) The subalgebra ε(A) is the graded algebra associated with the filtration F 0 , F 1 , . . ..

Proof. (i) For y in g f and s in k * , p(s -2 h(s)(e + y)) = s -2d p(h(s)(e + y)) = s -2d p(e + y)
since p is invariant under the one parameter subgroup s → h(s). Hence κ(p) is homogeneous of degree 2d. Since the monomials x j are homogeneous, e p has degree 2d.

(ii) Let q 1 , . . . , q ℓ be a homogeneous generating sequence of S(g) g . By a well known fact [CM16, Lemma 4.4,(i)], the morphism

G × (e + g f ) -→ g, (g, x) -→ g(x)
is dominant. Then κ(S(g) g ) is a polynomial algebra generated by κ(q 1 ), . . . , κ(q ℓ ). So, setting a i := τ•κ(q i ) for i = 1, . . . , ℓ, the sequence a 1 , . . . , a ℓ is a homogeneous sequence in A + such that

τ•κ(S(g) g )[t, t -1 ] = k[t, t -1 , a 1 , . . . , a ℓ ].
Let τ be the automorphism of S(g e )[t, t -1 ] extending τ and such that τ(t) = t. Then andt, a 1 , . . . , a ℓ are algebraically independent over k. By definition,

τ•κ(S(g) g )[t, t -1 ] = τ(κ(S(g) g )[t, t -1 ]). Since κ(S(g) g )[t, t -1 ] has dimension ℓ + 1, τ•κ(S(g) g )[t, t -1 ] has dimension ℓ + 1 too,
A = S(g e )[t] ∩ τ•κ(S(g) g )[t, t -1 ]. Hence A[t -1 ] = k[t, t -1 , a 1 , . . . , a ℓ ] and A = S(g e )[t] ∩ k[t, t -1 , a 1 , . . . , a ℓ ].
(iii) Since t has degree 0, the gradation of S(g e )[t] extends to a gradation of S(g e )[t, t -1 ] such that for all m, its space of degree m is equal to S(g e ) [m] [t, t -1 ]. Then for all k[t, t -1 ]-submodule M of S(g e )[t, t -1 ], M has a Hilbert series:

P M,k[t,t -1 ] (T ) := m∈N rk M [m] T m
with M [m] the subspace of degree m of M. From the equality A[t -1 ] = k[t, t -1 , a 1 , . . . , a ℓ ], we deduce

P A[t -1 ],k[t,t -1 ] (T ) = ℓ i=1 1 1 -T 2d i
since for i = 1, . . . , ℓ, the element a i has degree 2d i by (i). For all m, the rank of the R-module A [m] is equal to the rank of the k[t, t -1 ]-module A[t -1 ] [m] , whence

P A,R (T ) = ℓ i=1 1 1 -T 2d i .
(iv) Let m be a nonnegative integer. The R-module A [m] is free of finite rank and for (v 1 , . . . , v n ) a basis of this module, (tv 1 , . . . , tv n ) is a basis of the R-module tA [m] . Since ε(A) [m] is the quotient of A [m] by tA [m] ,

dim ε(A) [m] = n = rk A [m] ,
whence the assertion by (iii).

(v) Let gr F A be the graded algebra associated with the filtration F 0 , F 1 , . . . of κ(S(g) g ). Denote by a → a(1) the evaluation map at t = 1 from S(g e )[t] to S(g e ). For a in A such that ε(a) 0, a(1) is in κ(S(g) g ) and ε(a) is the component of minimal degree of a(1) with respect to the standard gradation, whence ε(A) ⊂ gr F A. Conversely, let a be a homogeneous element of degree m of gr F A and let a be a representative of a in F m . Then τ(a) = t m b with b in A such that ε(b) = a, whence gr F A ⊂ ε(A) and the assertion.

Let R * be the localization of R at the prime ideal tR and set

R := k[[t]], A * := R * ⊗ R A, A := R ⊗ R A.
The gradation of A extends to gradations on A * and A such that

A [0] * = R * and A [0] = R.
Proposition 2.2.

(i) The algebra ε(A) is polynomial if and only if for some standard homogeneous generating sequence q 1 , . . . , q ℓ of S(g) g , the elements e q 1 , . . . , e q ℓ are algebraically independent over k. Moreover, in this case, A is a polynomial algebra. (ii) If A * is a polynomial algebra, then for some homogeneous sequence p 1 , . . . , p ℓ in A + , we have A * = R * [p 1 , . . . , p ℓ ], the elements t, p 1 , . . . , p ℓ are algebraically independent over k and p 1 , . . . , p ℓ have degree 2d 1 , . . . , 2d ℓ respectively.

Proof. (i) Let q 1 , . . . , q ℓ be a homogeneous generating sequence of S(g) g such that e q 1 , . . . , e q ℓ are algebraically independent over k. We can assume that for i = 1, . . . , ℓ, q i has standard degree d i . For i = 1, . . . , ℓ, e q i has degree 2d i by Lemma 2.1,(i), and we set

Q i := t -2d i τ•κ(q i ).
For i = (i 1 , . . . , i ℓ ) in N ℓ , set:

q i := q i 1 1 • • • q i ℓ ℓ , Q i := Q i 1 1 • • • Q i ℓ ℓ , e q i := e q i 1 1 • • • e q i ℓ ℓ , |i| min := 2i 1 d 1 + • • • + 2i ℓ d ℓ .
Then, for all

i in N ℓ , τ•κ(q i ) = t |i| min Q i . Moreover, τ•κ(S(g) g )[t, t -1 ] = k[t, t -1 , Q 1 , . . . , Q ℓ ].
Let a be in A. For some l in N and for some sequence

c i,m , (i, m) ∈ N ℓ × N in k, of finite support, t l a = (i,m)∈N ℓ ×N c i,m t m Q i whence i∈N ℓ c i,m e q i = 0 for m < l. Hence a is in R[Q 1 , . . . , Q ℓ ] since the sequence e q i , i ∈ N ℓ , is linearly free over k. As a result, A = R[Q 1 , . . . , Q ℓ ] and ε(A) = k[ e q 1 , . . . , e q ℓ ]
so that A and ε(A) are polynomial algebras over k since e q 1 , . . . , e q ℓ are algebraically independent over k.

Conversely, suppose that ε(A) is a polynomial algebra. By Lemma 2.1,(i) and (iv), the algebra ε(A) is Slodowy graded and standard graded. Let d be the dimension of ε(A). As ε(A) is a polynomial algebra, it is regular so that the k-space ε(A) + /ε(A) 2 + has dimension d. Moreover, the two gradations on ε(A) induce gradations on ε(A) + /ε(A) 2 + . Hence ε(A) + /ε(A) 2 + has a bihomogeneous basis. Then some bihomogeneous sequence u 1 , . . . , u d in ε(A) + represents a basis of ε(A) + /ε(A) 2 + . As a result, the k-algebra ε(A) is generated by the bihomogeneous sequence u 1 , . . . , u d . For i = 1, . . . , d, denote by δ i the Slodowy degree of u i . As ε is homogeneous with respect to the Slodowy gradation, u i = ε(r i ) for some homogeneous element r i of degree δ i of A. Let m i be the smallest nonnegative integer such that t m i r i is in τ•κ(S(g) g ). According to Lemma 2.1,(i), δ i is even and for some standard homogeneous element p i of standard degree δ i /2 of S(g) g , t m i r i = τ•κ(p i ). Then u i = e p i since p i is standard homogeneous.

Let P be the subalgebra of S(g) generated by p 1 , . . . , p d . Suppose that P is strictly contained in S(g) g . A contradiction is expected. For some positive integer m, the space S(g) g m of standard degree m of S(g) g is not contained in P. Let q be in (S(g) g ) m \ P such that e q has maximal standard degree. By Lemma 2.1,(i), e q is a polynomial in u 1 , . . . , u d , of degree 2m. So, for some polynomial q ′ of degree m in P, e (qq ′ ) has standard degree bigger than the standard degree of e q. So, by maximality of the standard degree of e q, the elements qq ′ and q are in P, whence the contradiction. As a result, P = S(g) g and d = ℓ.

(ii) Suppose that A * is a polynomial algebra. Denoting by J the ideal of A * generated by t and A + , the k-space J/J 2 is a graded space of dimension ℓ since A * is a regular algebra of dimension ℓ + 1. Then for some homogeneous sequence p 1 , . . . , p ℓ in A + , (t, p 1 , . . . , p ℓ ) is a basis of J modulo J 2 . Since p 1 , . . . , p ℓ have positive degree, we prove by induction on d that

A [d] * ⊂ R * [p 1 , . . . , p ℓ ] [d] + tA [d] * .
Then by induction on m, we get

A [d] * ⊂ R * [p 1 , . . . , p ℓ ] + t m A [d] * .
So, since the R * -module A [d] * is finitely generated,

A [d] * ⊂ R[p 1 , . . . , p ℓ ] [d] whence A = R[p 1 , . . . , p ℓ ] and A * = R * [p 1 , . . . , p ℓ ] by Lemma A.3.
Denote by δ 1 , . . . , δ ℓ the respective degrees of p 1 , . . . , p ℓ . We can suppose that p 1 , . . . , p ℓ is ordered so that δ 1 • • • δ ℓ . Prove by induction on i that δ j = 2d j for j = 1, . . . , i. By Lemma 2.1,(iii), 2d 1 is the smallest positive degree of the elements of A. Moreover, δ 1 is the smallest positive degree of the elements of R[p 1 , . . . , p ℓ ], whence

δ 1 = 2d 1 . Suppose δ j = 2d j for j = 1, . . . , i -1. Set A i := R[p i , . . . , p ℓ ].
Then, by induction hypothesis and Lemma 2.1,(iii),

P A i ,R (T ) = ℓ j=i 1 1 -T δ j = ℓ j=i 1 1 -T 2d j .
By the first equality, δ i is the smallest positive degree of the elements of A i and by the second equality, 2d i is the smallest positive degree of the elements of A i too, whence δ i = 2d i . Then with i = ℓ, we get that δ j = 2d j for j = 1, . . . , ℓ.

Recall that R = k[[t]].
Corollary 2.3. Suppose that A * is a polynomial algebra. Then for some standard homogeneous generating sequence q 1 , . . . , q ℓ in S(g) g ,

A * = R * [t -2d 1 τ•κ(q 1 ), . . . , t -2d ℓ τ•κ(q ℓ )].
Proof. For m nonnegative integer, denote by S(g) g m the space of standard degree m of S(g) g . By Proposition 2.2,(ii), for some homogeneous sequence p 1 , . . . , p ℓ in A + such that p 1 , . . . , p ℓ have degree 2d 1 , . . . , 2d ℓ respectively,

A * = R * [p 1 , . . . , p ℓ ].
For i = 1, . . . , ℓ, let m i be the smallest integer such that t m i p i is in τ•κ(S(g) g ). By Lemma 2.1,(i), t m i p i has an expansion

t m i p i = j∈N t j τ•κ(q i, j )
with q i, j , j ∈ N, in S(g) g d i of finite support. Denoting by δ i, j the standard degree of e q i, j , set:

J ′ i := { j ∈ N ; m i = j + δ i, j }, δ i := inf{δ i, j ; j ∈ J ′ i }, j i := m i -2d i , Q i := t -2d i τ•κ(q i, j i ).
For i = 1, . . . , ℓ, since p i is not divisible by t in A,

p i -Q i ∈ tA, whence A * ⊂ R[Q 1 , . . . , Q ℓ ] + tA * .
Then, by induction m,

A * ⊂ R * [Q 1 , . . . , Q m ] + t m A *
for all m. As a result,

A = R[Q 1 , . . . , Q ℓ ],
since for all d, the R * -module A [d] * is finitely generated. Then, by Lemma A.3,

A * = R * [Q 1 , . . . , Q ℓ ].
As a result, since A has dimension ℓ+1, the elements t, Q 1 , . . . , Q ℓ are algebraically independent over k and so are q 1, j 1 , . . . , q ℓ, j ℓ . Moreover the algebra S(g) g is generated by q 1, j 1 , . . . , q ℓ, j ℓ since they have degree d 1 , . . . , d ℓ respectively.

2.2. Denote by V the nullvariety of A + in g f × k. Let V * be the union of the irreducible components of V which are not contained in g f × {0}. The following result is proven in [CM16, Corollary 4.4,(i)]. Indeed, the proof of this result does not use the assumption of [CM16, Section 4] that for some homogeneous generators q 1 , . . . , q ℓ of S(g) g , the elements e q 1 , . . . , e q ℓ are algebraically independent.

Lemma 2.4 ([CM16, Corollary 4.4,(i)]). (i) The variety V * is equidimensional of dimension r + 1 -ℓ. (ii) For all irreducible component X of V * and for all z in k, X is not contained in g f × {z}.
Let N be the nullvariety of ε(A) + in g f . Then V is the union of V * and N × {0}.

Lemma 2.5.

(i) All irreducible component of N has dimension at least rℓ and all irreducible component of V has dimension at least r + 1ℓ. (ii) Assume that N has dimension rℓ. Then for some homogeneous sequence p 1 , . . . , p r-ℓ in S(g e ) + , the nullvariety of t, p 1 , . . . , p r-ℓ in V is equal to {0}.

Proof. (i) By Lemma 2.1,(ii), for some homogeneous sequence a 1 , . . . , a ℓ in A + , the elements t, a 1 , . . . , a ℓ are algebraically independent over k. Let b 1 , . . . , b m be a homogeneous sequence in A + , generating the ideal S(g e )[t]A + of S(g e )[t]. Set:

B := k[a 1 , . . . , a ℓ , b 1 , . . . , b m ], B + := Ba 1 + • • • + Ba ℓ + Bb 1 + • • • + Bb m , C := B[t], C ++ := B + [t] + Ct.
Then B and C are graded subalgebras of A and B + and C ++ are maximal ideals of B and C respectively. Moreover, C has dimension ℓ + 1. We have a commutative diagram

g f × k α y y s s s s s s s s s s β % % K K K K K K K K K K Specm(C) π / / Specm(B)
with α, β, π the morphisms whose comorphisms are the canonical injections

C -→ S(g e )[t], B -→ S(g e )[t], B -→ C
respectively. Since C has dimension ℓ + 1, the irreducible components of the fibers of α have dimension at least r-ℓ, whence the result for

N since N×{0} = α -1 (C ++ ). Moreover, V = β -1 (B + ) and π -1 (B + ) is a subvariety of dimension 1 of Specm(C).
Hence all irreducible component of V has dimension at least r + 1ℓ.

(ii) Prove by induction on i that there exists a homogeneous sequence p 1 , . . . , p i in S(g e ) + such that the minimal prime ideals of S(g e ) containing ε(A) + and p 1 , . . . , p i have height ℓ + i. First of all, S(g e )ε(A) + is graded. Then the minimal prime ideals of S(g e ) containing ε(A) + are graded too. By, (i), p 1 , . . . , p m have height ℓ since N has dimension rℓ by hypothesis. In particular, they are strictly contained in S(g e ) + . Hence, by Lemma A.1,(ii), for some homogeneous element p 1 in S(g e ), p 1 is not in the union of these ideals so that the statement is true for i = 1 by [Ma86, Ch. 5, Theorem 13.5]. Suppose that it is true for i -1. Then the minimal prime ideals containing ε(A) + and p 1 , . . . , p i-1 are graded and strictly contained in S(g e ) + by the induction hypothesis. So, by Lemma A.1,(ii), for some homogeneous element p i in S(g e ), p i is not in the union of these ideals and the sequence p 1 , . . . , p i verify the condition of the statement by [Ma86, Ch. 5, Theorem 13.5]. For i = r-ℓ, the nullvariety of p 1 , . . . , p r-ℓ in N has dimension 0. Then it is equal to {0} as the nullvariety of a graded ideal, whence the assertion since N × {0} is the nullvariety of t in V.

2.3. We assume in this subsection that N has dimension rℓ. Let p 1 , . . . , p r-ℓ be as in Lemma 2.5,(ii), and set

C := A[p 1 , . . . , p r-ℓ ].
Then p 1 , . . . , p r-ℓ are algebraically independent over A since N has dimension r-ℓ.

Lemma 2.6. The ideal S(g e )[t] + of S(g e )[t] is the radical of S(g e )[t]C + .

Proof. Let Y be an irreducible component of the nullvariety of C + in g f × k. Then Y has dimension at least 1. By definition the nullvariety of t in Y is equal to {0}. Hence Y has dimension 1. The gradation on S(g e )[t] induces an action of the onedimensional multiplicative group G m on g f × k such that for all (x, z) in g f × k, (0, z) is in the closure of the orbit of (x, z) under G m . Since C + is graded, Y is invariant under G m . As a result, Y = {0} × k or for some x in g f × k, Y is the closure of the orbit of (x, 0) under G m since 0 is the nullvariety of t in Y. In the last case, x is a zero of p 1 , . . . , p r-ℓ in N, that is x = 0. Hence Y = {0} × k. As a result, the nullvariety of C + in g f × k is equal to {0} × k that is the nullvariety of S(g e )[t] + , whence the assertion since S(g e )[t] + is a prime ideal of S(g e )[t].

For p a prime ideal of A, denote by A p the localization of A at p and by p the ideal of C generated by p. Since C is a polynomial algebra over A, p is a prime ideal of C and the localization C p of C at p is a localization of the polynomial algebra A p [p 1 , . . . , p r-ℓ ]. According to [Ma86, Ch. 6, Theorem 17.4], if C p is Cohen-Macaulay so is A p as a quotient of C p by an ideal generated by a regular sequence.

Proof of Theorem 1.5. By Lemma 2.6 and Proposition A.2, the algebra C is finitely generated. Then A is finitely generated as a quotient of C. So, by Lemma A.7,(ii), A is a factorial ring and so is C as a polynomial ring over A. As a result, C is normal so that S(g e )[t] and C verify Conditions (1), (2), (3) of Proposition A.6. Hence by Proposition A.6, for all prime ideal p of A, containing t, C p is Cohen-Macaulay, whence A p is Cohen-Macaulay. By Lemma 2.1,(ii), for p a prime ideal of A, not containing t, A p is the localization of k[t, t -1 , a 1 , . . . , a ℓ ] at the prime ideal generated by p. Hence A p is Cohen-Macaulay since the algebra k[t, t -1 , a 1 , . . . , a ℓ ] is regular. As a result A is Cohen-Macaulay. In particular, A verifies Conditions (1), (2), (3) of Subsection A.2. So, by Proposition A.10, A * is a polynomial algebra. Then by Corollary 2.3, for some homogeneous generating sequence q 1 , . . . , q ℓ in S(g) g ,

A * = R * [t -2d 1 τ•κ(q 1 ), . . . , t -2d ℓ τ•κ(q ℓ )].
Form the above equality, we deduce that any element of A is the product of an element of the algebra R[t -2d 1 τ•κ(q 1 ), . . . , t -2d ℓ τ•κ(q ℓ )] by a polynomial in t with nonzero constant term, whence A = R[t -2d 1 τ•κ(q 1 ), . . . , t -2d ℓ τ•κ(q ℓ )] and so ε(A) = k[ e q 1 , . . . , e q ℓ ] since for i = 1, . . . , ℓ, e q i := ε(t -2d i τ•κ(q i )).

Since N × {0} is the nullvariety of t and A + in g f × k, N is the nullvariety in g f of e q 1 , . . . , e q ℓ . Hence e q 1 , . . . , e q ℓ are algebraically independent over k since N has dimension rℓ.

Proof of Theorem 1.4

Let (e, h, f ) be an sl 2 -triple in g. We use the notations κ and e p, p ∈ S(g) g , as in Introduction. In this section, we use the standard gradations on S(g) and S(g e ). Let A 0 be the subalgebra of S(g e ) generated by the family e p, p ∈ S(g) g , and let N 0 be the nullvariety of A 0,+ in g f where A 0,+ denotes the augmentation ideal of A 0 .

Let a 1 , . . . , a m be a homogeneous sequence in A 0,+ generating the ideal of S(g e ) generated by A 0,+ . According to [PPY07, Corollary 2.3], A 0 contains a homogeneous sequence b 1 , . . . , b ℓ algebraically free over k. (i) The algebra A is contained in S(g e ) g e and its fraction field is the fraction field of S(g e ) g e . (ii) Let a in S(g e ) g e + . If a is equal to 0 on N 0 , then a is in A + . (iii) The ideal S(g e ) g e A + of S(g e ) g e is equal to A + . (iv) The algebra A is the integral closure of A 0 in the fraction field of S(g e ).

Proof. (i) Let K 0 be the field of invariant elements under the adjoint action of g e in the fraction field of S(g e ). According to [CM16, Lemma 3.1], K 0 is the fraction field of S(g e ) g e . Since a 1 , . . . , a m , b 1 , . . . , b ℓ are in S(g e ) g e , A is contained in K 0 . Moreover, A is contained in S(g e ) g e since S(g e ) g e is integrally closed in K 0 . Since K 0 has transcendence degree ℓ over k and since b 1 , . . . , b ℓ are algebraically independent over k, K 0 is the fraction field of A.

(ii) Since N 0 is the nullvariety of a 1 , . . . , a m , b 1 , . . . , b ℓ in g f , N 0 is the nullvariety of A + in g f . Let a be in S(g e ) g e + such that a is equal to 0 on N 0 . Since N 0 is a cone, all homgogeneous components of a is equal to 0 on N 0 . So it suffices to prove the assertion for a homogeneous. We have a commutative diagram

g f π / / α $ $ H H H H H H H H H H Specm(A[a]) β w w o o o o o o o o o o o Specm(A)
with π, α, β the comorphisms of the canonical injections

A[a] -→ S(g e ), A -→ S(g e ), A -→ A[a]. Since N 0 is the nullvariety of A[a] + and A + in g f , β -1 (A + ) = A[a] + .

The gradations of A and A[a] induce actions of G m on Specm(A) and Specm(A[a]

) such that β is equivariant. Moreover, A + is in the closure of all orbit under G m in Specm(A).

Hence β is a quasi finite morphism. Moreover, β is a birational since A and A[a] have the same fraction field by (i). Hence, by Zariski's main theorem [START_REF] Mumford | The Red Book of Varieties and Schemes[END_REF], β is an open immersion from Specm(A[a]) into Specm(A). So, β is surjective since A + is in the image of β and since it is in the closure of all G m -orbit in Specm(A). As a result, β is an isomorphism and a is in A, whence the assertion.

(iii) For a in A + and b in S(g e ), ab is equal to 0 on N 0 . Hence ab is in A + by (ii).

(iv) By (ii), A 0 is contained in A. Moreover, since a 1 , . . . , a m , b 1 , . . . , b ℓ are in A 0 , A is contained in the integral closure of A 0 in the fraction field of S(g e ), whence the assertion.

Corollary 3.2. Suppose that the algebra S(g e ) g e is finitely generated. Then A is equal to S(g e ) g e .

Proof. Let C be the quotient of S(g e ) g e by the ideal S(g e ) g e A + . By hypothesis, C is finitely generated. Then it has finitely many minimal prime ideals. Denote them by p 1 , . . . , p m . For a in the radical of S(g e ) g e A + , a is equal to 0 on N 0 . Moreover, it is in S(g e ) g e + . Then, by Lemma 3.1,(ii), a is in A + . As a result, C is a reduced algebra and the canonical map

A 0 -→ A 0 /p 1 × • • • × A 0 /p m
is injective. Since A and S(g e ) g e have the same fraction field, they have the same Krull dimension. Then, by Lemma 3.1,(iii), p 1 , . . . , p m are maximal ideals of C. As a result, the k-algebra C is finite dimensional. Let V be a graded complement to S(g e ) g e A + in S(g e ). According to Lemma 3.1,(iii), S(g e ) g e = VA so that S(g e ) g e is a finite extension of A. Since A is integrally closed in the fraction field of S(g e ) g e , A = S(g e ) g e .

Proof of Theorem 1.4. The "if" part results from [CM16, Theorem 1.5] (see here Theorem 1.3).

Suppose that e is good. By Definition 1.1 and Theorem 1.2, S(g e ) g e is a polynomial algebra and the nullvariety of S(g e ) g e + in g f is equidimensional of dimension rℓ. On the other hand, by Lemma 3.1,(iv), A is the integral closure of A 0 in the fraction field of S(g e ). Hence the nullvarieties of A + and A 0,+ in g f are the same. But by Corollary 3.2, A = S(g e ) g e , so N 0 has dimension r-ℓ since e is good. On the other hand, A 0 is contained in ε(A) by construction of ε(A), and ε(A) is contained in S(g e ) g e by [PPY07, Proposition 0.1], whence N = N 0 .

As a result, N has dimension r-ℓ and so by Theorem 1.5, for some homogeneous generating sequence q 1 , . . . , q ℓ of S(g) g , the element e q 1 , . . . , e q ℓ are algebraically independent over k.

Appendix A. General facts on commutative algebra

In this section t is an indeterminate and the base ring

R is k, k[t] or k[[t]].
For M a graded space over N and for j in N, denote by M [ j] the space of degree j and by M + the sum of M [ j] , j > 0. Let A be a finitely generated graded R-algebra over N such that A [0] = R and such that A [ j] is a free R-module of finite rank for any j ∈ N. Moreover, A is an integral domain. Denoting by dim A the Krull dimension of A, we set:

ℓ := dim A if R = k dim A -1 if t ∈ R
As a rule, for B an integral algebra, we denote by K(B) its fraction field.

A.1. Let B be a graded subalgebra of A.

Lemma A.1.

(i) Let p 1 , . . . , p m be pairwise different graded prime ideals contained in A + . If they are the minimal prime ideals containing their intersection, then for some homogeneous element p of A + , the element p is not in the union of p 1 , . . . , p m . (ii) For some homogeneous sequence p 1 , . . . , p ℓ in A + , A + is the radical of the ideal generated by p 1 , . . . , p ℓ . (iii) Suppose that A + is the radical of AB + . Then for some homogeneous sequence p 1 , . . . , p ℓ in B + , A + is the radical of the ideal generated by p 1 , . . . , p ℓ .

Proof. (i) Prove by induction on j that for some homogeneous element p j of A + , p j is not in the union of p 1 , . . . , p j . Since p 1 is a graded ideal strictly contained in A + , it is true for j = 1. Suppose that it is true for j -1. If p j-1 is not in p j , there is nothing to prove. Suppose that p j-1 is in p j . According to the hypothesis, p j is stricly contained in A + and it does not contain the intersection of p 1 , . . . , p j-1 . So, since p 1 , . . . , p j are graded ideals, for some homogeneous sequence r, q in A + , r ∈ j-1 k=1 p k \ p j , and q ∈ A + \ p j .

Denoting by m and n the respective degrees of p j-1 and rq, p n j-1 + (rq) m is homogeneous of degree mn and it is not in p 1 , . . . , p j since these ideals are prime.

(ii) Prove by induction on i that for some homogeneous sequence p 1 , . . . , p i in A + , the minimal prime ideals of A containing p 1 , . . . , p i have height i. Let p 1 be in A + \ {0}. By [Ma86, Ch. 5, Theorem 13.5], all minimal prime ideal containing p 1 has height 1. Suppose that it is true for i -1. Let p 1 , . . . , p m be the minimal prime ideals containing p 1 , . . . , p i-1 . Since A + has height ℓ > i -1, A + strictly contains p 1 , . . . , p m . By (i), there exists a homogeneous element p i in A + not in the union of p 1 , . . . , p m . Then, by [Ma86, Ch. 5, Theorem 13.5], the minimal prime ideals containing p 1 , . . . , p i have height i. For i = ℓ, the minimal prime ideals containing p 1 , . . . , p ℓ have height ℓ. Hence they are equal to A + since A + is a prime ideal of height ℓ containing p 1 , . . . , p ℓ , whence the assertion.

(iii) The ideal AB + is generated by a homogeneous sequence a 1 , . . . , a m in B + . Denote by B ′ the subalgebra of A generated by a 1 , . . . , a m . Then B ′ is a finitely generated graded subalgbera of A such that A + is the radical of AB ′ + . If R = k, denote by d its dimension and if t ∈ R, denote by d + 1 its dimension. By (ii), for some homogeneous sequence p 1 , . . . , p d in B ′ + , B ′ + is the radical of the ideal generated by p 1 , . . . , p d . Then A + is the radical of the ideal of A generated by p 1 , . . . , p d . Since A + has height ℓ, ℓ d by [Ma86, Ch. 5, Theorem 3.5]. Since B ′ is a subalgebra of A, its dimension is at most dim A. Hence d = ℓ.

Proposition A.2. Suppose that A + is the radical of AB + . Then B is finitely generated and A is a finite extension of B.

Proof. Since A is a noetherian ring, for some homogeneous sequence a 1 , . . . , a m in B + , AB + is the ideal generated by this sequence. Denote by C the R-subalgebra of A generated by a 1 , . . . , a m . Then C is a graded subalgebra of A. Denote by π the morphism The action of G m (k) in A extends to an action of K(A), and A is invariant under this action. Denoting by R the integral closure of R in K(A), R is the set of fixed points under the action of G m (k

Specm(A) π / / Specm(C) whose comorphism is the canonical injection C -→ A. Let A and C be the integral closures of A and C in K(A). Since C is contained in A, C is contained in A.
) in A. Since C is invariant under G m (k) so is C. For m a maximal ideal of R, the ideal m + C + is the maximal ideal of C containing m and invariant under G m (k). Then, for p a maximal ideal of C, p ∩ R + C + is in the closure of the orbit of p under G m (k). Moreover, {m + A + } = π -1 {m + C + }
for all maximal ideal m of R. Hence π is quasi finite. Moreover π is birational. Then, by Zariski's main theorem [START_REF] Mumford | The Red Book of Varieties and Schemes[END_REF], π is an open immersion. As a result, π is surjective. Hence π is an isomorphism and A = C. As a result, A is a finite extension of C since β is a finite morphism. As submodules of the finite module A over the noetherian ring C, A and B are finite C-modules. Hence A is a finite extension of B. Denoting by ω 1 , . . . , ω d a generating family of the C-module B, B is the subalgebra of A generated by a 1 , . . . , a m , ω 1 , . . . , ω d .

Denote by k[t]

* the localization of k[t] at the prime ideal tk[t] and set:

R * :=            k if R = k k[t] * if R = k[t] R if R = k[[t]] , R :=            k if R = k k[[t]] if R = k[t] R if R = k[[t]]
.

For M a R-module, set M := R ⊗ R M. Lemma A.3. Suppose R = k[t].
Let M be a torsion free R-module and let N be a submodule of M. Then for a in N ∩ M, ra is in N for some r in R such that r(0) 0.

Proof. Since M is torsion free, the canonical map M → M is an embedding. Moreover, the canonical map N → M is an embedding since R is flat over R. Let a be in N ∩ M and let a be its image in M/N by the quotient map. Denote by J a the annihilator of a in R, whence a commutative diagram

0 / / N d / / M d / / M/N / / 0 0 / / J a d / / R d / / δ O O Ra / / δ O O 0 0 O O 0 O O
with exact lines and columns. Since R is a flat extension of R, tensoring this diagram by R gives the following diagram with exact lines and columns:

0 / / N d / / M d / / R ⊗ R M/N / / 0 0 / / RJ a d / / R d / / δ O O Ra / / δ O O 0 0 O O 0 O O For b in R, (δ•d)b = (d•δ)b = 0 since a is in N by (i)
, whence db = 0. As a result, RJ a = R. Hence J a contains an element r, invertible in R, that is r(0) 0, whence the lemma.

For p = (p 1 , . . . , p ℓ ) a homogeneous sequence in A + , we set:

p := p if R = k (t, p 1 , . . . , p ℓ ) if R = k[[t]] , A * := R * ⊗ R A, A := R ⊗ R A,
and we denote by J p the ideal of A generated by the sequence p. Since A [0] = R, the gradation on A extends to a gradation on A * and A such that

A [0] * = R * and A [0] = R. When R = k or R = k[[t]], then A * = A and A = A.
Lemma A.4. Suppose that A is Cohen-Macaulay. Let p = p 1 , . . . , p ℓ be a homogeneous sequence in A + such that A + is the radical of the ideal of A generated by p 1 , . . . , p ℓ and let V be a graded complement in A to the k-subspace J p . (iv) For all homogeneous sequence a 1 , . . . , a n in A, linearly free over k modulo J p , a 1 , . . . , a n is linearly free over R[p 1 , . . . ,

p ℓ ]. (v) The linear map V ⊗ k R * [p 1 , . . . , p ℓ ] -→ A * , v⊗a -→ va is an isomorphism.
Proof. According to Lemma A.1,(ii), the sequence p does exist. (i) Let J p be the ideal of A generated by p 1 , . . . , p ℓ . Since A + is the radical of J p , A [d] = J [d] p for d sufficiently big. When t ∈ R, for all d, then tA [d] has finite codimension in A [d] since A [d] is a finite free R-module. Hence J p has finite codimension in A so that V has finite dimension.

(ii) Suppose that t is in R. First of all, we prove by induction on d the inclusion A [d] ⊂ (VR[p 1 , . . . , p ℓ ]) [d] + tA [d] when t ∈ R. Since A [0] is the direct sum of V [0] and J [0] p , V [0] is contained in k + tR, whence the inclusion for d = 0. Suppose that it is true for all j smaller than d. Since p 1 , . . . , p ℓ have positive degree, by induction hypothesis, J [d] p ⊂ (VR[p 1 , . . . , p ℓ ]) [d] + tA [d] ,

whence the inclusion for d. Then, by induction on m, A [d] ⊂ (VR[p 1 , . . . , p ℓ ]) [d] + t m A [d] .

As a result, since A [d] is a finite R-module, A [d] ⊂ (V R[p 1 , . . . , p ℓ ]) [d] ,

whence (iv) Prove the assertion by induction on n. Since A is an integral domain, the assertion is true for n = 1. Suppose the assertion true for n -1. Let (b 1 , . . . , b n ) be a homogeneous sequence in R[p 1 , . . . , p ℓ ] such that

b 1 a 1 + • • • + b n a n = 0.
Let K and I be the kernel and the image of the linear map

R[p 1 , . . . , p ℓ ] n -→ R[p 1 , . . . , p ℓ ], (c 1 , . . . , c n ) -→ c 1 b 1 + • • • + c n b n ,
whence the short exact sequence of R[p 1 , . . . , p ℓ ] modules 

0 -→ K -→ R[p 1 , . . . , p ℓ ] n -→ I -→ 0.
0 -→ A ⊗ R[p 1 ,..., p ℓ ] K -→ A n -→ A ⊗ R[p 1 ,..., p ℓ ] I -→ 0.
is exact. So, for some homogeneous sequence x 1 , . . . , x m in A,

a i = m j=1
x j y j,i for i = 1, . . . , n. Since a n is not in J p , for some j * , the element y j * ,i is an invertible element of R * , whence

b n y j * ,n = - n-1 i=1 b i y j * ,i and n-1 i=1 b i (y j * ,n a i -a n y j * ,i ) = 0.
So, by induction hypothesis,

b 1 = • • • = b n-1 = 0
since the sequence y j * ,n a 1a n y j * ,1 , . . . , y j * ,n a n-1a n y j * ,n-1 is linearly free over k modulo J p . Then b n = 0 since a n 0. (v) Let (v 1 , . . . , v n ) be a homogeneous basis of V. Since the space of relations of linear dependence over R[p 1 , . . . , p ℓ ] of v 1 , . . . , v n is graded, it is equal to {0} by (iv), whence the assertion by (ii). homogeneous sequence (p 1 , . . . , p ℓ ) in B + , A + is the radical of the ideal generated by p 1 , . . . , p ℓ . Set:

p := t, p 1 , . . . , p ℓ if dim A = ℓ + 1 p 1 , . . . , p ℓ if dim A = ℓ
Denote by m the degree of the extension K(A) of K(B). For a in A * , set:

a # := 1 m tr a
with tr the trace map. By Condition (1), B * is normal and the map a → a # is a projection from A * onto B * whose restriction to A is a projection onto B. Moreover, it is a graded morphism of B-modules. Let M be its kernel. Let J 0 and J be the ideals of B and A generated by p respectively. Since t, p 1 , . . . , p ℓ are in B, J is the direct sum of J 0 and M J 0 . Let V 0 be a graded complement in B to the k-space J 0 and let V 1 be a graded complement in M to the k-space M J 0 . Setting

V := V 0 + V 1 ,
V is a graded complement in A to the k-space J. By Condition (3) and Lemma A.4, V has finite dimension and the linear map

V ⊗ k R * [p 1 , . . . , p ℓ ] -→ A * , v⊗a -→ va is an isomorphism. So, since V 0 = V # , the linear map V 0 ⊗ k R * [p 1 , . . . , p ℓ ] -→ B * , v⊗a -→ va
is an isomorphism, whence the assertion.

(ii) results from (i) and Corollary A.5. (iii) By (i) and Corollary A.5, A * is Cohen-Macaulay. For p a prime ideal of B, containing t, B p is the localization of B * at the prime ideal B * p, whence the assertion by (ii).

A.2. In this subsection

R = k[t] and set R = k[[t]].
For M a graded module over R such that M [ j] is a free submodule of finite rank for all j, we denote by P M,R (T ) its Hilbert series:

P M,R (T ) := j∈N rk M [ j] T j .
For V a graded space over k such that V [ j] has finite dimension, we denote by P V,k (T ) its Hilbert series:

P V,k (T ) := j∈N dim V [ j] T j .
Let S be a graded polynomial algebra over k such that S [0] = k and S [ j] has finite dimension for all j. Consider on S [t] and S [[t]] the gradations extending that of S and such that t has degree 0. Consider the following conditions on A:

(1) A is graded subalgebra of S [t],

for all nonnegative integer d. Since a 1 , . . . , a ℓ are algebraically independent over k,

P k[a 1 ,..., a ℓ ],k (T ) = ℓ i=1 1 1 -T d i ,
whence the assertion.

Let Let p be a prime ideal of height 1 of Ã. If t is not in p, Ãp is a regular local algebra as it is already mentioned. Suppose that t is in p. By Lemma A.7,(i), t à = p so that all element of C \ {0} is invertible in Ãp , whence Ãp = K(C) + t Ãp and t Ãp = tK(C) + t 2 Ãp .

Hence Ãp is a regular local ring of dimension 1. As a result, à is regular in codimension 1. Then, by Serre's normality criterion [B98, §1, n • 10, Théorème 4], à is normal since à is Cohen-Macaulay.

Corollary A.9. Assume that Conditions (1), (2) and (3) hold.

(i) The algebra A is equal to C[[t]].

(ii) For a in A, the element ra is in C[t] for some r in k[t] such that r(0) 0.

Proof. (i) Since tA is contained in A, we have K(A) = K( Ã). Since C + is contained in Ã+ , A + is the radical of A Ã+ . Then, by Proposition A.2, A is a finite extension of Ã. So, by Lemma A.8,(iii), A = Ã and by induction on m,

A ⊂ C[t] + t m A
for all positive integer m. Since A and C[t] are graded and since the R-module A [d] is finitely generated for all d, A = C [[t]].

(ii) The assertion results from (i) and Lemma A.3.

Proposition A.10. Assume that Conditions (1), ( 2) and (3) hold. Then the algebra A * is polynomial over R * . Moreover, for some homogeneous sequence q 1 , . . . , q ℓ in A + such that q 1 , . . . , q ℓ have degree d 1 , . . . , d ℓ respectively, A * = R * [q 1 , . . . , q ℓ ].

Proof. According to Corollary A.9 and Lemma A.8,(i), it suffices to prove that C is a polynomial algebra over k generated by a homogeneous sequence q 1 , . . . , q ℓ such that q 1 , . . . , q ℓ have degree d 1 , . . . , d ℓ respectively. According to Corollary A.9,(i), Lemma A.8,(i) and Lemma A.7,(iii),

P C,k (T ) = ℓ i=1 1 1 -T d i
.

By Corollary A.9,(ii), for i = 1, . . . , ℓ, for some r i in R such that r i (0) 0, r i a i has an expansion 

r i a i =

  Lemma 3.1. Let A be the integral closure of k[a 1 , . . . , a m , b 1 , . . . , b ℓ ] in the fraction field of S(g e ).

/

  Let α and β be the morphisms Specm(A) α / / Specm(A) and Specm(C) β / / Specm(C) whose comorphisms are the canonical injections A → A and C → C respectively. Then there is a commutative diagram Specm(A) / Specm(C) with π the morphism whose comorphism is the canonical injection C → A.

( i )

 i The space V has finite dimension.(ii) The space A * is equal to VR * [p 1 , . . . , p ℓ ]. (iii) The algebra A is a flat extension of R[p 1 , . . . , p ℓ ].

  A = V R[p 1 , . . . , p ℓ ]. This equality remains true when R = k by an analogous and simpler argument. When R = k[t], according to Lemma A.3, for a in A, ra is in VR[p 1 , . . . , p ℓ ] for some r in R such that r(0) 0 by Lemma A.3. As a result, A * = VR * [p 1 , . . . , p ℓ ]. (iii) By Proposition A.2, A is a finite extension of R[p 1 , . . . , p ℓ ]. In particular, R[p 1 , . . . , p ℓ ] has dimension ℓ + dim R so that p 1 , . . . , p ℓ are algebraically independent over R. Hence R[p 1 , . . . , p ℓ ] is a regular algebra, whence the assertion by [Ma86, Ch. 8, Theorem 23.1].

  m∈N c i,m t m with c i,m , m ∈ N in C [d i ], with finite support. For z in k and i = 1, . . . , ℓ, set:b i (z) = m∈N c i,m z m so that b i (z) is in C [d i ]for all z. As already mentioned, t, a 1 , . . . , a ℓ are algebraically independent over k by Condition (2) since A has dimension ℓ + 1. Then, so are r 1 a 1 , . . . , r ℓ a ℓ and for some z in k, b 1 (z), . . . , b ℓ (z) are algebraically independent over k. Denoting by C ′ the subalgebra of C generated by this sequence,P C ′ ,k (T ) = ℓ i=1 1 1 -T d i ,whence C = C ′ so that C is a polynomial algebra.

  The gradation of R[p 1 , . . . ,p ℓ ] induces a gradation of R[p 1 , . . . , p ℓ ] n and K is a graded submodule of R[p 1 , . . . , p ℓ ] n since b 1 , . . . , b n is a homogeneous sequence in R[p 1 , . . . , p ℓ ].Denote by y 1 , . . . , y m a generating homogeneous sequence of the R[p 1 , . . . , p ℓ ]-module K. By (iii), the short sequence of A-modules

  p 1 , . . . , p ℓ be a homogeneous sequence in A such that A + is the radical of the ideal of A generated by this sequence. By Lemma A.1,(ii), such a sequence does exist. Denote by C the integral closure of k[p 1 , . . . , p ℓ ] in k(t, a 1 , . . . , a ℓ ). The algebra C is a graded subalgebra of A and t is not algebraic over C.(ii) The algebra C is Cohen-Macaulay. Moreover, C is a finite free extension of k[p 1 , . . . ,p ℓ ]. (iii) The algebra C + tA is normal. Proof. (i) By Lemma A.7,(ii), A is a normal ring such that K(A) = k(t, a 1 , . . . , a ℓ ) by Condition (2). Then C is contained in A since k[p 1 , . . . , p ℓ ] is contained in A. Moreover, C is a graded algebra since so is k[p 1 , . . . , p ℓ ]. By Proposition A.2, A is a finite extension of R[p 1 , . . . , p ℓ ]. So, since A has dimension ℓ + 1,the elements t, p 1 , . . . , p ℓ are algebraically independent over k. As a result, t is not algebraic over C. So, by [Ma86, Ch. 8, Corollary of Theorem 23.9], C[[t]] is a normal ring. By definition, A + is the radical of the ideal of A generated by p 1 , . . . , p ℓ . So A + is the radical of AC[[t]] + since p 1 , . . . , p ℓ are in C[[t]] + . Since R is a flat extension of R, the algebra A is Cohen-Macaulay by Condition (3). Then, by Proposition A.6,(ii), C[[t]] is Cohen-Macaulay. Let V be a graded complement in C to the ideal of C generated by p 1 , . . . , p ℓ . Since t is not algebraic over C, the space V is a complement in C[t] to the ideal of C[t] generated by t, p 1 , . . . , p ℓ . Then, by Lemma A.4, V has finite dimension and the linear morphismV ⊗ k R * [p 1 , . . . , p ℓ ] -→ R * C, v⊗a -→ vais an isomorphism. As a result, the linear morphismV ⊗ k k[p 1 , . . . , p ℓ ] -→ C, v⊗a -→ vais an isomorphism, whence the assertion by Corollary A.5,(ii).(iii) Set à := C + tA. At first, à is a graded subalgebra of A since C is a graded algebra and tA is a graded ideal of A. According to Proposition A.6,(i), for some graded subspace V of A, having finite dimension, the linear morphismsV ⊗ k R * [p 1 , . . . , p ℓ ] -→ A Let v 1 , . . . , v n be a basis of V such that v 1 , . . . , v m is a basis of V ∩ C[t]. For a in A * , the element a has unique expansion a = v 1 a 1 + • • • + v n a n with a 1 , . . . , a n in R * [p 1 , . . . , p ℓ ]. If a is in tA * ,a 1 , . . . , a n are in tR * [p 1 , . . . , p ℓ ] and if a is in R * C, a 1 , . . . , a m are in k[p 1 , . . . , p ℓ ] and a m+1 , . . . , a n are equal to 0, whence R * C ∩ tA * = tR * C and C ∩ tA = {0}. In particular, C is the quotient of à by t Ã. For p a prime ideal of Ã, denote by Ãp the localization of à at p. If t is not in p, then A[t -1 ] is contained in Ãp so that Ãp is a localization of the regular algebra R[a 1 , . . . , a ℓ ][t -1 ] by Condition (2). Hence Ãp is a regular local algebra. Suppose that t is in p. Denote by p the image of p in C by the quotient map. Then Ãp /t Ãp is the localization C p of C at the prime ideal p. Since C is Cohen-Macaulay, so are C p and Ãp . As a result, à is Cohen-Macaulay.

	Lemma A.8. Assume that Conditions (1), (2) and (3) hold.
	(i)

(ii) By (i), C[t] is a polynomial ring over C. * , v⊗a -→ va, (V ∩ C[t]) ⊗ k R * [p 1 , . . . , p ℓ ] -→ R * C, v⊗a -→ va are isomorphisms.

Corollary A.5.

(i) The algebra A * is Cohen-Macaulay if and only if for some homogeneous sequence p 1 , . . . , p ℓ in A + , the algebra A * is a finite free extension of R * [p 1 , . . . , p ℓ ]. (ii) Suppose that A * is Cohen-Macaulay. For a homogeneous sequence q 1 , . . . , q ℓ in A + , A * is a finite free extension of R * [q 1 , . . . , q ℓ ] if and only if R * A + is the radical of the ideal of A * generated by q 1 , . . . , q ℓ .

Proof. (i) The "only if" part results from Lemma A.4,(v). Suppose that for some homogeneous sequence p 1 , . (ii) The "only if" part results from (i) and Proposition A.2. Suppose that A * is a finite free extension of R * [q 1 , . . . , q ℓ ]. Let p be a minimal prime ideal of A * containing q 1 , . . . , q ℓ and let q be its intersection with R * [q 1 , . . . , q ℓ ]. Then q is generated by q 1 , . . . , q ℓ . In particular it has height ℓ. So p has height ℓ since A * is a finite extension of R * [q 1 , . . . , q ℓ ]. As a result, p = R * A + since R * A + is a prime ideal of height ℓ, containing q 1 , . . . , q ℓ , whence the assertion.

Set B * := R * ⊗ R B and for p a prime ideal of B denote by B p its localization at p. Proposition A.6. Suppose that the following conditions are verified:

(1) B is normal, (2) A + is the radical of AB + , (3) A is Cohen-Macaulay.

(i) Let p 1 , . . . , p ℓ be a homogeneous sequence in B + such that B + is the radical of the ideal of B generated by this sequence. Then for some graded subspace V of A, having finite dimension, the linear morphisms (2) for some homogeneous sequence a 1 , . . . , a ℓ in A

]. Moreover, if so, since A has dimension ℓ + 1, then the elements t, a 1 , . . . , a ℓ are algebraically independent over k. Set A := R ⊗ R A.

Lemma A.7. Assume that Conditions (1) and (2) hold.

(i) The element t is a prime element of A. (ii) The algebra A is a factorial ring. (iii) The Hilbert series of the R-module A is equal to

with d 1 , . . . , d ℓ the degrees of a 1 , . . . , a ℓ respectively.

Proof. (i) Let a and b be in

again. As a result, At is a prime ideal of A.

(ii) Since A is finitely generated, it suffices to prove that all prime ideal of height 1 is principal by [Ma86, Ch. 7, Theorem 20.1]. Let p be a prime ideal of height 1. If t is in p, then p = At by (i). Suppose that t is not in p and set p = A[t -1 ]p. Then p is a prime ideal of height 1 of R[a 1 , . . . , a ℓ ][t -1 ] by Condition (2). For a in p, t m a is in p for some nonnegative integer m. Hence p = p ∩ A since p is prime. As a polynomial ring over the principal ring k[t, t -1 ], the ring R[a 1 , . . . , a ℓ ][t -1 ] is a factorial ring. Then p is generated by an element a in p. Since S is a polynomial ring, S [t] is a factorial ring. So, for some nonnegative integer m and for some a ′ in S [t], prime to t, a = t m a ′ . By Condition (2), a ′ is in A. Then a ′ is an element of p, generating p and not divisible by t in A. Let b and c be in

So, for some l in N, t l b = b ′ a ′ for some b ′ in A. We choose l minimal verifying this condition. By (i), since a ′ is not divisible by t in A, b ′ is divisible by t in A if l > 0. By minimality of l, l = 0 and b is in Aa ′ . As a result, Aa ′ is a prime ideal and p = Aa ′ since p has height 1.

(iii) By Condition (2),

. . , a ℓ ] whence rk A [d] = dim k[a 1 , . . . , a ℓ ] [d]