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Abstract

This paper presents a model for virtual reconfigurable modu-
lar robots in order to evolve artificial creatures, able of self-
adaptation to the environment as well as good adjustment to
various given tasks. For this purpose, a simulator has been
entirely developed with the assistance of a physics engine
to represent force activities. One of the most crucial points
in modular robot construction is the choice of module type,
complexity and diversity. We took interest on existing ele-
ments to obtain realistic results but assume simplifications to
focus on our main goal that is algorithmic.

Introduction

Self-reconfiguring modular robots are one of the grand
challenges of robotics (Yim et al., |2007). That points
out the difficulty of such process creation at each step of
development, as well in hardware as in software. First and
foremost, a simulation is essential to test feasibility and
evaluate performance of such modular robots, all the more
so since only a few of virtual creatures have been brought to
the real world.

To evolve these modular robots, rules have been defined
to represent and reconfigure shapes as well as internal
controller. This last one must be able to accomplish various
different tasks and not only motion planning. As our main
goal is to transform external structures, this objective has to
be divided in a sequence of simpler tasks. Neural networks
suit well these requirements and are relatively insensitive to
noise; one will be used in our model. A genetic algorithm
then trains the controller to emerge an adapted behavior.
Afterwards, an example of a moving creature is given to
show the learning ability of a modular robot with only basic
oscillatory displacements, evolving together shape and
motion.

As our goal is to evolve virtual modular robots, we
focus on the algorithmic standpoint. That allows us to
abstract from technical constraints and provides more
liberty in conception. In fact, not only purely mechanical
problems have to be solved but also energy management

and communication methods. We propose here a model
to accomplish different tasks such as motion planning,
object displacement, and structure reconfiguration; evolving
a controller (a neural network) by the mean of a genetic
algorithm.

It is true that any consideration taken in modular robotic
representation determines fundamentally the later possible
description and evolution strategy. So we first present a brief
modular robotics review, showing also the wide extension
of this domain. Then we describe our objectives, the corre-
sponding needs and technical concerns before detailing the
whole model and its implementation. Afterwards a simpli-
fied experience is conduct and the results discussed.

Related Work

Historically, the first modular robots appear in the last 1980s
with CEBOT (Fukuda et al.,|1988) and several models have
been built since then. CEBOT units are the very first inde-
pendent modules equipped with a processor able to commu-
nicate with other ones, approach, attach and separate each
other. Almost all modular robots are composed of several
identical elementary components, fixed dynamically or stat-
ically. Conventional robots have often few degrees of free-
dom and can success to a very few specific tasks, whereas
modular ones are more suited to adapt themselves to their
environment and may achieve numerous problems by the
means of evolutionary algorithms. Modules that compose
these creatures have also a low degree of freedom but their
combination exhibits complex behaviors and allows adap-
tation in various situations. They can be classified in sev-
eral different classes: mobile (CEBOT), stochastic, lattice,
chain, and hybrid. Stochastic modular robots are placed in a
specified 2D or 3D environment (with other modules or/and
in a substrate) and move randomly. They create structure by
bonding to the substrate and/or to another element, evolving
for instance in an oscillatory flow (White et al., 2005)).
Lattice systems arrange modules in a two or three di-
mensional grid structure, simplifying greatly reconfiguration
problems as the scene is a discrete world. ATRON modules
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Figure 1: Left: ATRON reconfiguring. Right: three types of
seven modules arrangement.

(Figure 1), developed by Stoy et al. (Ostergaard et al., 2006)
are some of the most popular ones. Each module can rotate

some multiple of 90 degrees in the lattice structure. On the
right picture, we can see a car-like structure; this ability is
an improvement of lattice based system, the system allow-
ing continuous rotation of a module (rubber bands have been
placed on the outmost of the hemisphere wheels). Further-
more, the connection mechanism is particularly robust that
makes a reliable lattice system with some of the chain sys-
tem flexibility.

Figure 2: A chain type modular robot composed of mole-
cubes and grippers.

In a chain system, robots are composed of groups of con-
nected serial chains (with possible internal loops). The mod-
ules move in a continuous space that makes many tasks
such as motion planning, reconfiguration, and collision de-
tection complex to achieve but it seems promising to fu-
ture research. An example is presented above (Figure 2)
from (Zykov et al) 2008). Other recent works have fo-
cused on self reconfiguration of modular robots Roombots
(molecube-like with one degree of freedom more by a com-
bination of two elementary modules) by the mean of lo-

cal communication and virtual force field (Sprowitz et al.
2010). Experiments were based on handmade configuration

goals in a random starting position. Several strategies have
been tested and some managed to achieve the reconfigura-
tion without any collision.

Figure 3: A six legs hybrid M-TRAN 9 modules robot.

Hybrid systems can be presented as a combination of pre-
vious ones. A great example is given by M-TRAN
[2003) modular robots (Figure 3). These modules
can behave as lattice as well as chain type, allowing com-
bining advantages of each other. Easy reconfiguration and
large possibility of freedom for many tasks like locomotion.
Nevertheless, motion planning for chain or hybrid modular

robots is still a challenge 2004).

Figure 4: Model of robots reconfiguring a truss.

Another challenging domain relative to our main goal is
the external structure reconfiguration. Some recent works



focused on this particular problem on truss structure recon-
figuration (Figure 4); on one hand in a theoretical (algorith-
mic) sense (Yun and Rus, 2008}; Lobo et al.l 2009), on the
other hand in a practical (constructible robots and truss ele-
ments) meaning (Hjelle and Lipson, 2009). The truss is rep-
resented by a tree structure and structure modification rules
are defined. From a given truss configuration, the goal is
to find a realizable elementary reconfiguration operation se-
quence to tend to a given functional goal. A genetic algo-
rithm evolves this sequence and results have already proven
physical feasibility.

Simulation

In order to develop virtual reconfigurable modular robots,
our simulator has to achieve several problems. First, we at-
tach a lot of importance to the fact that the resulting simula-
tion must be as realistic as possible. As for, a physic model
is used, taking into account gravity, static and kinetic fric-
tion, and force activities. Another important point is that
evolutionary algorithms are large computer-time consumers
and, at least in a first time, we will try to evolve creatures on
a single computer, so the application has to be optimized in
this way while preserving reliability. Furthermore, the sim-
ulator has to accomplish these tasks:

e Robot description: at each evolution step of each robot, a
descriptor should define the creature shape as well as his
internal controller.

e Creature evolution: a modular robot must be able to
change his shape and his internal controller by the mean
of different rules.

e Simulation: each robot have to be robustly simulate in a
3D space in a given trial period, no rendering is needed at
this stage.

e Creature evaluation: to permit evolution, each creature is
evaluated after simulation. A fitness function has to be
created for each given task.

e Visual rendering: once a creature has been evolved the
results have to be displayed in a three dimensional envi-
ronment.

Finally, the simulator must be able to evolve a large popu-
lation of creatures and allow diversity in modules. Relatively
to existing open source simulators, if some are available,
none fit completely our needs, even if a current development
looks interesting in this way: SYMBRION and REPLICA-
TOR (Winkler and Worn, [2009). Some projects already suc-
cessfully used them (Schmickl et al.l 2009; [Hamann et al.|
2010). Another one, named USSR (Unified Simulator for
Self-Reconfigurable Robots) and written in JAVA permits to
simulate different kinds of modular robots: ATRON (Lund
et al.| [2006), Odin (Garcia et al., 2007; Lyder et al., [2009),

and M-TRAN (Kamimura et al.,|2005). It was used to simu-
late the combination between an ATRON and an Odin mod-
ular robots in virtual then in real world (Bordignon et al.,
2008). However, developing our own platform gives us a lot
of possibilities in evolution and optimization.

Technical considerations

Regarding to physics engine, its a crucial element for the
simulation in terms of stability, reliability, and robustness.
Some are available but they greatly differ in possibilities and
performances (Boeing and Braunl, |2007). Most popular are
Open Dynamics Engine (ODE), Bullet, Nvidia PhysX, and
Havok. For instance, ODE doesnt propose dynamic convex
mesh (useful for collision detection), Bullet doesnt manage
fixed joints (this can be done by object combination) nor
kinetic friction and Havok is a commercial solution and so
not attractive for our case. Tests have been realized with
the first three engines and results show best performance in
time computation for Nvidia Physx, just ahead Bullet.

Additionally, PhysX includes all essential functionalities
and is currently the first used engine in game development.
By now, the rigid bodies calculation is done by the CPUs
but Nvidia announced its GPU computation in the next
SDK (Software Development Kit) version (to appear this
year). It should accelerate significantly performances with
a dedicated adapted graphic card and let the CPUs free of
charge for other tasks. However, new features are only
available for Windows (XP, Vista, Seven) and no more
support is given to Linux older versions from nearly two
years.

Like Nvidia PhysX physics engine, our simulator is writ-
ten in C++, which allows an excellent global performance
and many possibilities of optimization. To keep physics
engine version up to date we decide to write the code under
Windows Seven rather than Linux. Nevertheless, the code
is relatively easy to transfer to another operating system like
Linux; main changes rely on multithreading functions. So if
complex evolution strategy requires long time computation,
we will transfer the code to Linux and test algorithms on a
grid computing.

Model Implementation

From our main virtual modular robot goal, we will detail
our implementation selection about module, and controller
choices, then representation, evolution, and evaluation meth-
ods.

Global objective

The overall goal of this project is to transform external struc-
tures by virtual autonomous reconfigurable modular robots.
To realize this task many points have to be considered. First



the main representation of a robot is a hybrid representation
able to solve complex tasks, as described as necessary in
the literature 2008). Elementary modules can
be fixed together to form parts able to achieve different par-
ticularly tasks, like motion or object displacement. These
parts can then be attached or detached dynamically to form
a more complex entity, a robot with a more global goal, such
as structure reconfiguration.

Module types

One of crucial point in modular robotics development is the
choice of elementary module types. In most cases modular
robots are composed of only one identical type with a few
degrees of freedom, linked up according to a chain or a lat-
tice structure. It is true that evolution complexity grows up
with module diversity. Our model is inspired by existing el-
ements called molecubes (Figure 5) which have been well
experimented in virtual and real life (Zykov et all, [2008).
But as our goal is to test virtual complex tasks we allow our-
selves some liberty in their manipulation.

Figure 5: An elementary module: molecube.

Molecube is a cube divided in two parts, rotating around
an axis defined by to opposite corners. It as then one de-
gree of freedom and can be fixed to another module. Origi-
nally, the structure model was a chain type where a module
can fix dynamically only two other elements (more if hand-
connected), but we overcome this feature in our model, in-
troducing a way to attach up four modules. To represent
such an arrangement, we will use a tree structure, allowing
complex configurations and avoiding loop structures. Other
parts have also already been manufactured, such as wheels,
grippers, digital cameras, batteries and passive modules. By
now, our model only makes use of standard molecubes but
is planed to accept more types, especially passive modules.
Another simplification has been done relatively to module

communication: as we dont consider technical specifica-
tions, we assume that all modules can communicate directly
with no latency. In a same way, energy management isnt part
of our preoccupations.

Internal controller

Evolving robot behavior is a real challenge in modular
robotics. To carry out this achievement one can use different
approaches: stimulus-response rules, neural networks or
state machines (Sofge et al, [2003). For stimulus-response,
continuous inputs have to be transformed in discrete outputs
and it is really hard to determine transitional goals, even for
simple tasks. State machines are more suited for discrete
charge. Furthermore, both two approaches are very sensitive
to noise, whereas neural networks offer a good alternative to
each of these problems; all the more so since a large variety
of input signals helps to evolve such a system, which is our
case as we will see.

Computer modeling with a physics engine bring over
many advantages and opportunities with few computational
effort. In our creatures, a lot of internal sensors are directly
provided by the physics engine and some external ones are
easily computable. First, each molecube module, as describe
above, is composed of two halves with a rotation axis. At
each step of a simulation, Nvidia PhysX engine allows the
application to get back various data comparable to internal
sensors such as module position, orientation, its linear and
angular velocity, torque forces and for the rotation axis the
motor state, its velocity and angle of rotation. Other ele-
ments can be easily retrieved like global mass, global posi-
tion, and external sensors can be thought, such as distance
detector, infrared sensor, digital camera, etc. These data
are then bringing in the neural network as inputs which will
compute creature comportment by the means of its outputs,
applying forces and angular velocity to module rotational
axes. After all, the evolutionary algorithm will be ready to
train the neural network.

Internal representation

At this stage, robot parts, as described above, can be fully
considered as entire robots and defined by a set of elemen-
tary modules in a tree structure. They are encoded in a gene
according to a simple representation with a very low mem-
ory cost but which exactly describes creature shape. First,
tree structure is a depth-first one and each elementary ele-
ment is encoded on two bytes (16 bits) as follow:

e Bits 12 — 15: elementary module type.

Bits 8 — 11: orientation.

Bits 6 — 7: currently unused.

Bits 0 - 5: next elements.



Thus the model accepts up to sixteen elementary module
types (molecube, passive module, etc.) and gives an orien-
tation: for instance molecube can have four possible ones,
according to its rotation axis direction. Next elements stand
for ”is linked to another module in a given direction” (from 0
to 5: front, back, up, down, left, and right). This representa-
tion permits short gene length (fixed in our model for prac-
tical and efficiency reasons). Many useful functions have
been directly encoded in the depth-first tree structure, nearly
all recursive but fast enough for relatively small trees. Then
a robot can be fully describe and functional with a gene, a
spatial position and one or more controller for a given task.

Shape evolution

In order to evolve different module configurations, several
structure reconfigurations have been built, well suited to tree
structures:

e Add branch: add a random branch of another creature to
arandom free place in the tree (cross-over).

e Remove branch: remove a random branch (mutation).

e Swap branch: swap two random branches from two crea-
tures (cross-over) or swap two random branches of the
same creature (mutation).

e Add leaf: add leaf at a random free place (mutation).

e Remove leaf: remove a random leaf of the creature (mu-
tation).

These rules are not always applicable; the number of mod-
ules is limited (lower and upper), a sub-branch cannot swap
with one of its parent, and some configurations cant be built
(modules intersection), so achievability tests have to be ex-
ecuted for each transformation. Once mutations and cross-
over have been done, the simulator can run simulations to
evolve a controller.

Evaluation

Simulations are run (in parallel for multi-core computers)
for a given period of time (without the need of a visual rep-
resentation), after what an evaluation is given to each crea-
ture of the population, according to the given task. A fitness
function takes charge to grade resulting robots, depending of
its performance. Then, as commonly for genetic algorithms,
creatures are classified and bests ones reused for mutation
and cross-over for next generations. The simulator stops
when a given number of generations and/or when a valu-
able fitness grade is reached. Then results are saved. After
all, a visualizing tool has been built in OpenGL to ensure
rendering of evolved creatures.

First Experiments

As the project is still in development and the neural network
not yet implemented, very first tests have been conducted
with some simplifications in order to validate other func-
tionalities, physics engine use and in a larger domain, feasi-
bility. In a first stage, we tried to evolve creatures with basic
oscillatory movements, and without any sensor (only colli-
sions are managed by the physics engine). The controller
is then distributed on all modules (which are here indepen-
dents) and some major modifications have then been realized
in the model presented above:

o If the gene tree structure is preserved, a motion directive
has been added to each module (encoded in gene).

e For all mutations and cross-over, the motion directives are
copied out.

e Two move mutations have been added:

— Change move: randomly modify motion directive in
one or more module.

— Smooth change move: randomly lightly modify motion
directive in one or more module.

Experimentation

One of our goals was to validate this approach with
very simple movements, no bias and realized on a single
computer. Virtual modular robots are randomly built in
a first stage, then simulated and evaluated by a fitness
function. The simulation positions virtual creature on the
ground and starts moving for fifteen (simulated) seconds
after five (simulated) seconds of resting (to avoid falling
displacements of unstable robots). Then shape and motion
directives are co-evolved by mutations and cross-over of
best individuals.

The motion directive is a given by the following formula:

2 . wy.mt

vf;ai.sm( . + ;) (D
Where:

e v is the velocity target applied to the rotational axis,

e «; the amplitude,

e w; the frequency,

e ¢ the time,

e 7 aregulation factor,

e (; the phase.



And the fitness function rewards creatures that move for-
ward, with the less side deviation:

®=y—y; +05|z; — x| 2)
Where:
e @ is the fitness value (cube size is one unit),

e 1,y the final X, y centre of mass robot position,

e ;. y; the initial X, y centre of mass robot position (after
resting).

Figure 6: eight modules moving robots. Second picture
shows a two legs-like motion strategy.

Results

Some other parameters have to be fixed, such as limits of
forces, number of modular elements (here from eight to
thirty), cross-over and mutation rates, etc. Tests have been
realized on a population of 1 024 modular robots (keep-
ing 256 bests individuals at each step) on a single com-
puter with an Intel core i7 processor @ 3 GHz (four cores
with hyper threading technology, i.e. eight virtual cores).
From the 50" generation (more than half an hour of com-
putation), bests creatures act as well and after the 70" one

(about one hour of calculation) no significant improvement
appears (Figure 8). A video of the best individual is avail-
able here: http://www.youtube.com/watch?v=J_
OnBlmSFHs|. However, purely random creature construc-
tion doesnt give any acceptable result in a same period of
time.

We can first see that almost all best virtual creatures
(Figure 6) have the lower number of elements (all in the
lasts generations). It is due to two major reasons: on one
hand, adding a module to a creature grows up motion
directive search field significantly and then slows down
convergence as same (large creatures easily deviate and are
less graded than smallest ones). In the other hand, small
creatures earn good graduation earlier than others, so big
creatures are less and less retained for next generations.

We have also notice that the large number of parameters
greatly influences convergence and its rate speed (Figure 7,
Figure 9). They have here been hand-fixed with reasonably
values, as describe below. For instance, a simplest sinus
function gives some poorer results but keep some conver-
gence and more sinus combination increases the search field
too much and therefore decreases results quality. The re-
sulting robot movement is in addition very sensitive to noise
and light changes in a motion directive can greatly interfere
on final progression. Incorporating it to mutation directives
helps to obtain a swift convergence.

Technical implementation

These values are:

e The amplitude: from —4.0 to 4.0 (step 0.125)
e The frequency: form —1.5 to 1.5 (step 0.125)
e The time step is 1/60 second

e The regulatory factor is 60

e The phase is inferior to 7

e The resulting angular velocity in absolute value is then
inferior or equal to 8.0 ~ 2.5.7 rad/s

At each generation, creatures are sorted by grade and
25 % of best individuals are kept with no modification.
Then new genes are built from these ones with 30 % of
cross-over and 45 % of mutation, dispatched as follow:

e Cross-over:

— 25 % branch swapping (removes a branch and substi-
tutes it by another creature one).

— 5 % add a branch (from another creature).
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e Mutation:

— 15 % change move (randomly change from one to three
motion directives).

— 10 % smooth change move (randomly change lightly
from one to three motion directives).

— 5 % add leaf

— 5 % remove leaf

— 5 % move branch (internal branch displacement)
— 5 % swap two branches (internally)

Notice that if an operation is not achievable, it is replaced by
a single random move directive modification.

Figure 7: A ten modules moving robot, obtained after evo-
lution, setting minimal module number to ten.
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Figure 8: Fitness evolution towards generations, 1024 crea-
ture population of eight modules minimum; 5 seconds rest-
ing, 15 seconds moving.
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Figure 9: Fitness evolution towards generations, 1024 crea-
ture population of ten modules minimum; 5 seconds resting,
15 seconds moving.

Conclusion

In this paper we have presented a model for virtual recon-
figurable modular robots, able to evolve virtual creatures in
a modeled physical world. As the project is still in develop-
ment we have implemented a simplified motion controller to
test our virtual simulator. These very first results have shown
a convergence with only basic motion directives and are then
suitable enough to compare future ones with an evolved neu-
ral network controller, that greatly encourage us to pursue
development in this way. Furthermore, directive movements
are very sensitive to noise, a problem that neural network
should reduce significantly.

Future Work

Current program expansion is a neural network encoding
in order to achieve several tasks, from motion to structure
reconfiguration. Virtual modular robot displacement could
be placed in continuation of some older works with a
new kind of evolution. In 1994, Karl Sims stepped across
a new challenge, realizing virtual autonomous creatures
able to learn dynamically motion planning (Sims, |1994).
Some other works have then been achieve from with more
sophisticated tasks, such as bloc pushing, stair climbing and
skating (Lassabe et al., 2008). A review and a presentation
can be found here (Duthen et al., 2011). Our project fits to
these achievements but not in a similar approach: evolving
virtual realistic modular robots by the mean of neural net-
works which should also consider collision control and be
able to accomplish particular tasks like object displacement
in a virtual world.
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