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Abstract

In this article, we give a necessary and sufficient condition of Kalman type for the indirect
controllability of systems of groups of linear operators, under some “regularity and locality”
conditions on the control operator that will be made precise later and fit very well the case of
distributed controls. Moreover, in the case of first order in time systems, when the Kalman rank
condition is not satisfied, we characterize exactly the initial conditions that can be controlled.
Some applications to the control of systems of Schrödinger or wave equations are provided.
The main tool used here is the fictitious control method coupled with the proof of an algebraic
solvability property for some related underdetermined system and some regularity results.

Keyworlds: controllability of abstract linear semi-groups, indirect controllability of systems,
Schrödinger and wave equations, fictitious control method, algebraic solvability.

MSC: 35F35, 35G35, 47D03, 93B05, 93B07.

1 Introduction

1.1 Presentation of the problem

The problem of controlling coupled systems of partial differential equations has drawn an increasing
interest during the last decade, notably in the case of linear parabolic or hyperbolic linear systems, but
also of more complex systems that naturally appear in numerous fields, including fluid mechanics,
biology, population dynamics, medicine, etc. A very challenging issue for coupled system is the
question of indirect controllability, which consists in understanding whether it is possible to act
on them by a reduced number of controls (i.e. the number of controls is less that the number of
equations), and on which equations it is necessary or not to act. This issue is interesting both from
a theoretical and practical point of view.

From a theoretical point of view, this question is closely related to a more fundamental question
on systems: which and how information propagates from one equation of the systems to another
through the coupling terms, and notably how the coupling terms influence this propagation? Another
related theoretical question comes from the field of inverse problems: using the well-known duality
between controllability and observability, the question of controllability is equivalent to understanding
if it is possible to recover the initial conditions of all components of an adjoint system thanks to
partial observations on the system, giving notably some quantitative informations about the unique
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continuation properties. To finish, let us mention that, as explained in details in [AB13, Section
1], indirect controllability is also closely related to insensitizing control and simultaneous control of
coupled systems.

Concerning practical applications, indirect controllability is also crucial: for real-life models in-
volving for example different kinds of physical quantities (velocity of a fluid, temperature, etc.), it
might be impossible to act directly and all of them, and then it is important to understand if one can
act on a complex system by just controlling for example one of the physical variables. Another point
is that it is reasonable to try to limit the number of actuators or sensors for cost reasons. Hence, the
questions raised here can also be of interest many other fields like automatic and engineering.

Our precise goal in the present work will be to understand how the algebraic structures of the
coupling terms and of the control operator influence the properties of indirect controllability for
conservative systems. More precisely, our initial motivation was to derive new controllability results
in the spirit of [AKBDGB09a] (which concerns systems of heat equation) in the case of conservative
systems. Let us emphasize that for conservative systems, the strategy developed in [AKBDGB09a]
(for systems of heat equations) cannot be used at all because it was based on Carleman estimates. In
this paper, we propose a possible strategy (that will be described briefly soon) that turns out to be
valid in a much more general framework, so that the possible applications of this work cover a large
class of problems, basically conservative partial differential equations with internal control.

For the sake of clarity, let us briefly explain on some examples the spirit of the present contribution
on two examples, the Schrödinger or wave systems with internal control and constant coupling terms
(the detailed results in these cases are given in Section 4). Let T > 0 and Ω be a smooth bounded
open subset of IRN . We denote by L2(Ω) the set of square-integrable functions defined on Ω with
values in the complex plane C. Let n ∈ IN∗ with n > 2. We consider the following control system of
n Schrödinger equations with internal control{

∂tY = i∆Y +AY + 1ωBV in (0, T )× L2(Ω)n,
Y (0) = Y 0 ∈ L2(Ω)n,

(1.1)

with (A,B) ∈Mn(C)×Mn,m(C), Y ∈ L2(Ω)n the state and V ∈ L2(Ω)m the control, that may not
act on all the equations.

We also consider the following control system of n wave equations with internal control ∂ttY = ∆Y +AY + 1ωBV in (0, T )× L2(Ω)n,
Y (0) = Y 0 ∈ H1

0 (Ω)n,
∂tY (0) = Y 1 ∈ L2(Ω)n.

(1.2)

In this context, a natural issue is the following: is it possible to find necessary and sufficient
algebraic conditions on A and B of Kalman type that ensure the null controllability of systems (1.1)
or (1.2), under some appropriate geometric conditions on ω (and in sufficiently large time for (1.2))?
The general method that we will use in the article to answer this question is sometimes called fictitious
control method and was first introduced in [GBPG06]. It has been then used in different context,
notably in [ABCO15], [CL14] and [DL16]. Let us explain the strategy on equation (1.1) (this is the
same on equation (1.2)). We first control the equations with n controls (one on each equation) and we
try to eliminate the control on the last equation thanks to algebraic manipulations. More precisely,
we decompose the problem into two different steps:

Analytic problem:
Find a solution (Z, V ) in an appropriate space to the control problem by n controls which are regular
enough, i.e. solve  ∂tZ = i∆Z +AZ + 1ωV in QT ,

Z = 0 on ΣT ,
Z(0, ·) = y0, Z(T, ·) = 0 in Ω,

(1.3)
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where V = (V1, . . . Vn). Solving Problem (1.3) is easier than solving the null controllability at time
T of System (1.1), because we control System (1.3) with a control on each equation.

Algebraic problem:
For f := 1ωU , find a pair (X,W ) (where W has now only m components) in an appropriate space
satisfying the following control problem: ∂tX = i∆X +AX +BW + f in QT ,

X = 0 on ΣT ,
X(0, ·) = X(T, ·) = 0 in Ω,

(1.4)

and such that the spatial support of X is strongly included in ω. We will solve this problem using
the notion of algebraic solvability of differential systems, which is based on ideas coming from [Gro86,
Section 2.3.8]. The idea is to write System (1.4) as an underdetermined system in the variables X
and W and to see f as a source term, so that we can write Problem (1.4) under the abstract form

L(X,W ) = f,

where
L(X,W ) := ∂tX − i∆X −AX −BW.

The goal will be then to find a partial differential operatorM satisfying

L ◦M = Id. (1.5)

When (1.5) is satisfied, we say that System (1.4) is algebraically solvable. This exactly means that
one can find a solution (X,W ) to System (1.4) which can be written as a linear combination of some
derivatives of the source term f .

Conclusion:
If we can solve the analytic and algebraic problems, then it is easy to check that (Y, V ) = (Z−X,−W )
will be a solution to System (1.1) in an appropriate space and will satisfy Y (T ) ≡ 0 in Ω.

For more details concerning this method, we refer to [DL16, Section 2.3], [CL14, Section 3.1],
[Lis13, Section 1.3] and Sections 2 and 3. Thanks to this method, we are able, for systems like (1.1)
and (1.2) and under some additional conditions, to find some sufficient condition of controllability
(the Kalman matrix [B|AB| . . . An−1B] has to be of maximal rank) that can be proved to be also
necessary. In the case of equation 1.1, if the Kalman matrix is not satisfied, the same method also
enables us to characterize the initial conditions that can be controlled. The examples of the wave and
Schrödinger equations are treated in details in Section 4 of this work and all the results presented in
in Section 4 are new. This approach may be to some extent generalized to abstract linear groups of
operators under appropriate assumptions that are explained in details in Section 1.2.

Our paper is organized as follows. In Section 1.2, we explain in details the abstract framework
chosen here and give the main results. In Section 1.3, we recall some previous results and explain
precisely the scope of the present contribution. In Section 1.4 we present some related open problems.
Section 2 and 3 are respectively devoted to proving Theorem 1 and Theorem 2. In Section 4, we
conclude with some applications, giving new results for the indirect controllability of Schrödinger
equations and wave equations with internal control.

1.2 Abstract setting and main results
Let us introduce some notations. Let T > 0 and K = R or C . Let U , H two Hilbert spaces on K
(that will be always identified with their dual in what follows) and a linear continuous application
C : U → H, which will be our control operator (one may think as an example to consider C as a
distributed control). We consider
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• L : D(L) ⊂ H → H a closed unbounded operator with dense domain, which is supposed to be
the generator of a strongly continuous group on H,

• Q : D(Q) ⊂ H → H another closed unbounded operator with dense domain, which is supposed
to be self-adjoint and negative with compact resolvent.

One can think as an example to consider L = i∆ and Q = ∆, which are typical situations where our
general result can be applied (see Section 4).

Let n ∈ IN∗ with n > 2 and m ∈ IN∗, and let (A,B) ∈ Mn(K) ×Mn,m(K) two matrices. For
every k ∈ N∗, we introduce the operators Lk : D(L)k ⊂ Hk → Hk, Qk : D(Q)k ⊂ Hk → Hk and
Ck : Uk → Hk such that, for every ϕ ∈ D(L)k and ψ ∈ Uk,

Lk(ϕ) =


L(ϕ1)
L(ϕ2)

...
L(ϕk)

 , Qk(ϕ) =


Q(ϕ1)
Q(ϕ2)

...
Q(ϕk)

 and Ck(ψ) =


C(ψ1)
C(ψ2)

...
C(ψk)

 . (1.6)

We consider the (first and second order in time) systems of n linear equations

∂tY = Ln(Y ) +AY +BCmV in (0, T )×Hn, (Ord1)

and
∂ttY = Qn(Y ) +AY +BCmV in (0, T )×Hn, (Ord2)

where V := (v1, . . . , vm) ∈ Um is called a control. One can think of equation (Ord1) as a general-
ization of the Schrödinger system (1.1), whereas one can think of equation (Ord2) as a generalization
of the wave system (1.2).

(Ord1) (resp. (Ord2)) can be seen as a “system” version of the “scalar” controlled equation
∂tz = Lz + Cu (resp. ∂ttz = Lz + Cu), where we add some coupling terms of zero order through the
matrix A and where we impose a precise structure on the control through the matrix B. Note that
one may have m < n, which means that the number of controls can be strictly less than the number
of equations, and notably some equations might be uncontrolled. In this setting, the structure of
the coupling terms is crucial in order to obtain some controllability results, and in some sense these
coupling terms can be used to act indirectly on the equations that are not controlled.

It is usual to write the second order system (Ord2) as a first order system (see section 3.1).
However, we emphasize that (Ord2) is not a particular case of (Ord1), the reason being that if we
transform (Ord2) into a first order system, we will not be able to find any matrix A such that (Ord2)
can be written as (Ord1). Finding such a matrix would require that the coupling terms involve
simultaneously Y and Yt (see notably (3.3)), which is not the case here.

It is well-known that for the controllability of coupled systems like (Ord2), the natural state
space D(Q 1

2 )n ×Hn is not always possible. For instance taking zero as initial data we cannot reach
any target state in D(Q 1

2 )n × Hn because of the regularity of solutions of (Ord2) (one might for
example think of a upper triangular matrix A with a control acting only on the last equation, see
[DLRL14]). The same phenomena does not occur for system like (Ord1), however, in both cases, we
will always assume that the initial conditions are regular enough, namely Y (0) ∈ D(Ln−1)n (resp.
(Y (0), ∂tY (0)) ∈ D(Qn− 1

2 )n × D(Qn−1)n), which is enough to ensure that system (Ord1) (resp.
(Ord2)) with initial condition in these spaces admits a unique solution in C0([0, T ];Hn) (resp. in
C0([0, T ];D(Q 1

2 )n ×Hn).
The main goal of this article is to analyze the null controllability of System (Ord1) and System

(Ord2), which would (partially) generalize the results of [AKBDGB09a] in the case of conservative
systems. Let us recall the definition of these notions. It will be said that
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• System (Ord1) (resp. System (Ord2)) is null controllable at time T if for every initial con-
dition Y 0 ∈ D(Ln−1)n (resp. (Y 0, Y 1) ∈ D(Qn− 1

2 )n × D(Qn−1)n), there exists a control
V ∈ C0([0, T ];Um) such that the solution Y to System (Ord1) with initial condition Y (0) = Y 0

(resp. to System (Ord2) with initial condition (Y (0), ∂tY (0)) = (Y 0, Y 1)) satisfies

Y (T ) ≡ 0 in Hn (resp. Y (T ) ≡ 0 and ∂tY (T ) ≡ 0 in Hn ×Hn).

• System (Ord1) (resp. System (Ord2)) is exactly controllable at time T if for every initial
condition Y 0 ∈ D(Ln−1)n (resp. (Y 0, Y 1) ∈ D(Qn− 1

2 )n×D(Qn−1)n) and every YT ∈ D(Ln−1)n

(resp. (YT , ZT ) ∈ D(Qn− 1
2 )n ×D(Qn−1)n), there exists a control V ∈ C0([0, T ];Um) such that

the solution Y to System (Ord1) with initial condition Y (0) = Y 0 (resp. to System (Ord2)
with initial condition (Y (0), ∂tY (0)) = (Y 0, Y 1)) satisfies

Y (T ) ≡ YT in D(Ln−1)n (resp. Y (T ) ≡ YT in D(Qn− 1
2 )n and ∂tY (T ) ≡ ZT in D(Qn−1)n).

Let us remark that since Ln (resp. Q̂n defined in (3.2) , see Section 3.1) is a generator of a group,
then System (Ord1) (resp. System (Ord2)) is null controllable at time T if and only if it is exactly
controllable at time T (see for example [Cor07, p. 55]). Hence, from now on, we will only concentrate
on the null controllability of Systems (Ord1) and (Ord2).

Our main assumptions (that will be commented afterwards) will be the following.

ASSUMPTIONS

There exists a linear continuous application C : U → H such that

Assumption 1.1. [Scalar null controllability]

Case (Ord1) The control system
∂tz = Lz + Cu, (1.7)

is exactly controllable at time T ∗.

Case (Ord2) The control system
∂ttz = Qz + Cu, (1.8)

is exactly controllable at time T ∗.

Assumption 1.2. [Regularity and locality]

Case (Ord1) Lk(CC∗D(L∗k)) ⊂ C(U) for all k ∈ {0, · · · , n− 1},

Case (Ord2) Q k
2 (CC∗D(Q k

2 )) ⊂ C(U) for all k ∈ {0, · · · , 2n− 2}.

Remark 1. 1. It might happen that the operator C itself verify Assumptions 1.1 and 1.2, hence
in some sense our assumptions are more general than just stating the same assumptions
replacing C by C. However, the price to pay is that condition 1.1 is stronger than just having
Assumption 1.1 with the control operator C (see the next point).

2. Assumption 1.1 may seem quite artificial since it does not seem to be related to the controlla-
bility of systems

∂tz = Lz + Cu, (1.9)

and
∂ttz = Lz + Cu, (1.10)

that would be the natural minimum conditions one might expect.
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However, one can easily prove that Assumptions 1.1 and 1.2 imply the controllability at time
T ∗ of (1.9) and (1.10). Let us explain it for (1.9) (this exactly the same reasoning for equation
(1.10)). Thanks to the Hilbert Uniqueness Method (HUM, see [Lio88]), we know that the
control function u in (1.7) with minimal L2-norm is necessarily in R(C∗) (where R denotes the
range of an operator), which implies that Cu ∈ R(CC∗), hence thanks to Assumption 1.2 (with
k = 0), we obtain Cu ∈ R(C) and this proves that (1.9) is indeed controllable.

3. One consequence of Assumption 1.2 is that we have CC∗D(L∗k) ∈ D(Lk) for every k ∈
{0, · · · , n − 1}, hence is some sense C has to “preserve the regularity”, which is very natural
in the context of conservative systems of second order like (Ord2) (see notably [DL09]). How-
ever, in many applications this is in general false for the operator C itself (and it the main
reason why we introduce C). For example, consider some open subset Ω of RN (N ∈ IN∗),
and consider H = U = L2(Ω). Assume that L is a differential operator defined on some open
subset Ω and the application C : L2(Ω) → L2(Ω) is defined by Cu = 1ωu, where ω is some
open subset of Ω. Then it is clear that the property CC∗D(L∗k) ∈ D(Lk), which is equivalent
to 1ωuD(L∗k) ∈ D(Lk), is always false as soon as k > 0, L is of order more than 1 and ω is
different from Ω (because 1ω ∈ L2(Ω) but does not belong to any higher order Sobolev space).
Hence, roughly speaking, the linear application C has to be thought as a “regularization” of the
linear application C. In the case of distributed control, a natural candidate for C is Cu = 1̃ωu,
where 1̃ω ∈ C∞c (Ω) is some “regularization” of the indicator function 1ω, defined for example
such that

1̃ω :=

{
1 on ω0,
0 on Ω\ω,

where ω0 is some well-chosen open set included in ω. This will be explained into more details
in Sections 4.1 and 4.2.

4. Adding the condition Lk(CC∗D(L∗k)) ⊂ C(U) for all k ∈ {0, · · · , n − 1} is necessary in our
method to prove that our control is in (C(U))m. This notably ensures that the operatorM and
M̃ defined in (2.18) and (3.17) respectively are “local” in the sense that they send an element
of the range of CC∗ into an element of the range of C.

In the sequel, we will denote by [A|B] ∈Mn,nm(K) the Kalman matrix, which is given by

[A|B] = (B|AB|A2B| · · · |An−1B). (1.11)

Our result gives a necessary and sufficient condition for exact (or null) controllability of System
(Ord1) and (Ord2).

Theorem 1. Let us assume that L satisfies Assumptions 1.1 and 1.2 . Let Y 0 ∈ (D(L)n−1)n.
Then, for every T > T ∗, there exists a control V in C0([0, T ]×Um) such that the solution of (Ord1)
corresponding to the initial condition Y (0) = Y 0 in Hn satisfies

Y (T ) ≡ 0 in Hn

if and only Y 0 ∈ [A|B](Hnm).

Remark 2. Concerning Theorem 1, the reversibility of the equation allows us to obtain the same
conclusion if we replace the final condition Y (T ) = 0 by Y (T ) = Y T for some Y T ∈ D(Ln−1)n ∩
[A|B](Hnm).

When rank([A|B]) = n, Theorem 1 gives us a necessary and sufficient condition for the null
controllability of System (Ord1).

Corollary 1.1. Let us assume that L satisfies Assumptions 1.1 and 1.2. Then, for every T > T ∗, the
control system (Ord1) is exactly controllable at time T if and only if rank([A|B]) = n.
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Concerning system (Ord2), we have the following result.

Theorem 2. Let us assume that Q satisfies assumptions 1.1 and 1.2. Then, for every T > T ∗, the
control system (Ord2) is exactly controllable at time T if and only if rank([A|B]) = n.

Remark 3. We were not able to derive the same kind of result as in Theorem 1 in the case of second-
order in time systems, so that we do not know it would be true in this context.

Using the transmutation technique (for instance the version given in [EZ11]) and Section 3.2, one
can deduce easily the following result in the parabolic case, assuming that the corresponding “scalar”
hyperbolic system is controllable.

Corollary 1.2. Let us assume that Q satisfies Assumptions 1.1 and 1.2. Then, for every T > 0, the
control system

∂tY = Qn(Y ) +AY +BCmV in (0, T )×Hn,

is null controllable at time T if and only if rank([A|B]) = n.

Remark 4. (a) rank([A|B]) = n is called the Kalman rank condition by analogy with the finite-
dimensional case.

(b) The assumption T > T ∗ enables us to choose a regular control U in time for the analytic
system (2.1) such that U(0) = U(T ) = 0 (see [EZ10]). This is necessary to ensure that during
the resolution of the Algebraic Problem, we can construct a solution X of (2.9) or (3.11) such
that X(0) = X(T ) = 0. However, many of the controllability results known in the literature
are either results in arbitrary small time or with an “open” condition on the minimal time of
control, hence in practice controlling at any time T > T ∗ rather that at time exactly T ∗ will
not provide a weaker result than in the scalar case.

1.3 State of the art and precise scope of the paper
In all what follows, we will mainly concentrate on systems coupled with zero order terms, on dis-
tributed controls and on null or exact controllability results. The case of boundary controls (which
are unbounded) is not covered by our abstract setting. However, there is also a huge literature on
boundary control, approximate controllability and high order coupling terms for coupled systems (see
notably [GBdT10], [AKBGBdT11a], [BO14] or [DL16] for some recent contributions).

Concerning second-order parabolic equations, the case of coupled systems of heat equations with
same diffusion coefficients and constant or time-dependent coupling terms is well-understood (see
notably [AKBDGB09a], where an algebraic Kalman rank condition similar to the one of the current
article is given). In the case of different diffusion coefficients, a necessary and sufficient condition
involving some differential operator related to the Kalman matrix was also given in [AKBDGB09b].
This case was treated into more details in [AKBGBdT14]. Another result concerning the case of
two equations with different diffusion is given in [Zua16], where the author also investigates the case
of coupling different dynamics, e.g. a heat and a wave equation. However, as soon as the coupling
coefficients depend on the space variable, the situation is far more intricate and in general we only
have partial results, essentially with two equations, one control force and in the one-dimensional case
(see [AKBGBdT15] for example) or in simple geometries like cylinders (see [BBGBO14]). Let us also
mention that the non-linear (and even semi-linear) has not been investigated too much up to now
(see for example [AKBD06], [GBPG06] and [CGR10]). For further informations on this topic, we
refer to the recent survey [AKBGBdT11b].

The case of hyperbolic or dispersive systems seems to have been less studied and the results
obtained are somehow quite different from the parabolic ones. Concerning the Schrödinger equation,
the recent paper [LGMdT15] considers the case of a cascade system of 2 equations with one control
force under the condition that the coupling region and the control region intersect and verify some
technical conditions ensuring that a Carleman estimate can be proved. Concerning systems of wave
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equation, let us mention [AB13], where a result of controllability in sufficiently large time for second
order in time cascade or bidiagonal systems under coercivity conditions on the coupling terms is
given. Another related result is also [ABL13], where the case of two wave equations with one control
and a coupling matrix A which is supposed to be symmetric and having some additional technical
properties is investigated. Let us also mention a result in the one-dimensional and periodic case
proved in [RdT11]. In this last article, the authors also prove a result for the Schrödinger equation in
arbitrary dimension on the torus, however they only obtained a result in large time, which is rather
counter-intuitive and should be only technical. The case of a cascade system of two wave equations
with one control on a compact manifold without boundary was treated in [DLRL14], where the
author also give a necessary and sufficient condition of controllability depending on the geometry of
the control domain and coupling region. Let us emphasize that in the four last references, the results
obtained in the case of abstract systems of wave equations can be applied to get some interesting
results in the case of abstract heat and Schrödinger equations thanks to the transmutation method (see
[Phu01], [Mil06] or [EZ11]), leading however to strong (and in general artificial) geometric restrictions
on the coupling region and control region. Let us also mention a recent result given in [ABCO15],
which treats the case of some linear system of two periodic and one-dimensional non-conservative
transport equations with same speed of propagation, space-time varying coupling matrix and one
control and also a nonlinear case.

Regarding the previous presentation, let us precise the exact scope of this paper, which has a
rather different spirit from most of the papers presented before concerning conservative systems.

• Our result is given in a very general setting, since we basically work on some group of operators
(which are not necessarily differential operators) with a bounded control operator satisfying
some technical conditions that appear to be verified in many cases in practice. Notably, our
result fits very well (but is not restricted to) the case of conservative systems of PDEs with
distributed control, where no general result was known in the case of constant coupling coeffi-
cients.

• Contrary to many results in the literature which concentrates on symmetric matrices, bi-
diagonal matrices or cascade matrices, our result does not require any structural conditions
on the coupling matrix A, nor on the matrix B which is often assumed to be acting only on the
last(s) equations. Moreover, we do not have any restriction on the number of equations n we
treat. Hence, most of the techniques used in the literature will fail in our case. Another impor-
tant point is that we are able here to give a necessary and sufficient condition of controllability
and we also are able in the one-order in time case to characterize precisely the initial conditions
that can be controlled, which -as far as we know- was only known for the finite-dimensional
case and for linear second order parabolic systems (see [AKBDGB09b]).

• The main restriction is that we work with constant coupling coefficients (this implies that the
coupling is made everywhere), which do not cover some interesting cases, notably the case of
space-varying coefficients described before. Despite this, we believe that the important degree
of generality of the present paper compensates this restriction and that our contribution is of
interest in order to have a deeper understanding of the controllability properties of coupled
systems.

1.4 Some related open problems
Let us address some related open questions and possible extensions of this work.

• In the case of equation (Ord1), Assumption 1.2 and the regularity condition on the initial data
do not seem to be necessary, and it would be natural to expect the same result by just assuming
that Assumption 1.1 is true with C = C, but the strategy used here prevented us to get this
result. The case of admissible unbounded control operators B ∈ Lc(U,D((L∗)′) is also still a

8
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widely open question (see [LR16a], where the Kalman rank condition is proved to be necessary
in order to obtain the approximate controllability).

• A natural extension of the Kalman rank condition is what is called the Silverman-Meadows
condition (see [SM65]) in the case of matrix A and B depending on the time variable, that we
did not manage to treat with the same strategy.

• Here the coupling terms are supposed to be constant. It would be interesting to replace them
by more general coupling terms. A more challenging issue would be to find an abstract setting
that would include conservative partial differential equations with coupling terms depending on
the space and time variable, at least in the case where the coupling region intersect the control
domain.

• Another interesting question is the case of the local controllability of semi-linear equations, the
main difficulty being that due to the difference of regularity between the initial condition and
the control, standard inverse mapping theorems or fixed-point theorems cannot be used. A
possible remedy would be to use a fixed point strategy of Nash-Moser type as in [ABCO15].

• When systems of equations like (Ord1) and (Ord2) are concerned, a very natural question
that might appear in many applications is what is called partial controllability, which means
that we would like (for example) to bring only the first l (l ∈ [|1, n − 1|]) components of the
state variable to 0 without imposing any conditions the n − l + 1 last components. It would
be interesting to see if general conditions like the one found in [AKCFD16] can be derived.
Another interesting and close problem would be to see if the techniques employed here may be
useful for the synchronisation are synchronization by groups of solutions in the spirit of [LR15]
and [LR16b], by means of bounded controls.

• To finish, one could also investigate more general coupled systems of the form

∂tY = DLn(Y ) +AY +BCmV in (0, T )×Hn

and
∂ttY = DQn(Y ) +AY +BCmV in (0, T )×Hn,

where D is some constant matrix, for example a diagonal matrix with (possibly) distinct coef-
ficients and try to derive results similar to [AKBDGB09b].

2 Proof of Theorem 1
In the sequel, we focus our attention on the null-controllability of the system (Ord1). Suppose that
Assumptions 1.1 and 1.2 are satisfied and let T > T ∗. We will always consider some initial condition
Y 0 belonging to D(Ln−1)n.

2.1 First part of the proof of Theorem 1

In all this section, we assume Y 0 is in [A|B](Hnm) and we want to prove that the solution to (Ord1)
with initial condition Y 0 can be brought to 0 at time T .

Analytic problem:

We consider the control problem{
∂tZ = Ln(Z) +AZ + Cn(U) in (0, T )×Hn,
Z(0) = Y 0.

(2.1)

9
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Let us emphasize that in this step we act on all equations with n distinct controls, one on each
equation. U is here called a fictitious control because he will disappear at the end of the reasoning.
Let us first prove that (2.1) is controllable and give some regularity results on the control and the
solution.

Proposition 2.1. If Assumption 1.1 is satisfied, then for every T > T ∗, the control system (2.1)
is null controllable at time T . Moreover, one can choose a control U such that

U(t, .) ∈ [A|B](Hnm)for every t ∈ (0, T ), (2.2)

U ∈ Hn−1
0 (0, T ;Un)

⋂
∩n−1k=0C

k([0, T ];C
∗
nD((L∗n)n−1−k), (2.3)

Z ∈ ∩n−1k=0C
k([0, T ];D(Ln−1−kn )). (2.4)

Proof of Proposition 2.1. Using the change of variables Z = etAZ̃ and U = etAŨ , we obtain
that the solution Z of system (2.1) is null controllable at time T if and only if the system{

∂tZ̃ = Ln(Z̃) + Cn(Ũ) in (0, T )×Hn, (2.5)

is null controllable at time T . Remark that system (2.5) is totally uncoupled. Hence, since the control
system (1.7) is controllable at time T , using the definitions of Ln and Cn given in (1.6), we easily
obtain that the control system (2.5) is controllable at time T .

Moreover Cn ∈ L(Un,Hn) and the operator Ln is a generator of a group on Hn. Then, applying
[EZ10, Corollary 1.5] (with s = n − 1), we deduce that there exists (Z̃, Ũ) a solution of (2.5) such
that Z̃(T ) = 0 and

Z̃ ∈ ∩n−1k=0C
k([0, T ];Zn−1−k),

where Zj is defined by induction by

Z0 = Hn, Zj = L−1n (Zj−1 + CnC
∗
n(D((L∗n)j))).

The spaces Zj are in general not known explicitly, however, in our case, using Assumption 1.2 (see
also the second point of Remark 1), it is clear that notably

CnCn
∗D((L∗n)j) ⊂ D(Ljn),

from which we deduce easily by induction that for every j ∈ [|1, n|], we have

Zj ⊂ D(Ljn),

which establishes (2.4).
Moreover, [EZ10, Theorem 1.4] (with s = n− 1) notably implies that on can choose Ũ belonging

to Hn−1
0 (0, T ;Un). Finally, to prove (2.3), it enough to prove that

Ũ ∈ ∩n−1k=0C
k([0, T ];C

∗
nD((L∗n)n−1−k)),

which is an immediate consequence of the proof of Corollary 1.5 of [EZ10, Page 1387] (and notably
equality (3.19) in this reference).

It remains us to prove (2.2). As in [EZ10, Equality (1.3)], we fix δ > 0 such that T − 2δ > T ∗

and we consider η ∈ Cn−1(R) such that

η(t) =

{
0 if t ∈ (0, T ),
1 if t ∈ [δ, T − δ].

10
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Then, Ũ can also be chosen as the one of minimal L2(0, T ; dt/η;U) among all possible controls
for which the solution of (2.1) satisfies Z̃(T ) = 0, properties (2.3) and (2.4) being still verified.

Hence, using [EZ10, Proposition 1.3], Ũ can be written as

Ũ = η(t)C
∗
ne

(T−t)L∗nG−1n eTLnY 0,

where

Gn =

∫ T

0

e(T−t)LnCnCn
∗
e(T−t)L

∗
n dt.

Note that since (2.5) is null controllable, Gn is indeed an invertible linear application. Using that
Y 0 = [A|B]Ŷ 0 with Ŷ 0 ∈ Hnm, and the formulas

Ln[A|B] = [A|B]Lnm,

C
∗
n[A|B] = [A|B]C

∗
nm,

Cn[A|B] = [A|B]Cnm,

we deduce
Ũ = [A|B]η(t)C

∗
nme

(T−t)L∗nmG−1nme
TLnm Ŷ 0,

where

Gnm =

∫ T

0

e(T−t)LnmCnmCnm
∗
e(T−t)L

∗
nm dt,

which is also invertible. Using that Ũ = e−tAU , we obtain

U = etA[A|B]η(t)C
∗
nme

(T−t)L∗nmG−1nme
TLnm Ŷ 0. (2.6)

By the Cayley-Hamilton theorem, there exists β =

 β0
...

βn−1

 ∈ Kn such that An =
∑n−1
i=0 βiA

i. Let

ψ =

 ψ0

...
ψn−1

 ∈ Hnm, we have

A[A|B]ψ = (AB,A2B, · · · , AnB)ψ

= (AB,A2B, · · · ,
∑n−1
i=0 βiA

iB)ψ

= [A,B]ψ̂

(2.7)

with

ψ̂ =


β0ψn−1

ψ0 + β1ψn−1
...

ψn−2 + βn−1ψn−1

 ∈ Hnm.
Combining (2.6), (2.7) and using the fact that there exists α ∈ Kn such that e−tA =

∑n−1
i=0 αiA

i, we
obtain (2.2) and the proof of Proposition 2.1 is complete.

Algebraic problem:

Now, we would like to come back to the original system (Ord1) by algebraic manipulations.

11
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Using Proposition 2.1, there exists (Z,U) solution of (2.1) verifying moreover (2.2), (2.3) and
(2.4). Notably, there exists Û ∈ Unm such that Cn(U) = [A|B]Cnm(Û). From now on, we will call
f := Cnm(Û), that will be considered as a source term. Our goal will be to find a pair (X, W̃ ) ∈
C0([0, T ];D(Ln)) ∩ C1([0, T ];Hn)× C0([0, T ];Um) satisfying the following problem:{

∂tX = Ln(X) +AX +BCmW̃ + [A|B]f in (0, T )×Hn,
X(0) = X(T ) = 0.

(2.8)

Calling CmW̃ = W , we will rather solve (the unknowns being the variablesX andW ) the following
problem {

∂tX = Ln(X) +AX +BW + [A|B]f in (0, T )×Hn,
X(0) = X(T ) = 0,

(2.9)

(the fact that W ∈ CmUm will be a consequence of our construction and our assumptions). Let
us remark that system (2.9) is underdetermined in the sense that we have more unknowns than
equations. Hence, one can hope to find a trajectory (X,W ) verifying X(0) = X(T ) = 0 (which is a
crucial point here), which would not be necessarily possible if the system were well-posed. We will
use the notion of algebraic solvability, which is based on ideas coming from [Gro86, Section 2.3.8] for
differential systems and was already widely used in [ABCO15], [CL14] and [DL16]. The idea is to
write System (2.9) as an undertermined system in the variables X and W and to see f as a source
term, so that we can write Problem (2.9) under the abstract form

P(X,W ) = [A|B]f, (2.10)

where
P :

D(P) ⊂ L2(0, T ;Hn+m) → L2(0, T ;Hn)
(X , W ) 7→ ∂tX − LnX −AX −BW.

(2.11)

The goal will be then to find an operatorM (involving time derivatives and powers of Ln) satisfying

P ◦M = [A|B]. (2.12)

When (2.12) is satisfied, we say that System (2.9) is algebraically solvable. In this cas, one can
choose as a particular solution of (2.9) (X,W ) =M(Cnm(Û)). This exactly means that one can find
a solution (X,W ) of System (2.9) which can be written as a linear combination f , its derivatives in
time, and some Lknmf with k ∈ N∗. Let us prove the following Proposition:

Proposition 2.2. Let (A,B) ∈ Mn(K) ×Mn,m(K). There exists an operator M such that the
equality (2.12) is satisfied. Moreover, the operatorM is an operator of order at most{

n− 2 for the n first components
n− 1 for the m last components (2.13)

in time and in term of powers of Ln.

Proof of Proposition 2.2. We can remark that equality (2.12) is equivalent to

M∗ ◦ P ∗ = [A|B]∗. (2.14)

The adjoint operator P∗ : D(P ∗) ⊂ L2(0, T ;Hn)→ L2(0, T ;Hn)×L2(0, T ;Hm) of the operator P is
given for all ϕ ∈ D(P ∗) by

P∗ϕ :=



(P ∗ϕ)1
...

(P∗ϕ)n
(P∗ϕ)n+1

...
(P ∗ϕ)n+m


=

(
−∂tϕ− L∗nϕ−A∗ϕ

−B∗ϕ

)
. (2.15)
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Since (A,B) ∈ Mn(K)×Mn,m(K) are constant matrices, we have the following commutation prop-
erties:

B∗(A∗)iL∗n = L∗mB
∗(A∗)i

and
B∗(A∗)i∂t = ∂tB

∗(A∗)i.

By definition, we have

B∗ϕ = −

 (P ∗ϕ)n+1

...
(P ∗ϕ)n+m

 .

Now, for i = {1, · · · , n− 1}, applying B∗(A∗)i−1 to −∂tϕ− L∗nϕ−A∗ϕ, we have

B∗(A∗)i−1

 (P ∗ϕ)1
...

(P ∗ϕ)n

 = −(∂t + L∗m)(B∗(A∗)i−1ϕ)−B∗(A∗)iϕ, i.e.

B∗(A∗)iϕ = −B∗(A∗)i−1

 (P ∗ϕ)1
...

(P ∗ϕ)n

− (∂t + L∗m)(B∗(A∗)i−1ϕ).

By induction, we find, for every i ∈ {1, · · · , n− 1},

B∗(A∗)iϕ =
∑i−1
j=0(−1)j+1

(∂t + L∗m)jB∗(A∗)i−1−j

 (P ∗ϕ)1
...

(P ∗ϕ)n




+(−1)i+1(∂t + L∗m)i

 (P ∗ϕ)n+1

...
(P ∗ϕ)n+m

 .

(2.16)

We introduce the operatorM∗ : D(M∗) ⊂ L2 (0, T ;Hn+m)→ L2 (0, T ;Hnm) defined by

M∗

 ψ1

...
ψn+m



:=



−ψn+1

...
−ψn+m

−B∗

 ψ1

...
ψn

+ (∂t + L∗m)

 ψn+1

...
ψn+m


...

∑n−2
j=0 (−1)j+1

(∂t + L∗m)jB∗(A∗)n−2−j

 ψ1

...
ψn


+ (−1)n(∂t + L∗m)n−1

 ψn+1

...
ψn+m





.

(2.17)
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Thanks to (2.16) and (2.17),M∗ verifies equality (2.14). Using the definition ofM∗ given in (2.17),
we deduce that

M : D(M) ⊂ L2(0, T ;Hnm) → L2(0, T ;Hn+m)

f =



f1
...
fm
fm+1

...
f2m
...

fnm


7→ Mf,

defined by

Mf =



∑n−1
i=1

∑i−1
j=0(−1)j+1(−∂t + Ln)jAi−1−jB

 fjm+1

...
f(j+1)m


∑n−1
i=0 (−1)i+1(−∂t + Lm)i

 fim+1

...
f(i+1)m




, (2.18)

satisfies (2.12). Thus, in the n first components the higher order term is (−∂t + L)n−2 and in the m
last components the higher order term is (−∂t + L)n−1, which concludes the proof.

Conclusion: combination of the Analytic and Algebraic Problems.

Thanks to Proposition 2.1, there exists (Z,U) solution of (2.1) verifying moreover (2.2), (2.3) and
(2.4). One can notably write

Cn(U) = [A|B]Cnm(Û) (2.19)

for some Û ∈ L2((0, T );Unm). Using Proposition 2.2, we define (X,W ) by(
X
W

)
:=M

(
CnmÛ

)
, (2.20)

where Û is defined in (2.19). Using (2.3), we know that

CnU ∈ Hn−1
0 (0, T ;Cn(Un))

⋂
∩n−1k=0C

k([0, T ];CnC
∗
nD((L∗n)n−1−k)),

which implies using Assumption 1.2 that

CnU ∈ Hn−1
0 (0, T ;Cn(Un))

⋂
∩n−1k=0C

k([0, T ]; (D(Ln−1−k))n).

Using now (2.19), we obtain

CnmÛ ∈ Hn−1
0 (0, T ;Cnm(Unm))

⋂
∩n−1k=0C

k([0, T ]; (D(Ln−1−k))nm). (2.21)

Using (2.20) together with (2.13) and (2.21), we obtain that

(X,W ) ∈
(
H1

0 (0, T ;Cn(Un))
⋂
∩1k=0C

k([0, T ];D(L1−k
n ))

)
×
(
L2(0, T ;Cm(Um))

⋂
C0([0, T ];Hm)

)
,
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i.e.

(X,W ) ∈
(
H1

0 (0, T ;Cn(Un))
⋂
∩1k=0C

k([0, T ];D(L1−k
n ))

)
× C0([0, T ];Cm(Um)). (2.22)

Notably, there exists W̃ ∈ C0([0, T ];Um) such that W = CmW̃ . Thus, coming back to (2.8), we
infer that (X, W̃ ) is a solution to the problem{

∂tX = Ln(X) +AX +BCmW̃ + [A|B]f in (0, T )×Hn,
X(0) = X(T ) = 0.

(2.23)

Hence, combining (2.1), (2.23) and the regularity results given in (2.4) and (2.22), the fictitious
control f disappears and the pair (Y, V ) := (Z −X,−W̃ ) is a solution to System (Ord1) in the space

C0([0, T ];D(Ln)) ∩ C1([0, T ];Hn)× C0([0, T ];Um)

satisfying

Y (0) = Y 0 in D(Ln−1)n,

Y (T ) ≡ 0 in Hn,

which concludes the first part of the proof of Theorem 1.

2.2 Second part of the proof of Theorem 1
In this section, we assume Y 0 is NOT in [A|B](Hnm) and we want to prove that we cannot bring the
solution of (Ord1) with initial Y 0 to 0. We argue by contradiction.

For the sake of completeness we mimic the proof of [AKBDGB09a, Theorem 1.5]. Without loss
of generality we can only consider the case where we have one control force m = 1, that is to say
B ∈ Mn,1(K) (m = 1), the general case being quite similar (see notably [AKBDGB09a, Lemma 3.1
and Page 14]).

Let l ∈ IN such that rank[A|B] = l < n. By the Cayley-Hamilton theorem, {B,AB, · · · , Al−1B}
is linearly independent. We introduce

X = span{B,AB, · · · , ABl−1}.

Since AlB ∈ X, we know that there exists α ∈ Kl such that

AlB = α1B + α2AB + · · ·+ αlA
l−1B. (2.24)

Let pl+1, · · · , pn be n− l vectors in Kn such that the set

{B,AB, · · · , Al−1B, pl+1, · · · , pn}

is a basis of Kn. Introducing

P = (B|AB| · · · |Al−1B|pl+1| · · · , pn),

we have Pe1 = B with e1 =


1
0
...
0

 and

P−1AP =

(
D11 D12

0 D22

)
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for some D12 ∈Ml,n−l(K), D22 ∈Mn−l(K) and D11 ∈Ml which is given by

D11 =


0 0 0 · · · α1

1 0 0 · · · α2

0 1 0 · · · α3

...
...

. . . . . .
...

0 0 · · · 1 αl


By the change of variables W = P−1Y and using LnP−1 = P−1Ln and ∂tP−1 = P−1∂t we observe
that there exists a control V in L2((0, T )×H) such that the solution of (Ord1) corresponding to the

initial condition Y (0) = Y 0 in Hn satisfies Y (T ) ≡ 0 in Hn if and only if the solution W =

(
W1

W2

)
to  ∂tW = LnW +

(
D11 D12

0 D22

)
W + C1V e1,

W (0) = W 0 := P−1Y 0
(2.25)

verifies W (T ) ≡ 0 in Hn. Besides, it is easy to see that Y 0 ∈ [A|B](Hnm) if and only if there exists

W 0
1 ∈ Hl such that Y 0 = P

(
W 0

1

0

)
. If Y 0 /∈ [A|B](Hnm) then Y 0 = P

(
W 0

1

W 0
2

)
with W 0

1 ∈ Hl,

W 0
2 ∈ Hn−l and W 0

2 6= 0. Thus, by uniqueness we conclude that W2(T ) 6= 0. Hence the solution W
of (2.25) cannot be driven to zero at time T and (Ord1) cannot driven from Y 0 at time T to 0 at
time T , which concludes the proof.

3 Proof of Theorem 2
Let us recall that we consider here an operator Q which is assumed to be self-adjoint, negative with
compact resolvent. Suppose that Assumptions 1.1 and 1.2 are satisfied and let T > T ∗. We will
always consider some initial condition (Y 0, Y 1) ∈ D(Qn− 1

2 )n ×D(Qn−1)n.
During this section, we will assume that K = C for the sake of simplicity. The case K = R can

then be easily deduced for example by complexifying the spaces H and U .

3.1 First part of the proof of Theorem 2
In this section, we assume that the Kalman rank condition is satisfied and we want to prove the
controllability of (Ord2). We proceed as in the proof of Theorem 1. Let us emphasize that the
main difference with the previous case is that the changing of variables exhibited during the proof
of Proposition 2.1 does not work anymore, hence we have to change totally the proof of the analytic
part, which will now rely on a classical compactness-uniqueness argument similar to the one given for
example in [CT10, Section 3]. Concerning the algebraic part, the computations are essentially the
same.

Analytic problem:

We consider the controlled system ∂ttZ = Qn(Z) +AZ + Cn(U) in (0, T )×Hn,
Z(0) = Z0,
∂tZ(0) = Z1.

(3.1)

Let us first introduce some notations and first-order framework. Let Hα be the Hilbert space
defined by Hα = D(Qα) for any α ≥ 0 and H−α is the dual space of Hα with respect to the pivot
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space H. We denote by X =
(
H 1

2
×H

)n
our state space. We introduce the operator Q̂ : D(Q̂) =(

H1 ×H 1
2

)n
⊂ X → X such that

Q̂ =


AQ 0 · · · 0
0 AQ · · · 0
...

...
. . .

...
0 0 0 AQ

 with AQ =

(
0 Id
Q 0

)
. (3.2)

The system (3.1) can be written as a first order system

Ẑt = (Q̂+ Â)Ẑ + ĈU, (3.3)

with Ẑ =


Z1

(Z1)t
...
Zn

(Zn)t

, Ĉ

 u1
...
un

 =


0
Cu1
...
0
Cun

 and Â =


0 0 0 · · · 0 0
a11 0 a12 · · · 0 a1n
...

...
...

...
...

...
0 0 0 · · · 0 0
an1 0 an2 · · · 0 ann

.

Since we identify H with its dual, we shall define
(
H 1

2
×H

)′
= H×H− 1

2
and the duality product

defined for (y0, y1) ∈ H ×H− 1
2
, (z0, z1) ∈ H 1

2
×H by〈(

y0
y1

)
,

(
z0
z1

)〉
(
H×H− 1

2

)
×
(
H 1

2
×H

) = 〈y0, z1〉H + 〈y1, z0〉H− 1
2
×H 1

2

.

With this scalar product, we have

Q̂∗ = −


AQ∗ 0 · · · 0

0 AQ∗ · · · 0
...

...
. . .

...
0 0 0 AQ∗

 with

{
X ′ = (H×H− 1

2
)n,

D(Q̂∗) =
(
H 1

2
×H

)n
,

and Ĉ∗ : X∗ → Un is given by

Ĉ∗


x1
x2
...
x2n

 =


C∗x1
C∗x3
...

C∗x2n−1

 . (3.4)

Thus, ĈĈ∗ : X∗ → X is exactly

ĈĈ∗ =


BC 0 · · · 0
0 BC · · · 0
...

...
. . .

...
0 0 0 BC

 with BC =

(
0 0

CC∗ 0

)
.

and for i ∈ IN∗, D(Q̂i) = (H i+1
2
×H i

2
)n and D((Q̂∗)i) = D(Q̂i−1).

We can now go back to the resolution of the analytic problem.
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For any operator R, we introduce the set

NR(T ) :=

{[
z0

z1

]
∈ H 1

2
×H |C∗zt = 0 ∀t ∈ [0, T ] , z solution of

{
∂ttz = Rz
z(0) = z0, ∂tz(0) = z1

}
,

=


[
z0

z1

]
∈ H 1

2
×H | (0, C∗)Z = 0 ∀t ∈ [0, T ] , Z solution of


∂tZ =

(
0 Id
R 0

)
Z

Z(0) =

(
z0

z1

)
 .

(3.5)
The main proposition is the following.

Proposition 3.1. . If Assumption 1.1 is satisfied, for every T > T ∗, the control system (3.1) is
null controllable at time T . Moreover, one can choose U such that

U ∈ H2n−2
0 (0, T ;Un)

⋂
∩2n−2k=0 Ck([0, T ], C

∗
(Hn−1− k

2
)n). (3.6)

Proof of Proposition 3.1.
We will need the two following lemmas.

Lemma 3.1. If NQ∗n+A∗(T ) = {0} and if the system

∂ttZ = Qn(Z) + Cn(U) in (0, T )×Hn (3.7)

is exactly controllable at time T then the system (3.1) is exactly controllable in time T .

Lemma 3.1can be found in [CT10, Theorem 4] (with ε = 1), its proof will then be omitted.

Lemma 3.2. If NQ∗(T ) = {0} then NQ∗n+A∗(T ) = {0}.

Let us temporarily admit this lemma and explain how we can deduce Proposition 3.1. By As-
sumption 1.1, we have a unique continuation property for the adjoint system of (3.7), from which
we obtain that NQ∗(T ) = {0}. Now, using Lemma 3.1 and Lemma 3.2, the system (3.1) is null
controllable at time T . Since Ĉ ∈ L(Un, X), the control system (3.3) is null controllable at time T
and the operator Q̂ + Â is a generator of strongly continuous group on X. Let T > T ∗, combining
one more time Theorem 1.4, Corollary 1.5 and the equality (3.19) in [EZ10] (with s = 2n − 2), if
Y0 ∈ D(Q̂2n−2) one can choose U such that

U ∈ H2n−2
0 (0, T ;Un)

⋂
∩2n−2k=0 Ck([0, T ]; Ĉ∗D((Q̂∗)2n−2−k)).

Since for i ∈ IN∗, D(Q̂i) = (H i+1
2
×H i

2
)n, D((Q̂∗)i) = D(Q̂i−1), and going back to the definition of

Ĉ∗ given in (3.4), we obtain (3.6).

It remains us to prove Lemma 3.2. The proof is based on the following property.

Lemma 3.3. Let a ∈ K. If NQ∗(T ) = {0} then NQ∗+aIH(T ) = {0}.

Proof of Lemma 3.3. Let us decompose the proof into three steps.

• If C∗ϕ 6= 0 for every eigenvector ϕ of Q∗ + aIH then NQ∗+aIH = {0}.

To prove this property we refer to the proof of [CT10, Theorem 5] which relies on an easy
compactness-uniqueness argument.
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• If ϕ an eigenvector of Q∗ associated to the eigenvalue −λ < 0 and NQ∗(T ) = 0 then C∗ϕ 6= 0.

Indeed, in this case
( ϕ

i
√
λ

ϕ

)
is an eigenvector of

(
0 Id
Q∗ 0

)
associated to the eigenvalue

i
√
λ. Let us assume that (0, C∗)

( ϕ

i
√
λ

ϕ

)
= C∗ϕ = 0. Let Zϕ be the solution of


∂tZϕ =

(
0 Id
Q∗ 0

)
Zϕ,

Zϕ(0) =

( ϕ

i
√
λ

ϕ

)
.

Thus for all t ∈ (0, T ), we have

Z(t) = ei
√
λt

( ϕ

i
√
λ

ϕ

)
.

By assumption (0, C∗)Z(t) = ei
√
λtC∗ϕ = 0. From the definition of NQ∗(T ), ϕ ∈ NQ∗(T ) =

{0}, whence the contradiction.

• For every ϕ eigenvector of Q∗ + aIH, C∗ϕ 6= 0.

Indeed, the couple (ϕ, λ) is a vector-eigenfunction of Q∗ if and only if the couple (ϕ, λ + a) is
a vector-eigenfunction of Q∗ + aIH, and we can use the previous point.

Combining these 3 arguments provides Lemma 3.3.

Proof of Lemma 3.2. Since K = C, A∗ is triangularisable. Hence, There exists an invertible
matrix P such that A∗ = PT P−1 with T = (tij) some lower triangular matrix. Using the change
of variables V = P−1Z, we deduce that NQ∗n+A∗(T ) = {0} if and only if NQ∗n+T ∗(T ) = {0}. The
system {

Ztt = Q∗nZ + T Z,
Z(0) = Z0,

(3.8)

can be written as 

Z1
tt = Q∗nZ1 + t11Z

1,
Z2
tt = Q∗nZ2 + t21Z

1 + t22Z
2,

...
Zntt = Q∗nZn + tn1Z

1 + tn2Z
2 + · · ·+ tnnZ

n,
Z(0) = Z0.

(3.9)

Let Z0 =

 Z1
0
...
Zn0

 ∈ NQ∗n+T ∗(T ). By definition C
∗
nZ =

 C
∗
Z1

...
C∗Zn

 = 0 with Z solution of (3.8),

hence Z1
0 ∈ NQ∗+t11IH . Since NQ∗(T ) = 0 and using Lemma 3.3, we have Z1

0 = 0. Thus the system
can be written as 

Z2
tt = Q∗nZ2 + t22Z

2,
...
Zntt = Q∗nZn + tn2Z

2 + · · ·+ tnnZ
n,

Z(0) = Z0.

19



3.1 First part of the proof of Theorem 2 July 13, 2016 T.Liard, P. Lissy

Using the same reasoning as before by replacing Z1 by Z2, Z3, . . . , Zn successively, we get by induction
that Z2

0 = · · · = Zn0 = 0, thus we have Z0 = 0 and we infer that NQ∗n+T ∗(T ) = 0, which concludes
the proof thanks to Lemma 3.1.

Algebraic problem:
For f := Cn(U), we want find a pair (X, W̃ ) ∈ C0([0, T ];D(Qn))∩C1([0, T ];D(Q

1
2
n ))∩C2([0, T ];Hn)×

C0([0, T ];Um) satisfying the following control problem:{
∂ttX = Qn(X) +AX +BCmW̃ + f in (0, T )×Hn,
X(0) = X(T ) = ∂tX(0) = ∂tX(T ) = 0.

(3.10)

As in the proof of Theorem 1, we will solve instead{
∂ttX = Qn(X) +AX +BW + f in (0, T )×Hn,
X(0) = X(T ) = ∂tX(0) = ∂tX(T ) = 0,

(3.11)

with W ∈ Cm(Um). We will mimic the proof of Proposition 2.2. In the same way we can write
Problem (2.23) under the abstract form

P̃(X,W ) = f, (3.12)

where

P̃ :
D(P̃) ⊂ L2(0, T ;Hn+m) → L2(0, T ;Hn)
(X , W ) 7→ ∂ttX −QnX −AX −BW.

(3.13)

The goal will be then to find a partial differential operatorM satisfying

P̃ ◦M = In. (3.14)

Proposition 3.2. Let (A,B) ∈ Mn(K) ×Mn,m(K). If rank([A|B]) = n, P̃ has a right inverse
denoted byM. Moreover, the operatorM is an operator of order{

2n− 4 for n first components
2n− 2 for the m last components (3.15)

in time and {
n− 2 for n first components
n− 1 for the m last components (3.16)

in terms of powers of Q.

Proof of Proposition 3.2. Changing ∂t to ∂tt in the proof of Proposition 2.2 we have

P̃ ◦ M̃ = [A|B]

with
M̃ : D(M̃) ⊂ L2(0, T ;Hnm) → L2(0, T ;Hn+m)

f =



f1
...
fm
fm+1

...
f2m
...

fnm


7→ M̃f,
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defined by

M̃f =



∑n−1
i=1

∑i−1
j=0(−1)j+1(−∂tt +Qn)jAi−1−jB

 fjm+1

...
f(j+1)m


∑n−1
i=0 (−1)i+1(−∂tt +Qm)i

 fim+1

...
f(i+1)m




. (3.17)

Since rank([A|B]) = n, there exists D ∈ Mnm,n such that [A|B]D = In. Introducing the operator
M := M̃D we obtain (3.14). Moreover, in the n first components the higher order term is (−∂tt +
Q)n−2 and in the m last components the higher order term is (−∂tt + Q)n−1, which concludes the
proof.

Conclusion: combination of the Analytic and Algebraic Problems.
The proof is similar to the one-order case, so that we just give the main arguments here. Let

(X,W ) be defined by (
X
W

)
:=M

(
CnU

)
, (3.18)

with CnU ∈ H2n−2
0 (0, T ;Cn(Un))

⋂
∩2n−2k=0 Ck([0, T ];CnC

∗
n(Hn

n−1− k
2

)) constructed in Proposition 3.1.
Using Proposition 3.2 and Assumption 1.2 , we obtain that

(X,W ) ∈
(
H2

0 (0, T ; (Cn(Un)))
⋂
∩2k=0C

k([0, T ];Hn
1− k

2
)
)
× C0([0, T ], Cm(Um)).

Notably, there exists W̃ ∈ C0([0, T ],Um) such that W = CmW̃ . Moreover, using Proposition 3.1 we
have X(0) = X(T ) = 0 in Hn and we remark that (X, W̃ ) is a solution to the problem{

∂ttX = Qn(X) +AX +BCmW̃ + f in (0, T )×Hn,
X(0) = X(T ) = ∂tX(0) = ∂tX(T ) = 0.

Thus the pair (Y, V ) := (Z−X,−W̃ ) is a solution to System (Ord2) in C0([0, T ];D(Qn))∩C1([0, T ];D(Q
1
2
n ))

∩C2([0, T ];Hn)× C0([0, T ];Um) and satisfies

Y (0) = Y 0 in D(Qn− 1
2 )n, ∂tY (0) = Y 1 in D(Qn−1)n

Y (T ) ≡ 0 in Hn, ∂tY (T ) ≡ 0 in Hn.

3.2 Second part of the proof of Theorem 2
In this section, we assume that the Kalman condition is NOT satisfied and we want to prove that
the null controllability of (Ord2) fails. We will use an argument based on the transmutation method
in order to go back to a parabolic one-order system. The ideas are then essentially the same as in
Section 2.2.
Using the transmutation technique (as in [EZ11] for instance) we have the following lemma:

Lemma 3.4. If the system{
∂ttY = QnY +AY +BCmU in (0, T )×Hn, (3.19)
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is null controllable in some time T then at any time T̃ > 0, the system{
∂tZ = QnZ +AZ +BCmV in (0, T̃ )×Hn, (3.20)

is null controllable.

We assume that rank([A|B]) 6= n. Thus, there exists X =

 X1

...
Xn

 ∈ Hn\{0} such that B∗X =

B∗A∗X = · · ·B∗ (A∗)
n−1

X = 0. We consider the following adjoint system of (3.20){
−∂tϕ = Q∗n(ϕ) +A∗ϕ in (0, T )×Hn,
ϕ(T ) = ϕT .

(3.21)

It is well-known that System (3.20) is null controllable at time T if and only if there exists a positive
constant C1 such that for all solution ϕ of (3.21)

‖ϕ(0)‖Hn ≤ C1

∫ T

0

‖C∗mB∗ϕ‖Um dt, (3.22)

for all ϕT ∈ D(L∗n). Let ϕX the solution of (3.21) with ϕX(T ) = X. Let S = (St)t∈IR be a strongly
continuous group on H, with generator Q : D(Q) ⊂ H → H. By the definition of Qn given in (1.6),

we obtain C∗mB
∗ϕX = C∗mB

∗etA
∗

 S∗(T − t)X1

...
S∗(T − t)Xn

. Since (A,B) ∈ Mn(K) ×Mn,m(K), for all

i ∈ {0, · · · , n− 1}, B∗ (A∗)
i

 S∗(T − t)X1

...
S∗(T − t)Xn

 is solution of

{
−∂tϕ = Q∗m(ϕ) in (0, T )×Hm,
ϕ(T ) = B∗ (A∗)

i
X = 0.

Thus

B∗ (A∗)
i

 S∗(T − t)X1

...
S∗(T − t)Xn

 = 0.

Using the Cayley-Hamilton theorem, we obtain that C∗mB∗ϕX = 0, from which we deduce that (3.22)
is not satisfied. Thus, the System (3.20) is not controllable at time T . Using Lemma 3.4, we deduce
that the system

∂ttY = QnY +AY +BCmU in (0, T )×Hn,
is not controllable, which concludes the proof.

4 Applications
In this section, we will give some examples of applications in the case of systems of Schrödinger and
wave equations with internal control. Let Ω be a smooth bounded open subset of IRN . We will denote
by L2(Ω) the set of square-integrable functions defined on Ω with values in the complex plane C.

We recall the following definition that will be widely used in what follows.

Definition 4.1 (GCC). We say that ω verifies the Geometric Optics Condition (GCC in short) if
there exists T ∗ > 0 such that any rays of Geometric Optics in Ω enter the open set ω in time smaller
than T ∗ (see [BLR92]) .
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4.1 System of Schrödinger equations with internal control
Let us introduce the state space H = L2(Ω) and the control space U = L2(Ω) = H. We consider the
linear continuous operator C : L2(Ω)→ L2(Ω) defined by Cu = 1ωu with

1ω =

{
1 on ω,
0 on Ω\ω.

We consider the following Schrödinger equation{
∂tz = i∆z +W (x)z + 1ωu,
z(0) = z0,

(4.1)

where the potentialW is in C∞(Ω̄; K). It is well-known that the operator i∆+W (x) : H2(Ω)∩H1
0(Ω) ⊂

L2(Ω) → L2(Ω) is a generator of a group on L2(Ω). Let n ∈ IN∗, we have D((i∆ + W (x))n) =
D(((i∆ +W (x))∗)n) = H2n

(0)(Ω) where H2n
(0)(Ω) is defined by

H2n
(0)(Ω) := {v ∈ H2n(Ω) such that v = ∆v = · · · = ∆n−1v = 0 on ∂Ω}. (4.2)

We consider the control system{
∂tY = i∆Y +W (x)Y +AY + 1ωBV in (0, T )× L2(Ω)n,
Y (0) = Y 0,

(4.3)

with (A,B) ∈Mn(K)×Mn,m(C).
Our first result concerns the case where ω is strongly included in Ω.

Theorem 3. Let T > 0 and let us assume that the open set ω of Ω satisfy GCC and ω ⊂ Ω, then
there exists a control V in C0((0, T )× (L2(Ω))m) such that the solution of (4.3) with initial condition
Y (0) = Y 0 in (H2n−2

(0) (Ω))n satisfies

Y (T ) ≡ 0 in (L2(Ω))n

if and only Y 0 ∈ [A|B]((L2(Ω))nm).

Proof of Theorem 3. Since ω ⊂ Ω, one can construct a function 1̃ω ∈ C∞(Ω) defined by

1̃ω :=

{
1 on ω0,
0 on Ω\ω, (4.4)

where ω0 is some well-chosen open set strongly included in ω still verifying GCC, so that{
∂tz = (i∆ +W (x))z + 1̃ωu,
z(0) = z0,

(4.5)

is exactly controllable thanks to the result of [Leb92] (see Figure 1). Thus, we deduce that Assumption
1.1 is verified with C : L2(Ω)→ L2(Ω) defined by Cu = 1̃ωu.
To apply Theorem 1 we need to verify Assumption 1.2 where C is described above. Let ϕ ∈ D(((i∆ +

W (x))∗)k) = H2k
(0)(Ω), for all k ∈ {0, · · · , n − 1}, by definition of 1̃ω ∈ C∞c (Ω) we obtain CC∗ϕ =

1̃2
ωϕ ∈ H2k

(0)(Ω) and (i∆+W (x))k(CC∗D(((i∆+W (x))∗)k) ∈ C(L2(Ω)). Thus, we can apply Theorem
1 whence the conclusion of the proof of Theorem 3.

Remark 5. One can obtain the same result as in Theorem 3 with exactly the same proof by replacing
the open set Ω with some regular compact connected Riemannian manifold without boundary M ,
with ω any open subset of M verifying GCC.
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ω0ω

Ω

Figure 1: An example when ω ⊂ Ω.

ω0

ω

Ω

Figure 2: An example when ω ⊂ Ω is an open
set such that ω ∩ ∂Ω 6= ∅.

From now on we consider ω an open subset of Ω such that ω ∩ ∂Ω 6= ∅ (see Figure 2). In general
it is impossible to construct a function 1̃ω ∈ C∞(Ω) as (4.4) such that the system (4.5) is controllable
and 1̃ω maps H2k

(0)(Ω) into itself for all k ∈ [3,∞]. More precisely, satisfying Assumption 1.2 would

require that, for every ϕ ∈ H2(n−1)
(0) (Ω), for every k ≤ n− 2, ∆k(1̃ωϕ) = 0 on ∂Ω which is not verified

without additional conditions on 1̃ω. If n = 2 it is clear that 1̃ω maps L2(Ω,C) into itself. If n = 3,
we need to assume moreover that ∇1̃ω.~n = 0 with ~n the unit normal vector. If n > 3, 1̃ω has to
satisfy strong global geometric conditions, for instance 1̃ω can be chosen constant near any connected
component of the boundary (for more informations we refer to [DL09, Section 4.2]). However, we
cannot affirm anymore that the system (4.5) will still be controllable without loss of regularity or
locality on the function 1̃ω, so that Assumption 1.2 will not be verified. Hence, we will focus our
attention on some particular cases. We will first consider the case where the number of equations
is less than or equal to three without additional conditions on Ω and then we will consider the case
where Ω is the product of N open intervals in IRN and the case where Ω is a unit disk.

Theorem 4. Let T > 0. Let ω be an open subset of Ω such that ω ∩ ∂Ω 6= ∅ and ω satisfies
GCC. Let n ≤ 3, then there exists a control V in C0([0, T ]; (L2(Ω))m) such that the solution of (4.3)
corresponding to the initial condition Y (0) = Y 0 in (H2n−2

(0) (Ω))n satisfies

Y (T ) ≡ 0 in (L2(Ω))n,

if and only Y 0 ∈ [A|B]((L2(Ω))nm).

Proof of Theorem 4. We can keep constructing a function 1̃ω ∈ C∞(Ω) defined by

1̃ω :=

{
1 on ω0,
0 on Ω\ω, (4.6)

where ω0 is some well-chosen open set included in ω still verifying GCC such that ∇1̃ω.~n = 0 and
the system {

∂tz = i∆z +W (x)z + 1̃ωu,
z(0) = z0,

(4.7)

is exactly controllable (see Figure 2). Moreover, using [DL09, Section 4.2] and ∇1̃ω.~n = 0, we infer
that 12

ω maps H2k
(0)(Ω) into itself for k ≤ 2 and by definition of 1̃ω, we have (i∆+W (x))k(CC∗D(((i∆+

W (x))∗)k)) ∈ C(L2(Ω)) for k ≤ 2. Thus, Assumption 1.2 is verified and we can conclude as in the
proof of Theorem 3.
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It is well-known that GCC is only a sufficient condition to ensure the exact controllability of the
Schrödinger equation, but is not always necessary in some particular geometries. Let us give two
examples. If Ω is the product of N open intervals, we do not need to impose restrictions on ω and if
Ω is a unit disk, ω has to touch the boundary of Ω.

Theorem 5. Let T > 0 and let us assume that the domain Ω ⊂ IRN is the product of N open
intervals, then there exists a control V in C0((0, T ) × (L2(Ω))m) such that the solution of (4.3)
corresponding to the initial condition Y (0) = Y 0 in (H2n−2

(0) (Ω))n satisfies

Y (T ) ≡ 0 in (L2(Ω))n,

if and only Y 0 ∈ [A|B]((L2(Ω))nm).

Proof of Theorem 5. From [KL05, Proposition 8.8], one can easily deduce that the system{
∂tz = i∆z +W (x)z + 1ω̃u,
z(0) = z0,

is exactly controllable for any nonempty open ω̃ subset of Ω. Consequently, without loss of generality
we can assume that ω ⊂ Ω. Thus, we just have to copy the proof of Theorem 3 and we deduce the
expected result.

Theorem 6. Let T > 0 and let us assume that the domain Ω ⊂ IR2 is the unit disk and let
ω be an open subset of Ω such that ω ∩ ∂Ω 6= ∅. Let n ≤ 3, then there exists a control V in
C0([0, T ]; (L2(Ω))m) such that the solution of (4.3) corresponding to the initial condition Y (0) = Y 0

in (H2n−2
(0) (Ω))n satisfies

Y (T ) ≡ 0 in (L2(Ω))n,

if and only Y 0 ∈ [A|B]((L2(Ω))nm).

Proof of Theorem 6. Since the domain Ω ⊂ IR2 is the unit disk, from [ALM15, Theorem 1.2],
we deduce that the equation {

∂tz = i∆z +W (x)z + 1ω̃u,
z(0) = z0,

is exactly controllable for any open ω̃ subset of Ω such that ω̃ ∩ ∂Ω 6= ∅. Thus, we just mimic the
proof of Theorem 4 and we have directly the expected result.

Remark 6. The same results can be obtained by replacing the Schrödinger equation by the plate
equation (see for example [Leb92, Section 5]).

4.2 System of wave equations with internal control
We consider the state space and control space as in the previous section, i.e. H = U = L2(Ω). We
introduce the operator C : L2(Ω) → L2(Ω) such that Cu = 1ωu. We consider the following wave
equation  ∂ttz = ∆z +W (x)z + 1ωu,

z(0) = z0,
∂tz(0) = z1,

(4.8)

where the potentialW is in C∞(Ω̄; K). It is well-known that the operator ∆+W (x) : H2(Ω)∩H1
0(Ω) ⊂

L2(Ω) → L2(Ω) is self-adjoint with compact resolvent, but it is not a negative operator in general.
This is not a problem here because we know that for µ > 0 large enough the operator ∆ +W (x)− µ
becomes negative, hence we can adapt the results of Theorem 2 in this case. Moreover, we know
that if ω verifies GCC, then (4.8) is controllable at any time T > T ∗, where T ∗ is the minimal time
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needed to ensure that all the rays of Geometric Optics in Ω enter the open set ω. Let n ∈ IN∗, we
have D((∆ +W (x))n) = H2n

(0)(Ω) where H2n
(0)(Ω) is defined in (4.2). We consider the control system ∂ttY = ∆Y +W (x)Y +AY + 1ωBV in (0, T )× L2(Ω)n,

Y (0) = Y 0,
∂tY (0) = Y 1,

(4.9)

with (A,B) ∈Mn(C)×Mn,m(C). Mimicking the proof of Theorem 3 and Theorem 4 we immediately
obtain the following results:

Theorem 7. Let us assume that ω satisfies GCC and ω ⊂ Ω. Let (Y 0, Y 1) ∈ H2n−1
(0) (Ω)×H2n−2

(0) (Ω).
Then, for every T > T ∗, the control system (4.9) is exactly controllable at time T if and only if
rank([A|B]) = n.

Remark 7. As in the case of the Schrödinger equation, one can obtain the same result as in Theorem
7 with exactly the same proof by replacing the open set Ω with some regular compact connected
Riemannian manifold without boundary M , with ω any open subset of M verifying GCC.

Theorem 8. Let ω be an open subset of Ω such that ω ∩ ∂Ω 6= ∅ and ω satisfies GCC. Let n ≤ 3.
Let (Y 0, Y 1) ∈ H2n−1

(0) (Ω) × H2n−2
(0) (Ω), then, for every T > T ∗, the control system (4.9) is exactly

controllable at time T if and only if rank([A|B]) = n.

Acknowledgements
The authors would like to thank Camille Laurent for interesting discussions concerning Section 4

of this work.

Funding
Pierre Lissy is partially supported by the project IFSMACS funded by the french Agence Nationale

de la Recherche, 2015-2019 (Reference: ANR-15-CE40-0010).

Conflict of Interest
The authors declare that they have no conflict of interest.

References
[AB13] F. Alabau-Boussouira. A hierarchic multi-level energy method for the control of bidiagonal and mixed

n-coupled cascade systems of PDE’s by a reduced number of controls. Adv. Differential Equations,
18(11-12):1005–1072, 2013.

[ABCO15] F. Alabau-Boussouira, J.-M. Coron, and G. Olive. Internal controllability of first order quasilinear
hyperbolic systems with a reduced number of controls. Submitted, 2015.

[ABL13] F. Alabau-Boussouira and M. Léautaud. Indirect controllability of locally coupled wave-type systems
and applications. J. Math. Pures Appl. (9), 99(5):544–576, 2013.

[AKBD06] F. Ammar-Khodja, A. Benabdallah, and C. Dupaix. Null-controllability of some reaction-diffusion
systems with one control force. J. Math. Anal. Appl., 320(2):928–943, 2006.

[AKBDGB09a] F. Ammar-Khodja, A. Benabdallah, C. Dupaix, and M. González-Burgos. A generalization of the
Kalman rank condition for time-dependent coupled linear parabolic systems. Differ. Equ. Appl.,
1(3):427–457, 2009.

[AKBDGB09b] F. Ammar-Khodja, A. Benabdallah, C. Dupaix, and M. González-Burgos. A Kalman rank condi-
tion for the localized distributed controllability of a class of linear parbolic systems. J. Evol. Equ.,
9(2):267–291, 2009.

[AKBGBdT11a] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa. The Kalman condition
for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to
complex matrix exponentials. J. Math. Pures Appl. (9), 96(6):555–590, 2011.

26



REFERENCES July 13, 2016 T.Liard, P. Lissy

[AKBGBdT11b] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa. Recent results on the
controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields, 1(3):267–
306, 2011.

[AKBGBdT14] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa. Minimal time for the
null controllability of parabolic systems: the effect of the condensation index of complex sequences.
J. Funct. Anal., 267(7):2077–2151, 2014.

[AKBGBdT15] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa. New phenomena for the
null controllability of parabolic systems: Minimal time and geometrical dependence. Submitted, 2015.

[AKCFD16] F. Ammar-Khodja and M. Chouly F.and Duprez. Partial null controllability of parabolic linear
systems. Math. Control Relat. Fields, To appear, 2016.

[ALM15] N. Anantharaman, M. Léautaud, and F. Macià. Wigner measures and observability for the
Schrödinger equation on the disk. submitted, 2015.

[BBGBO14] A. Benabdallah, F. Boyer, M. González-Burgos, and G. Olive. Sharp estimates of the one-dimensional
boundary control cost for parabolic systems and application to the N -dimensional boundary null
controllability in cylindrical domains. SIAM J. Control Optim., 52(5):2970–3001, 2014.

[BLR92] C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, control, and
stabilization of waves from the boundary. SIAM J. Control Optim., 30(5):1024–1065, 1992.

[BO14] F. Boyer and G. Olive. Approximate controllability conditions for some linear 1D parabolic systems
with space-dependent coefficients. Math. Control Relat. Fields, 4(3):263–287, 2014.

[CGR10] J.-M. Coron, S. Guerrero, and L. Rosier. Null controllability of a parabolic system with a cubic
coupling term. SIAM Journal on Control and Optimization, 48(8):5629–5653, 2010.

[CL14] J.-M. Coron and P. Lissy. Local null controllability of the three-dimensional Navier-Stokes system
with a distributed control having two vanishing components. Invent. Math., 198(3):833–880, 2014.

[Cor07] J.-M. Coron. Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs. Amer-
ican Mathematical Society, Providence, RI, 2007.

[CT10] N. Cîndea and M. Tucsnak. Internal exact observability of a perturbed Euler-Bernoulli equation.
Ann. Acad. Rom. Sci. Ser. Math. Appl., 2(2):205–221, 2010.

[DL09] B. Dehman and G. Lebeau. Analysis of the HUM control operator and exact controllability for
semilinear waves in uniform time. SIAM J. Control Optim., 48(2):521–550, 2009.

[DL16] M. Duprez and P. Lissy. Indirect controllability of some linear parabolic systems of m equations with
m – 1 controls involving coupling terms of zero or first order. Journal de Mathématiques Pures et
Appliquées, To appear, 2016.

[DLRL14] B. Dehman, J. Le Rousseau, and M. Léautaud. Controllability of two coupled wave equations on a
compact manifold. Arch. Ration. Mech. Anal., 211(1):113–187, 2014.

[EZ10] Sylvain E. and Enrique Z. A systematic method for building smooth controls for smooth data.
Discrete and Continuous Dynamical Systems - Series B, 14(4):1375–1401, 2010.

[EZ11] S. Ervedoza and E. Zuazua. Sharp observability estimates for heat equations. Arch. Ration. Mech.
Anal., 202(3):975–1017, 2011.

[GBdT10] M. González-Burgos and L. de Teresa. Controllability results for cascade systems of m coupled
parabolic PDEs by one control force. Port. Math., 67(1):91–113, 2010.

[GBPG06] M. González-Burgos and R. Pérez-García. Controllability results for some nonlinear coupled parabolic
systems by one control force. Asymptot. Anal., 46(2):123–162, 2006.

[Gro86] M. Gromov. Partial differential relations, volume 9 of Ergebnisse der Mathematik und ihrer Gren-
zgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1986.

[KL05] V. Komornik and P. Loreti. Fourier series in control theory. Springer Monographs in Mathematics.
Springer-Verlag, New York, 2005.

[Leb92] G. Lebeau. Contrôle de l’équation de Schrödinger. J. Math. Pures Appl. (9), 71(3):267–291, 1992.

[LGMdT15] M. Lopez-Garcia, A. Mercado, and L. de Teresa. Null controllability of a cascade system of
Schrdödinger equations. Submitted, 2015.

[Lio88] J.-L. Lions. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1,
volume 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson,
Paris, 1988. Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos,
G. Lebeau and J. Rauch.

[Lis13] P. Lissy. Sur la contrôlabilité et son coût pour quelques équations aux dérivées partielles. PhD thesis,
Université Pierre et Marie Curie, 2013.

27



REFERENCES July 13, 2016 T.Liard, P. Lissy

[LR15] T. Li and B. Rao. On the exactly synchronizable state to a coupled system of wave equations. Port.
Math., 72(2-3):83–100, 2015.

[LR16a] T. Li and B. Rao. Criteria of Kalman’s type to the approximate controllability and the approximate
synchronization for a coupled system of wave equations with Dirichlet boundary controls. SIAM J.
Control Optim., 54(1):49–72, 2016.

[LR16b] T. Li and B. Rao. Exact synchronization by groups for a coupled system of wave equations with
Dirichlet boundary controls. J. Math. Pures Appl. (9), 105(1):86–101, 2016.

[Mil06] L. Miller. The control transmutation method and the cost of fast controls. SIAM J. Control Optim.,
45(2):762–772 (electronic), 2006.

[Phu01] K. D. Phung. Observability and control of Schrödinger equations. SIAM J. Control Optim., 40(1):211–
230 (electronic), 2001.

[RdT11] L. Rosier and L. de Teresa. Exact controllability of a cascade system of conservative equations. C.
R. Math. Acad. Sci. Paris, 349(5-6):291–296, 2011.

[SM65] L. M. Silverman and H. E. Meadows. Controllability and time-variable unilateral networks. IEEE
Trans. Circuit Theory, CT-12:308–314, 1965.

[Zua16] E. Zuazua. Stable observation of additive superpositions of Partial Differential Equations. Systems
Control Lett., 93:21–29, 2016.

28


	Introduction
	Presentation of the problem
	Abstract setting and main results
	State of the art and precise scope of the paper
	Some related open problems

	Proof of Theorem 1
	First part of the proof of Theorem 1
	Second part of the proof of Theorem 1

	Proof of Theorem 2
	First part of the proof of Theorem 2
	Second part of the proof of Theorem 2

	Applications
	System of Schrödinger equations with internal control
	System of wave equations with internal control


