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A Kalman rank condition for the indirect controllability of
coupled systems of linear operator groups

Thibault Liard∗ Pierre Lissy†

April 5, 2016

Abstract
In this article, we give a necessary and sufficient condition of Kalman type for the indirect

controllability of systems of groups of linear operators, under some “regularity and locality”
conditions on the control operator that will be made precise later and fits very well the case of
distributed controls. Moreover, in the case of first order in time systems, when the Kalman rank
condition is not satisfied, we characterize exactly the initial conditions that can be controlled.
Some applications to the control of systems of Schrödinger or wave equations are provided.
The main tool used here is the fictitious control method coupled with the proof of an algebraic
solvability property for some related underdetermined system and some regularity results.

Keyworlds: controllability of abstract linear semi-groups, indirect controllability of systems,
fictitious control method, algebraic solvability.

MSC: 35F35, 35G35, 47D03, 93B05, 93B07.

1 Introduction

1.1 Presentation of the problem and main results
Let T > 0 and K = R or C . Let U , H two Hilbert spaces on K (that will be always identified with

their dual in what follows) and a linear continuous application C : U → H. We consider

• L : D(L) ⊂ H → H a closed unbounded operator with dense domain, which is supposed to be
the generator of a strongly continuous group on H,

• Q : D(Q) ⊂ H → H another closed unbounded operator with dense domain, which is supposed
to be self-adjoint and negative with compact resolvent.

Let n ∈ IN∗ with n > 2 and m ∈ IN∗, and let (A,B) ∈ Mn(K) × Mn,m(K) two matrices. For
every k ∈ N∗, we introduce the operators Lk : D(L)k ⊂ Hk → Hk, Qk : D(Q)k ⊂ Hk → Hk and
Ck : Uk → Hk such that, for every ϕ ∈ D(L)k and ψ ∈ Uk,

Lk(ϕ) =


L(ϕ1)
L(ϕ2)

...
L(ϕk)

 , Qk(ϕ) =


Q(ϕ1)
Q(ϕ2)

...
Q(ϕk)

 and Ck(ψ) =


C(ψ1)
C(ψ2)

...
C(ψk)

 . (1.1)
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We consider the (first and second order in time) systems of n linear equations

∂tY = Ln(Y ) +AY +BCmV in (0, T )×Hn, (Ord1)

and
∂ttY = Qn(Y ) +AY +BCmV in (0, T )×Hn, (Ord2)

where V := (v1, . . . , vm) ∈ Um is called a control. (Ord1) (resp. (Ord2)) can be seen as a “system”
version of the “scalar” controlled equation ∂tz = Lz+ Cu (resp. ∂ttz = Lz+ Cu), where we add some
coupling terms of zero order through the matrix A and where we impose a precise structure on the
control through the matrix B. Note that one may have m < n, which means that the number
of controls can be strictly less than the number of equations, and notably some equations might
be uncontrolled. In this setting, the structure of the coupling terms is crucial in order to obtain
some controllability results, and in some sense these coupling terms can be used to act indirectly on
the equations that are not controlled. This is why we call indirect controllability the study of the
controllability properties of this kind of systems.

It is usual to write the second order system (Ord2) as a first order system (see section 3.1).
However, we emphasize that (Ord2) is not a particular case of (Ord1), the reason being that if we
transform (Ord2) into a first order system, we will not be able to find any matrix A such that (Ord2)
can be written as (Ord1). Finding such a matrix would require that the coupling terms involve
simultaneously Y and Yt (see notably (3.3)), which is not the case here.

It is well-known that for the controllability of coupled systems like (Ord2), the natural state
space D(Q 1

2 )n ×Hn is not always possible. For instance taking zero as initial data we cannot reach
any target state in D(Q 1

2 )n × Hn because of the regularity of solutions of (Ord2) (one might for
example think of a upper triangular matrix A with a control acting only on the last equation, see
[DLRL14]). The same phenomena does not occur for system like (Ord1), however, in both cases, we
will always assume that the initial conditions are regular enough, namely Y (0, ·) ∈ D(Ln−1)n (resp.
(Y (0, ·), ∂tY (0, ·)) ∈ D(Qn− 1

2 )n × D(Qn−1)n), which is enough to ensure that system (Ord1) (resp.
(Ord2)) with initial condition in these spaces admits a unique solution in C0([0, T ];Hn) (resp. in
C0([0, T ];D(Q 1

2 )n ×Hn).
The main goal of this article is to analyze the null controllability of System (Ord1) and System

(Ord2), which would (partially) generalize the results of [AKBDGB09a] in the case of conservative
systems. Let us recall the definition of these notions. It will be said that

• System (Ord1) (resp. System (Ord2)) is null controllable at time T if for every initial con-
dition Y 0 ∈ D(Ln−1)n (resp. (Y 0, Y 1) ∈ D(Qn− 1

2 )n × D(Qn−1)n), there exists a control
V ∈ C0([0, T ];Um) such that the solution Y to System (Ord1) with initial condition Y (0, ·) = Y 0

(resp. to System (Ord2) with initial condition (Y (0, ·), ∂tY (0, ·)) = (Y 0, Y 1)) satisfies

Y (T ) ≡ 0 in Hn (resp. Y (T ) ≡ 0 and ∂tY (T ) ≡ 0 in Hn ×Hn).

• System (Ord1) (resp. System (Ord2)) is exactly controllable at time T if for every initial
condition Y 0 ∈ D(Ln−1)n (resp. (Y 0, Y 1) ∈ D(Qn− 1

2 )n×D(Qn−1)n) and every YT ∈ D(Ln−1)n

(resp. (YT , ZT ) ∈ D(Qn− 1
2 )n ×D(Qn−1)n), there exists a control V ∈ C0([0, T ];Um) such that

the solution Y to System (Ord1) with initial condition Y (0, ·) = Y 0 (resp. to System (Ord2)
with initial condition (Y (0, ·), ∂tY (0, ·)) = (Y 0, Y 1)) satisfies

Y (T ) ≡ YT in D(Ln−1)n (resp. Y (T ) ≡ YT in D(Qn− 1
2 )n and ∂tY (T ) ≡ ZT in D(Qn−1)n).

Let us remark that since Ln (resp. Q̂n defined in (3.2) , see Section 3.1) is a generator of a group,
then System (Ord1) (resp. System (Ord2)) is null controllable at time T if and only if it is exactly
controllable at time T (see for example [Cor07, p. 55]). Hence, from now on, we will only concentrate
on the null controllability of Systems (Ord1) and (Ord2).
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Our main assumptions will be the following.

ASSUMPTIONS

There exists a linear continuous application C : U → H such that

Assumption 1.1. [Scalar null controllability]

Case (Ord1) The control system
∂tz = Lz + Cu, (1.2)

is exactly controllable at time T ∗.

Case (Ord2) The control system
∂ttz = Qz + Cu, (1.3)

is exactly controllable at time T ∗.

Assumption 1.2. [Regularity and locality]

Case (Ord1) Lk(CC∗D(L∗k)) ⊂ C(U) for all k ∈ {0, · · · , n− 1},

Case (Ord2) Q k
2 (CC∗D(Q k

2 )) ⊂ C(U) for all k ∈ {0, · · · , 2n− 2}.

Remark 1. 1. It might happen that the operator C itself verify Assumptions 1.1 and 1.2, hence
in some sense our assumptions are more general than just stating the same assumptions
replacing C by C. However, the price to pay is that condition 1.1 is stronger than just having
Assumption 1.1 with the control operator C (see the next point).

2. Assumption 1.1 may seem quite artificial since it does not seem to be related to the controlla-
bility of systems

∂tz = Lz + Cu, (1.4)

and
∂ttz = Lz + Cu, (1.5)

that would be the natural minimum conditions one might expect.

However, one can easily prove that Assumptions 1.1 and 1.2 imply the controllability at time
T ∗ of (1.4) and (1.5). Let us explain it for (1.4) (this exactly the same reasoning for equation
(1.5)). Thanks to the Hilbert Uniqueness Method (HUM, see [Lio88]), we know that the control
function u in (1.2) with minimal L2-norm is necessarily in R(C∗) (where R denotes the range of
an operator), which implies that Cu ∈ R(CC∗), hence thanks to Assumption 1.2 (with k = 0),
we obtain Cu ∈ R(C) and this proves that (1.4) is indeed controllable.

3. One consequence of Assumption 1.2 is that we have CC∗D(L∗k) ∈ D(Lk) for every k ∈
{0, · · · , n − 1}, hence is some sense C has to “preserve the regularity”, which is very natural
in the context of conservative systems of second order like (Ord2) (see notably [DL09]). How-
ever, in many applications this is in general false for the operator C itself (and it the main
reason why we introduce C). For example, consider some open subset Ω of RN (N ∈ IN∗),
and consider H = U = L2(Ω). Assume that L is a differential operator defined on some open
subset Ω and the application C : L2(Ω) → L2(Ω) is defined by Cu = 1ωu, where ω is some
open subset of Ω. Then it is clear that the property CC∗D(L∗k) ∈ D(Lk), which is equivalent
to 1ωuD(L∗k) ∈ D(Lk), is always false as soon as k > 0, L is of order more than 1 and ω is
different from Ω (because 1ω ∈ L2(Ω) but does not belong to any higher order Sobolev space).
Hence, roughly speaking, the linear application C has to be thought as a “regularization” of the
linear application C. In the case of distributed control, a natural candidate for C is Cu = 1̃ωu,
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where 1̃ω ∈ C∞c (Ω) is some “regularization” of the indicator function 1ω, defined for example
such that

1̃ω :=

{
1 on ω0,
0 on Ω\ω,

where ω0 is some well-chosen open set included in ω. This will be explained into more details
in Sections 4.1 and 4.2.

4. Adding the condition Lk(CC∗D(L∗k)) ⊂ C(U) for all k ∈ {0, · · · , n − 1} is necessary in our
method to prove that our control is in (C(U))m. This notably ensures that the operatorM and
M̃ defined in (2.18) and (3.17) respectively are “local” in the sense that they send an element
of the range of CC∗ into an element of the range of C.

In the sequel, we will denote by [A|B] ∈Mn,nm(K) the Kalman matrix, which is given by

[A|B] = (B|AB|A2B| · · · |An−1B). (1.6)

Our result gives a necessary and sufficient condition for exact (or null) controllability of System
(Ord1) and (Ord2).

Theorem 1. Let us assume that L satisfies Assumptions 1.1 and 1.2 . Let Y 0 ∈ (D(L)n−1)n.
Then, for every T > T ∗, there exists a control V in C0([0, T ]×Um) such that the solution of (Ord1)
corresponding to the initial condition Y (0) = Y 0 in Hn satisfies

Y (T ) ≡ 0 in Hn

if and only Y 0 ∈ [A|B](Hnm).

Remark 2. Concerning Theorem 1, the reversibility of the equation allows us to obtain the same
conclusion if we replace the final condition Y (T, ·) = 0 by Y (T, ·) = Y T for some Y T ∈ D(Ln−1)n ∩
[A|B](Hnm).

When rank([A|B]) = n, Theorem 1 gives us a necessary and sufficient condition for the null
controllability of System (Ord1).

Corollary 1.1. Let us assume that L satisfies Assumptions 1.1 and 1.2. Then, for every T > T ∗, the
control system (Ord1) is exactly controllable at time T if and only if rank([A|B]) = n.

Concerning system (Ord2), we have the following result.

Theorem 2. Let us assume that Q satisfies assumptions 1.1 and 1.2. Then, for every T > T ∗, the
control system (Ord2) is exactly controllable at time T if and only if rank(B|AB| · · · |An−1B) = n.

Remark 3. We were not able to derive the same kind of result as in Theorem 1 in the case of second-
order in time systems, so that we do not know it would be true in this context.

Using the transmutation technique (for instance the version given in [EZ11]) and Section 3.2, one
can deduce easily the following result in the parabolic case, assuming that the corresponding “scalar”
hyperbolic system is controllable.

Corollary 1.2. Let us assume that Q satisfies Assumptions 1.1 and 1.2. Then, for every T > 0, the
control system

∂tY = Qn(Y ) +AY +BCmV in (0, T )×Hn,

is null controllable at time T if and only if rank(B|AB| · · · |An−1B) = n.

Remark 4. (a) rank(B|AB| · · · |An−1B) = n is called the Kalman rank condition by analogy with
the finite-dimensional case.
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(b) The assumption T > T ∗ enables us to choose a regular control U in time for the analytic system
(2.1) such that U(0, ·) = U(T, ·) = 0 (see [EZ10]). This is necessary to ensure that during the
resolution of the Algebraic Problem, we can construct a solution X of (2.9) or (3.11) such that
X(0) = X(T ) = 0. However, many of the controllability results known in the literature are
either results in arbitrary small time or with an “open” condition on the minimal time of control,
hence in practice controlling at any time T > T ∗ rather that at time exactly T ∗ will not provide
a weaker result than in the scalar case.

Our paper is organized as follows. In Section 1.2, we recall some previous results and explain
precisely the scope of the present contribution. In Section 1.3 we quickly present the main method
used. In Section 1.4 we present some related open problems. Section 2 and 3 are respectively devoted
to proving Theorem 1 and Theorem 2. In Section 4, we conclude with some applications, giving
new results for the indirect controllability of Schrödinger equations and wave equations with internal
control.

1.2 State of the art and precise scope of the paper

The question of controlling coupled systems of linear PDEs with a reduced number of control has
drawn an increasing interest during the last decade, notably in the case of parabolic or hyperbolic
systems. This issue is interesting from a theoretical point of view but also for potential applications.
Moreover, as explained in details in [AB13, Section 1], indirect controllability is also closely related to
insensitizing control and simultaneous control of coupled systems. In all what follows, we will mainly
concentrate on systems coupled with zero order terms, on distributed controls and on null or exact
controllability results. The case of boundary controls (which are unbounded) is not covered by our
abstract setting. However, there is also a huge literature on boundary control, approximate control-
lability and high order coupling terms for coupled systems (see notably [GBdT10], [AKBGBdT11a],
[BO14] or [DL16] for some recent contributions).

Concerning second-order parabolic equations, the case of coupled systems of heat equations with
same diffusion coefficients and constant or time-dependent coupling terms is well-understood (see
notably [AKBDGB09a], where an algebraic Kalman rank condition similar to the one of the current
article is given). In the case of different diffusion coefficients, a necessary and sufficient condition
involving some differential operator related to the Kalman matrix was also given in [AKBDGB09b].
This case was treated into more details in [AKBGBdT14]. However, as soon as the coupling coeffi-
cients depend on the space variable, the situation is far more intricate and in general we only have
partial results, essentially with two equations, one control force and in the one-dimensional case (see
[AKBGBdT15] for example) or in simple geometries like cylinders (see [BBGBO14]). Let us also
mention that the non-linear (and even semi-linear) has not been investigated too much up to now
(see for example [AKBD06], [GBPG06] and [CGR10]). For further informations on this topic, we
refer to the recent survey [AKBGBdT11b].

The case of hyperbolic or dispersive systems seems to have been less studied and the results
obtained are somehow quite different from the parabolic ones. Concerning the Schrödinger equation,
the recent paper [LGMdT15] considers the case of a cascade system of 2 equations with one control
force under the condition that the coupling region and the control region intersect and verify some
technical conditions ensuring that a Carleman estimate can be proved. Concerning systems of wave
equation, let us mention [AB13], where a result of controllability in sufficiently large time for second
order in time cascade or bidiagonal systems under coercivity conditions on the coupling terms is
given. Another related result is also [ABL13], where the case of two wave equations with one control
and a coupling matrix A which is supposed to be symmetric and having some additional technical
properties is investigated. Let us also mention a result in the one-dimensional and periodic case proved
in [RdT11]. In this last article, the authors also prove a result for the Schrödinger equation in arbitrary
dimension on the torus, however they only obtained a result in large time, which is rather counter-
intuitive and should be only technical. The case of a cascade system of two wave equations with one
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control on a compact manifold without boundary was treated in [DLRL14], where the author also
give a necessary and sufficient condition of controllability depending on the geometry of the control
domain and coupling region. Let us emphasize that in the four last references, the results obtained
in the case of abstract systems of wave equations can be applied to get some interesting results in the
case of abstract heat and Schrödinger equations thanks to the transmutation method (see [Phu01],
[Mil06] or [EZ11]), leading however to strong (and in general artificial) geometric restrictions on the
coupling region and control region. To finish, let us mention a recent result given in [ABCO15], which
treats the case of some linear system of two periodic and one-dimensional non-conservative transport
equations with same speed of propagation, space-time varying coupling matrix and one control and
also a nonlinear case.

Regarding the previous presentation, let us precise the exact scope of this paper, which has a
rather different spirit from most of the papers presented before concerning conservative systems.

• Our result is given in a very general setting, since we basically work on some group of operators
(which are not necessarily differential operators) with a bounded control operator satisfying
some technical conditions that appear to be verified in many cases in practice. Notably, our
result fits very well (but is not restricted to) the case of conservative systems of PDEs with
distributed control, where no general result was known in the case of constant coupling coeffi-
cients.

• Contrary to many results in the literature which concentrates on symmetric matrices, bi-
diagonal matrices or cascade matrices, our result does not require any structural conditions
on the coupling matrix A, nor on the matrix B which is often assumed to be acting only on the
last(s) equations. Moreover, we do not have any restriction on the number of equations n we
treat. Hence, most of the techniques used in the literature will fail in our case. Another impor-
tant point is that we are able here to give a necessary and sufficient condition of controllability
and we also are able in the one-order in time case to characterize precisely the initial conditions
that can be controlled, which -as far as we know- was only known for the finite-dimensional
case and for linear second order parabolic systems (see [AKBDGB09b]).

• The main restriction is that we work with constant coupling coefficients (this implies that the
coupling is made everywhere), which do not cover some interesting cases, notably the case of
space-varying coefficients described before. Despite this, we believe that the important degree
of generality of the present paper compensates this restriction and that our contribution is of
interest in order to have a deeper understanding of the controllability properties of coupled
systems.

1.3 Strategy of the proof
The general method that we describe briefly in this section is sometimes called fictitious control
method and was first introduced in [GBPG06]. It has been then used in different context notably
in [ABCO15], [CL14] and [DL16]. Roughly speaking, the method can be described as follows: we
first control our system of equations with n controls, one on each equation. This control is called
a fictitious control because it is destined to disappear at the end of the reasoning. Then we try to
eliminate this control thanks to algebraic manipulations and replace it by the control operator BCm,
which has a determined algebraic structure and may not act on all equations. The first step will
be called Analytic Problem, whereas the second one will be called the Algebraic Problem. For more
details concerning this method and its exact scope, we refer to [DL16, Section 2.3], [CL14, Section
3.1] and [Lis13, Section 1.3].

1.4 Some related open problems
Let us address some related open questions and possible extensions of this work.
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• In the case of equation (Ord1), Assumption 1.2 and the regularity condition on the initial data
do not seem to be necessary, and it would be natural to expect the same result by just assuming
that Assumption 1.1 is true with C = C, but the strategy used here prevented us to get this
result. The case of admissible unbounded control operators B ∈ Lc(U,D((L∗)′) is also still an
open question.

• A natural extension of the Kalman rank condition is what is called the Silverman-Meadows
condition (see [SM65]) in the case of matrix A and B depending on the time variable, that we
did not manage to treat with the same strategy.

• Here the coupling terms are supposed to be constant. It would be interesting to replace them
by more general coupling terms. A more challenging issue would be to find an abstract setting
that would include conservative partial differential equations with coupling terms depending on
the space and time variable, at least in the case where the coupling region intersect the control
domain.

• Another interesting question is the case of the local controllability of semi-linear equations, the
main difficulty being that due to the difference of regularity between the initial condition and
the control, standard inverse mapping theorems or fixed-point theorems cannot be used. A
possible remedy would be to use a fixed point strategy of Nash-Moser type as in [ABCO15].

• When systems of equations like (Ord1) and (Ord2) are concerned, a very natural question that
might appear in many applications is what is called partial controllability, which means that we
would like (for example) to bring only the first l (l ∈ [|1, n−1|]) components of the state variable
to 0 without imposing any conditions the n− l+ 1 last components. It would be interesting to
see if general conditions like the one found in [FAKD16] can be derived.

• To finish, one could also investigate more general coupled systems of the form

∂tY = DLn(Y ) +AY +BCmV in (0, T )×Hn

and
∂ttY = DQn(Y ) +AY +BCmV in (0, T )×Hn,

where D is some constant matrix, for example a diagonal matrix with (possibly) distinct coef-
ficients and try to derive results similar to [AKBDGB09b].

2 Proof of Theorem 1
In the sequel, we focus our attention on the null-controllability of the system (Ord1). Suppose that
Assumptions 1.1 and 1.2 are satisfied and let T > T ∗. We will always consider some initial condition
Y 0 belonging to D(Ln−1)n.

2.1 First part of the proof Theorem 1

In all this section, we assume Y 0 is in [A|B](Hnm) and we want to prove that the solution to (Ord1)
with initial condition Y 0 can be brought to 0 at time T .

Analytic problem:

We consider the control problem{
∂tZ = Ln(Z) +AZ + Cn(U) in (0, T )×Hn,
Z(0) = Y 0.

(2.1)

7
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Let us emphasize that in this step we act on all equations with n distinct controls, one on each
equation. U is here called a fictitious control because he will disappear at the end of the reasoning.
Let us first prove that (2.1) is controllable and give some regularity results on the control and the
solution.

Proposition 2.1. If Assumption 1.1 is satisfied, then for every T > T ∗, the control system (2.1)
is null controllable at time T . Moreover, one can choose a control U such that

U(t, .) ∈ [A|B](Hnm)for every t ∈ (0, T ), (2.2)

U ∈ Hn−1
0 (0, T ;Un)

⋂
∩n−1k=0C

k([0, T ];C
∗
nD((L∗n)n−1−k), (2.3)

Z ∈ ∩n−1k=0C
k([0, T ];D(Ln−1−kn )). (2.4)

Proof of Proposition 2.1. Using the change of variables Z = etAZ̃ and U = etAŨ , we obtain
that the solution Z of system (2.1) is null controllable at time T if and only if the system{

∂tZ̃ = Ln(Z̃) + Cn(Ũ) in (0, T )×Hn, (2.5)

is null controllable at time T . Remark that system (2.5) is totally uncoupled. Hence, since the control
system (1.2) is controllable at time T , using the definitions of Ln and Cn given in (1.1), we easily
obtain that the control system (2.5) is controllable at time T .

Moreover Cn ∈ L(Un,Hn) and the operator Ln is a generator of a group on Hn. Then, applying
[EZ10, Corollary 1.5] (with s = n − 1), we deduce that there exists (Z̃, Ũ) a solution of (2.5) such
that Z̃(T ) = 0 and

Z̃ ∈ ∩n−1k=0C
k([0, T ];Zn−1−k),

where Zj is defined by induction by

Z0 = Hn, Zj = L−1n (Zj−1 + CnC
∗
n(D((L∗n)j))).

The spaces Zj are in general not known explicitly, however, in our case, using Assumption 1.2 (see
also the second point of Remark 1), it is clear that notably

CnCn
∗D((L∗n)j) ⊂ D(Ljn),

from which we deduce easily by induction that for every j ∈ [|1, n|], we have

Zj ⊂ D(Ljn),

which establishes (2.4).
Moreover, [EZ10, Theorem 1.4] (with s = n− 1) notably implies that on can choose Ũ belonging

to Hn−1
0 (0, T ;Un). Finally, to prove (2.3), it enough to prove that

Ũ ∈ ∩n−1k=0C
k([0, T ];C

∗
nD((L∗n)n−1−k)),

which is an immediate consequence of the proof of Corollary 1.5 of [EZ10, Page 1387] (and notably
equality (3.19) in this reference).

It remains us to prove (2.2). As in [EZ10, Equality (1.3)], we fix δ > 0 such that T − 2δ > T ∗

and we consider η ∈ Cn−1(R) such that

η(t) =

{
0 if t ∈ (0, T ),
1 if t ∈ [δ, T − δ].

8
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Then, Ũ can also be chosen as the one of minimal L2(0, T ; dt/η;U) among all possible controls
for which the solution of (2.1) satisfies Z̃(T ) = 0, properties (2.3) and (2.4) being still verified.

Hence, using [EZ10, Proposition 1.3], Ũ can be written as

Ũ = η(t)C
∗
ne

(T−t)L∗nG−1n eTLnY 0,

where

Gn =

∫ T

0

e(T−t)LnCnCn
∗
e(T−t)L

∗
n dt.

Note that since (2.5) is null controllable, Gn is indeed an invertible linear application. Using that
Y 0 = [A|B]Ŷ 0 with Ŷ 0 ∈ Hnm, and the formulas

Ln[A|B] = [A|B]Lnm,

C
∗
n[A|B] = [A|B]C

∗
nm,

Cn[A|B] = [A|B]Cnm,

we deduce
Ũ = [A|B]η(t)C

∗
nme

(T−t)L∗nmG−1nme
TLnm Ŷ 0,

where

Gnm =

∫ T

0

e(T−t)LnmCnmCnm
∗
e(T−t)L

∗
nm dt,

which is also invertible. Using that Ũ = e−tAU , we obtain

U = etA[A|B]η(t)C
∗
nme

(T−t)L∗nmG−1nme
TLnm Ŷ 0. (2.6)

By the Cayley-Hamilton theorem, there exists β =

 β0
...

βn−1

 ∈ Kn such that An =
∑n−1
i=0 βiA

i. Let

ψ =

 ψ0

...
ψn−1

 ∈ Hnm, we have

A[A|B]ψ = (AB,A2B, · · · , AnB)ψ

= (AB,A2B, · · · ,
∑n−1
i=0 βiA

iB)ψ

= [A,B]ψ̂

(2.7)

with

ψ̂ =


β0ψn−1

ψ0 + β1ψn−1
...

ψn−2 + βn−1ψn−1

 ∈ Hnm.
Combining (2.6), (2.7) and using the fact that there exists α ∈ Kn such that e−tA =

∑n−1
i=0 αiA

i, we
obtain (2.2) and the proof of Proposition 2.1 is complete.

Algebraic problem:

Now, we would like to come back to the original system (Ord1) by algebraic manipulations.

9



2.1 First part of the proof Theorem 1 April 5, 2016 T.Liard, P. Lissy

Using Proposition 2.1, there exists (Z,U) solution of (2.1) verifying moreover (2.2), (2.3) and
(2.4). Notably, there exists Û ∈ Unm such that Cn(U) = [A|B]Cnm(Û). From now on, we will call
f := Cnm(Û), that will be considered as a source term. Our goal will be to find a pair (X, W̃ ) ∈
C0([0, T ];D(Ln)) ∩ C1([0, T ];Hn)× C0([0, T ];Um) satisfying the following problem:{

∂tX = Ln(X) +AX +BCmW̃ + [A|B]f in (0, T )×Hn,
X(0) = X(T ) = 0.

(2.8)

Calling CmW̃ = W , we will rather solve (the unknowns being the variablesX andW ) the following
problem {

∂tX = Ln(X) +AX +BW + [A|B]f in (0, T )×Hn,
X(0) = X(T ) = 0,

(2.9)

(the fact that W ∈ CmUm will be a consequence of our construction and our assumptions). Let
us remark that system (2.9) is underdetermined in the sense that we have more unknowns than
equations. Hence, one can hope to find a trajectory (X,W ) verifying X(0) = X(T ) = 0 (which is a
crucial point here), which would not be necessarily possible if the system were well-posed. We will
use the notion of algebraic solvability, which is based on ideas coming from [Gro86, Section 2.3.8] for
differential systems and was already widely used in [ABCO15], [CL14] and [DL16]. The idea is to
write System (2.9) as an undertermined system in the variables X and W and to see f as a source
term, so that we can write Problem (2.9) under the abstract form

P(X,W ) = [A|B]f, (2.10)

where
P :

D(P) ⊂ L2(0, T ;Hn+m) → L2(0, T ;Hn)
(X , W ) 7→ ∂tX − LnX −AX −BW.

(2.11)

The goal will be then to find an operatorM (involving time derivatives and powers of Ln) satisfying

P ◦M = [A|B]. (2.12)

When (2.12) is satisfied, we say that System (2.9) is algebraically solvable. In this cas, one can
choose as a particular solution of (2.9) (X,W ) =M(Cnm(Û)). This exactly means that one can find
a solution (X,W ) of System (2.9) which can be written as a linear combination f , its derivatives in
time, and some Lknmf with k ∈ N∗. Let us prove the following Proposition:

Proposition 2.2. Let (A,B) ∈ Mn(K) ×Mn,m(K). There exists an operator M such that the
equality (2.12) is satisfied. Moreover, the operatorM is an operator of order at most{

n− 2 for the n first components
n− 1 for the m last components (2.13)

in time and in term of powers of Ln.

Proof of Proposition 2.2. We can remark that equality (2.12) is equivalent to

M∗ ◦ P ∗ = [A|B]∗. (2.14)

The adjoint operator P∗ : D(P ∗) ⊂ L2(0, T ;Hn)→ L2(0, T ;Hn)×L2(0, T ;Hm) of the operator P is
given for all ϕ ∈ D(P ∗) by

P∗ϕ :=



(P ∗ϕ)1
...

(P∗ϕ)n
(P∗ϕ)n+1

...
(P ∗ϕ)n+m


=

(
−∂tϕ− L∗nϕ−A∗ϕ

−B∗ϕ

)
. (2.15)

10



2.1 First part of the proof Theorem 1 April 5, 2016 T.Liard, P. Lissy

Since (A,B) ∈ Mn(K)×Mn,m(K) are constant matrices, we have the following commutation prop-
erties:

B∗(A∗)iL∗n = L∗mB
∗(A∗)i

and
B∗(A∗)i∂t = ∂tB

∗(A∗)i.

By definition, we have

B∗ϕ = −

 (P ∗ϕ)n+1

...
(P ∗ϕ)n+m

 .

Now, for i = {1, · · · , n− 1}, applying B∗(A∗)i−1 to −∂tϕ− L∗nϕ−A∗ϕ, we have

B∗(A∗)i−1

 (P ∗ϕ)1
...

(P ∗ϕ)n

 = −(∂t + L∗m)(B∗(A∗)i−1ϕ)−B∗(A∗)iϕ, i.e.

B∗(A∗)iϕ = −B∗(A∗)i−1

 (P ∗ϕ)1
...

(P ∗ϕ)n

− (∂t + L∗m)(B∗(A∗)i−1ϕ).

By induction, we find, for every i ∈ {1, · · · , n− 1},

B∗(A∗)iϕ =
∑i−1
j=0(−1)j+1

(∂t + L∗m)jB∗(A∗)i−1−j

 (P ∗ϕ)1
...

(P ∗ϕ)n




+(−1)i+1(∂t + L∗m)i

 (P ∗ϕ)n+1

...
(P ∗ϕ)n+m

 .

(2.16)

We introduce the operatorM∗ : D(M∗) ⊂ L2 (0, T ;Hn+m)→ L2 (0, T ;Hnm) defined by

M∗

 ψ1

...
ψn+m



:=



−ψn+1

...
−ψn+m

−B∗

 ψ1

...
ψn

+ (∂t + L∗m)

 ψn+1

...
ψn+m


...

∑n−2
j=0 (−1)j+1

(∂t + L∗m)jB∗(A∗)n−2−j

 ψ1

...
ψn


+ (−1)n(∂t + L∗m)n−1

 ψn+1

...
ψn+m





.

(2.17)

11
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Thanks to (2.16) and (2.17),M∗ verifies equality (2.14). Using the definition ofM∗ given in (2.17),
we deduce that

M : D(M) ⊂ L2(0, T ;Hnm) → L2(0, T ;Hn+m)

f =



f1
...
fm
fm+1

...
f2m
...

fnm


7→ Mf,

defined by

Mf =



∑n−1
i=1

∑i−1
j=0(−1)j+1(−∂t + Ln)jAi−1−jB

 fjm+1

...
f(j+1)m


∑n−1
i=0 (−1)i+1(−∂t + Lm)i

 fim+1

...
f(i+1)m




, (2.18)

satisfies (2.12). Thus, in the n first components the higher order term is (−∂t + L)n−2 and in the m
last components the higher order term is (−∂t + L)n−1, which concludes the proof.

Conclusion: combination of the Analytic and Algebraic Problems.

Thanks to Proposition 2.1, there exists (Z,U) solution of (2.1) verifying moreover (2.2), (2.3) and
(2.4). One can notably write

Cn(U) = [A|B]Cnm(Û) (2.19)

for some Û ∈ L2((0, T );Unm). Using Proposition 2.2, we define (X,W ) by(
X
W

)
:=M

(
CnmÛ

)
, (2.20)

where Û is defined in (2.19). Using (2.3), we know that

CnU ∈ Hn−1
0 (0, T ;Cn(Un))

⋂
∩n−1k=0C

k([0, T ];CnC
∗
nD((L∗n)n−1−k)),

which implies using Assumption 1.2 that

CnU ∈ Hn−1
0 (0, T ;Cn(Un))

⋂
∩n−1k=0C

k([0, T ]; (D(Ln−1−k))n).

Using now (2.19), we obtain

CnmÛ ∈ Hn−1
0 (0, T ;Cnm(Unm))

⋂
∩n−1k=0C

k([0, T ]; (D(Ln−1−k))nm). (2.21)

Using (2.20) together with (2.13) and (2.21), we obtain that

(X,W ) ∈
(
H1

0 (0, T ;Cn(Un))
⋂
∩1k=0C

k([0, T ];D(L1−k
n ))

)
×
(
L2(0, T ;Cm(Um))

⋂
C0([0, T ];Hm)

)
,

12
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i.e.

(X,W ) ∈
(
H1

0 (0, T ;Cn(Un))
⋂
∩1k=0C

k([0, T ];D(L1−k
n ))

)
× C0([0, T ];Cm(Um)). (2.22)

Notably, there exists W̃ ∈ C0([0, T ];Um) such that W = CmW̃ . Thus, coming back to (2.8), we
infer that (X, W̃ ) is a solution to the problem{

∂tX = Ln(X) +AX +BCmW̃ + [A|B]f in (0, T )×Hn,
X(0) = X(T ) = 0.

(2.23)

Hence, combining (2.1), (2.23) and the regularity results given in (2.4) and (2.22), the fictitious
control f disappears and the pair (Y, V ) := (Z −X,−W̃ ) is a solution to System (Ord1) in the space

C0([0, T ];D(Ln)) ∩ C1([0, T ];Hn)× C0([0, T ];Um)

satisfying

Y (0) = Y 0 in D(Ln−1)n,

Y (T ) ≡ 0 in Hn,

which concludes the first part of the proof of Theorem 1.

2.2 Second part of the proof of Theorem 1
In this section, we assume Y 0 is NOT in [A|B](Hnm) and we want to prove that we cannot bring the
solution of (Ord1) with initial Y 0 to 0. We argue by contradiction.

For the sake of completeness we mimic the proof of [AKBDGB09a, Theorem 1.5]. Without loss
of generality we can only consider the case where we have one control force m = 1, that is to say
B ∈ Mn,1(K) (m = 1), the general case being quite similar (see notably [AKBDGB09a, Lemma 3.1
and Page 14]).

Let l ∈ IN such that rank[A|B] = l < n. By the Cayley-Hamilton theorem, {B,AB, · · · , Al−1B}
is linearly independent. We introduce

X = span{B,AB, · · · , ABl−1}.

Since AlB ∈ X, we know that there exists α ∈ Kl such that

AlB = α1B + α2AB + · · ·+ αlA
l−1B. (2.24)

Let pl+1, · · · , pn be n− l vectors in Kn such that the set

{B,AB, · · · , Al−1B, pl+1, · · · , pn}

is a basis of Kn. Introducing

P = (B|AB| · · · |Al−1B|pl+1| · · · , pn),

we have Pe1 = B with e1 =


1
0
...
0

 and

P−1AP =

(
D11 D12

0 D22

)

13
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for some D12 ∈Ml,n−l(K), D22 ∈Mn−l(K) and D11 ∈Ml which is given by

D11 =


0 0 0 · · · α1

1 0 0 · · · α2

0 1 0 · · · α3

...
...

. . . . . .
...

0 0 · · · 1 αl


By the change of variables W = P−1Y and using LnP−1 = P−1Ln and ∂tP−1 = P−1∂t we observe
that there exists a control V in L2((0, T )×H) such that the solution of (Ord1) corresponding to the

initial condition Y (0) = Y 0 in Hn satisfies Y (T ) ≡ 0 in Hn if and only if the solution W =

(
W1

W2

)
to  ∂tW = LnW +

(
D11 D12

0 D22

)
W + C1V e1,

W (0) = W 0 := P−1Y 0
(2.25)

verifies W (T ) ≡ 0 in Hn. Besides, it is easy to see that Y 0 ∈ [A|B](Hnm) if and only if there exists

W 0
1 ∈ Hl such that Y 0 = P

(
W 0

1

0

)
. If Y 0 /∈ [A|B](Hnm) then Y 0 = P

(
W 0

1

W 0
2

)
with W 0

1 ∈ Hl,

W 0
2 ∈ Hn−l and W 0

2 6= 0. Thus, by uniqueness we conclude that W2(T ) 6= 0. Hence the solution W
of (2.25) cannot be driven to zero at time T and (Ord1) cannot driven from Y 0 at time T to 0 at
time T , which concludes the proof.

3 Proof of Theorem 2
Let us recall that we consider here an operator Q which is assumed to be self-adjoint, negative with
compact resolvent. Suppose that Assumptions 1.1 and 1.2 are satisfied and let T > T ∗. We will
always consider some initial condition (Y 0, Y 1) ∈ D(Qn− 1

2 )n ×D(Qn−1)n.
During this section, we will assume that K = C for the sake of simplicity. The case K = R can

then be easily deduced for example by complexifying the spaces H and U .

3.1 First part of the proof of Theorem 2
In this section, we assume that the Kalman rank condition is satisfied and we want to prove the
controllability of (Ord2). We proceed as in the proof of Theorem 1. Let us emphasize that the
main difference with the previous case is that the changing of variables exhibited during the proof
of Proposition 2.1 does not work anymore, hence we have to change totally the proof of the analytic
part, which will now rely on a classical compactness-uniqueness argument similar to the one given for
example in [CT10, Section 3]. Concerning the algebraic part, the computations are essentially the
same.

Analytic problem:

We consider the controlled system ∂ttZ = Qn(Z) +AZ + Cn(U) in (0, T )×Hn,
Z(0) = Z0,
∂tZ(0) = Z1.

(3.1)

Let us first introduce some notations and first-order framework. Let Hα be the Hilbert space
defined by Hα = D(Qα) for any α ≥ 0 and H−α is the dual space of Hα with respect to the pivot

14
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space H. We denote by X =
(
H 1

2
×H

)n
our state space. We introduce the operator Q̂ : D(Q̂) =(

H1 ×H 1
2

)n
⊂ X → X such that

Q̂ =


AQ 0 · · · 0
0 AQ · · · 0
...

...
. . .

...
0 0 0 AQ

 with AQ =

(
0 Id
Q 0

)
. (3.2)

The system (3.1) can be written as a first order system

Ẑt = (Q̂+ Â)Ẑ + ĈU, (3.3)

with Ẑ =


Z1

(Z1)t
...
Zn

(Zn)t

, Ĉ

 u1
...
un

 =


0
Cu1
...
0
Cun

 and Â =


0 0 0 · · · 0 0
a11 0 a12 · · · 0 a1n
...

...
...

...
...

...
0 0 0 · · · 0 0
an1 0 an2 · · · 0 ann

.

Since we identify H with its dual, we shall define
(
H 1

2
×H

)′
= H×H− 1

2
and the duality product

defined for (y0, y1) ∈ H ×H− 1
2
, (z0, z1) ∈ H 1

2
×H by〈(

y0
y1

)
,

(
z0
z1

)〉
(
H×H− 1

2

)
×
(
H 1

2
×H

) = 〈y0, z1〉H + 〈y1, z0〉H− 1
2
×H 1

2

.

With this scalar product, we have

Q̂∗ = −


AQ∗ 0 · · · 0

0 AQ∗ · · · 0
...

...
. . .

...
0 0 0 AQ∗

 with

{
X ′ = (H×H− 1

2
)n,

D(Q̂∗) =
(
H 1

2
×H

)n
,

and Ĉ∗ : X∗ → Un is given by

Ĉ∗


x1
x2
...
x2n

 =


C∗x1
C∗x3
...

C∗x2n−1

 . (3.4)

Thus, ĈĈ∗ : X∗ → X is exactly

ĈĈ∗ =


BC 0 · · · 0
0 BC · · · 0
...

...
. . .

...
0 0 0 BC

 with BC =

(
0 0

CC∗ 0

)
.

and for i ∈ IN∗, D(Q̂i) = (H i+1
2
×H i

2
)n and D((Q̂∗)i) = D(Q̂i−1).

We can now go back to the resolution of the analytic problem.
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For any operator R, we introduce the set

NR(T ) :=

{[
z0

z1

]
∈ H 1

2
×H |C∗zt = 0 ∀t ∈ [0, T ] , z solution of

{
∂ttz = Rz
z(0) = z0, ∂tz(0) = z1

}
,

=


[
z0

z1

]
∈ H 1

2
×H | (0, C∗)Z = 0 ∀t ∈ [0, T ] , Z solution of


∂tZ =

(
0 Id
R 0

)
Z

Z(0) =

(
z0

z1

)
 .

(3.5)
The main proposition is the following.

Proposition 3.1. . If Assumption 1.1 is satisfied, for every T > T ∗, the control system (3.1) is
null controllable at time T . Moreover, one can choose U such that

U ∈ H2n−2
0 (0, T ;Un)

⋂
∩2n−2k=0 Ck([0, T ], C

∗
(Hn−1− k

2
)n). (3.6)

Proof of Proposition 3.1.
We will need the two following lemmas.

Lemma 3.1. If NQ∗n+A∗(T ) = {0} and if the system

∂ttZ = Qn(Z) + Cn(U) in (0, T )×Hn (3.7)

is exactly controllable at time T then the system (3.1) is exactly controllable in time T .

Lemma 3.1can be found in [CT10, Theorem 4] (with ε = 1), its proof will then be omitted.

Lemma 3.2. If NQ∗(T ) = {0} then NQ∗n+A∗(T ) = {0}.

Let us temporarily admit this lemma and explain how we can deduce Proposition 3.1. By As-
sumption 1.1, we have a unique continuation property for the adjoint system of (3.7), from which
we obtain that NQ∗(T ) = {0}. Now, using Lemma 3.1 and Lemma 3.2, the system (3.1) is null
controllable at time T . Since Ĉ ∈ L(Un, X), the control system (3.3) is null controllable at time T
and the operator Q̂ + Â is a generator of strongly continuous group on X. Let T > T ∗, combining
one more time Theorem 1.4, Corollary 1.5 and the equality (3.19) in [EZ10] (with s = 2n − 2), if
Y0 ∈ D(Q̂2n−2) one can choose U such that

U ∈ H2n−2
0 (0, T ;Un)

⋂
∩2n−2k=0 Ck([0, T ]; Ĉ∗D((Q̂∗)2n−2−k)).

Since for i ∈ IN∗, D(Q̂i) = (H i+1
2
×H i

2
)n, D((Q̂∗)i) = D(Q̂i−1), and going back to the definition of

Ĉ∗ given in (3.4), we obtain (3.6).

It remains us to prove Lemma 3.2. The proof is based on the following property.

Lemma 3.3. Let a ∈ K. If NQ∗(T ) = {0} then NQ∗+aIH(T ) = {0}.

Proof of Lemma 3.3. Let us decompose the proof into three steps.

• If C∗ϕ 6= 0 for every eigenvector ϕ of Q∗ + aIH then NQ∗+aIH = {0}.

To prove this property we refer to the proof of [CT10, Theorem 5] which relies on an easy
compactness-uniqueness argument.
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• If ϕ an eigenvector of Q∗ associated to the eigenvalue −λ < 0 and NQ∗(T ) = 0 then C∗ϕ 6= 0.

Indeed, in this case
( ϕ

i
√
λ

ϕ

)
is an eigenvector of

(
0 Id
Q∗ 0

)
associated to the eigenvalue

i
√
λ. Let us assume that (0, C∗)

( ϕ

i
√
λ

ϕ

)
= C∗ϕ = 0. Let Zϕ be the solution of


∂tZϕ =

(
0 Id
Q∗ 0

)
Zϕ,

Zϕ(0) =

( ϕ

i
√
λ

ϕ

)
.

Thus for all t ∈ (0, T ), we have

Z(t) = ei
√
λt

( ϕ

i
√
λ

ϕ

)
.

By assumption (0, C∗)Z(t) = ei
√
λtC∗ϕ = 0. From the definition of NQ∗(T ), ϕ ∈ NQ∗(T ) =

{0}, whence the contradiction.

• For every ϕ eigenvector of Q∗ + aIH, C∗ϕ 6= 0.

Indeed, the couple (ϕ, λ) is a vector-eigenfunction of Q∗ if and only if the couple (ϕ, λ + a) is
a vector-eigenfunction of Q∗ + aIH, and we can use the previous point.

Combining these 3 arguments provides Lemma 3.3.

Proof of Lemma 3.2. Since K = C, A∗ is triangularisable. Hence, There exists an invertible
matrix P such that A∗ = PT P−1 with T = (tij) some lower triangular matrix. Using the change
of variables V = P−1Z, we deduce that NQ∗n+A∗(T ) = {0} if and only if NQ∗n+T ∗(T ) = {0}. The
system {

Ztt = Q∗nZ + T Z,
Z(0) = Z0,

(3.8)

can be written as 

Z1
tt = Q∗nZ1 + t11Z

1,
Z2
tt = Q∗nZ2 + t21Z

1 + t22Z
2,

...
Zntt = Q∗nZn + tn1Z

1 + tn2Z
2 + · · ·+ tnnZ

n,
Z(0) = Z0.

(3.9)

Let Z0 =

 Z1
0
...
Zn0

 ∈ NQ∗n+T ∗(T ). By definition C
∗
nZ =

 C
∗
Z1

...
C∗Zn

 = 0 with Z solution of (3.8),

hence Z1
0 ∈ NQ∗+t11IH . Since NQ∗(T ) = 0 and using Lemma 3.3, we have Z1

0 = 0. Thus the system
can be written as 

Z2
tt = Q∗nZ2 + t22Z

2,
...
Zntt = Q∗nZn + tn2Z

2 + · · ·+ tnnZ
n,

Z(0) = Z0.
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Using the same reasoning as before by replacing Z1 by Z2, Z3, . . . , Zn successively, we get by induction
that Z2

0 = · · · = Zn0 = 0, thus we have Z0 = 0 and we infer that NQ∗n+T ∗(T ) = 0, which concludes
the proof thanks to Lemma 3.1.

Algebraic problem:
For f := Cn(U), we want find a pair (X, W̃ ) ∈ C0([0, T ];D(Qn))∩C1([0, T ];D(Q

1
2
n ))∩C2([0, T ];Hn)×

C0([0, T ];Um) satisfying the following control problem:{
∂ttX = Qn(X) +AX +BCmW̃ + f in (0, T )×Hn,
X(0) = X(T ) = ∂tX(0) = ∂tX(T ) = 0.

(3.10)

As in the proof of Theorem 1, we will solve instead{
∂ttX = Qn(X) +AX +BW + f in (0, T )×Hn,
X(0) = X(T ) = ∂tX(0) = ∂tX(T ) = 0,

(3.11)

with W ∈ Cm(Um). We will mimick the proof of Proposition 2.2. In the same way we can write
Problem (2.23) under the abstract form

P̃(X,W ) = f, (3.12)

where

P̃ :
D(P̃) ⊂ L2(0, T ;Hn+m) → L2(0, T ;Hn)
(X , W ) 7→ ∂ttX −QnX −AX −BW.

(3.13)

The goal will be then to find a partial differential operatorM satisfying

P̃ ◦M = In. (3.14)

Proposition 3.2. Let (A,B) ∈ Mn(K) ×Mn,m(K). If rank(B|BA| · · · |BAn−1) = n, P̃ has a
right inverse denoted byM. Moreover, the operatorM is an operator of order{

2n− 4 for n first components
2n− 2 for the m last components (3.15)

in time and {
n− 2 for n first components
n− 1 for the m last components (3.16)

in terms of powers of Q.

Proof of Proposition 3.2. Changing ∂t to ∂tt in the proof of Proposition 2.2 we have

P̃ ◦ M̃ = [A,B]

with
M̃ : D(M̃) ⊂ L2(0, T ;Hnm) → L2(0, T ;Hn+m)

f =



f1
...
fm
fm+1

...
f2m
...

fnm


7→ M̃f,

18
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defined by

M̃f =



∑n−1
i=1

∑i−1
j=0(−1)j+1(−∂tt +Qn)jAi−1−jB

 fjm+1

...
f(j+1)m


∑n−1
i=0 (−1)i+1(−∂tt +Qm)i

 fim+1

...
f(i+1)m




. (3.17)

Since rank(B|AB| · · · |An−1B) = n, there exists D ∈Mnm,n such that [A|B]D = In. Introducing the
operatorM := M̃D we obtain (3.14). Moreover, in the n first components the higher order term is
(−∂tt+Q)n−2 and in the m last components the higher order term is (−∂tt+Q)n−1, which concludes
the proof.

Conclusion: combination of the Analytic and Algebraic Problems.
The proof is similar to the one-order case, so that we just give the main arguments here. Let

(X,W ) be defined by (
X
W

)
:=M

(
CnU

)
, (3.18)

with CnU ∈ H2n−2
0 (0, T ;Cn(Un))

⋂
∩2n−2k=0 Ck([0, T ];CnC

∗
n(Hn

n−1− k
2

)) constructed in Proposition 3.1.
Using Proposition 3.2 and Assumption 1.2 , we obtain that

(X,W ) ∈
(
H2

0 (0, T ; (Cn(Un)))
⋂
∩2k=0C

k([0, T ];Hn
1− k

2
)
)
× C0([0, T ], Cm(Um)).

Notably, there exists W̃ ∈ C0([0, T ],Um) such that W = CmW̃ . Moreover, using Proposition 3.1 we
have X(0, ·) = X(T, ·) = 0 in Hn and we remark that (X, W̃ ) is a solution to the problem{

∂ttX = Qn(X) +AX +BCmW̃ + f in (0, T )×Hn,
X(0) = X(T ) = ∂tX(0) = ∂tX(T ) = 0.

Thus the pair (Y, V ) := (Z−X,−W̃ ) is a solution to System (Ord2) in C0([0, T ];D(Qn))∩C1([0, T ];D(Q
1
2
n ))

∩C2([0, T ];Hn)× C0([0, T ];Um) and satisfies

Y (0, ·) = Y 0 in D(Qn− 1
2 )n, ∂tY (0, ·) = Y 1 in D(Qn−1)n

Y (T, ·) ≡ 0 in Hn, ∂tY (T, ·) ≡ 0 in Hn.

3.2 Second part of the proof of Theorem 2
In this section, we assume that the Kalman condition is NOT satisfied and we want to prove that
the null controllability of (Ord2) fails. We will use an argument based on the transmutation method
in order to go back to a parabolic one-order system. The ideas are then essentially the same as in
Section 2.2.
Using the transmutation technique (as in [EZ11] for instance) we have the following lemma:

Lemma 3.4. If the system{
∂ttY = QnY +AY +BCmU in (0, T )×Hn, (3.19)

19
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is null controllable in some time T then at any time T̃ > 0, the system{
∂tZ = QnZ +AZ +BCmV in (0, T̃ )×Hn, (3.20)

is null controllable.

We assume that rank(B|AB| · · · |An−1B) 6= n. Thus, there exists X =

 X1

...
Xn

 ∈ Hn\{0} such
that B∗X = B∗A∗X = · · ·B∗ (A∗)

n−1
X = 0. We consider the following adjoint system of (3.20){

−∂tϕ = Q∗n(ϕ) +A∗ϕ in (0, T )×Hn,
ϕ(T ) = ϕT .

(3.21)

It is well-known that System (3.20) is null controllable at time T if and only if there exists a positive
constant C1 such that for all solution ϕ of (3.21)

‖ϕ(0)‖Hn ≤ C1

∫ T

0

‖C∗mB∗ϕ‖Um dt, (3.22)

for all ϕT ∈ D(L∗n). Let ϕX the solution of (3.21) with ϕX(T ) = X. Let S = (St)t∈IR be a strongly
continuous group on H, with generator Q : D(Q) ⊂ H → H. By the definition of Qn given in (1.1),

we obtain C∗mB
∗ϕX = C∗mB

∗etA
∗

 S∗(T − t)X1

...
S∗(T − t)Xn

. Since (A,B) ∈ Mn(K) ×Mn,m(K), for all

i ∈ {0, · · · , n− 1}, B∗ (A∗)
i

 S∗(T − t)X1

...
S∗(T − t)Xn

 is solution of

{
−∂tϕ = Q∗m(ϕ) in (0, T )×Hm,
ϕ(T ) = B∗ (A∗)

i
X = 0.

Thus

B∗ (A∗)
i

 S∗(T − t)X1

...
S∗(T − t)Xn

 = 0.

Using the Cayley-Hamilton theorem, we obtain that C∗mB∗ϕX = 0, from which we deduce that (3.22)
is not satisfied. Thus, the System (3.20) is not controllable at time T . Using Lemma 3.4, we deduce
that the system

∂ttY = QnY +AY +BCmU in (0, T )×Hn,
is not controllable, which concludes the proof.

4 Applications
In this section, we will give some examples of applications in the case of systems of Schrödinger and
wave equations with internal control. Let Ω be a smooth bounded open subset of IRN . We will denote
by L2(Ω) the set of square-integrable functions f defined on Ω with values in the complex plane C.

We recall the following definition that will be widely used in what follows.

Definition 4.1 (GCC). We say that ω verifies the Geometric Optics Condition (GCC in short) if
there exists T ∗ > 0 such that any rays of Geometric Optics in Ω enter the open set ω in time smaller
than T ∗ (see [BLR92]) .
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4.1 System of Schrödinger equations with internal control
Let us introduce the state space H = L2(Ω) and the control space U = L2(Ω) = H. We consider the
linear continuous operator C : L2(Ω)→ L2(Ω) defined by Cu = 1ωu with

1ω =

{
1 on ω,
0 on Ω\ω.

We consider the following Schrödinger equation{
∂tz = i∆z +W (x)z + 1ωu,
z(0) = z0,

(4.1)

where the potentialW is in C∞(Ω̄; K). It is well-known that the operator i∆+W (x) : H2(Ω)∩H1
0(Ω) ⊂

L2(Ω) → L2(Ω) is a generator of a group on L2(Ω). Let n ∈ IN∗, we have D((i∆ + W (x))n) =
D(((i∆ +W (x))∗)n) = H2n

(0)(Ω) where H2n
(0)(Ω) is defined by

H2n
(0)(Ω) := {v ∈ H2n(Ω) such that v = ∆v = · · · = ∆n−1v = 0 on ∂Ω}. (4.2)

We consider the control system{
∂tY = i∆Y +W (x)Y +AY + 1ωBV in (0, T )× L2(Ω)n,
Y (0) = Y 0,

(4.3)

with (A,B) ∈Mn(K)×Mn,m(K).
Our first result concerns the case where ω is strongly included in Ω.

Theorem 3. Let T > 0 and let us assume that the open set ω of Ω satisfy GCC and ω ⊂ Ω, then
there exists a control V in C0((0, T )× (L2(Ω))m) such that the solution of (4.3) with initial condition
Y (0) = Y 0 in (H2n−2

(0) (Ω))n satisfies

Y (T ) ≡ 0 in (L2(Ω))n

if and only Y 0 ∈ [A|B]((L2(Ω))nm).

Proof of Theorem 3. Since ω ⊂ Ω, one can construct a function 1̃ω ∈ C∞(Ω) defined by

1̃ω :=

{
1 on ω0,
0 on Ω\ω, (4.4)

where ω0 is some well-chosen open set strongly included in ω still verifying GCC, so that{
∂tz = (i∆ +W (x))z + 1̃ωu,
z(0) = z0,

(4.5)

is exactly controllable thanks to the result of [Leb92] (see Figure 1). Thus, we deduce that Assumption
1.1 is verified with C : L2(Ω)→ L2(Ω) defined by Cu = 1̃ωu.
To apply Theorem 1 we need to verify Assumption 1.2 where C is described above. Let ϕ ∈ D(((i∆ +

W (x))∗)k) = H2k
(0)(Ω), for all k ∈ {0, · · · , n − 1}, by definition of 1̃ω ∈ C∞c (Ω) we obtain CC∗ϕ =

1̃2
ωϕ ∈ H2k

(0)(Ω) and (i∆+W (x))k(CC∗D(((i∆+W (x))∗)k) ∈ C(L2(Ω)). Thus, we can apply Theorem
1 whence the conclusion of the proof of Theorem 3.

Remark 5. One can obtain the same result as in Theorem 3 with exactly the same proof by replacing
the open set Ω with some regular compact connected Riemannian manifold without boundary M ,
with ω any open subset of M verifying GCC.
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ω0ω

Ω

Figure 1: An example when ω ⊂ Ω.

ω0

ω

Ω

Figure 2: An example when ω ⊂ Ω is an open
set such that ω ∩ ∂Ω 6= ∅.

From now on we consider ω an open subset of Ω such that ω ∩ ∂Ω 6= ∅ (see Figure 2). In general
it is impossible to construct a function 1̃ω ∈ C∞(Ω) as (4.4) such that the system (4.5) is controllable
and 1̃ω maps H2k

(0)(Ω) into itself for all k ∈ [3,∞]. More precisely, satisfying Assumption 1.2 would

require that, for every ϕ ∈ H2(n−1)
(0) (Ω), for every k ≤ n− 2, ∆k(1̃ωϕ) = 0 on ∂Ω which is not verified

without additional conditions on 1̃ω. If n = 2 it is clear that 1̃ω maps L2(Ω,C) into itself. If n = 3,
we need to assume moreover that ∇1̃ω.~n = 0 with ~n the unit normal vector. If n > 3, 1̃ω has to
satisfy strong global geometric conditions, for instance 1̃ω can be chosen constant near any connected
component of the boundary (for more informations we refer to [DL09, Section 4.2]). However, we
cannot affirm anymore that the system (4.5) will still be controllable without loss of regularity or
locality on the function 1̃ω, so that Assumption 1.2 will not be verified. Hence, we will focus our
attention on some particular cases. We will first consider the case where the number of equations
is less than or equal to three without additional conditions on Ω and then we will consider the case
where Ω is the product of N open intervals in IRN and the case where Ω is a unit disk.

Theorem 4. Let T > 0. Let ω be an open subset of Ω such that ω ∩ ∂Ω 6= ∅ and ω satisfies
GCC. Let n ≤ 3, then there exists a control V in C0([0, T ]; (L2(Ω))m) such that the solution of (4.3)
corresponding to the initial condition Y (0) = Y 0 in (H2n−2

(0) (Ω))n satisfies

Y (T ) ≡ 0 in (L2(Ω))n,

if and only Y 0 ∈ [A|B]((L2(Ω))nm).

Proof of Theorem 4. We can keep constructing a function 1̃ω ∈ C∞(Ω) defined by

1̃ω :=

{
1 on ω0,
0 on Ω\ω, (4.6)

where ω0 is some well-chosen open set included in ω still verifying GCC such that ∇1̃ω.~n = 0 and
the system {

∂tz = i∆z +W (x)z + 1̃ωu,
z(0) = z0,

(4.7)

is exactly controllable (see Figure 2). Moreover, using [DL09, Section 4.2] and ∇1̃ω.~n = 0, we infer
that 12

ω maps H2k
(0)(Ω) into itself for k ≤ 2 and by definition of 1̃ω, we have (i∆+W (x))k(CC∗D(((i∆+

W (x))∗)k)) ∈ C(L2(Ω)) for k ≤ 2. Thus, Assumption 1.2 is verified and we can conclude as in the
proof of Theorem 3.
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It is well-known that GCC is only a sufficient condition to ensure the exact controllability of the
Schrödinger equation, but is not always necessary in some particular geometries. Let us give two
examples. If Ω is the product of N open intervals, we do not need to impose restrictions on ω and if
Ω is a unit disk, ω has to touch the boundary of Ω.

Theorem 5. Let T > 0 and let us assume that the domain Ω ⊂ IRN is the product of N open
intervals, then there exists a control V in C0((0, T ) × (L2(Ω))m) such that the solution of (4.3)
corresponding to the initial condition Y (0) = Y 0 in (H2n−2

(0) (Ω))n satisfies

Y (T ) ≡ 0 in (L2(Ω))n,

if and only Y 0 ∈ [A|B]((L2(Ω))nm).

Proof of Theorem 5. From [KL05, Proposition 8.8], one can easily deduce that the system{
∂tz = i∆z +W (x)z + 1ω̃u,
z(0) = z0,

is exactly controllable for any nonempty open ω̃ subset of Ω. Consequently, without loss of generality
we can assume that ω ⊂ Ω. Thus, we just have to copy the proof of Theorem 3 and we deduce the
expected result.

Theorem 6. Let T > 0 and let us assume that the domain Ω ⊂ IR2 is the unit disk and let
ω be an open subset of Ω such that ω ∩ ∂Ω 6= ∅. Let n ≤ 3, then there exists a control V in
C0([0, T ]; (L2(Ω))m) such that the solution of (4.3) corresponding to the initial condition Y (0) = Y 0

in (H2n−2
(0) (Ω))n satisfies

Y (T ) ≡ 0 in (L2(Ω))n,

if and only Y 0 ∈ [A|B]((L2(Ω))nm).

Proof of Theorem 6. Since the domain Ω ⊂ IR2 is the unit disk, from [ALM15, Theorem 1.2],
we deduce that the equation {

∂tz = i∆z +W (x)z + 1ω̃u,
z(0) = z0,

is exactly controllable for any open ω̃ subset of Ω such that ω̃ ∩ ∂Ω 6= ∅. Thus, we just mimick the
proof of Theorem 4 and we have directly the expected result.

Remark 6. The same results can be obtained by replacing the Schrödinger equation by the plate
equation (see for example [Leb92, Section 5]).

4.2 System of wave equations with internal control
We consider the state space and control space as in the previous section, i.e. H = U = L2(Ω). We
introduce the operator C : L2(Ω) → L2(Ω) such that Cu = 1ωu. We consider the following wave
equation  ∂ttz = ∆z +W (x)z + 1ωu,

z(0) = z0,
∂tz(0) = z1,

(4.8)

where the potentialW is in C∞(Ω̄; K). It is well-known that the operator ∆+W (x) : H2(Ω)∩H1
0(Ω) ⊂

L2(Ω) → L2(Ω) is self-adjoint with compact resolvent, but it is not a negative operator in general.
This is not a problem here because we know that for µ > 0 large enough the operator ∆ +W (x)− µ
becomes negative, hence we can adapt the results of Theorem 2 in this case. Moreover, we know
that if ω verifies GCC, then (4.8) is controllable at any time T > T ∗, where T ∗ is the minimal time
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needed to ensure that all the rays of Geometric Optics in Ω enter the open set ω. Let n ∈ IN∗, we
have D((∆ +W (x))n) = H2n

(0)(Ω) where H2n
(0)(Ω) is defined in (4.2). We consider the control system ∂ttY = ∆Y +W (x)Y +AY + 1ωBV in (0, T )× L2(Ω)n,

Y (0) = Y 0,
∂tY (0) = Y 1,

(4.9)

with (A,B) ∈Mn(K)×Mn,m(K). Mimicking the proof of Theorem 3 and Theorem 4 we immediately
obtain the following results:

Theorem 7. Let us assume that ω satisfies GCC and ω ⊂ Ω. Let (Y 0, Y 1) ∈ H2n−1
(0) (Ω)×H2n−2

(0) (Ω).
Then, for every T > T ∗, the control system (4.9) is exactly controllable at time T if and only if
rank([B|A]) = n.

Remark 7. As in the case of the Schrödinger equation, one can obtain the same result as in Theorem
7 with exactly the same proof by replacing the open set Ω with some regular compact connected
Riemannian manifold without boundary M , with ω any open subset of M verifying GCC.

Theorem 8. Let ω be an open subset of Ω such that ω ∩ ∂Ω 6= ∅ and ω satisfies GCC. Let n ≤ 3.
Let (Y 0, Y 1) ∈ H2n−1

(0) (Ω) × H2n−2
(0) (Ω), then, for every T > T ∗, the control system (4.9) is exactly

controllable at time T if and only if rank([B|A]) = n.
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