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Computing a Guaranteed Approximation of the
Zone Explored by a Robot

Benoı̂t Desrochers1,2 and Luc Jaulin2

Abstract—This paper deals with the guaranteed characteriza-
tion of the part of the space that has been explored by a robot.
The main difficulty of the problem is to take into account the
uncertainty associated with the trajectory and the fact that the
dimension of the visible space at time t may be smaller than that
of the workspace. An example involving an experiment made with
an actual underwater robot is presented in order to illustrate the
efficiency of the approach.

I. INTRODUCTION

In this paper, we consider a robot moving inside an un-
known environment in a dead reckoning manner, i.e., using
the proprioceptive sensors only. As it is the case for most
industrial underwater robots, the robot is equipped with some
exteroceptive sensors (such as sonars or cameras) that are used
for exploration only and not for navigation. After the mission,
it has to find which part of the environment it has explored,
taking into account the uncertainty on the localization. We
assume that the interpretation of exploration sensors is not
reliable enough to allow us using SLAM techniques such as
in [11] or [5]. When the mission is short and the quality of
the proprioceptive sensors is good, occupancy map techniques
[4] can be used to mark all points that have been observed
and a probability of being explored can be associated with
each part of the space [15]. Now, in practice, due to the state
noise, the prediction of the location of the robot is getting less
accurate and we have to take into account these uncertainties
properly. We are in a typical situation where the uncertainty is
combined with inaccuracy [3]. The unknown variable of our
problem is the explored set Z, and characterizing uncertain
sets with classical probabilistic methods requires elaborated
mathematical tools such as random sets [12]. These random
sets have already been used in the context of robot mapping
(see [13]) but the approach is limited to finite sets. In a set
membership approach, an uncertain set Z can be bracketed
by two sets Z− and Z+ such that Z− ⊂ Z ⊂ Z+. This
representation is particularly adapted to represent uncertain
maps [10]. Interval-type uncertainties can easily be propagated
through nonlinear functions (see e.g., [6]) or nonlinear state
equations, as shown in [1] to get an inner and an outer
characterization of the reachable space or in [8] for SLAM
involving unstructured maps.
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The paper is organized as follows. Section II defines the
notion of explored zone and proposes a formalization of the
problem. Section III extends the formalism in order to take into
account the uncertainty associated with the trajectory of the
robot. Section IV gives the new algorithm which encloses the
explored zone Z between two subpavings (union of boxes). An
experiment involving the underwater robot Daurade is treated
in Section V in order to validate the feasibility of the approach.
A conclusion is then given on Section VI.

II. PROBLEM STATEMENT

The problem to be considered here is the characterization
of the explored zone Z of a robot. The set Z is defined by{

(i) ẋ = f (x,u) , x (0) = x0, u (t) ∈ [u] (t)
(ii) Z =

⋃
t≥0 V (x (t))

(1)

where (i) describes the evolution of the robot and (ii) defines
the explored zone Z. In the state equation (i) of the robot,
x ∈ Rn is the state vector and u is the input vector. In
order to take into account some state noise, we assume that,
for all t, a box [u] (t) which contains u (t) is available.
Moreover, the initial condition x0 is assumed to be known.
For each t, a scanner on the robot is able to observe a part
of its environment. More precisely, for each t, there exists a
subset of the environment V (x (t)) ⊂ Rq , q ∈ {2, 3} that
is visible by the robot. This set is called the visible set (see,
e.g., [7] in the context of localization). Note that our robot
does not use any exteroceptive sensors for state estimation,
for localization or to control its trajectory. It is only able
to estimate its position from the proprioceptive sensors u
with a given bounded accuracy. Equivalently, we consider that
the scan sensors of the robot are used to collect data for
exploration that will only be analyzed after the mission by
some human users. The following examples illustrate how the
visible sets could be defined in practice.

Example 1. Consider a robot, the pose of which is x =
(x, y, θ), moving in a plane. This robot is able to scan the
environment up to a distance of 3 meters in front of it inside
a cone of ±π6 rad. Therefore, the visible set V (x) contains all
z ∈ R2 which satisfy the following inequalities{

(z1 − x)
2

+ (z2 − y)
2 ≤ 9

cos θ · (z1 − x) + sin θ · (z2 − y) ≥ cos π6 .
(2)

Example 2. We consider the robot of Example 1 except
that now, this robot is able to scan only points that are exactly
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on its right at a distance in [2, 3]. Then V (x) is the set of all
z ∈ R2 such that (z1 − x)

2
+ (z2 − y)

2 ∈ [4, 9]
cos θ · (z1 − x) + sin θ · (z2 − y) = 0
cos θ · (z2 − y)− sin θ (z1 − x) ≤ 0.

(3)

Example 3. The same robot is now able to scan only points
that are exactly on its right at a distance of 3 meters. Then
V (x) is the set of all z ∈ R2 such that (z1 − x)

2
+ (z2 − y)

2 − 32 = 0
cos θ · (z1 − x) + sin θ · (z2 − y) = 0
cos θ · (z2 − y)− sin θ (z1 − x) ≤ 0.

(4)

As motivated by these three examples, we may consider
three different types of exploration.

1) Patch exploration [2]. The visible sets V (x) have a
dimension q, as for Example 1. In this case, dim(Z)=q
and it will be possible to compute an inner and an outer
approximation of Z. This type of exploration exists when
the sensor is a camera: a 3D zone is explored for each
t.

2) Sweep exploration. The visible sets V (x) have a dimen-
sion q − 1, as for Example 2. Thus, Z has a dimension
of q. Again, it will be possible [14] to bracket Z from
both inside and outside. This is the case when the robot
is equipped with a side scan sonar, a multi-beam echo
sounder or an airborne LiDAR.

3) Pen exploration. The dimension of V (x) is smaller than
q−2, as for Example 3, and thus dim(Z) ≤q−1. It will
neither be possible to get an inner approximation for Z
nor to prove that a given point is actually inside Z. This
is the case when the robot is equipped with a laser range-
finder and takes one range measurement every second.

When the whole trajectory x (t) is known, the set Z is clearly
defined. Different techniques could be thought in order to
characterize the set Z. For instance, we could use subpaving-
based methods [9] or occupancy grid approaches. Now, in this
paper, the trajectory of the robot is not known precisely and
the set Z becomes uncertain which makes the problem much
more difficult [15].

III. UNCERTAIN EXPLORED ZONES

When the trajectory x (·) is uncertain, the explored zone
Z cannot be approximated with an arbitrary accuracy. In a
probabilistic context, we can associate to each z ∈ Rq a
probability of being explored. Now, even if this probability
can be estimated using Monté-Carlo methods, due to the
large (here infinite) dimension of the set of trajectories to
be explored, the computational burden is high which makes
probabilistic methods not so attractive. Denote by X (·), the set
of all feasible trajectories, i.e., the trajectories x (·) consistent
with (1) and with the initial condition x (0). It is important not
to make the confusion between x (·) which is a trajectory and
x (t) which is a vector of Rn. We define the two following
sets

Z− =
⋂

x(·)∈X (·)

⋃
t≥0

V (x (t))

Z+ =
⋃

x(·)∈X (·)

⋃
t≥0

V (x (t))
(5)

Fig. 1. The space is partitioned into three zones: Z+ is the dark zone, Z−∩
Z+ is the penumbra and Z− is the clear zone

The set Z− is called the certainly explored zone or the clear
zone. It corresponds to the set of all points z of the envi-
ronment that have certainly been seen by the robot taking into
account that its trajectory x (·) is feasible. The complementary
set Z+ of Z+ is called the certainly unexplored zone or the
dark zone. The set Z+ is called non-dark zone. Moreover, we
define the penumbra as the set ∆Z = Z+\Z− (see Figure
1). It corresponds to the set of all z that have been seen
by some feasible trajectories and not seen by some other
feasible trajectories. Figure 1 illustrates a situation of a patch
exploration where the patch is a disk. At time t1 the robot
knows that it is inside the black box. Taking this uncertainty
into account, it concludes that the dark gray zone is certainly
illuminated (i.e., all corresponding points z are certainly seen
at time t1) and that all points inside the light gray zone have
possibly been seen at time t1. The unknown explored zone Z
obviously satisfies

Z− ⊂ Z ⊂ Z+. (6)

Note that the clear zone Z− is larger than the union of the
certainly visible sets, i.e.,⋃

t≥0

⋂
x∈X (t)

V (x)

︸ ︷︷ ︸
{z | ∃t ∀x∈X (t), z∈V(x)}

⊂ Z− =
⋂

x(·)∈X (·)

⋃
t≥0

V (x (t))

︸ ︷︷ ︸
{z | ∀x(·)∈X (·),∃t, z∈V(x)}

.

(7)
This inclusion is due to the fact that, ∩ and ∪ do not commute
in general. The consequence of this non commutativity is
illustrated by Figure 2 where two different trajectories for the
robot are represented. The pies correspond to the set of all z
that have been seen by the robot at times t1and t2 for the two
trajectories. To characterize Z−, it is not sufficient to compute
the union of all certainly visible sets; we also need to add all
cross intersections. For instance, whatever is the true trajectory
among xa or xb, we are certain that all points of the dark gray
set (at the intersection between the two opposite pies) in the
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Fig. 2. Even if we do not know which one of the two trajectories is the true
one, we are certain that the gray set has been explored; the pies correspond
to illuminated zones.

figure have been explored. These cross intersections are not
taken into account by existing methods [2].

Now, for sweep exploration, the dimension of the visible
sets is q − 1 and the certainly visible sets

⋂
x∈X (t) V (x)

become empty. All the information about Z− can thus only
be obtained from these cross intersections, i.e., by taking into
account different t and different trajectories all together or
equivalently, by considering the right hand side of (7) for the
characterization of Z−.

IV. CHARACTERIZATION OF THE EXPLORED ZONE

We now focus our attention on the sweep exploration where
visible sets have the form

V (x) = {z ∈ Rq | ϕ (z,x) = 0 and ψ (z,x) ≤ 0} . (8)

In this formula, ϕ : Rp × Rn → R is the visibility function
which is assumed to be continuous and ψ : Rp × Rn → R
models the scope of the sensor. Examples 1, 2, 3 of Section
II provide an illustration of these functions.

This section proposes a new algorithm able to bracket
the explored zone between two subpavings (union of non-
overlapping boxes). More precisely, the workspace will be
partitioned into 4 types of boxes: (a) the clear boxes that have
been proved to be inside Z−, (b) the dark boxes that have
been proved to be outside Z+, (c) the penumbra boxes which
are neither dark nor clear and (d) the boxes which have not be
classified yet. When a box cannot be classified, it is bisected
into two non overlapping subboxes. To ensure the convergence
of the algorithm, boxes which have a width smaller than a
small given value are not bisected.

To classify boxes (clear, dark, penumbra), we need first to
get a guaranteed enclosure of the set of feasible trajectories
X (·). This can be done using interval guaranteed integration
[18], [17], [16]. These techniques make it possible to compute
a tube (i.e., a function [x] (·) mapping R into IRn, the set of
boxes of Rn) which encloses the set of trajectories X (·). In
what follows, we shall thus assume that the trajectory x (·) is
inside a tube denoted by [x] (·). As a consequence, from (5),
we have⋂

x(·)∈[x](·)

⋃
t≥0

V (x (t)) ⊂ Z ⊂
⋃

x(·)∈[x](·)

⋃
t≥0

V (x (t)) . (9)

A. Notion of Logic

The presentation of the tests that will be used to classify
the boxes of the workspace requires some notions on logic,
involving quantifiers. Some useful rules are now presented. If
A is a predicate, if ϕ (·) is continuous, if x (·) is a trajectory
and [x] (·) is a tube, we have

(i) ∃x (·) ∈ [x] (·) , ∀t, A (x (t))
⇔ ∀t, ∃a ∈ [x] (t) , A (a)

(ii) ∃t, ϕ (t) = 0 ∧ ψ (t) ≤ 0

⇔ ∃t1 ∃t2,
{
ϕ (t1)ϕ (t2) ≤ 0
ψ ([t1, t2]) ⊂ R−

(iii) ∀x (·) ∈ [x] (·) , ∃t, A (x (t))
⇔ ∃t, ∀a ∈ [x] (t) , A (a) .

(10)

B. Clarity Test

The clarity test aims at proving that a box [z] has been
explored whatever the uncertainties are. This test is based on
the following theorem.

Theorem 1. Given an interval [t1, t2] ⊂ R+ and a tube [x] (·),
we have:

ϕ (z, [x] (t1)) · ϕ (z, [x] (t2)) ⊂ R−
∧ ψ (z, [x] ([t1, t2])) ⊂ R−

}
⇒ z ∈ Z-. (11)

Proof: Consider a point z ∈ Rq . The left hand side of (11)
is equivalent to

∀x (·) ∈ [x] (·) , (ϕ (z,x (t1)) · ϕ (z,x (t2)) ≤ 0)
∧ ψ (z,x ([t1, t2])) ⊂ R−

(10,ii)⇔ ∀x (·) ∈ [x] (·) , ∃t ≥ 0,
( ϕ (z,x (t)) = 0
∧ ψ (z,x (t)) ≤ 0 )

⇔ z ∈
⋂

x(·)∈[x](·)

⋃
t≥0

{
z ∈ Rq | ( ϕ (z,x (t)) = 0

∧ ψ (z,x (t)) ≤ 0 )

}
(8)⇔ z ∈

⋂
x(·)∈[x](·)

⋃
t≥0

V (x (t))

(9)⇒ z ∈ Z−. �

Clarity test. Given t1,t2 ≥ 0 and inclusion functions [ϕ],[ψ]
for ϕ,ψ, we define the clarity test as:

Tclarity ([z] , [x] (·)) :

{
[ϕ] ([z] , [x] (t1)) · [ϕ] ([z] , [x] (t2)) ⊂ R−

∧ [ψ] ([z] , [x] ([t1, t2])) ⊂ R−

From Theorem 1, we have

Tclarity ([z] , [x] (·))⇒ [z] ⊂ Z−. (12)

An illustration of this proposition is given by Figure 3. We
choose the pairs (t1, t2) as in the figure, i.e., such that t2− t1
are small and such that

[ϕ] ([z] , [x] (t1)) · [ϕ] ([z] , [x] (t2)) ⊂ R−. (13)

Note that the test also concludes for the pair (t5, t6) but fails
for (t3, t4). Since here, the test concludes for at least one pair,
we get that the whole box [z] has been explored.
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Fig. 3. The fact that ϕ changes its sign inside [t1, t2] whereas ψ remains
negative implies that [z] ⊂ Z

Fig. 4. This configuration for the tubes [ϕ] (·) and [ψ] (·) allows us to
conclude that [z] is dark

C. Dark Test

The dark test aims at proving that no point in the box [z]
has been explored whatever the uncertainties are. The dark test
is based on the following theorem.

Theorem 2. If [x] (·) is a tube, then we have

∀t ≥ 0,∀x ∈ [x] (t) , (ϕ (z,x) 6= 0)
∨ (ψ (z,x) > 0) ⇒ z /∈ Z+.

(14)

Proof. The proof is by contradiction, i.e., we show that
assuming z ∈ Z+ implies that the left hand side of (14) is
false. We have

z ∈ Z+

(9)⇒ z ∈
⋃

x(·)∈[x](·)

⋃
t≥0

V (x (t))

(8)⇔ z ∈
⋃

x(·)∈[x](·)

⋃
t≥0

{
z ∈ Rq | ( ϕ (z,x (t)) = 0

∧ ψ (z,x (t)) ≤ 0 )

}
⇔ ∃x (·) ∈ [x] (·) ,∃t ≥ 0,

( ϕ (z,x (t)) = 0
∧ ψ (z,x (t)) ≤ 0 )

which corresponds to the negation of left hand side of (14). �
Dark test. Given two inclusion functions [ϕ],[ψ] for ϕ,ψ.

Define the dark test as

Tdark ([z] , [x] (·)) : ∀t ≥ 0,

{
(0 /∈ [ϕ] ([z] , [x] (t)))

∨ ([ψ] ([z] , [x] (t)) ⊂ R+) .
(15)

From Theorem 2, we have

Tdark ([z] , [x] (·))⇒ [z] ∩ Z+. (16)

An illustration of this proposition is given by Figure 4. In the
situation represented in this figure, ∀t ≥ 0,∀x ∈ [x] (t) ,∀z ∈
[z] , either ϕ (z,x) 6= 0 or (ψ (z,x) > 0), which means that no
point inside z ∈ [z] could have been seen.

D. Penumbra Test
Proving that a point z belongs to the penumbra ∆Z is

difficult and not so useful. The main interest to have an
inclusion test for the penumbra is to limit the computation
burden. Indeed, if [z] ⊂ ∆Z then we will never be able to
prove that [z] ⊂ Z− or to prove that [z] ∩ Z+ = ∅, and
thus there is no need to bisect. Now, instead of proving that
[z] ⊂ ∆Z, we propose here to test either the darkness test or
the clarity test always fail for all subbox of [z]. In such a case,
[z] will not be bisected. In such a situation, we shall say that
[z] satisfies the penumbra test.

Theorem 3. Given x(·) ∈ [x] (·) and z ∈ [z]. If

∀t,
{
ϕ (z,x (t)) 6= 0
∨ ψ (z,x(t)) > 0

⇒ ¬Tclarity ([x] (.) , [z]) . (17)

Proof. The proof is by contradiction. Assume that
Tclarity ([x] (.) , [z]) is true, i.e.,{

[ϕ] ([z] , [x] (t1)) · [ϕ] ([z] , [x] (t2)) ⊂ R−
∧ [ψ] ([z] , [x] ([t1, t2])) ⊂ R−.

Since x(·) ∈ [x](·), z ∈ [z] and since [ψ], [ϕ] are inclusion
functions of ψ, ϕ, we get{

ϕ (z,x (t1)) · ϕ (z,x (t2)) ∈ R−
∧ψ (z,x ([t1, t2])) ⊂ R−.

From (10,ii), we get that there exists t0 ∈ [t1, t2] such that

ϕ (z,x (t0)) = 0 ∧ ψ (z,x (t0)) ≤ 0

which is inconsistent with the left hand side of (17). �

Theorem 4. Given x(·) ∈ [x](·), z ∈ [z] and t1, t2 ≥ 0. We
have:

ϕ (z,x(t1)) .ϕ (z,x(t2)) ≤ 0
∧ ∀t ∈ [t1, t2], ψ (z,x(t)) ≤ 0

}
⇒ ¬Tdark ([x] (·) , [z]) .

(18)

Proof. The proof is by contradiction. Assume that
Tdark ([x] (·) , [z]) is true. From (15), this amounts to saying
that

∀t ≥ 0,

{
(0 /∈ [ϕ] ([z] , [x] (t)))

∨ ([ψ] ([z] , [x] (t)) ⊂ R+) .

Since x(·) ∈ [x](·), z ∈ [z],ϕ (z,x (t)) ∈ [ϕ] ([z] , [x] (t)) and
ψ (z,x (t)) ∈ [ψ] ([z] , [x] (t)), we get

∀t ≥ 0, 0 6= ϕ (z,x (t)) ∨ ψ (z,x (t)) > 0.

Assume now that the left hand side of (18) is also true. From
(10,ii), we get that for a specific t0 ∈ [t1, t2],

ϕ (z,x(t0)) = 0 ∧ ψ (z,x(t0)) ≤ 0

which is not consistent with the previous proposition.
Penumbra test. Given t1,t2 ≥ 0, two trajectories

xa (·) ,xb (·) ∈ [x] (t) and inclusion functions [ϕ],[ψ] for ϕ,ψ.
Define the penumbra test Tpenumbra ([z]) as

∀t, [ϕ] ([z] ,xa (t)) 6= 0 ∨ [ψ] ([z] ,xa(t)) > 0
[ϕ]
(
[z] ,xb(t1)

)
· [ϕ]

(
[z] ,xb(t2)

)
≤ 0

∧ ∀t ∈ [t1, t2], [ψ]
(
[z] ,xb(t)

)
≤ 0.

(19)

From Theorems 3 and 4, we get that Tpenumbra implies that
neither Tclarity nor Tdark will able to conclude anything for any
subbox of [z].
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Fig. 5. Daurade: the underwater robot used for the experiment. The portside
lateral sonar antenna corresponds to the one meter black segment at the bottom
left of the robot

V. EXPERIMENT

This section illustrates our sweep exploration method on a
real experiment. November 2015, a 46 minutes mission has
been performed in the Road-stead of Brest (France, Brittany)
with the underwater robot, named Daurade, which realized a
classical survey pattern composed of a set of parallel tracks
with an altitude of about 10 meters. This robot (see Figure
5) has been built by ECA robotics and used by DGA Tn
(Direction Général de l’Armement - Techniques Navales) and
SHOM (Service Hydrographique et Océanographique de la
Marine) for performing REA (Rapid Environment Assess-
ment) studies. REA is intended to survey the environmental
conditions of a particular location in order to identify any
existing or potential dangers. In the counter mine warfare
context, attention is focused on mapping the sea floor with
acoustic sensors. Daurade is equipped with a Side Scan Sonar
(Klein 5500) used to detect potential mines. With this sonar,
data are recorded on a line perpendicular to the path of the
sensor and images are formed by putting side by side these
lines. Characterizing the zone seen by the sonar enters inside
the framework of sweep exploration.

For the navigation, Daurade relies an inertial central (Phins
II IXBlue) coupled with a DVL (Doppler Velocity Log), which
returns the speed with respect to the ground. Once under the
water, no GPS data are available and the estimated position of
the robot drifts with the time. A key point of REA missions is
to guarantee that the area of interest has been totally explored
without any gap. Assessment of the covered area is usually
done manually by an operator who looks at the sonar images.
The proposed algorithm can be used to validate the mission
plan or, at the end of the mission, to check the area to be
explored has indeed been covered.

The horizontal kinematic model the robot is taken as(
ẋ1
ẋ2

)
=

(
cosψ − sinψ
sinψ cosψ

)
· v (20)

where (x1, x2) corresponds to the 2D coordinates of the center
of the robot expressed in an absolute inertial frame, ψ is the

Fig. 6. Online estimated trajectory (plain) and true trajectory (dotted line)

heading and v is the horizontal speed vector of the robot
expressed in its own coordinate system. The aperture angle
of the side scan sonar is taken as α = 80°. This means that if
the robot has an altitude a then the sonar is able to sense the
part of the environment which is perpendicular to the robot
and at a distance less than ` = a · sinα. The horizontal online
estimated trajectory is depicted on Figure 6. Note that due
to the fact that the controller uses this trajectory for control,
it looks perfect, which is not the case for the true trajectory
(dotted line) directly measured by an USBL (Ultra-Short Base
Line). Now, in our experiment, this true trajectory is neither
used for control nor for estimation of the explored zone. It is
only used for the validation of the results.

We assume that the initial position is x1 = x2 = 0.
Taking the interval uncertainties into account and using a
guaranteed integration of the state equation (20), we are able
to compute a tube which contains the true trajectory. At the
end of the mission the position error is around 17 meters. On
this experiment, our method provides in less than 5 minutes
an estimation of the explored zone as given by Figure 7. This
result is consistent with the true trajectory obtained by the
USBL and by an observation of the sonar images.

Consider the same experiment, but, instead of having a
sweep exploration, we assume that at each t the visible set
V(t) is a disk of radius a · sinα (instead of a segment). In
this case, the explored zone can still be obtained, but we do
not need anymore to use the continuity of the trajectory. The
resulting enclosure is given on Figure 8. Note that the uncer-
tainty layer (painted gray) is larger in zones when the location
of the robot is less accurate. Note also that Figures 8 and 7
look similar (which is consistent with our intuition) except
near the initial position (bottom right) where we can observe
the difference between the patch (here a disk) exploration and
the sweep (here a segment) exploration.

VI. CONCLUSION

This paper has presented a new method to characterize the
zone Z explored by a mobile robot. The method only uses
the proprioceptive sensors for localization, which makes the
approach reliable. The method is indeed not sensitive (i) to
outliers (which mainly occur on exteroceptive sensors), (ii) to
data association errors, or (iii) to any information resulting
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Fig. 7. Enclosure of the explored area. The tube in black encloses the true
trajectory

Fig. 8. Patch exploration in the case where the visible sets are disks

from an interaction between the robot and the environment.
The method can also be used before the mission in order to
guarantee that a given area will all be covered by the robot,
whatever the noise on the proprioceptive sensors are. We only
need to assume that the state noise is bounded with known
bounds in order to be able to enclose the trajectory x (·) inside
a tube [x] (·).

To solve the problem, we had to introduce new interval tests
to classify boxes as clear (certainly explored), dark (certainly
unexplored) or in the penumbra. This classification requires
the development of new quantifier elimination procedures,
based on four new theorems. The efficiency of the resulting
algorithm has been validated on an actual experiment made
by an autonomous underwater robot.

Note. The Python programs, the navigation data made by

Daurade and some videos illustrating the exploration method
are given at the following link.

www.ensta-bretagne.fr/jaulin/sweep.html
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