
HAL Id: hal-01298333
https://hal.science/hal-01298333

Submitted on 12 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance estimation of linear algebra numerical
libraries

Alessandro de Rosis

To cite this version:
Alessandro de Rosis. Performance estimation of linear algebra numerical libraries. Journal of Numer-
ical Mathematics, 2015, 23, pp.13-19. �10.1515/jnma-2015-0002�. �hal-01298333�

https://hal.science/hal-01298333
https://hal.archives-ouvertes.fr

J. Numer. Math. 2015; 23 (1):13–19

Alessandro De Rosis*

Performance estimation of linear algebra
numerical libraries
Abstract: In this work, numerical algebraic operations are performed by using several libraries whose algo-
rithm are optimized to drain resources from hardware architecture. In particular, dot product of two vectors
and thematrix-matrix product of two densematrices are computed. In addition, the Cholesky decomposition
on a real, symmetric, and positive de�nite matrix is performed through routines for band and sparse matrix
storage. The involved CPU time is used as an indicator of the performance of the employed numerical tool.
Results are compared to naive implementations of the same numerical algorithm, highlighting the speed-up
due to the usage of optimized routines.

Keywords: Numerical linear algebra, �nite element method, lattice Boltzmann method, high performance
computing.

MSC 2010: 15A23, 74S05

DOI: 10.1515/jnma-2015-0002
Received October 14, 2012; accepted August 13, 2013

1 Introduction
The typical problems of structural mechanics are governed by di�erential equations. In this framework, the
�nite elementmethod (FEM) [5] arose as a techniquewhich allows to transform such kind of problems in ones
governed by algebraic equations, whose solution can be addressed to a computer. Themore sophisticated the
analysis, the higher the computational cost is. Therefore, the usage of a computer becomes an essential part
of the analysis process. Herein, several computational tools are be tested in order to assess the ability to im-
prove the performance of a numerical FEM software. Such tools are known as linear algebra libraries, i.e. a
set of routines performing matrix-vector computations, the solution of linear systems and eigenvalue prob-
lems, which are optimized to fully exploit hardware resources, that is expected to play a crucial role in the
overall performance of a numerical software. In this context, the continuous di�erential problem becomes a
discretized algebraic one described by matrices and vectors, simple to handle numerically by using a class
of libraries able to solve matrix-matrix operations, linear systems, and eigenvalue problems; thus, the devel-
opment of sophisticated linear algebra routines plays a crucial role.

One supposes to perform thematrix-matrix product of two squarematrices of size n: the complexity of the
problem, in terms of the number of elementary operations to be computed, amounts to 2n3. One would think
that on the samemachine this operation, carried out by tools using the identical algorithm, will last the same
duration, but this is not true. In contrast to a naive implementation of an algorithm, these libraries are able
to exploit the technology of the computer and then draw resources on the particular computer architecture,
thus saving the duration of the analysis.

On the other hand, the developments in the technology results in the creation of microprocessors faster
than themainmemory; thus, the access to thememory represents a real bottleneck in the overall performance
of an application. In 1970, Moore [25] suggested that the CPU speed would grow much more, while the RAM
speed would be almost constant in the next thirty years. Consequently, an application can waste a lot of
timewaiting for data, involving a negative impact on the overall performance, and in addition preventing the
exploitation of the high speed of the CPU.

*Corresponding Author: Alessandro De Rosis: Laboratoire de Mécanique des Fluides et d’Acoustique (LMFA), École Centrale de
Lyon, 36 avenue Guy de Collongue, 69134 Écully cedex, France. Email: alessandro.de-rosis@ec-lyon.fr

Brought to you by | Ecole Centrale de Lyon
Authenticated

Download Date | 4/11/16 11:19 AM

14 | A.DeRosis, Performance estimation of linear algebra numerical libraries

The purpose of thiswork is to demonstrate how routines that can use e�ciently hardware technologywill
show better performances, even if they employ the same algorithm of a naive implementation, [1, 7, 16, 18].
For the numerical test campaign, a machine equipped with Intel Core i5-2400 3.40GHz, L2 6MB cache, 4GB
RAM, and the OS Ubuntu 12.04, has been used.

This paper is organized as follows. In Section 2, the theoretical/computational background is discussed.
In Section 3, performances of numerical libraries are presented. Finally, Section 4 provides concluding re-
marks.

2 Numerical methods
In this section, the basic idea concerning the matrix-matrix product and the Cholesky decomposition are dis-
cussed, thus giving an idea about the number of involved�oating point operations that a numerical algorithm
performs. In addition, the methodology used to depict a performance pro�le is presented.

2.0.1 The matrix-matrix product

Let A and B be two matrices to be multiplied. Such matrices are de�ned as follows

A =


A11 A12 · · · A1m
A21 A22 · · · A2m
...

...
. . .

...
An1 An2 · · · Anm

 , B =


B11 B12 · · · B1p
B21 B22 · · · B2p
...

...
. . .

...
Bm1 Bm2 · · · Bmp

 (2.1)

where A and B possess n × m and m × p dimensions, respectively. The product matrix C of dimensions n × p
is computed as

Cij =
m∑
k=1

AikBkj . (2.2)

If A and B are both square matrices of order n, 2n3 operations are required to compute the product matrix C.
Notice that the matrix-vector product between the matrix A and the vector b is a speci�c case of the matrix-
matrix one, where A is a m × nmatrix, b is a column vector c of length n (or a matrix of dimension n × 1) and
the output is a vector of length n. If A is a n × nmatrix, the number of involved operations amounts to 2n2. In
addition, if a and b are two vectors of length n, the dot product of a and b is a scalar quantity c obtained by
multiplying corresponding entries and then summing those products:

c =
n∑
i=1

aibi . (2.3)

A number of elementary operations equal to 2n is performed in order to compute the dot product of two
vectors.

2.1 The Cholesky decomposition

The Cholesky decomposition is the factorization of a Hermitian, positive-de�nite matrix A into the product
of a lower triangular matrix L and its conjugate transpose L+:

A = LL+, A ∈ Km×m . (2.4)

If A is real and symmetric, the conjugate transpose is equal to the transpose LT :

A = LLT , A ∈ Rn×n . (2.5)

Brought to you by | Ecole Centrale de Lyon
Authenticated

Download Date | 4/11/16 11:19 AM

A. De Rosis, Performance estimation of linear algebra numerical libraries | 15

This algorithm starts with
A(1) = A (2.6)

A(i) =
(
Ai,i b*i
bi B(i)

)
(2.7)

Li =
(1√

Ai,i
0

− 1
Ai,i bi I

)
(2.8)

A(i) = L−1i

(
1 0
0 B(i) − 1

Ai,i bib
*
i

)
(L−1i)*. (2.9)

Then, in the next steps:
A(i+1) = B(i) − 1

Ai,i
bib*i (2.10)

A(i) = L−1i

(
1 0
0 A(i+1)

)
(L−1i)*. (2.11)

Iterations end after n steps when A(n) = 1. The lower triangular matrix L is calculated as

L = L1L2 . . . Ln . (2.12)

The Cholesky–Crout algorithm starts from the upper left corner of the matrix L and proceeds to calculate the
matrix column by column:

Li,i =

√√√√Ai,i −
i−1∑
k=1

L2i,k , i = 1, ...,m (2.13)

Lj,i =
1
Li,i

(
Aj,i −

i−1∑
ι=1

Lj,ιLi,ι

)
, j = i + 1, ...,m. (2.14)

2.2 Evaluation of the performance pro�le

Let S be a set of solvers whose performances have to be estimated on a set of problem T by monitoring one or
more informations. A parameter sij > 0 is related to the solver i ∈ S when it is applied to the problem j ∈ T.
The lower is sij, the better we can consider the solver i. For all the set T, the performance of the solver i is
compared to the best solver in S. Let ŝj = min{sij; i ∈ S}. Then, for α > 1 and for each i ∈ S it is possible to
de�ne

k(sij , ŝj , α) =
{
1, sij ≤ αŝj
0, otherwise.

(2.15)

The performance pro�le of the solver i is given by the expression

pi(α) =
∑

j∈T k(sij , ŝj , α)
|T| , α > 1. (2.16)

The quantity pi(1) gives the fraction of examples for which the solver i is more e�cient, in terms of the sij
parameter. Such parameter is identi�ed in the involved CPU time.

Brought to you by | Ecole Centrale de Lyon
Authenticated

Download Date | 4/11/16 11:19 AM

16 | A.DeRosis, Performance estimation of linear algebra numerical libraries

 0

 0.08

 0.16

0 4 8 12 16

T
i
m
e

[
s
]

Dimension x 10
6

MKL

ACML

BLITZ

NAIVE

Figure 1. Dot product: CPU time [s] vs. dimension.

3 Results
In this section, a set of computational tools is tested in order to assess their performances on solving dot
product andmatrix-matrix product. Matrices characterized by di�erent shapes and dimensions are used and
the employed routines are designed to compute operations between generic densematrices. Results are given
in terms of involved CPU time and giga�ops. Moreover, the Cholesky decomposition, that is a very frequent
in computational mechanics, is computed. Such operation usually requires a large amount of time in a FEM
analysis. In this case, the employed routines are ad-hoc designed to handle real, symmetric and positive def-
inite matrices. Banded and sparse storage techniques are used. Finally, the performance pro�le is estimated
by using the procedure in [13].

3.1 The dot product

Here, the dot product of two vectors is computed. Since 2n operations are involved, it is expected a linear
relation between the CPU time and the size of the vectors, being n the size of the vector. This is assessed in
Fig. 1, where the CPU time in seconds is plotted against the dimension. Di�erent libraries are used. The ACML
and MKL routines [3] are two variants of the same algorithm: the former is optimized for AMD processors,
the latter for Intel ones. The BLITZ [2] routine is ad hoc designed for vector-vector manipulation. In contrast
to optimized algorithm, a naive implementation of the dot product is also depicted. Figure 1 shows that the
MKL has the best performance, since an Intel processor equips the employed computer. On the other hand,
the naive implementation is the worst solution, since it is unable to exploit hardware resources.

3.2 The matrix-matrix product

Theproduct between two squarematrices of dimension n×n is performed. In this case, the number of involved
operations amounts to 2n3. In Fig. 2, the CPU time is depicted against the dimension n and a cubic relation
is experienced. The ACML and MKL show the best performances. In particular, the MKL routine involves
the lower CPU time due to the reason above assessed. The EIGEN library [14] possesses good performance,
while BLITZ performs worse the naive implementation, since such library is designed only to handle vectors.
Such results are con�rmed in Fig. 3, where the number of operation (×109) per second is depicted against the
dimension n, both in a logarithmic scale.

Brought to you by | Ecole Centrale de Lyon
Authenticated

Download Date | 4/11/16 11:19 AM

A. De Rosis, Performance estimation of linear algebra numerical libraries | 17

 0

 0.5

 1

 1.5

 2

0 2 4 6 8

T
i
m
e

[
s
]

Dimension x 10
2

MKL

ACML

EIGEN

NAIVE

BLITZ

Figure 2.Matrix-matrix product: CPU time [s] vs. dimension.

 0.1

 1

 10

 100

 10 100 1000

G
F
l
o
p
s

(
l
o
g

s
c
a
l
e
)

Dimension (log scale)

Figure 3.Matrix-matrix product: GFlops vs. dimension in a log-log scale.

Figure 4. Physical problem.

Brought to you by | Ecole Centrale de Lyon
Authenticated

Download Date | 4/11/16 11:19 AM

18 | A.DeRosis, Performance estimation of linear algebra numerical libraries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

P
e
r
f
o
r
m
a
n
c
e

i
n
d
i
c
a
t
o
r

α

NAIVE

ACML

MKL

SPOOLES

CHOLMOD

PARDISO

Figure 5. Performance pro�les.

3.3 The solution of a linear system
Herein, the solution of the linear system A · x = b is tested, where A is a matrix of coe�cients to be decom-
posed, x is the vectors of the unknowns and the right-hand side vector b is known, [10, 21, 22, 24]. Again,
the ACML and MKL routines are two variants of the same algorithm: the former is optimized for AMD proces-
sors, the latter for Intel ones. In addition, a naive implementation of the Cholesky–Crout decomposition of a
banded matrix, which is not optimized respect to hardware resources, has been implemented. Moreover, the
following solvers for sparse storage are used: CHOLMOD [11], SPOOLES [4], and PARDISO [26]. The sti�ness
matrix of a cantilever beam depicted in Fig. 4 is used in the factorization process. Such cantilever is invested
by a viscous �uid.

It is a classical problem of �uid-structure interaction [12, 15, 19, 20], where the �uid is solved through the
lattice Boltzmannmethod, that is known to be a fast and powerful computational tool [6, 8, 9, 27]. The struc-
ture solver uses a �nite element approach, whose limit is the higher the number of degrees of freedom, the
higher the computational cost is. To avoid that the computational e�ort of the structural solver can a�ect the
overall analysis, a good choice is to use an optimized library in such FEM process. To achieve the dynamics
of the cantilever beam, the approach proposed in [23] is adopted. Di�erent matrices are obtained due to dif-
ferent mesh re�nements. The performances of di�erent libraries is depicted in Fig. 5, where it is shown that
the best solution is to adopt a sparse solver. In particular, PARDISO is the most performant tool, since it is
designed for an Intel computer. On the other hand, the very poor performance of the naive implementation of
the Cholesky–Crout decomposition is assessed. Routines designed for banded storage represent an e�ective
alternative to the naive implementation, as already a�rmed in the previous computations.

4 Conclusions
This work aimed to underline that a naive implementation of an algorithm is an obsolete choice. In fact, the
need of increasingly re�ned and sophisticated analyzes leads to a higher amount of the computational cost;
thus, themodern programming techniques can not be separated from the usage of numerical tools optimized
respect the exploitation of hardware resources. As shown, the speed-up can be orders of several times larger.
Such wide di�erence is due to the manner in which, through appropriate implementations, the CPU accesses
the data it needs.

First, the dot product of two vectors has been investigated. The MKL routine is the most performant rou-
tine, since an Intel processor has been used. Notice also the e�ectiveness of the BLITZ library. Such tool
showedvery poor performances in the second test, thematrix-matrix product, since it is designedonly for vec-
tormanipulations. TheMKL is con�rmed to be the best choice. Finally, performances of numerical libraries in
factorizing a matrix through the Cholesky decomposition have been checked. Such operation is as common
as expensive in a FEM code. Usually, the matrix to be decomposed is real, symmetric, positive de�nite and

Brought to you by | Ecole Centrale de Lyon
Authenticated

Download Date | 4/11/16 11:19 AM

A. De Rosis, Performance estimation of linear algebra numerical libraries | 19

shows a band pattern. Solvers developed for band and sparse storage have been employed and results show
the most performant tool is PARDISO, since an Intel processor has been employed. Thus, it can be stated that
the adoption of such sparse solver can be taken into consideration even if the matrix exhibits a band pattern,
since it demonstrated performances superior than solvers designed ad-hoc for a band storage. In addition,
the MKL library is the best choice among the band solvers, since Intel machine and processor is used.

Therefore, it is possible to assess that the modern programming techniques bene�t from the adoption
of e�ective numerical tools for solving a numerical algebraic problem, by draining hardware resources. A
future development is to employ theMTL4 library [17], providing an easy and intuitive interface and enabling
optimal performance that is expected to improve much more the performances of a FEM software [16].

References
[1] J. Kurzak, A. Buttari, J. Langou, and J. Dongarra, A class of parallel tiled linear algebra algorithms for multicore architec-

tures, Parallel Computing 35 (2009), 38–53.
[2] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond

(C++ in Depth Series), Addison-Wesley Professional, 2004.
[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

A.Mckenney, and D. Sorensen, LAPACK Users’ Guide (Software, Environments and Tools), Society for Industrial and Ap-
plied Mathematics, 1987.

[4] C. Ashcraft, Spooles 2.2: SParse Object Oriented Linear Equations Solver, 2012.
[5] K. J. Bathe, Finite Element Procedures, Prentice Hall, 1996.
[6] R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: theory and applications, Phys. Reports 222 (1992),

145–197.
[7] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov, The impact of multicore on math software, Sci. New

York 4699 (2007), 1–10.
[8] H. Chen, S. Chen, and W.H. Matthaeus, Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method,

Phys. Review Letters 45 (1992), R5339–R5342.
[9] S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, Annual Review Fluid Mech. 30 (1998), 329–364.
[10] T. A. Davis, Direct methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2006.
[11] T. A. Davis, User Guide for Cholmod: a Sparse Cholesky Factorization and Modi�cation Package, 2012.
[12] A. De Rosis, G. Falcucci, S. Ubertini, F. Ubertini, and S. Succi, Lattice Boltzmann analysis of fluid-structure interaction with

moving boundaries, Commun. Comp. Phys. 13 (2012), 823–834.
[13] E. D. Dolan and J. J.Moré, Benchmarking optimization software with performance pro�les,Math. Programming 91 (2002),

201–213.
[14] EIGEN library. http://eigen.tuxfamily.org/dox/
[15] G. Falcucci, M. Aureli, S. Ubertini, and M. Por�ri, Transverse harmonic oscillations of laminae in viscous fluids: a lattice

Boltzmann study, Philosoph. Trans. Royal Soc. - Series A 369 (2011), 2456–2466.
[16] P. Gottschling and D. Lindbo, Generic compressed sparse matrix insertion: algorithms and implementations in MTL4 and

FEniCS, Matrix (2009), 0–7.
[17] P. Gottschling and C. Steinhardt, Meta-tuning in MTL4, Physics 1281 (2010), 778–782.
[18] K. Kaspersky, Code Optimization: E�ective Memory Usage, A-List Publishing, 2003.
[19] S. Kollmannsberger, S. Geller, A. Duster, J. Tolke, C. Sorger, M. Krafczyk, and E. Rank, Fixed-grid fluid-structure interaction

in two dimensions based on a partitioned lattice Boltzmann and p-FEM approach, Int. J. Numer. Meth. Engrg. 79 (2009),
817–845.

[20] E. Leriche, P. Lallemand, and G. Labrosse, Stokes eigenmodes in cubic domain: primitive variable and lattice Boltzmann
formulations, Appl. Numer. Math. 58 (2008), 935–945.

[21] W.M. Lioen and D. T.Winter, Solving large dense systems of linear equations on systems with virtual memory and with
cache, Appl. Numer. Math. 10 (1992), 73–85.

[22] M. Louter-Nool, Block-Cholesky for parallel processing, Appl. Numer. Math. 10 (1992), 37–57.
[23] M.Mancuso and F. Ubertini, An e�cient Time Discontinuous Galerkin procedure for non-linear structural dynamics, Comp.

Methods Appl. Mech. Engrg. 195 (2006), 6391–6406.
[24] C.Meszaros, Fast Cholesky factorization for interior point methods of linear programming, Computers & Math. Appl. 31

(1996), 49–54.
[25] E.Mollick, Establishing Moore Law, 2006, pp. 62–75.
[26] O. Schenk, Pardiso Solver Users Guide, 2012.
[27] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon, 2001.

Brought to you by | Ecole Centrale de Lyon
Authenticated

Download Date | 4/11/16 11:19 AM

