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We show by direct numerical simulation (DNS) that the Lagrangian cross correla-
tion of velocity gradients in homogeneous isotropic turbulence increases at short
times, whereas its auto-correlation decreases. Kinematic considerations allow to
show that two invariants of the turbulent velocity field determine the short-time
velocity gradient correlations. In order to get a more intuitive understanding of the
dynamics for longer times, heuristic models are proposed involving the combined
action of local shear and rotation. These models quantitatively reproduce the effects
and disentangle the different physical mechanisms leading to the observations in the
DNS. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936140]

I. INTRODUCTION

The study of the Lagrangian dynamics of the velocity gradient tensor in turbulent flows has
recently received a considerable amount of attention. Its investigation helps us to understand impor-
tant phenomena involving the small scales of turbulent flows, such as the preferential vorticity
alignment, the skewness of longitudinal velocity gradients, small scale intermittency, etc.1 Recent
developments in experimental techniques allow nowadays to deterministically track the develop-
ment of the velocity gradient tensor in Eulerian2 and Lagrangian settings.3 These results, combined
with results from Direct Numerical Simulations (DNS) (e.g., Refs. 4 and 5) provide unprecedented
possibilities to understand the origin of these interesting phenomena.

In order to understand the phenomenology of the velocity gradient evolution, simplified models
are needed which allow to identify the different physical features. One of the simplest models
is the so-called restricted Euler (RE) equation for the velocity gradient tensor. This equation is
obtained by removing the viscous diffusion term and the anisotropic part of the pressure Hessian
from the evolution equation of the velocity-gradient tensor, only leaving the advection term, the
self-stretching term, and the symmetric part of the pressure Hessian.6 There are many studies on
the properties of this RE system, investigating, in particular, the evolution of the invariants and
their probability density functions.6–9 However, the system evolves to a singular state,10 so that the
time-evolution at long times is not comparable to realistic Navier-Stokes dynamics. In particular,
the influence of the anisotropic part of the pressure Hessian on the distribution of tensor invariants
seems to be significant.11,12 More recent theoretical approaches attempt to model these remain-
ing terms using geometrical considerations,13,14 assumptions on the short-time deformation,15 or
assuming Gaussianity of the pressure Hessian.16 These approaches have, for instance, allowed to
better understand the Lagrangian evolution of the time-correlations of vorticity alignment.17,18 The
other term omitted from the restricted Euler model, i.e., the viscous term, acts as a damping and
greatly influences the Lagrangian time evolution of the velocity gradient tensor. A popular model to
represent the effects of the viscous damping is the linear damping model,19 which is formally quite
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simple, but can be regarded as a good approximation for a number of applications.1,20 This is not so
at short times, as will be shown in the present investigation.

Whereas, as mentioned above, the evolution of the invariants and their probability density
distribution have received a large amount of interest, the Lagrangian time correlations have not
been investigated so much. One recent study on the subject is the work by Yu and Meneveau.21,22

A tensor-based correlation function was defined to represent the time evolution property along the
trajectory of a fluid particle. It was shown that this correlation function always decreases, and the
correlation-time is related to the local Kolmogorov time scale. In the present contribution, we will
show that a component of this correlation function, the cross correlation, does not always decrease.
Instead, it non-monotonically varies with the time lag, i.e., it initially increases for a couple of
Kolmogorov time scales, before it starts to decrease. In order to better understand the short-time
evolution of the Lagrangian velocity-gradient correlations, we combine DNS, kinematics, and heu-
ristic modeling.

In Section II, we will define the different components of the Lagrangian velocity gradient
correlation tensor and we will show that DNS results predict an increase of one of the components
of this tensor. In Section III, it is rigorously shown that at short times the pressure Hessian can cause
this effect, neglecting other contributions to the evolution. A simplified kinematic model will be
proposed to explain this interesting phenomenon in Section IV and the discussion and conclusion
are presented in Section V.

II. BEHAVIOUR OF THE LAGRANGIAN VELOCITY GRADIENT CORRELATIONS
IN DIRECT NUMERICAL SIMULATION

A. The Lagrangian velocity gradient tensor

We consider isotropic incompressible turbulence. The Lagrangian velocity gradient, denoted by

Ai j(x, t0|t), (1)

is the value of ∂jui evaluated at time t at the position of the fluid particle which passed through x at
time t0. In the present paper, we only consider the case of t > t0. The notation ∂i is an abbreviation
for the partial derivative ∂/∂xi. We note that in general, for t ! t0,

Ai j(x, t0|t) ! ∂j (ui(x, t0|t)) . (2)

In particular, Aii(x, t0|t) = 0 by incompressibility, and this does not hold for ∂iui(x, t0|t). Inequality
(2) complicates the analysis of second-order correlations of the Lagrangian velocity gradient
tensor, since we cannot link them directly to the velocity-correlations. For brevity, we will denote
Ai j(x, t0|t) by Ai j(t). Without losing generality, we also define t0 = 0 in Secs. III–V.

The Lagrangian evolution of Ai j is given by

Ȧi j = −Ap jAi p − Pi j + ν∂2
pAi j, (3)

with Pi j = ∂i∂jp the pressure Hessian and ν the viscosity.
We further introduce the correlation

Bi jmn(t) =
!
Ai j(0)Amn(t)

"
, (4)

and we omit the parameter t0 = 0. Since we will only consider statistically stationary flows, the
temporal correlations depend only on the time lag t − t0 = t.

At t = t0, elementary tensorial kinematics show that, due to isotropy, homogeneity, and incom-
pressibility,

Bi jmn(0) =
2
15

(
δimδ jn −

1
4

#
δi jδmn + δinδ jm

$) ϵ

ν
, (5)

where the dissipation rate ϵ is related to the velocity gradients by

ϵ = 15ν
〈(

∂u1

∂x1

)2〉
. (6)
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All components of Bi jmn(t0) are thus determined by one scalar invariant, the dissipation. In the
following, we will consider the time dependence of Bi jmn(t), and, in particular, the transverse auto-
and cross correlations, B1212 and B1221. Their values at t = t0 are

B1212(0) =
2
15

ϵ

ν
, B1221(0) = −

1
30

ϵ

ν
. (7)

At later times, we will evaluate the different correlations as compared to their value at t = t0. For
instance,

B̃1212(t) ≡
B1212(t)
B1212(0)

. (8)

Intuitively we would expect the norm of these correlations to decay in time, since dynamics on
trajectories have a finite time-correlation. It is observed that at short times this is the case for
B̃1212(t), but it is not so for B̃1221(t).

B. Numerical observations

A pseudo-spectral method is used to solve the Navier-Stokes equations in a periodically cubic
box of size 2π. A large-scale random forcing scheme is added to the Navier-Stokes equations to
produce and maintain statistically stationary isotropic turbulent flows. The details of the calculation
can be found in Refs. 23 and 24. The effect of external forcing was discussed by Jeong and Giri-
maji.25 The isotropic turbulent flows at four Taylor’s microscale Reynolds numbers, Reλ = 74, 101,
205, and 433, are simulated to study the effects of the Reynolds number on the cross correlation
of velocity gradients. The flow parameters in different flows are listed in Table I. Here N is the
grid resolution in one direction, u′ is the root mean square of the fluctuation velocity, L f is the
integral length scale of the flow, vK = (νϵ)1/4 is the Kolmogorov velocity scale, and τK = ⟨ν/ϵ⟩1/2

is the Kolmogorov time scale. The first three cases are generated using our in-house code and
the last one is obtained using the public turbulence database at the Johns Hopkins University.26

When the turbulent flow field reaches a statistically stationary state, the initial positions of 4 × 105

fluid particles are recorded and the trajectories of these particles are then advanced in time us-
ing a fourth-order Adams-Moulton method according to dx/dt = u(x(t), t), where u(x(t), t) is the
fluid velocity experienced by one of the fluid particles, obtained from the Eulerian fluid velocity
field using a 6th-order Lagrangian interpolation.27 The Lagrangian velocity gradient is calculated
along the trajectory of a fluid particle. First, we compute the velocity gradient field in an Eule-
rian frame, then, we obtain the Lagrangian velocity gradient experienced by a fluid particle also
using a 6th-order Lagrangian interpolation. For single-point two-time correlations of the velocity
gradient, we obtain the velocity gradient at different times at the fixed initial positions of the 4 × 105

fluid particles. As the Lagrangian correlation of velocity gradient decays more slowly than the
single-point two-time correlation of the velocity gradient, we calculate the correlations for about
30τK so that the Lagrangian correlation of velocity gradient decays to zero. The number of fluid
particles used for the determination of the Lagrangian correlation is sufficient to ensure converged,
smooth correlation functions, as shown in Fig. 1.

In Fig. 1 it is shown that the correlation B̃1212 decays monotonically, but this is not so for B̃1221.
This last quantity increases to a value of around 1.5 after a couple of Kolmogorov times. After
that time it starts to decay. At long times this correlation should go to zero, as do the other ones,

TABLE I. Parameters of the considered flows.

Case N 3 Reλ ϵ ν u′ L f vK τK

I 1283 74 3434.7 0.095 19.10 0.91 4.31 0.005 1
II 2563 101 3468.0 0.049 19.52 0.99 3.62 0.003 7
III 5123 205 0.2055 0.001 0.8722 3.2283 0.1197 0.069 76
IV 10243 433 0.0928 0.000 185 0.681 1.376 0.064 0.044 6
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FIG. 1. The two-time correlation functions calculated in DNS databases. The corresponding values at time t0= 0 are used
for normalization. (a) B̃1212(t), (b) B̃1221(t), (c) their product.

reflecting the finite correlation time of a turbulent velocity field. The product of B̃1221 and B̃1212
also increases at short times and decays at long times. The observed tendencies do not seem to
be strongly dependent on the Reynolds number. The evolution of the correlations as a function of
time in Kolmogorov-units is roughly the same for all Reynolds numbers, but the influence of the
Reynolds number on B̃1221 is larger than that on B̃1212.

This short-time increase in B̃1221(t) is a typically Lagrangian effect, as illustrated in Fig. 2,
which shows the comparison between the Lagrangian correlation of B̃1221(t) and the single-point
two-time correlation of B̃1221(t), where the latter is the correlation of the velocity-gradient calcu-
lated at the same position, i.e., without tracking particles. Evidently, the single-point two-time
correlation monotonically decays with time, in contrast to the Lagrangian correlation.

In Sec. III, we will try to explain the different behaviours at short times by kinematic consider-
ations.

III. SHORT-TIME EVOLUTION OF THE CORRELATIONS

A. Lagrangian correlations

For short times (t − t0) we can use the Taylor expansion

ATaylor
i j (t) = Ai j(t0) + (t − t0)Ȧi j(t0) +

(t − t0)2
2

Äi j(t0) + O
#
(t − t0)3

$
. (9)

FIG. 2. Comparison between the Lagrangian correlation and the single-point two-time correlation of B̃1221(t) at Taylor’s
microscale Reynolds number Reλ = 101, where the solid line denotes the Lagrangian correlation of B̃1221(t), and the dashed
line the single-point two-time correlation of B̃1221(t).
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The short time evolution of Bi jmn(t) can therefore be evaluated by substituting the first non-
vanishing contributions of ATaylor

i j (t) in Bi jmn(t0, t). We find, up to second order,

Bi jmn(t) ≈ Bi jmn(t0) + (t − t0)
!
Ȧi j(t0)Amn(t0)

"
+
(t − t0)2

2
!
Äi j(t0)Amn(t0)

"
. (10)

We can evaluate the leading-order term, proportional to (t − t0), by substituting Eq. (3) in Eq. (10).
Working out the kinematics for isotropic incompressible turbulence, we find that this term vanishes,
reflecting physically the steady-state equilibrium between enstrophy production and dissipation.
The vanishing of the first order term can however be shown more directly by considering the time
derivative,

∂

∂t
!
Ai j(t)Amn(t)

"
= 0, (11)

since the flow is statistically stationary. Therefore, we have immediately,!
Ȧi j(t)Amn(t)

"
= −

!
Ai j(t)Ȧmn(t)

"
, (12)

which shows that for B̃1212(t) and B̃1221(t), the first-order contribution in Eq. (10) vanishes. In order
to explain the short-time behaviour of B̃1212(t) and B̃1221(t), we therefore need to retain at least the
terms in (t − t0)2.

Using the fact that

∂2

∂t2

!
Ai j(t)Amn(t)

"
= 0, (13)

we find that
!
Ȧi j(t0)Ȧmn(t0)

"
= −1

2
#!

Äi j(t0)Amn(t0)
"
+

!
Ai j(t0)Ämn(t0)

"$
(14)

leading to !
Ä12(t0)A12(t0)

"
= −

!
Ȧ12(t0)Ȧ12(t0)

"
,!

Ä12(t0)A21(t0)
"
= −

!
Ȧ12(t0)Ȧ21(t0)

"
, (15)

which helps us to get rid of the second-order time derivatives. Isotropy allows to express

!
Ȧi j(t0)Ȧmn(t0)

"
=

1
30

( ϵ
ν

)2 %
(4F − G)δimδ jn − (F + G)δi jδmn + (4G − F)δinδ jm

&
, (16)

with

F =
!
Ȧi j Ȧi j

" ( ν
ϵ

)2
, G =

!
Ȧi j Ȧj i

" ( ν
ϵ

)2
. (17)

Using expressions (5), (10), and (16), we find for the normalized correlations,

B̃1212(t) ≈ 1 − 1
8

(
t − t0

τK

)2

(4F − G), (18)

B̃1221(t) ≈ 1 +
1
2

(
t − t0

τK

)2

(4G − F). (19)

This shows that if we can determine the scalar quantities F and G, we can determine all the
initial trends of the Lagrangian correlation functions. We will first see which constraints are
implied by purely kinematic constraints, i.e., without introducing the Navier-Stokes equations.
Auto-correlations in stationary turbulence can be assumed to be decaying functions of time, so
that, using this constraint on B1111 and B1212, we have −F ≤ G ≤ 4F, and 0 ≤ F. This allows
but does not demonstrate that B̃1221(t) is an increasing function in time, since for that, we should
have F/4 ≤ G. It is normal that at this point we cannot demonstrate this, since we have not
used any information on the Navier-Stokes equations, only considerations assuming isotropy and
incompressibility.
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Let us at this point add such dynamic information, step by step. For instance, consider that only
the viscous term on the RHS of (3) is non-zero. In that case we find, by isotropy that G = 0, and
both correlations in Eqs. (18) and (19) initially decrease. If we now consider a different case, where
only the pressure Hessian is non-zero, we find F = G since the pressure Hessian is symmetric in its
indices Pi j = Pj i. In that case the cross correlation increases whereas the auto-correlation decreases,
as observed in the simulations. This does not prove that it is the pressure Hessian alone which is
responsible for the increasing correlation, the self-interaction term (first term on the RHS of Eq. (3))
can also play a role. For that term we have not succeeded to show any simple symmetry properties
in a rigorous way. We have therefore proceeded to measure G/F in the direct numerical simulations
and we found that G/F ≈ 0.6 in the simulations, roughly independent of the Reynolds number. This
is in the interval 1/4 ≤ G/F ≤ 4, in which auto-correlations decrease and B̃1221(t) increases in time.

B. Single-point two-time correlation

For the case of the single-point two-time correlations of the velocity gradient tensor, we have an
additional term on the RHS of the velocity-gradient evolution equation,

∂t Ai j = −um∂mAi j − Ap jAi p − Pi j + ν∂2
pAi j . (20)

The advection term −um∂mAi j should now be taken into account in the evaluation of F and G.
Doing so, ignoring all the other terms, we have!

Ȧi j Ȧi j

"
S =

!
um∂mAi jun∂nAi j

"
, (21)

with the index S denoting sweeping. We assume that the sweeping velocity and the velocity gradi-
ents are roughly independent (see for instance Refs. 28 and 29), so that!

Ȧi j Ȧi j

"
S = ⟨umun⟩

!
∂mAi j∂nAi j

"
. (22)

Invoking isotropy for the large-scale sweeping, this relation becomes

!
Ȧi j Ȧi j

"
S =

1
3

⟨umum⟩
!
∂nAi j∂nAi j

"
. (23)

This term can be expressed as a function of the energy spectrum. Assuming Kolmogorov scaling for
this spectrum,

E(k) = ν5/4ϵ1/4 fu(kη), (24)

we find that

FS ≡
!
Ȧi j Ȧi j

"
S

( ν
ϵ

)2
=

2
3

⟨umum⟩
(ϵν)1/2

∫
ζ4 f (ζ)dζ , (25)

where Cζ =
∫
ζ4 f (ζ)dζ is supposed to be of order unity. We similarly find GS = 0. If we substitute

this in the Taylor expansion, we find that

B̃1212(t0, t) = B̃1122(t0, t) = B̃1221(t0, t) ≈ 1 − 1
3

Cζ

(
t − t0

τK

)2 ⟨umum⟩
(ϵν)1/2 . (26)

This shows that sweeping should decorrelate all correlations on the same time scale, and that this
decorrelation is not independent of Reynolds number when scaled by Kolmogorov time-units. If
one would like to collapse the different time-correlations, one should scale them by time units
T = τKR−1/2

λ . In Fig. 3 we show that this scaling allows to collapse the data better than the scaling
by Kolmogorov-units. For high Reynolds numbers this decorrelation should therefore be much
faster and the other terms, which were observed to lead to decorrelations over several Kolmogorov
time scales, are therefore most probably negligible.

In order to obtain some more intuition on the dynamics, introducing the influence of the flow
topology, we will now discuss simple heuristic models for the Lagrangian dynamics.
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FIG. 3. Single-point two-time correlation of the gradient cross correlation B̃1212(t) at different Reynolds numbers, scaled by
Kolmogorov time-units (left) and sweeping time-units (right).

IV. HEURISTIC MODELS FOR THE LAGRANGIAN VELOCITY GRADIENT
CORRELATIONS

A. Strain and vorticity correlations

The velocity gradient tensor can be decomposed without loss of generality into its rotation and
strain part. This so-called Helmholtz decomposition (HD) leads to

Ai j = Si j +Ωi j, (27)

with Si j = (∂jui + ∂iu j)/2 and Ωi j = (∂jui − ∂iu j)/2. If we assume that both contributions remain
independent of each other over the considered time-interval, we have

Bi jmn(t) =
!
(Si j(0) +Ωi j(0))(Smn(t) +Ωmn(t))

"
≈

!
Si j(0)Smn(t)

"
+

!
Ωi j(0)Ωmn(t)

"
.

(28)

In several recent studies of Lagrangian turbulence, it was observed that the time-correlations of
strain and rotation could be approximated by exponentially decaying correlation functions.30–32 The
two quantities are however correlated over different time scales. The characteristic time scales of
shear and rotation are, respectively, about 2.3τK and 7.2τK with τK the Kolmogorov time scale.
Combining this information with expression (28), we find

B̃1212(t) =
3
8

exp
(
− t

2.3τK

)
+

5
8

exp
(
− t

7.2τK

)
,

B̃1221(t) = −
3
2

exp
(
− t

2.3τK

)
+

5
2

exp
(
− t

7.2τK

)
.

(29)

These expressions, termed as the HD model, are compared to the DNS data, as shown in Fig. 4.
It shows that the HD model captures the main characteristics for the Lagrangian correlations of the
velocity gradients. However, the HD model does not reproduce the correct peak value of B̃1221.

An additional insight is obtained by considering the two-dimensional case. In this case the
vorticity is purely advected,

ω̇ = ν∆ω. (30)

On a Lagrangian trajectory, the vorticity is thus only decorrelated by viscous diffusion of vorticity.
We write the vorticity as a function of the velocity gradients, ω = (A21 − A12), so that the Lagrangian
autocorrelation writes

Bω(t) =
⟨ω(t0)ω(t)⟩
⟨ω(t0)ω(t0)⟩

= 2
⟨A12(t0)A12(t)⟩ − ⟨A12(t0)A21(t)⟩

⟨ω(t0)ω(t0)⟩
. (31)

Since in two dimensions ⟨A12(t0)A21(t0)⟩ = − ⟨A12(t0)A12(t0)⟩ /3, we find that

Bω(t) =
3
4

B̃1212(t) +
1
4

B̃1221(t). (32)
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FIG. 4. Comparison between the HD model with DNS data. With increasing Reynolds numbers, the cross correlations
B̃1221(t) from DNS data gradually approach the HD model. (a) B̃1212(t), (b) B̃1221(t).

If we neglect the viscous diffusion, the vorticity will not decorrelate on a trajectory. In this case
Bω(t) = 1 and we find

B̃1221(t) = 4 − 3B̃1212(t). (33)

This shows that if the autocorrelation B̃1212(t) decreases, say, as B̃1212(t) = 1 − ((t − t0)/τ)2, the
cross correlation will increase as

B̃1221(t) = 1 + 3((t − t0)/τ)2. (34)

In two dimensions the increase of the correlation B̃1221(t) can thus be understood by the inviscid
mechanism of vorticity advection. The longer correlation time of the vorticity as compared to
strain, in three dimensions could be reminiscent of this mechanism, even though in three dimen-
sions the vorticity is not conserved due to the presence of vortex stretching. The investigation of
the Lagrangian time-correlations of the velocity-gradient in two-dimensional turbulence is left for
further research.

B. Lagrangian correlations by assuming locally constant velocity gradients

We will here try to identify the different effects that lead to the observed results. Therefore we
will consider a given velocity field with locally constant velocity gradients. Subsequently we will
show how, following a fluid particle on a trajectory, rotation and shear influence the Lagrangian
correlations. Subsequently we add damping and as a last feature we allow the initially considered
velocity field to decorrelate itself in time. This step by step complexification allows to disentangle
the different physical mechanisms leading to the observations in the DNS.

1. Stretching and rotating in an inviscid field

We here introduce a simple heuristic model, where we can analytically compute the correla-
tions. Our starting point is a velocity gradient field which we assume to be locally uniform and
constant. In that case, locally the field can be considered as a 2D state (cf., Section 2.3.2 of Ref. 33).
We choose the coordinate-system such that the velocity gradient is in the x, y-plane, with its axes
chosen such that

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−S −Ω 0
Ω S 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (35)

with S the pure irrotational strain rate and Ω the angular rotation rate. The associated flow-field is
obviously not isotropic, but we will consider that the whole space is filled with an infinite number of
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local structures, and for each structure the characteristic orientations of the velocity gradient tensor
are randomly distributed. The averages over all orientations will yield us isotropic statistics.

A rotation in a 3D space can be expressed using the rotation-transform tensor,

Q(θ,β,γ)
E =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos θ cos γ − cos β sin θ sin γ sin θ cos γ + cos β cos θ sin γ sin β sin γ
− cos θ sin γ − cos β sin θ cos γ − sin θ sin γ + cos β cos θ cos γ sin β cos γ
sin β sin θ − sin β cos θ cos β

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (36)

where θ, β, and γ are a group of Euler angles in the directions of z, x, and z, respectively. In
particular, when β = γ = 0, it yields a rotation in the x, y-plane with angle θ,

Q(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos θ sin θ 0
− sin θ cos θ 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (37)

Rotating a tensor in 3D yields the velocity gradient

A(θ,β,γ) = Q(θ,β,γ)T
E AQ(θ,β,γ)

E , (38)

with the superscripts (θ, β,γ) denoting the rotation angle, and T the transposition of the matrix. This
yields the off-diagonal components of the velocity gradient tensor A(θ,β,γ)

12 and A(θ,β,γ)
21 .

The single-time velocity-gradient correlations B1212 and B1221 over an infinite number of
randomly oriented realizations can then be calculated using the Haar measure of Euler angles,

B1212 ≡ ⟨A12A12⟩ =
1

8π2

∫ 2π

0
dθ

∫ π

0
sin βdβ

∫ 2π

0
dγA(θ,β,γ)

12 A(θ,β,γ)
12 =

1
15

(3S2 + 5Ω2),

B1221 ≡ ⟨A12A21⟩ =
1

8π2

∫ 2π

0
dθ

∫ π

0
sin βdβ

∫ 2π

0
dγA(θ,β,γ)

12 A(θ,β,γ)
21 =

1
15

(3S2 − 5Ω2).
(39)

In three dimensions, Eq. (7) shows that B1221 = −B1212/4. Combining this with Eq. (39), we find
that S2 = Ω2, B1212 = 8S2/15, and B1221 = −2S2/15. Comparing to Eq. (7), we also have S2 = ϵ/(4ν)
which is in agreement with Eq. (35) and the definition of the dissipation rate.

We will now compute the evolution of the Lagrangian velocity-gradient correlations. In our
homogeneous velocity-gradient field, we follow a fluid particle and we will determine how the
velocity gradient is modified through the interaction of strain and rotation. In Section III, it was
shown that the pressure Hessian might be an important factor for the short-time phenomenon of
Lagrangian correlation; thus, an appropriate two-time model should consider the pressure Hessian.
As it is difficult to rigorously take account of the pressure effect, we borrow the assumption of
“frozen velocity gradient field” by Chevillard et al.15,34 Under this assumption, the deformation of a
fluid particle is driven by a constant velocity gradient field during a short time of the order τK . This
deformation, on the one hand, implies the effect of pressure Hessian,15 on the other hand unfreezes,
and changes the velocity gradient tensor. Specifically, for the present model, when an appropriate
coordinate system is chosen, from Eq. (35), the influence of this frozen velocity gradient field is
divided into the effects of stretching and rotation.

Considering the stretching effect by the uniform strain field, applying the strain in matrix
Eq. (35) on a velocity gradient matrix A with a given time t and shear rate S leads to

AS(t) = A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e−St 0 0
0 eSt 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (40)

Then, by rotating this matrix over φ = Ωt, the gradient tensor is

AS,(φ)(t) = Q(φ)TAS(t)Q(φ). (41)

Note that here the rotation is always in the x, y-plane, and the transform matrix Q, rather than QE,
should be used. Considering the random orientations, we have
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AS,(φ),(θ,β,γ)(t) = Q(θ,β,γ)T
E Q(φ)TAS(t)Q(φ)Q(θ,β,γ)

E , (42)

and the Lagrangian two-time correlation B1212(t) and B1221(t) are then

B1212(t) =
1

8π2

∫ 2π

0
dθ

∫ π

0
sin βdβ

∫ 2π

0
dγA(θ,β,γ)

12 AS,(φ),(θ,β,γ)
12 ,

B1221(t) =
1

8π2

∫ 2π

0
dθ

∫ π

0
sin βdβ

∫ 2π

0
dγA(θ,β,γ)

12 AS,(φ),(θ,β,γ)
21 .

(43)

From Eqs. (43) and (39), the normalized values can be obtained as

B̃1212(t) ≡
B1212(t)
B1212(0)

=
1

3S2 + 5Ω2

##
5Ω2 + 3S2 cos(2φ)

$
cosh(St) − 3SΩ sin(2φ) sinh(St)

$
,

B̃1221(t) ≡
B1221(t)
B1212(0)

=
1

5Ω2 − 3S2

##
5Ω2 − 3S2 cos(2φ)

$
cosh(St) + 3SΩ sin(2φ) sinh(St)

$
.

(44)

Using the isotropic result S = Ω, these correlations can be expressed as a function of Ω alone. If
we make the link with a turbulent flow, the dominant rotation time scale will be of the order of the
Kolmogorov time scale. We therefore define Ω−1 for normalization with Ω−1 ∼ τK . The resulting
two-time correlation functions are shown in Fig. 5. It is shown that at short time, B̃1212(t) decreases
while B̃1221(t) increases. Also the product of these two correlation functions, shown in Fig. 5(c),
increases. Indeed, the phenomenological picture that we obtain from these considerations is the
following: a fluid particle that is moving in vortical motion will change its orientation. The rotation
of the local velocity gradient will then reorient so that after a typical small scale turn-over time, the
velocity-gradient ∂1u2 will have changed towards a ∂2u1 local gradient. Apparently, this correlation
increases from its initial value if we consider a given velocity-gradient field. At long times, all
correlations attain nonphysically high values. Indeed, at long-times, the correlations are expected
to decrease due to turbulent and viscous diffusion. We will therefore add a damping to the present
model.

2. Adding a damping function to the correlations

In order to improve the temporal behaviour of the velocity-gradient correlation model, we add a
damping function

B̃1212(t) = f (t)
(

1
3S2 + 5Ω2

##
5Ω2 + 3S2 cos(2φ)

$
cosh(St) − 3SΩ sin(2φ) sinh(St)

$)
,

B̃1221(t) = f (t)
(

1
5Ω2 − 3S2

##
5Ω2 − 3S2 cos(2φ)

$
cosh(St) + 3SΩ sin(2φ) sinh(St)

$)
.

(45)

Traditional damping models usually assume linear dissipation,19 which is probably a good approxi-
mation for t ≫ τK . However, we have seen that rigorously, for t ≪ τK (expression (18)), the damp-
ing should be a quadratically decaying function of time. We have tried both types of damping. For

FIG. 5. The two-time correlation functions in a uniform stationary velocity gradient field without damping. (a) B̃1212(t), (b)
B̃1221(t), (c) their product.
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FIG. 6. The two-time correlation functions with damping. dash-dotted line: B̃1212(t); solid line: B̃1221(t); dash-dot-dotted
line: their product. (a) Linear damping function; (b) quadratic damping function.

the linear damping, we use f (t) = exp(−c1Ωt) and for the quadratic damping f (t) = exp(−c2(Ωt)2),
with c1 = c2 = 2.2, a constant which is arbitrarily chosen, but the value of which not qualitatively
changes the behaviour as long as it is of order unity.

It is shown in Fig. 6 that the additional damping term allows the correlations to tend to zero
for long times, as expected. However, the initial increase of the cross correlation is only observed
in the case of a quadratic damping. The linear damping is incompatible with this feature. The
peak time is related to the characteristic time of the damping model (cf. Refs. 20 and 35). This
shows that if models for the Lagrangian evolution of the velocity-gradient tensor are to produce
the short time statistics correctly, a quadratic damping should be used. Indeed, comparing to DNS
results, for longer times the quadratic damping is over dissipative and the linear damping might
prove to be more physically adapted. Hence, an interpolation between the two behaviours should
be used in practice. Another possibility is to introduce more sophisticated damping models where
the damping-time scale is not constant but evolves over its Lagrangian trajectory.25 We have instead
chosen to improve the damping by evolving the quantities S and Ω in our phenomenological model,
using the time scales discussed in Sec. IV A.

3. Damping the correlations using multiple time scales

An alternative to the ad hoc damping function f (t) is to allow the velocity gradients to decorre-
late in inviscid model (44), taking into account that Si j and Ωi j are governed by different time scales
(as in Section IV A and discussed in Refs. 30–32). Additional coefficients are also required to relax
the assumption of a frozen velocity gradient field and will be explained later. The multi-time scale
kinetic model then writes

B̃1212(t) =
1

3S(0)2 + 5Ω(0)2
##

5Ω(t)2 + 3S(t)2 cos(2tΩr(t))
$

cosh(tSr(t))

−3S(t)Ω(t) sin(2tΩr(t)) sinh(tSr(t))) ,

B̃1221(t) =
1

5Ω(0)2 − 3S(0)2
##

5Ω(t)2 − 3S(t)2 cos(2tΩr(t))
$

cosh(tSr(t))

+3S(t)Ω(t) sin(2tΩr(t)) sinh(tSr(t))) ,

(46)

where S(t) = S(0) exp(−t/(4.6τK)), Ω(t) = Ω(0) exp(−t/(14.4τK)), Sr(t) = S(crt), and Ωr(t)
= Ω(crt). The coefficient cr is the relaxation of the assumption of frozen velocity gradient field, which
allows different damping rates between the transform field and the defrozen quantity field. In practice,
if we choose cr = 9.0, a good agreement with DNS results can be obtained (see Fig. 7). We remark
here that the assumption of a frozen velocity gradient field by Chevillard et al.15,34 does not mean
a constant field but implies a delay effect between the transform and the defrozen quantity field.
According to Chevillard et al., this delay is physical and corresponds to the pressure redistribution
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FIG. 7. Comparison between the multi-time scale kinetic model with HD model and DNS data, where cr = 9.0 in the
multi-time scale kinetic model. (a) B̃1212(t), (b) B̃1221(t).

effects. In the multi-time scale model, the coefficient cr thus relaxes the freezing assumption and
quantitatively describes this phenomenon of delay.

4. Assessment of the models and comparison to DNS

We have thus reproduced the observations in the simulations using heuristic models. The agree-
ment of the multi-time scale model with DNS is better than that of the Helmholtz-decomposition
assuming exponential time-correlations for strain and vorticity. However, the level of sophistication
of the multi-time scale model is significantly higher and we have added an extra model-constant,
characterizing the different damping rates between the transform field and the defrozen quantity
field. Rather than a practical model, the multi-time scale model should be considered as a way to
disentangle the different effects. Indeed, it shows that the initial tendencies of the velocity-gradient
correlations can be reproduced by the combined effects of translation and rotation. At long times
either a Gaussian/exponential damping function should be added to the correlation or the vorticity
and strain along the trajectory should be taken to be decreasing functions in time. Finally, to opti-
mize the agreement with DNS, the initially frozen velocity field should be defrozen by introducing
a coefficient of relaxation. This model extends the studies of Chevillard et al.15,34 and proposes a
relaxation of the assumption of a frozen velocity field.

V. DISCUSSION AND CONCLUSION

The fact observed in this paper, i.e., both B̃1221(t) and B̃1212(t)B̃1221(t) always increase at short
times, is surprising because these kinds of correlations are usually decaying in dissipative sys-
tems. We have tried to understand the short-time evolution of these correlations using kinematical
considerations. In Section III, we have attempted to obtain rigorous results for the short-time corre-
lations. It was shown, without even considering the Navier-Stokes equations, that the short-time
evolution of the Lagrangian velocity gradient correlations is entirely determined by two invariants,
F ∼

!
Ȧi j Ȧi j

"
and G ∼

!
Ȧi j Ȧj i

"
. An increase of the Lagrangian cross correlation at short times

should be observed if the ratio of the two invariants lies in the interval 1/4 ≤ G/F ≤ 4. Subse-
quently we showed that the influence of viscosity gives G/F = 0, thereby damping all correlations,
as expected. However, symmetry arguments show that if we only consider the pressure Hessian, we
find G/F = 1, which should give rise to an increase of the cross correlation. We measured the ratio
and found that G/F ≈ 0.6 so that the initial evolution cannot be explained uniquely by the influence
of the pressure Hessian. Also the influence of damping and self-interaction should be considered to
understand the full picture.

Considering the Lagrangian time-correlation of the vorticity, it was shown that in the two-
dimensional inviscid case, the increases of B̃1212(t) and B̃1221(t) are kinematically coupled and an
increase of one of the correlations implies the decorrelation of the other. The presence of vortex

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  156.18.40.173
On: Wed, 06 Apr 2016 14:41:55



125102-13 Fang, Bos, and Jin Phys. Fluids 27, 125102 (2015)

stretching in three dimensions does not allow such a simple conclusion, but if the vorticity corre-
lation is more persistent than the B̃1212(t) correlation, an initial increase of B̃1221(t) is expected. By
contrast, the presence of sweeping in the Eulerian framework does not allow to observe any increase
of time-correlations.

To give a more intuitive understanding of the link between flow-topology and Lagrangian
evolution, two heuristic models were proposed. The Helmholtz-decomposition model can qualita-
tively reproduce the observed effect. Then, we aim at disentangling the different physical mech-
anisms leading to the observations in the DNS, which finally lead to the multi-time scale model
validated by the quantitative agreement with DNS. These models, on the one hand, explain the
physical roles of stretching, rotation, pressure, and damping in the present observation, on the other
hand, show limitations of the traditional linear damping at short times and support a multiple-time
scale damping to relax the assumption of a frozen velocity gradient field.
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