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In turbulent scalar mixing, starting from random initial conditions, the root-mean-square advection term rapidly
drops as the flow and the scalar field organize. We show first analytically, for the simplified case of a blob in shear
flow with a finite correlation time, how the advection term is reduced compared to a randomly aligned scalar
structure. This picture is then generalized to turbulent mixing. These examples show that the rapid depletion of
advection depends on the lifetime of turbulent structures, compared to the local straining time scale. A turbulence
closure is used to show that the Lagrangian correlation time indeed determines the deviation from Gaussian
behavior. In particular it is shown that in the inertial range the depletion mechanism is self-similar, since a
constant ratio is observed between the advection spectrum and its Gaussian equivalent. Finally, direct numerical
simulation shows that in the limit of an infinite correlation time of the turbulent eddies, corresponding to a frozen
velocity field, the mean-square advection tends to a zero fraction of its Gaussian estimate.
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I. INTRODUCTION

A salient feature of hydrodynamic turbulence is its ten-
dency to self-organize into coherent vortical structures. How
exactly this self-organization takes place, and to what kind
of flow pattern a turbulent velocity field will evolve, depends
on the interplay of pressure, viscous dissipation, nonlinear
advection, and forcing. Despite a century of efforts, no general
principle explaining the self-organization of three-dimensional
turbulence has been identified yet. An interesting suggestion
of such a principle is the premise that turbulence will tend
to organize towards a force-free state, where vorticity and
velocity are aligned [1], and since the time this was suggested,
a large number of investigations have focused on the detailed
alignment properties of turbulence (see for instance [2]). In
Ref. [3] a weak tendency of velocity-vorticity alignment was
indeed observed in turbulent flows, but not enough to explain in
detail the weakening of the nonlinearity and its related possible
appearance of a force-free state. It was therefore suggested
that this alignment might be just one manifestation of a more
general principle.

Indeed the work of Kraichnan and Panda [4] illustrated that
not only turbulence organizes towards a state in which the vari-
ance of the fluctuations of the nonlinear term are weaker than in
a Gaussian field with the same energy distribution, but that this
effect is also observed in model systems where no geometrical
relation between vorticity and velocity exists. Subsequent
work by Herring and Métais [5] and Bos et al. [6] further
illustrated the possible generality of this self-organization
principle by showing that a similar effect is also observed
in the mixing of a passive scalar. In that case the mean-square
advection term is reduced compared to its Gaussian estimate.
Most of the considerations in these works [4–6] were purely
statistical in nature, in the sense that no direct link was made to
the underlying flow topology leading to the suppression of the
strength of the nonlinearity. In contrast, other investigations,
focusing on alignment properties, in particular the alignment of
scalar gradients or material line elements with the eigenvectors
of the velocity gradient tensor, have received considerable
interest (see [7–10] and references therein), not so much in

relation to the possible existence of a force-free state, but to
describe the turbulent topology in general.

In the present investigation we will reconsider the case of
the turbulent passive scalar, more tractable than the velocity
case, to identify direct links between the local flow evolution,
Lagrangian coherence, and the generation of non-Gaussian
statistics. Also we will present a statistical multiscale analysis
to investigate the underlying mechanisms as a function of
length scale. In particular we will use the fact that in turbulence
closures one can vary the ratio between strain rate and
correlation time in a simple way. The continuous variation
of this ratio allows one to show the direct link between the
strength of the mean-square advection term and the Lagrangian
correlation time.

The case we are interested in is an isotropic turbulent
velocity field u(x,t), advecting an isotropic passive scalar
θ (x,t) with diffusivity D,

∂tθ − D�θ = −u · ∇θ. (1)

It was observed [5,6] that the efficiency of the turbulent
advection, compared to a Gaussian field, satisfies

〈(u · ∇θ )2〉turbulence

〈(u · ∇θ )2〉Gaussian
< 1, (2)

where the brackets denote an ensemble average. The quantities
here are the mean-square value of the advection term in a
turbulent flow mixing a passive scalar compared to the same
quantity in a Gaussian reference flow. The latter consists of
random independent Fourier modes with the same kinetic
energy spectrum as the turbulent flow, and the scalar fluctuation
field also consists of independent modes having the same
scalar variance spectrum as the turbulently advected scalar
field. Since our Gaussian reference fields are defined to have
the same energy distribution as the turbulent and scalar fields,
the values of 〈|u|2〉 and 〈|∇θ |2〉 in the turbulent and Gaussian
fields are equal. Moreover, because

(u · ∇θ )2 = ‖u‖2‖∇θ‖2 cos2(α), (3)
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with −π � α < π , the angle between u and ∇θ , one possi-
bility to observe a state in which Eq. (2) holds, is to have a
decreased probability to have alignment between u and ∇θ .
It is this possibility which is explored in the next section. In
particular, we will discuss how a reduced mean-square value
of the cosine of α can be related to the correlation time of
eddies in the turbulent flow. The quantity that we investigate is
thus 〈cos2(α)〉. For a random orientation, this quantity is equal
to 1/3 in three dimensions, and 1/2 in two dimensions.

In the following section we consider a blob in shear flow,
which is the simplest nontrivial example which can be used
to get a grip on the geometrical description of the depletion
of advection. Section III generalizes the ideas to turbulent
flows and illustrates using closure theory how the correlation
time of structures is related to the generation of non-Gaussian
behavior. Section IV illustrates how the advection is depleted
in the case of infinite correlation time, i.e., in a frozen velocity
field. In Sec. V we will discuss the link between the depletion of
advection and its geometrical interpretation, with the depletion
of nonlinearity in the Navier-Stokes equations, and several
related issues.

II. A BLOB IN CONSTANT SHEAR FLOW

To illustrate a mechanism which leads to the depletion of
advection, we consider a circular blob of size l0 of scalar � in
a uniform shear flow,

u = Sxey, (4)

where S = ∂uy/∂x is constant, as sketched in Fig. 1(a). In this
example we consider for simplicity the two-dimensional case,
but all the ideas can be straightforwardly transposed to three
dimensions. After some time the blob will be stretched and
rotated as sketched in Fig. 1(b). As the blob gets stretched, the
gradients of the scalar will get enhanced until diffusion sets in.
We will assume a vanishingly small diffusion in the following.
The total amount of scalar is then conserved so that when
the blob is stretched, its surface πl2

0/4 will remain roughly
constant (in three dimensions we have a volume which remains
unchanged, with the dimension of the blob in the cross-stream
direction remaining unchanged). We will denote by l(t) the
size of the blob in the direction of maximum stretching. In the
direction of strongest compression the typical size of the blob
is d(t). We will thus have an elliptical scalar blob for t > 0.

Since its surface remains constant, we have

l(t)d(t) ∼ l2
0 = constant. (5)

We can now estimate the gradients. In the direction e⊥ the
strength of the scalar gradient ∇⊥θ will be

‖∇⊥θ‖ ∼ �/d(t). (6)

The parallel gradient will be lower, of order �/l(t), since
l > d. The important thing here is that, evidently, the dominant
scalar gradients are perpendicular to the direction in which
the blob is stretched. Their values are not important in our
argument.

While the stretched blob aligns more and more with the
streamlines, the dominant scalar gradient gets increasingly
perpendicular to them. We can compute the angle α(t) in
Fig. 1(c) between the direction of the dominant scalar gradient
and the velocity. In our shear flow, the blob will get sheared as
the positions of material points x1 and x2 get separated. The
distance between these points is l(t) = ‖x1 − x2‖. Since the
shear is uniform, we have ẋ1 = 1

2Sl0tey = −ẋ2. Therefore,
the length of the blob evolves to a good approximation as

l(t) = l0

√
1 + S2t2. (7)

The angle in Fig. 1(c) is thus

cos α = l0/l = 1√
1 + S2t2

. (8)

Averaged over a time interval, we have for this simple case

〈cos2 α〉T ≡ 1

T

∫ T

0
cos2 αdt,

= arctan(ST )

ST
. (9)

This quantity will thus tend to zero for large values of ST ,
which we understand intuitively from the sketch in Fig. 1,
since the blob aligns increasingly in time with the streamlines.

We will now consider the case where the shear flow changes
its direction randomly every time interval T . Reconsidering the
same example as above, we have now

cos α = 1√
1 + [tan(α0) + tS]2

, (10)

(a) (b) (c)

FIG. 1. (Color online) Stretching a blob in a constant shear flow.
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FIG. 2. Dependence of the mean-square cosine of the angle
between the velocity field and the dominant gradient in a randomly
oriented blob of the scalar as a function of the correlation time.

where −π/2 < α0 < π/2 is the angle between the flow and
the direction of the dominant scalar gradient at the beginning
of the interval. Averaged over a time interval T , we obtain for
the square of the cosine

〈cos2 α(α0)〉T = arctan(tan α0+ST )−α0
ST

. (11)

We consider that the orientation of the shear is independent
of the orientation of our stretched filament. Every value of
α0 is therefore equally probable and the average value of
〈cos2 α(α0)〉T over an infinite number of realizations is then

〈cos2(α)〉 = 1

π

∫ π/2

−π/2
〈cos2 α(α0)〉T dα0

= arctan(ST/2)

ST
. (12)

We show expression (12) in Fig. 2. It is observed that for
ST ↓ 0 the value of 〈cos2(α)〉 tends to 1/2. This corresponds
to the mean-square value of the cosine of the angle between
two randomly orientated vectors in two dimensions. Indeed,
if the stretched blob of the scalar is reoriented too rapidly for
the dynamics to act, the angle will be randomly distributed.
However, if the value ST is taken towards infinity, the blob
will over each interval T be stretched and oriented towards
the direction of the velocity. The value of 〈cos2 α〉 drops from
0.5 to 0 for values of ST > 1. It is shown that for values
ST < 1 the influence of stretching is smaller than 10% and
for ST > 100 the depletion is almost complete. Comparing
expressions (9) and (12), we see that for ST ↓ 0, the ratio is
a factor of 2. This factor is induced by the random orientation
in the second case.

In reality the shear will not be constant over a time interval
and then change direction. We could refine the present analysis
by assuming, for instance, an exponentially decaying shear
over each time interval. However, for such a case the analytical
forms of the alignment statistics become very complicated.
We will not attempt such a refinement of the above picture,
but rather focus on a phenomenological multiscale extension
of the present ideas to suggest how the above mechanism can
be transposed to a turbulent flow.

In this section we considered the value of the mean-square
cosine of the angle α. We mention here that evolution equations
for the alignment angle were derived in [11]. These equations

are, however, not less complicated than the Navier-Stokes and
scalar equations. A further analysis of those equations might
prove a complementary approach to better understanding the
link between depletion of advection and the local topology of
the scalar and velocity field and is left for further research.
In the following we will consider the mean-square advection
compared to its value in a Gaussian field. The alignment
mechanism sketched in the foregoing is one of the mechanisms
which can explain the reduction of the value of the mean-
square advection and we will show in the following that
observations in both direct numerical simulation (DNS) and
closure are consistent with this idea.

III. ADVECTION BY TURBULENCE

Let us try to transpose these ideas for the advection by
pure shear to turbulent mixing. In a high Reynolds number
three-dimensional turbulent flow, a blob will not be strained
forever at the same rate and in the same orientation. The time
over which the blob will be stretched is a function of the scale
1/k, and this time scale will vary as

τ (k) ∼ ε−1/3k−2/3, (13)

with ε the dissipation rate of kinetic energy. We assumed
here typical scaling consistent with Kolmogorov’s 1941
phenomenological description of inertial range dynamics [12],
where the energy spectrum E(k) is approximately given by

E(k) ∼ ε2/3k−5/3, (14)

for 1/k a scale much smaller than the integral scale and much
larger than the dissipative scale. The strain rate at this scale
can be estimated as the total cumulative strain of scales larger
than 1/k as

S(k) =
√∫ k

0
p2E(p)dp. (15)

In the inertial range, S(k) will be

S(k) ∼ ε1/3k2/3, (16)

proportional to τ (k)−1. If the picture of a blob in a shear flow
as described in the previous section can be transposed to a blob
of scale 1/k in the inertial range, and if we suppose that local
(in scale) interactions are dominating the deformation of such
a blob, the advection as compared to its Gaussian measure
should be controlled by the ratio of the correlation time τ (k) to
the shear time S(k)−1. Since, using the estimates (13) and (16),

S(k)τ (k) ∼ k0, (17)

we can expect that in the inertial range the depletion of
advection will be scale independent.

In the following we will use a statistical turbulence closure
to illustrate these ideas. This allows us to tune parameters
that are not easily modified in experiments or in the DNS
of turbulence. In particular, we will vary a parameter which
determines the ratio between the shearing time S(k)−1 and the
Lagrangian correlation time τ (k). How this parameter appears
in the present model will be explained now.

In closure approaches such as the eddy-damped quasi-
normal Markovian model (EDQNM) [13], a parameter λ
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FIG. 3. (Color online) Wave-number spectra of the kinetic energy (a) and scalar variance (b) for different values of the parameter λ.

appears as an adjustable constant when the model is derived
from Kraichnan’s direct interaction approximation [14] by
assuming exponentially decaying time correlations of the form

〈ui(k,t)u∗
i (k,s)〉 = 〈ui(k,t)u∗

i (k,t)〉 exp

(
−|t − s|

τ (k)

)
, (18)

where ui(k,t) is the Fourier transform of the velocity field
ui(x,t). Details on such a description can be found in [15]. In
the EDQNM model the correlation time scale is subsequently
modeled by

τ (k)−1 = λ

√∫ k

0
p2E(p)dp + νk2. (19)

In the inertial range, where the viscous term is negligibly small,
we have, using Eq. (15),

λ−1 = τ (k)S(k), (20)

so that λ−1 is exactly the ratio of the correlation time to the
local shearing time as a function of scale. In this closure λ is not
fixed and is usually determined in order to obtain the correct
Kolmogorov constant. Indeed, at high Reynolds numbers one
finds that λ ∼ C

3/2
k . The variation of λ is thus directly related

to a variation of the Kolmogorov constant, something which
cannot be done experimentally, but which can help us to test
the hypotheses proposed in the foregoing sections.

Following the ideas of Sec. II, where it was shown for a blob
in shear flow that the mean square of the cosine of the angle α

and thereby the mean-square advection is reduced compared
to a randomly oriented blob for large ST , it can be expected
that decreasing the value of λ will increase the tendency to
reduce the mean-square advection term. We have checked this
using our recently derived closure theory for the mean-square
advection term [6]. We have varied the values of λ and λθ

appearing in the closure of the velocity and passive scalar
dynamics, respectively [Eq. (37) of Ref. [6]], between 0.35
and 2. This changes the results for the statistics of the velocity
field and the scalar field. The details of these simulations can
be found in [6]. Both velocity and scalar are forced to obtain
a steady state. The difference with respect to the simulations
reported in [6] is that we have varied the model constants
in order to check the above ideas on the relation between a
scale-dependent Lagrangian correlation time and the reduction
of the strength of the advection term. We have changed both

constants simultaneously, keeping λ = λθ , but we stress that
in principle both constants could be changed independently.

In Fig. 3, we show the energy spectra and scalar spectra
obtained in the statistically steady state. Clearly, the qualitative
behavior of the spectra is not so strongly influenced, but
the precise value of the Kolmogorov and Corrsin-Obukhov
constants is modified when we change λ. This is shown in Fig. 4
where we present the results for the compensated spectra.

Figure 5(a) shows the mean-square advection spectrum
wθ (k) for different values of λ. The advection spectrum is
defined through the relation∫

wθ (k)dk = 〈(u · ∇θ )2〉 ≡ A. (21)

The mean-square advection spectra compared to their Gaus-
sian estimate are shown in Fig. 5(b). The ratio in the inertial
range is roughly constant for all values, as was predicted in
expression (17), but for the smallest values of λ the power-law
behavior in the inertial range becomes less pronounced. This
constant ratio in the inertial-convective range was already
observed in [6] where we also presented results from DNS
(using the data from Ref. [16]).

The total value of the mean square advection compared to
its Gaussian value, given by

AT

AG

= 〈(u · ∇θ )2〉
1
3 〈|u|2〉〈|∇θ |2〉 (22)

is clearly a decreasing function of λ−1, as can be seen in Fig. 6.

IV. DNS OF ADVECTION BY A FROZEN VELOCITY FIELD

A further check of the above scenario is now presented
using direct numerical simulation. We will artificially change
the coherence time of the eddies to infinity. Indeed, we will
consider here the advection of the scalar by a frozen turbulent
field. In that case the strain at a scale k, S(k), will remain
unchanged. However, the coherence time τ (k) of an eddy will
tend to infinity since the eddy does not evolve in time. The
scalar is not frozen and is mixed by the frozen velocity field.
In this case, in expression (20) the strain rate will not change,
but the time scale on which this strain will act on the scalar will
be proportional to the time t . At long time, we will therefore
have that the product S(k)τ (k) will increase proportional to t

in the case of the advection by a frozen field, whereas in an
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FIG. 4. (Color online) Compensated plots of the wave-number spectra of the kinetic energy (a) and scalar variance (b) for different values
of the parameter λ.

inertial range this product is expected to be roughly constant
in a freely evolving turbulent velocity field. The ratio of the
mean-square advection to its Gaussian estimate is therefore
expected to decrease more at long times in the frozen velocity
case than in the freely evolving velocity case.

This will be checked in DNS in the following. We note here
that similar simulations were presented in the work of Yang
et al. [11], where the topology of Lagrangian scalar structures
was investigated in both turbulence and a frozen velocity field.
Their investigation of the evolution of the mean-square cosine
of the angle of alignment between velocity and scalar gradient
gives roughly the same results as the results we will present
here for the mean-square advection term. This is consistent
with the idea that for the case of the passive scalar, the depletion
of advection is linked to the tendency of the scalar gradient to
become perpendicular to the local velocity field.

We perform computations using a standard pseudospectral
code using 1283 mesh points. This relatively low resolution
is enough for our purposes. The initial conditions consist of
a solenoidal field of Gaussian random numbers that yield the
energy spectrum

E(k) = Bk4 exp[−2(k/k0)2], (23)

with k0 is 5 and B a constant such that
∫

E(k)dk = 1. The
scalar field is chosen to have the same initial spectrum Eθ (k),
but consists of an independent realization of random numbers.
The value of the viscosity is chosen to be ν = 0.012, yielding
a Taylor microscale Reynolds number Reλ = 50 at t = 0. The
Prandtl number is equal to unity. The time value is normalized
by the turn-over time at t = 0. No forcing is added to the
equations and the velocity and scalar are thus freely decaying.

In Fig. 7 we can observe, as in Kraichnan and Panda for
the nonlinear term, that the ratio AT /AG drops rapidly below
unity. At a time instant where the flow has reduced the ratio to
AT /AG ≈ 0.7 we consider two different scenarios for further
evolution. In the first situation, we let both the scalar and the
velocity freely evolve. In the second situation we freeze the
velocity field, but let the scalar field continue to evolve. This
freezing of the velocity field will change the lifetime of the
turbulent eddies. They will now have an infinite lifetime. The
instantaneous strain rate experienced by the scalar field will
not change since the velocity field does not change.

From Fig. 7 it is observed that whereas in the case of the
freely decaying turbulence AT /AG tends to a constant value,
for the case of the frozen velocity field the ratio continues to
decrease monotonically. We only show the development before
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FIG. 5. (Color online) (a) Wave-number spectrum of the mean-square advection term. (b) The ratio of the spectra of the mean-square
advection term to their Gaussian estimates.
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t = 7 in the figure. However, we have calculated these cases
until t = 100 and find that the value of AT /AG continues to
decrease in the case of a frozen velocity field.

V. DISCUSSION

A. Advection in the Kraichnan model

It has been known for some time that reorientation of a flow
pattern in laminar mixing enhances its mixing efficiency [17].
It is not surprising that this is also the case in turbulence. What
is interesting, however, is that this advection-reorientation
principle is self-similar through the inertial range, as reflected
by the constant ratio of the advection spectrum to its Gaussian
estimate [see Fig. 5(b)]. We further mention here the implica-
tions for the advection strength in the Kraichnan model [18],
which consists of the advection by a delta-correlated-in-time
velocity field constituted by random solenoidal velocity field

t
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frozen velocity field

FIG. 7. Value of the mean-square advection normalized by its
Gaussian value, for the advection of a passive scalar by both freely
decaying turbulence and a frozen velocity field.

with a prescribed energy distribution. Since the velocity field
changes at every time instant, the angle will be randomly
oriented at each time, and the angle between the scalar
gradient and the velocity field will therefore also be so. We
therefore expect in that case that the mean-square advection
term will be equal to the Gaussian estimate. In the Kraichnan
model the scalar structure functions display anomalous (i.e.,
nondimensional) scaling [19]. If our predictions are correct,
this type of intermittency can thus be observed in a situation
where the deviations from Gaussian behavior for the advection
term vanish. The non-Gaussianity expressed by the depletion
of advection seems thus not to be directly related to anomalous
scaling in the inertial range.

B. Depletion of advection and stretching of material line
elements

It is here perhaps interesting to mention the results
presented in the work by Chen and Kraichnan [20]. They
considered the stretching of a material line by a turbulent flow
to investigate the influence of sweeping on the advection of
a passive scalar. Initially, a line consisting of a large number
of equidistant material points was advected in a random flow.
The alignment of the line elements connecting the points with
the local velocity field was tracked and statistical averages
over a large number of realizations were taken. In their study
also a comparison was made with a frozen velocity field. The
line elements in the frozen field did not tend to completely
align at long times, but the alignment tended to a constant
mean absolute angle. They used this result to argue that the
mean-square advection term and by analogy the mean-square
nonlinear term in the Navier-Stokes equations could never
reduce towards a zero fraction of their Gaussian estimates. This
might seem at odds with the present results, but it is not so. The
big difference in their approach is that they computed the angle
between the velocity and the line segments that connected
the two points that were initially equidistant. At long times
these connecting points are evidently not equidistant anymore
and they will describe a random motion. The orientation of
connecting lines between two independent random points will
be independent of the velocity field. This is not the case for
material line elements. The statistics can completely change
if the weight of the points is normalized with respect to the
number of material points per unit length, thereby taking into
account the stretching rate, as would be the case if we would
truly follow the advection of a material line. This issue was
recognized in work by Kida and Goto [21]. In our case this
is an important issue, since line segments that are further
stretched lead to stronger contributions to the scalar gradient.
This difference explains the fact that in our frozen field the
cosine of the angle between the velocity and the scalar gradient
does not tend to a nonzero constant, but tends to zero.

C. Influence of a large-scale forcing term

A possibly important issue to further understand the deple-
tion of nonlinearity is the influence of a large-scale forcing
term. It is presently not clear how the alignment properties
depend on the presence of a forcing term in order to maintain
the flow in a statistically steady state. If the forcing rapidly
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changes the structure of the velocity field, the alignment might
be negatively affected. The results could therefore strongly
depend on the choice of the forcing term. In Sec. IV the
velocity and scalar field decayed freely from a Gaussian initial
condition. Kraichnan and Panda’s investigation [4] of the
depletion of nonlinearity was also carried out for decaying
turbulence. For the depletion of advection, in Ref. [6] it was
shown that in the presence of large-scale forcing the depletion
of advection was still significant. It seems thus that for the
scalar, the effect is robust, irrespective of the presence of a
large-scale forcing. For the velocity field this is less sure.
Indeed, closure seems to indicate that the depletion of non-
linearity is still significant [22]; however, in the forced direct
numerical simulations of Ishihara et al. [23], the spectra of the
mean-square nonlinear term seem to collapse with those of a
Gaussian reference field. This issue needs further investigation.

D. Depletion of vorticity advection

It is of course tempting to transpose the scalar-advection
picture from Sec. II to explain the depletion of the nonlinear
term in turbulent flows, in particular since the spectral behavior
of the mean-square nonlinearity behaves quite similar to the
mean-square advection term [22]. If we replace the blob of
the scalar in Fig. 1 by a blob of vorticity, stretching of the
blob will reduce the alignment of the vorticity gradient with
the velocity, thereby reducing the strength of the nonlinear
vorticity advection term. Note that we focus on the dominant
vorticity gradient, and not on the vorticity, which is shown to
behave differently from the scalar gradient [7]. The relevant
comparison in the present work is thus not between the scalar
gradient and vorticity, but between the scalar gradient and the
dominant vorticity gradient, which changes the main scope of
the present work from the subject of most studies focusing on
alignment. Evidently we should take into account that vorticity
is not a passive quantity, and stretching the vorticity blob will

necessarily induce a change in the velocity field, determined by
the Biot-Savart integral relation. Our test case considering the
advection by a frozen velocity field cannot be transposed easily
to the case of the velocity either, since it is not possible to freeze
the velocity field without freezing the vorticity. However, at
short times it is probable that the mechanism sketched here
for the scalar can be transposed to the vorticity and this can
explain, at least in part, the tendency of velocity fields to have
a nonlinearity that is small compared to that of a Gaussian
field. This link between the depletion of scalar advection and
the depletion of vorticity advection should be even closer
for two-dimensional Navier-Stokes turbulence [24], since the
dynamics of the vorticity is for this case also governed by an
advection-diffusion equation.

A tempting conclusion of this work is that long-time
correlations are the origin of non-Gaussian statistics, a state-
ment which was proposed in the framework of Lagrangian
intermittency [25,26]. We have substantiated that claim here
in the case of scalar mixing, where it is clearly observed that
both in the simple case of a scalar blob in shear flow and in
the case of turbulent mixing, it is the ratio of the Lagrangian
correlation time to the local shear time which sets the level of
non-Gaussianity in the statistics. This non-Gaussianity does
not seem to be linked to the anomalous scaling of spectra or
structure functions.
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