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Large Reynolds number self-similar states of unstably
stratified homogeneous turbulence

A. Burlot,'22 B.-J. Gréa,'?) F. S. Godeferd,2 C. Cambon,? and O. Soulard’
'CEA, DAM, DIF, F-91297 Arpajon, France

2LMFA, Université de Lyon, Ecole centrale de Lyon, CNRS, INSA, UCBL,

F-69134 Ecully, France

(Received 23 April 2015; accepted 11 June 2015; published online 24 June 2015)

We study the influence of the large scale energy distribution on the long term
dynamics of unstably stratified homogeneous turbulence at high Reynolds number
Re = 10°, using a statistical two-point spectral model based on the eddy-damped
quasi-normal closure. We consider several initial spectral scalings k* in the infrared
range with s € [1;5] and we establish that the resulting kinetic energy growth rates
are controlled by s, with the appearance of backscatter effects for s > 3.5. We
then assess that only for s <4 do we observe self-similarity in the infrared and
in the inertial ranges, but not in the dissipative range. Compensated energy and
buoyancy spectra exhibit the expected Kolmogorov-Obukhov k'3 scaling at long
time, and a trend to the theoretically predicted k=7/ scaling for velocity-buoyancy
cross-correlation spectrum thanks to the very large Reynolds number. We also show
a direct link between the late-time anisotropy of the flows and the infrared spectrum,
thus demonstrating long-lasting effect of initial conditions on unstably stratified
turbulence. We show that, in addition to the Kolmogorov k~>/3 scaling, the kinetic
energy spectrum inertial range includes a k=3 zone due to polarization anisotropy,
and we confirm the clear sin’§ dependence of the velocity-buoyancy spectrum in the
inertial range, where 6 is the orientation of the wave vector to the axis of gravity.
However, an unexpected quick return to isotropy of the scalar spectra has been iden-
tified, which cannot be explained by a standard dimensional analysis. © 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4922817]

. INTRODUCTION

In variable-density flows submitted to gravity, configurations in which an unstable density
stratification induces turbulent mixing are encountered in several occurrences of industrial, geophys-
ical, or astrophysical flows. Energy production by inertial confinement fusion also enters this flow
category.! Modelling the complete evolution of the time-dependent inhomogeneous buoyancy-
induced mixing from the onset of the relevant instabilities (e.g., the Rayleigh-Taylor (RT) insta-
bility) is rather complex as expressed by the variability of the mixing zone growth rates.” In order to
shed light on the different mechanisms at work in the flow, one may simplify the problem by consid-
ering unstably stratified homogeneous turbulence (USHT), wherein a continuous uniform density
gradient feeds the flow dynamics.* This idealized framework was previously studied experimen-
tally by Thoroddsen et al.” by means of a heated grid. The inquiry of mixing by buoyancy-driven
turbulence was first introduced by Batchelor (1992)% and, since then, several models where estab-
lished.”'” Considering the time evolution of flows from given initial conditions, the specific dy-
namics of USHT, with respect to other distorted turbulence dynamics—e.g., homogeneous isotropic
turbulence (HIT), stably stratified turbulence (SST), and rotating turbulence (£2T)—resides in the
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growth of turbulent quantities due to the forcing of the mean density stratification. In the absence
of additional sources terms, HIT, SST, or QT dynamics implies only a decay of energy, due to the
nonlinear turbulent cascade and the dissipation.

The long time evolution of turbulent quantities in unstably stratified homogeneous turbulence
leads to a self-similar regime.® As in RT instability'""'> and homogeneous isotropic turbulence, ' this
terminal regime allows to express the energy spectrum as E(k,t) = u*(t)0(t)G(k£(t)) with u(t) a char-
acteristic velocity, €(¢) a characteristic length scale, and G a dimensionless function. Multiple analyses
were performed especially on HIT in self- or non-self-similar regimes (see, e.g., Meldi and Sagaut'*
for an exhaustive review). A major result in both HIT and USHT is the role of large scale structures on
the decay or growth of energy, and more specifically of large-scale dependence of two-point statistics,
be it the velocity-correlation function f(r — co) or the low-wavenumber scaling of energy spectrum
E(k — 0). For instance, one can assume the power law dependence 11<1£r(1) E(k) — k* to leading order;

in that case, the energy decay rate in HIT or growth rate in USHT can be estimated depending on s,
which is commonly taken between 1 and 4. Classical cases investigated are Batchelor turbulence with
s = 4'5 and Saffman turbulence with s = 2.!%!” Both cases were also studied in turbulence submitted
to rotation,'® stable stratification, or an externally applied magnetic field.'’

In their recent analysis of freely decaying HIT experiments and modelling, Meldi and Sagaut'*>°
discussed the availability of a long-time universal self-similar decay of energy with different scal-
ings of the infrared (IR) spectral range—the energy spectrum range for wavenumbers k from O up
to the spectral peak (which is located approximately at the inverse of the integral length scale). Only
the value s = 1 seems to permit self-similar decay within all spectral ranges, and a second pivotal
value s = 3.45 appears, as in the work by Lesieur and Ossia,'? above which backscatter effects—a
partial transfer of energy from inertial to large scales—do not allow the permanence of big eddies
distribution.

In USHT, of course, no such decay is observed, and it is rather the growth rate which has
to be investigated. From previous studies, it seems that it may depend on the initial distribution
of large scales, but this was mainly assessed through the prism of amplified perturbations in a
Rayleigh-Taylor mixing layer. As regards USHT with forced gravity and density gradient, recent
studies*~® conclude to an exponential self-similar growth of turbulent kinetic energy as ~ e#V’; with
t the time, N the buoyancy frequency characterizing the constant acceleration and mean stratifica-
tion, and S corresponding to the energy growth rate. Based on the arguments of Ref. 3, an explicit
relation between S and the IR power law s was also proposed in Ref. 6 when s < 4 (or after a short
transient when s > 4, since then the infrared spectral range adjusts rapidly to s = 4),

4
ﬁ=s+3' M

This permits to link the essential role of large scales with the dynamics of USHT. However, in
addition to the IR scaling, it appears that large-scale anisotropy is also very important, in that it
accumulates energy at wavenumbers orthogonal to the axis of gravity, a spectral domain where
buoyancy forcing acts linearly on the initial large eddies when s < 4, but nonlinear interactions
prevail when s = 4.°

Accordingly, high Reynolds number unstably stratified turbulence evolving self-similarly is
required to study the influence of big eddies distribution on the statistics of the flow. Simulations
for USHT have been recently proposed,’ but there are limitations to the regimes direct numerical
simulation (DNS) can reach. In USH or RT turbulence, not only the range of Reynolds numbers
accessible with DNS is limited as in HIT, but also two other strong constraints apply: energy
continuously grows due to the non zero vertical buoyancy flux, and a significant margin in the box
size has to be preserved to accommodate the growth of the large scales, or, in other words, the
infrared spectral range has to be wide enough. Altogether, the largest DNS realized to date (as, for
instance, for RT?") reached a turbulent Reynolds number Re ~ 5000, and were limited in time so
that only a short similarity state period could eventually be accessed, and were obtained at a hefty
computational price.

In HIT, significant computational power is required to reach turbulent regimes at relatively
high Reynolds numbers. Statistical closures were successfully introduced in order to overcome this
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limitation.”>?* We, therefore, choose here also to tackle the problem at the level of the two-point
statistics of turbulence, and hence use the eddy-damped quasi-normal Markovian (EDQNM) model
for USH which has been developed and validated against DNS by Burlot et al.® Two-point statis-
tical EDQNM modelling was already successfully used to represent homogeneous isotropic>* and
anisotropic turbulence in different contexts,”%7 and was recently introduced for USH turbulence.®
It demonstrated its ability to reproduce properly DNS results in a range of parameters (Reynolds
number, time span) accessible to the latter, and to provide adequate results at very large Reynolds
number and asymptotically long times. The model permits to consider various parameters: initial
spectral distributions, kinetic energy to buoyancy variance ratios, and Froude numbers. It gives ac-
cess to the full scale-dependent anisotropic two-point statistics in the axisymmetric representation.

Our goal in the present study is to provide further insight about the influence of the initial large
scale structures that force the evolution of USHT. In the EDQNM model, this consists in varying
the power law k* of the infrared scale in the initial energy spectra. We propose to use our spectral
closure for USHT in order to explore large Reynolds number self-similar states and to explicitly
investigate the link between the growth rate 8 and the slope s of the infrared spectra, extending™>
to new parametric ranges. We pursue the analysis of self-similarity properties not only in the large
scales but also in the inertial and the dissipative ranges to seek the existence of universal scaling
laws. Therefore, the question raised is which scales of USH turbulence keep a memory of its gener-
ating initial conditions. In parallel, the anisotropy of the turbulent structures will be scrutinized in
order to measure the influence of the buoyancy force.

The paper is organized as follows. First, we present the unstably stratified homogeneous turbu-
lence configuration in Sec. II along with its governing equations, the EDQNM closure, and the
initial conditions and parameters. Then, numerical results are discussed in Sec. III: non-dimensional
numbers in Sec. III A, one-point statistics in Sec. III B, the time evolution of spectra in Sec. III C,
and finally anisotropic characterization of velocity and buoyancy distributions in Sec. III D. Final
comments and conclusions are provided in Sec. IV.

Il. UNSTABLY STRATIFIED HOMOGENEOUS TURBULENCE

We first present in this section the dynamical equations for USHT written in terms of buoyancy,
then we provide a quick description of the spectral closure model which is used to compute the long
time statistics of the flow in a high Reynolds number self-similar regime. The reader can refer to
Burlot et al.® for a complete description.

A. Dynamical equations for unstably stratified homogeneous turbulence

We consider an incompressible flow in which turbulent quantities are assumed statistically
homogeneous and axisymmetric about the vertical axis which bears gravity. The mean flow (u) is
assumed to be zero, whereas the fluid density has a uniform linear mean gradient in the vertical
direction, which is assumed to be unchanged by density fluctuations. In addition, the contrast of
density is supposed small allowing the Boussinesq approximation. The resulting buoyancy force is
destabilizing when gravity and density gradients are of opposite sign, producing the unstably strati-
fied situation. The following Navier-Stokes-Boussinesq equations are written for the divergenceless
fluctuating velocity field u and for ¥, the fluctuating buoyancy rescaled as a velocity:

(91/([
i o, 2
o, (2a)
Ou; ou; op %u;
iy, 28 5P N9S;s, 2b
ar “Yax, T ox  axex, o UOB ()
99 99 929
Wil 27 4 Nus, 2
ar " Yax, T T awexn, ° (2¢)

where p is the pressure divided by a reference density, v the kinematic viscosity, and 9 the molec-
ular diffusivity. The intensity of stratification is set by the buoyancy frequency N by analogy with
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the Brunt-Viiséld frequency in the stably stratified case. The stratification time scale associated with
the linear buoyancy term in Eq. (2b) is therefore Ty = 1/N.

For a flow periodic in all three directions, Egs. (2a)—(2c) can be solved using classical pseudo-
spectral discretization techniques,”® but such direct numerical simulations are computationally
demanding. Moreover, in DNSs of stratified homogeneous turbulence, the velocity and buoyancy
fields are post-processed to provide, e.g., two-point statistics such as energy spectra. We propose to
use instead a model that solves equations for the two-point statistics. The outline of the correspond-
ing spectral closure is described hereafter.

B. Spectral closure

An overview of the closure is given in this section. For a complete description, the reader
may refer to the lecture given by Orszag?* for the isotropic case, to Cambon et al.,*® Sagaut and
Cambon® for the anisotropic axisymmetric configuration, and to Ref. 6 for the specific adaptation
to unstably stratified homogeneous turbulence.

Instead of considering the velocity and buoyancy fields whose dynamics is ruled by Egs.
(2a)—(2c), one considers their two-point correlation functions, (u(x)u(x + r)) for velocity, (3 (x)3(x +
r)) for buoyancy, and {(u(x)d(x + r)) for their cross-correlation. They do not depend on the loca-
tion x in homogeneous turbulence, but indeed depend on the orientation of the separation vector
r in anisotropic flows. Dynamical equations for these two-point statistics can be obtained from
Egs. (2a)—(2c), but are unclosed since they involve two-point triple correlations, as widely known.
This issue related to the hierarchy of statistical moments is solved in the present work by using the
eddy-damped quasi-normal Markovian closure which permits to express triple correlations in terms
of second-order ones. The model provides closed equations for spectra of the above-mentioned
correlation functions, transforming the dependence on the separation vector r in physical space into
a dependence on the wave vector k in the Fourier representation. We shall use the following spectra
arising from the two-point correlations statistics.

e The Reynolds stress tensor spectrum R;;(k) such that R;;(k)é(k + k') = (@;(k)ii;(k)) where i;
denotes the Fourier coefficient of velocity component u; and ¢ being the 3D Dirac function.

e From that the kinetic energy spectrum can be defined as E(k) = R;;(k)/2 assuming summation
over the repeated index i.

e The buoyancy spectrum B(k) with B(k)s(k + k') = (9(k)J(k’)) with similarly & the Fourier
coefficient of J.

e The co-spectrum of vertical velocity-buoyancy two-point correlation, ¥ (k), which is defined
from F (k)S(k + k') = (f3(k)I(k")).

In order to obtain the EDQNM closed equations for R;;, &, ¥, 8, Egs. (2a)—(2c) are Fourier
transformed. This helps to eliminate pressure by using incompressibility stated in Fourier space:
k - &t = 0. The dynamical equations for the two-point spectra are obtained by multiplication by @ (k)
and ﬁ(k) and taking the ensemble average ( ). The classical turbulence problem of the hierarchy
of dynamical equations occurs then, with second-order moments involving third-order moments.
The core idea of the EDQNM closure is to assume that third-order moments are linearly relaxed
by fourth-order cumulants, which are the departure of the fourth-order statistics from that of a
Gaussian distribution. Formally, this provides an expression of the third-order moment involv-
ing only products of second-order moments, and hence a set of closed dynamical equations for
second-order statistics, namely, the desired spectra.

In USH turbulence, in addition to the quasi-normal assumption, one introduces a second
hypothesis on the third-order moments whose dynamics is enriched by explicit buoyancy and
stratification terms in the dynamical equations. These terms, which are ignored in Ref. 30, are
explicitly accounted in Ref. 31 for the stable stratification case. Here, we use the simple assumption
that nonlinear contributions of stratification-related terms in the dynamics of third-order moments
can be replaced by an additional damping to nonlinear terms following the successful procedure
described in Ref. 6 and supported by DNS results.
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In the end, one obtains a set of coupled integro-differential equations whose discretization
yields the evolution in time of the spectra for N, discretized wavenumbers k in the range [k, kps],
and for Ny polar orientations 6 of the corresponding wave vector k about the axis of gravity.
For instance, 6 = 0 corresponds to motion perpendicular to the axis of gravity (k being aligned
with gravity, and from incompressibility k - # = 0). Axisymmetry permits to analytically integrate
the spectra over the azimuthal angle. The output of EDQNM computations is therefore a set of
N X Ny discrete values of velocity, buoyancy, and flux spectra distributed in Fourier space with a
polar-spherical mesh.

All the following computations were done using Ny = 128 discretized wavenumbers k between
ky = 1072 and kjy; = 10* and Ny = 21 polar angles. The logarithmic distribution of ks therefore
allows for ~20 wavenumbers per decade, which is well above the already comfortable value of 10
wavenumbers per decade recommended for isotropic EDQNM resolution. We checked wavenumber
convergence using 512 and 1024 points in order to evaluate if long range interactions could modify
the solution, without observing any noticeable change. No further dependence is observed when
varying the angular discretization.

It is convenient to work with spherically integrated spectra obtained by integration of k-
or (k,6)-dependent spectra R;;(k,0), E(k,0), B(k,0), and F (k,0) over all orientations of k. In
doing so, one only retains a global effect of anisotropy at each scale corresponding to a given
wavenumber k (again, the model is capable of full axisymmetric description). We shall denote
R;j(k), E(k), B(k), and F(k) the corresponding spherically integrated spectra (for instance E(k) =
2rk? [ E(k,0) sin 6 d6).

C. Varying the initial distribution of big eddies

As previously done in isotropic turbulence using the EDQNM closure,'* we investigate the

evolution of USHT starting with different distributions of the big eddies, that is, we study the
influence of the large scales spectral distribution on energy growth rate and flow anisotropy. With
respect to isotropic turbulence, two additional parameters need to be introduced: the initial ratio of
buoyancy variance to kinetic energy, as a trace of the way stratification is introduced in the flow (for
instance, in heated grid turbulence the corresponding initial buoyancy variance is very small’); and
the Froude number that quantifies the intensity of stratification with respect to inertial effects.

We tune these parameters using the analytical spectral distribution for kinetic energy>>

E(kz—O)—A(L)Sex —5( k )2 3)
T - kpeak P 2 kpeak |

where k is the wavenumber, k..« is the most energetic wavenumber, s is the slope of the infrared
spectra, and Ay sets the total initial kinetic energy K () = O+°° E(k,t)dk. Along with a choice of
kinematic viscosity v = 5 x 1074, the kinetic energy is used to compute the initial Reynolds number
as Re = K2/(ev), where kinetic energy dissipation is e(r) = 2v [,*" k2E(k,t) dk. Spectra as in Eq. (3)
are used to initialize the buoyancy spectrum B(k,t = 0), and the initial flux is F(k,z = 0) = 0.

The Froude number is then obtained as Fr = /(% N) where N is the buoyancy frequency. The
larger Fr, the more important the intensity of stratification, and thus the buoyancy force. The third
non-dimensional parameter is A = (J¢) /K which we choose to be A =1 at the beginning of all
the simulations. Here, the buoyancy variance is related to its spectrum as (%) (t) = 0+°° B(k,t)dk.
We have checked that the precise value of A has no influence on the asymptotic similarity state,
only on the transient short-time growth. The initial parameters for the computations are as follows:
the Reynolds number is Re = 833 and the Froude number is Fr = 1.2. The corresponding spectral
peaks for each value of the infrared power law k* with s from 1 to 5 are detailed in Table I. The
corresponding initial spectra are shown as a subset of curves in Figs. 3(a) and 3(b). From these
initial narrow-band spectra, turbulence develops an inertial range and a dissipative one, with or
without adjustment of the infrared range energy distribution. As observed in Figure 3, the infrared
range spans almost four decades, so that the large scale cutoff has negligible effect, unlike what may
be observed in DNS at long time, even at high resolution.
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TABLE 1. Peak wavenumbers for each power law s chosen in our nine
simulations, and non dimensional final time Nz, at which Re = 10°.

s 1 1.5 2 2.5 3 35 4 4.5 5

kpear 3464 3795 40 414 4243 432 4382 4432 4472
Nt 94 104 119 131 145 162 169 174 176

Finally, the computations are carried out until Re = 10° for each case, corresponding to a
different final time Nt as shown in Table I.

lll. NUMERICAL RESULTS

We analyse here the parametric influence of the IR power law s on the dynamics of USH turbu-
lence, in particular on one-point statistics which are obtained by integrating the spectra over the
complete spectral space. In Sec. III A, we first discuss the flow regime characterized by Reynolds
and Froude numbers, and by the mixing parameter A, then the evolution of kinetic energy, buoy-
ancy and vertical flux variances in Sec. III B. Second, we shall discuss in Sec. III C the observed
similarity in the time-dependent spectra, and the evolution of inertial and infrared ranges.

A. Flow regime characterized by Re, Fr,and /

The time evolution of the three non-dimensional parameters characterizing the flow is shown
in Figure 1 in terms of non-dimensional time t* = Nt.

First, the transient phase is similar to the one described in Ref. 6: at short time, the flow adjusts
in the small scales and the Reynolds and Froude numbers decrease, as a result of the transfer of
kinetic energy from large to small dissipative scales. The transient decrease stops after about 2
stratification periods, and a monotonic asymptotic behaviour is observed, starting at t* = 5.

The Reynolds number (Figure 1(a)) reaches a long-time exponential behaviour, evolving more
rapidly for low values of s than for larger ones. All runs start from Re = 833 to finally reach
Re ~ 10°. (Note that due to the exponential growth, computational time becomes long due to the
extremely low time step 6¢* ~ 1077.) The Reynolds number growth depends on the initial condi-
tions: the shallower the spectrum, the sooner the self-similar state is reached. Self-similarity starts
uniformly around Re = 2 x 10° but occurs from * ~ 3 for s = 1 to t* ~ 6 for s = 5. We notice the
same exponential growth for s > 4. This is correlated to the evolution of kinetic energy whose
growth rate is bounded by the infrared slope s = 4 due to backscatter effects (see below).

In all cases, the Froude number (Figure 1(b)) which starts above unity (Fr = 1.2 for all runs),
corresponding to weakly stratified flow, eventually reaches an asymptotic value lower than unity,
showing that the flow dynamics is therefore significantly altered by stratification. This attests of the
equilibrium between buoyant and inertial forces. Final values are spread between Fr = 0.3 for s = 1
and Fr = 0.48 for s > 4. This asymptote of Froude number indicates the grip of stratification effects

FIG. 1. Non-dimensional parameters evolution: (a) Reynolds number Re = K2/(ve); (b) Froude number Fr =&/(N K);
(c) mixing parameter A = (99) /K.
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on the flow which is stronger when the infrared slope is lower. It is explained by the energy of
large scales structures which is more important for s = 1 than s = 4, is less submitted to non-linear
transfer than linear buoyancy force. Furthermore, we observe that the maximum asymptotic Froude
number is reached for s = 4 where Fr = 0.48. Increasing s further does not seem to produce a
decrease of the asymptotic Froude number.

Finally, the time evolution of the mixing parameter A is presented in Figure 1(c). All runs start
with A = 1, meaning there is exact equipartition between buoyancy variance and kinetic energy. The
short-time depletion of A is expected as in stably stratified turbulence, because the cascade of scalar
is more efficient than the turbulent energy cascade. Later, one expects a self-similar mixing regime
characterized by a plateau of A. However, Figure 1(c) shows that after reaching a peak value, at
long time A evolves slowly, but nonetheless decays. The asymptotic value is rather concentrated,
between A =1.6 for s =1 and A = 1.3 for s =5. This means that the flow contains 30%—60%
more buoyancy variance than kinetic energy in its asymptotic regime. Here again, the large-scale
distribution with a slope s = 4 seems to mark a limit of mixing efficiency in USH turbulence.

B. Energy and flux self-similar growth

Figure 2 shows the time evolution of kinetic energy K, buoyancy variance, and vertical buoy-
ancy flux (us9) = [~ F(k)dk. The exponential growth #V!, with 3 defined by Eq. (1), expected
in the self-similar regime, is plotted for each case with dashed lines. Clearly, all our simulations
exhibit the self-similar regime for kinetic energy and buoyancy variance evolution, and for the flux.
For these three quantities, the asymptotic growth is fastest for the lowest infrared slope s = 1, and
decreases with increasing s. A saturation of this increase is observed at large s above s ~ 4, say,
which is explained by backscatter effects observed in the energy and transfer spectra in Figures 3(a)
and 4, discussed in Sec. III C.

We compare in Table II the theoretically predicted asymptotic growth with the measured one
from the time evolution of kinetic energy %K (¢), buoyancy variance (39)(¢), and vertical buoyancy
flux (u39)(¢). For all three quantities, the growth rate is in very good agreement with the theoretical
value for all cases of s € [1;4]. This also demonstrates that sufficiently long computations are
needed to recover the right exponent, which should not be measured earlier than Nt ~ 6.

C. Detailed spectral adjustments

Our aim in this section is to discuss the turbulent dynamics from the point of view of the large
scales—the infrared range—on the one hand, and of the inertial range, on the other. These are
discussed in the respective Secs. III C 1 and III C 2, where similarity formulas are applied to expose
each range.

The spherically integrated spectra E(k), B(k), and F(k) are plotted in Figures 3(a), 3(b), and
3(c), respectively. It shows the initial time distribution of kinetic energy and buoyancy (initial flux is
zero), as well as their state when the flow reaches a very high Reynolds number Re = 10°. It can be
seen at first sight that the energy and the buoyancy spectra evolve to a similar Kolmogorov-Obukhov

FIG. 2. (a) Kinetic energy, (b) buoyancy variance, and (c) vertical buoyancy flux evolution with slope of self-similar regime.
Dashed lines represent the theoretical self-similar dynamics based on the formula K (¢) ~ exp(8Nt) with 8 given by Eq. (1).
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TABLE II. Values of S at the end of each computation for the kinetic energy, the buoyancy variance, and the scalar flux

compared to the theoretically predicted one from Eq. (1), 8,5, which is identical for the three quantities. The different

instantaneous growth rates are obtained in the simulations from g% = % %

s Bun BX,  BEBu)  BEY Vg BT B 1w (%)
1 4/(1+3) 0.993 99.3 0.989 98.9 0.994 99.4
1.5 4/(1.5+3) 0.885 99.5 0.881 99.2 0.886 99.7
2 4/(2+3) 0.797 99.6 0.794 99.3 0.798 99.7
2.5 4/(2.5+3) 0.724 99.6 0.722 99.3 0.725 99.7
3 4/(3+3) 0.663 99.5 0.661 99.2 0.664 99.6
3.5 4/(3.5+3) 0.610 99.1 0.609 98.9 0.610 99.2
4 4/(4+3) 0.572 100.2 0.571 99.9 0.572 100.1
4.5 4/(4+3) 0.570 99.7 0.568 99.4 0.570 99.7
5 4/(4+3) 0.573 100.3 0.571 100.0 0.573 100.2

k=3/3 scaling, while the buoyancy flux follows roughly a k~7/3 scaling law in the inertial range.

The dissipative ranges are also very similar, but by contrast the infrared range that feeds the energy
cascade is much different. Indeed, among the initial 9 different values chosen for s, the infrared
distributions of spectra at s = 4, 4.5, and 5 rejoin to a single k* distribution in the large scales.
The infrared zones of the spectra at s = 4.5 and 5 have therefore evolved to Batchelor-type infrared
spectra with s = 4. The well-known backscatter effects rearrange in a few eddy turnover times the
energy distribution at large scale.”® This effect can be more visible on large-scale compensated
spectra in Sec. III C 1, but can also be demonstrated by examining the kinetic energy transfer
spectra of Figure 4, that is, the transfer spectra T(k) for the spherically integrated spectrum E(k)
(whose dynamics would follow a Lin type equation).** The figure shows that, even in this highly
anisotropic flow, energy transfer in USH turbulence consists of a strong downscale transfer with
negative transfer in the large scales and positive transfer in the small ones. Both regions are sepa-
rated by a well-defined inertial range in which the energy flux is constant, due to the very high
Reynolds number regime. However, when closing up on the very large scale region, at smaller
wavenumbers, the inset in Figure 4 shows the existence of backscatter of energy in the large scales
for s > 2, although of small amplitude compared with the forward cascade. The observed threshold
s = 2 corresponding to the dominance of backscatter term in the transfer is coherent with distant
interaction expansion of the EDQNM closure shown by Ref. 33. The backscatter is largest for s > 4
and explains the rapid recovery of Batchelor scaling k* if the turbulent infrared range initially scales
as k* with s > 4. In addition, the importance of distant interaction between modes for backscatter
dominated transfers can be verified by T(k) ~ k* for k — 0 in Figure 4 as already mentioned in
Lesieur®® and Soulard et al.?

FIG. 3. Initial spectra (bottom set of curves in each panel, divided by 10) and spectra (top set) at Re = 10° of: (a) kinetic
energy E(k); (b) buoyancy variance B(k); and (c) buoyancy—velocity cross-correlation F (k). Each set of curves represents
simulations with s from 1 to 5. The straight lines indicate the inertial range scaling k=>/3 for E(k) and B(k) and k~7/3 for
F(k).
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KT (k) max(KT (k)]

FIG. 4. Left: k-weighted kinetic energy transfer spectrum normalized by its maximum value k7' (k)/max(|kT (k)|) for
the different cases at s =1 to 5 and Re=10°. (The area beneath the curves is proportional to the transfer in this lin-log
representation.) Right : A close-up of the rectangle shown with dashed lines in the small k& region. Inset: Log-Log
representation of renormalized transfers T'(k)/T (k,,,) showing typical k* scaling for s > 2 due to backscatter effects.

1. Large scale adjustment in the infrared spectral range

Figures 5 and 6, respectively, show the large-scale compensated spectra for the kinetic energy
E(k) on the one hand, and for the buoyancy variance B(k) and the vertical buoyancy flux F(k) on
the other. The rescaling formula is

“4)

itlfrared(k’ t) =

X(k,1) x( k )_S

X(kpot) ~ \ ki

where X is replaced by E, B, and F successively, and k,, is the smallest wavenumber of the
simulation. Equation (4) is an adaptation of the classical formula used in isotropic turbulence.'>%
By applying rescaling (4), one compensates the growth of energy or flux (the division by X (k,,,1))
and transforms to a plateau the infrared range assumed to scale as k* at each time. Departure from
horizontal means a departure of the infrared spectral range from its initial distribution.

For ease of presentation, kinetic energy spectra in Figure 5 are plotted only for runs using s = 1,
2,3,3.5,4, and 5, in semi-log scale.

2 . ()] . (b)| (c)
el

= " (e)

55

= _—

FIG. 5. Large-scale spectrum of kinetic energy E (k) compensated using Eq. (4) at integer intermediate times from #* =0 to
the last time given in Table I. Increasing times as indicated by the arrows. The last computed spectrum is indicated by symbols
(red color online) and corresponds to different times given hereafter for the different cases: (a) s =1 (last time *=9.4); (b)
s=2("=11.9); (¢) s =3 (t*=14.5); (d) s =3.5(t"=16.2); (¢) s =4 (t*=16.9); and (f) s =5 (+*=17.6). (Note that in
panel (), the initial spectrum at #*=0 is initially k> and compensated by ~ k=%, so that it gets out of the figure, but quickly
recovers k* within half a stratification period.)
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FIG. 6. Large-scale spectrum of buoyancy variance B(k) compensated using Eq. (4) at the same times ¢* as in Figure 5,
for: (a) s =1; (b) s =3; (c) s =5. And the compensated spectrum F (k) of velocity-buoyancy correlation for: (d) s =1; (e)
s =3; (f) s =5. (Note that, as in Figure 5(f), for panel (c) the initial curve for B(k) gets out of the plot for the same reason;
moreover, the initial fluxes at #* =0 in panels (d)—(f) are initially zero.)

In Figures 5(a) and 5(b), for s = 1 and 2, the compensated kinetic energy spectrum exhibits a
plateau in the first two decades of k at all times, so that the infrared energy scaling does not change
at all. For s = 3 in Figure 5(c), one observes that the infrared slope begins to depart slightly from
the initial k* dependence, and for s = 3.5 in Figure 5(d), it is clear that the similarity of large scales
is not valid anymore since s increases towards 4, unlike cases s = 4 (Batchelor turbulence) and 5 in
Figures 5(e) and 5(f), where the infrared slope decreases slightly. Finally, for s = 5, we observe a
quick reshape of the spectra in the region connecting infrared and inertial ranges—the observed bump
near k ~ 50 in the early times in Figure 5(f)—such that the spectrum eventually recovers an almost
identical evolution as for the case s = 4 due to backscatter. In a study of isotropic turbulence using
the EDQNM model, Lesieur and Ossia find a limit s = 3.45 above which backscatter appears and the
infrared scaling evolves in time.'® This is consistent with what we observe here in USH turbulence.

The same comments apply for the evolution of the buoyancy variance spectrum B(k) and
the vertical buoyancy flux F(k), plotted, respectively, in Figures 6(a)-6(c) and 6(d)-6(f) only for
cases s = 1, 3, and 5 for the sake of brevity. This denotes that the dynamics of kinetic energy and
buoyancy variance are closely intertwined.

To summarize, the EDQNM simulations allow to assess the importance of backscatter in the
growth of turbulent quantities of USHT. The predictions established by Eq. (1) assume negligible
backscatter effects and accordingly are valid for s < 4. However, backscatter still has an influence
around s = 3.5 by slowly modifying the similar distribution of energy at large scales although
dominated by buoyancy production. Observe that the predictions given by Eq. (1) in Table II
slightly overestimate the growth rates particularly around s = 3.5. This tendency can be interpreted
as evidence of backscatter influence.

2. Inertial range scaling

We focus here on the inertial range in the spectra, by renormalizing them as for classical
Kolmogorov—Obukhov turbulence, using the kinetic energy dissipation &(¢) and buoyancy dissipa-
tion £5(1),

Eitlertial(k’t) = E(k’t) X 8([)_2/3k5/3’ (Sa)
B} (k1) = B(k,t) X ep(t)'e(t) kP, (5b)
Fioga(k1) = F(k, IN" (Cxs()' + Cosp()s(t) ) k713, (5¢)
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FIG. 7. Inertial range compensated spectra from Eq. (5a) for kinetic energy E(k): (a) s =1; (b) s =2;(c) s =3; (d) s =3.5;
(e) s =4; and (f) s =5. Times are as in Figure 5, and the latest spectrum is denoted with symbols (red color online). (Note that
the initial narrow-banded spectra get out of the plots but are indicated for better appreciation of the time evolution.) Vertical
lines locate the wavenumbers k¢, ko, and k;; corresponding, respectively, to the integral length scale, to the Ozmidov scale
and to the Kolmogorov scale for this last spectrum.

with the classical inertial power law —5/3 for the kinetic energy spectrum E(k) and for the buoyancy
spectrum B(k) as suggested by dimensional analysis.*®*” We also choose —7/3 for the buoyancy-
velocity co-spectrum F(k), following experimental measurements in grid turbulence*® and theoretical
predictions of Ref. 39. The dependence on dissipation in Eq. (5c) is obtained by assuming equilibrium
between non linear terms and production in the equation for the vertical buoyancy flux spectrum as
in Ref. 40. Here, Cx and Cp correspond, respectively, to the Kolmogorov and Obukhov constants.
Figure 7 shows these compensated spectra for E(k), and Figure 8 for B(k) and F(k).

Figures 7(a)-7(f) show that the rescaled kinetic energy spectrum E; . (k) evolves similarly

1n
for all infrared power laws s. On these plots, the rescaled initial spectra (curves that do not fit
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FIG. 8. Inertial range compensated spectra from Egs. (5b) and (5c) for the buoyancy variance spectrum B(k): (a) s =1;
(b) s=3; (c) s=5. Same for the co-spectrum of buoyancy-velocity F(k): (d) s=1; (e) s=3; (f) s=5. Times as in
Figure 5, and the latest spectra are denoted with a heavy line and symbols. As in Figure 7, integral-, Ozmidov-, and
Kolmogorov-length-scale-related wavenumbers k¢, ko, and k;, are indicated for the last spectra.
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within the chosen vertical range) are largely above the later time spectra, since dissipation is not
fully built at the earliest times of computation. After a short transient during which the similarity
shape evolves, the rescaled spectra develop three characteristic features. First, the inertial range
zone corresponds to a plateau at intermediate wavenumbers, at a value slightly above the commonly
admitted value Cx =~ 1.4 for the Kolmogorov constant. This is consistent with isotropic EDQNM
choosing ay = 0.36 in the eddy damping term.*' Second, the spectral region close to the integral
scale wavenumber (k, ~ 1) exhibits a rather narrow peak different from the classical compensated
spectrum in HIT. Indeed, as predicted for RT turbulence by Soulard,*” a modification of the spectra
near the integral scale at k ~ 1 is expected to scale as k=3 in the inertial range zone delimited by
the integral scale and the Ozmidov scale (with the corresponding Ozmidov wavenumber classically
defined as ko = N*/?/£!/?). Note that strong differences between RT and USH turbulence prevail
at large scales due to inhomogeneous specificities of RT. However, for smaller scales of the inertial
range, it seems reasonable to seek same scaling laws between RT and USHT. Third, the observed
bump at the upper end of the inertial region is the classically observed bottleneck in turbulence,
from the depletion of non-linearity when reaching the dissipative range.

Rescaled buoyancy spectra, shown in Figures 8(a)-8(c) only for s = 1, 3, 5, evolve towards
a self-similar shape, as for the rescaled kinetic energy spectra: the inertial k=>/3 scaling appears
through a plateau at the Obukhov constant Cp =~ 0.7.*3 This value is consistent with the analysis of
isotropic EDQNM for passive scalar with a single eddy damping term proposed by Ref. 44. The
plateau lies between the peak observed at the wavenumber k, ~ 1 defined by the integral length
scale, and the accumulation bottleneck between the end of the inertial subrange and the dissipative
one. In B; . (k), the latter bump is much more pronounced than in E; . (k) in Figures 7(a)-7(f).
This is also observed in passive scalar spectra in grid turbulence experiments.*’

Finally, Figures 8(d)-8(f) show the velocity-buoyancy co-spectrum F;; . for the same s = 1, 3,
5. We observe a rapid drop in time of this rescaled flux from the initial conditions, before it settles to
its self-similar shape. As for kinetic energy and buoyancy spectra, the inertial range is flanked by the
peak at integral scale and the bottleneck. The inertial range seems to follow more loosely the k~7/3
anticipated scaling, since, unlike E; . and B; . . the convergence towards k=73 is much slower,
in terms of Reynolds number. (Lower Reynolds number runs, not presented here, also present this
feature.) This may explain as well the difference of plateau level compared to Ref. 40 which is based
on low Reynolds number Rayleigh-Taylor simulations. Moreover, the velocity-buoyancy flux is a
cross-correlation statistics whose convergence is indeed expected to be slower than that of autocor-
relation spectra. Finally, buoyancy acts at all ranges, and may disrupt the expected flux equilibrium
in the inertial range. We recall that the energy cascade in this range is submitted to both the linear
buoyancy force, and to the nonlinear triadic transfer.

D. Anisotropy variation with s

As mentioned, the dynamics of USH turbulence is strongly linked to the flow anisotropy which
is produced by plumes from the effect of the buoyancy force. Hence, vertical kinetic energy is larger
along the direction of gravity, along which the flow structures are elongated. Not only is the velocity
field anisotropic, but also the density field, so that the description of their anisotropic structure
requires specific quantities. We start in Sec. III D 1 by characterizing the anisotropy of the Reynolds
stress tensor u;u;) by computing its deviatoric part b;; = (uu;)/(uu;) — 6;;/3, 6;; being the Kro-
necker tensor components. This provides a simple global view of the flow anisotropy at large scales.
Then, we propose in Sec. III D 2 a refined description that permits a scale-by-scale evaluation
of anisotropy, both for velocity and density fields, especially in the infrared subrange of interest.

1. Anisotropy in the self-similar regime

The first characterization of kinematic anisotropy is done with the anisotropy in the Reynolds
stress components through its deviatoric tensor b. From axisymmetry (b1} = by;) and incompress-
ibility (b;; = 0), only one component of b is required; we choose to compute b3z = (usus) / (u;u;) —
1/3, which is also dynamically dominant, since pertaining to the intensity of vertical structures
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FIG. 9. One-point statistics of anisotropy: (a) vertical component of the Reynolds stress tensor anisotropy b33 for the different

infrared range power laws k®, with s from 1 to 5; (b) comparison for cases at s =2 and 4 (indicated by +) between b33 and
its polarization and directivity components bg;ﬂ and bgg.

developing in the flow. Its evolution in time is shown in Figure 9(a) for the different s cases. The
figure shows that, starting from bs3 = 0 for isotropic turbulence, b33 grows rapidly and settles at an
asymptotic value that depends on the infrared power law s: between 0.42 for s = 1 and 0.32 for
s = 5. The different levels of anisotropy in the self-similar regimes at different s clearly show the
dependence of the late-time structure of USH dynamics on initial conditions in the large scales. In
mixing zones generated by the Rayleigh-Taylor instability, different levels of anisotropy as a func-
tion of the growth rate in the self-similar regime have been observed, see Gréa.*® This is consistent
with what we show here, that it is possible to reach a range of final regimes by modifying the initial
energy distribution at large scale.

As recalled in Sagaut and Cambon,”” the Reynolds stress tensor can be decomposed as (uiuj) =
<”i”j>iso + <uiuj>p01 + <Mtuj>dir
tropic contributions are superimposed: (u;u j)p"' the polarization part and (u;u j)dir the directionality

with (uu j)iso the isotropic contribution over which the two aniso-

part. Accordingly, b33 can be split in two components as well: b33 = bggl + b3y (logically b59 =0
from the definition of (u;u j)iso). This decomposition permits to identify two sources of anisotropy
coming from the structuring of the flow. First, the directionality contents testify of the accumulation
of kinetic energy for wave vectors in the axial (i.e., along the axis of gravity) or the perpen-
dicular direction. Second, the polarization part assesses the kind of structures that are produced
once directional anisotropy has set in. For instance, an axisymmetric flow may contain mostly
sheet-like (as in stably stratified turbulence?!), jet-like structures (as in conducting fluid turbulence
in a permanent background magnetic field®’), or vortex-like ones (as in rotating turbulence’®). In
the USH case, the large directional anisotropy observed in Figure 9(b) attests a two-dimensional
tendency. It can be shown that a purely two-dimensional flow settles an upper limit to the directional
anisotropy at b3 = 1/6. Furthermore, one also needs to examine the polarization in order to fully

33~
qualify the flow structure: it contains three components when bggl = 0, but corresponds to an exactly
two-dimensional two-component flow (vortex like) if bggl = —1/3. Values in between attest of pref-

erential trends. On the contrary for RT or USH flows, the strong polarization anisotropy (bg;’l =1/3)
(see Figure 9) points out more precisely the dominance of vertical jet-like structures.

One expects that the polarization part represents 80% of the total velocity anisotropy in USH
turbulence as from RT*’ or previous USHT’ simulations. We confirm this with the plot of b3
compared to bggl and bS5 in Figure 9(b) for the cases s = 2 (Saffman turbulence) and 4 (Batchelor

turbulence). The asymptotic ratio bg’;" /b33 indeed reaches 80% in both, even though b33 does not
asymptote exactly to the same value. This is observed in all the cases we computed independent
of the large scales distribution. Figure 9(b) therefore shows that directional anisotropy is moderate
compared to polarization anisotropy, but the value ~0.3-0.4 reached by their sum indicates an
overall strongly anisotropic flow with preferential motion along the axis of gravity. We characterize
further this anisotropy by examining its scale distribution in Sec. III D 2.
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FIG. 10. Scale-by-scale deviatoric part b33(k) of the Reynolds stress tensor component R33 = (#i3i3) and its polarization and

directional contents bg‘;](k) and bgi;(k) as a function of wavenumber k, for USH turbulence at s =2 and 4 (indicated by +)

for the same value of the Reynolds number Re = 10°. The vertical lines indicate wavenumbers corresponding to the integral,
Ozmidov, and Kolmogorov length scales k¢, ko, ky;, respectively (dashes for the case at s =4).

2. Scale-by-scale anisotropy characterization

We first investigate the anisotropy of b33 scale-by-scale, by computing its value at each
wavenumber k, and its polarization and directional contents. These are shown in Figure 10 for s = 2
and 4. The figure first shows that maximal anisotropy b33(k) =~ 0.5-0.6 is reached in the large scales.
It starts decreasing abruptly for wavenumbers larger than that corresponding to the integral length
scale k < ky—i.e., for structures smaller than the large energy-containing eddies—down to zero at
the end of the inertial range, where isotropy is recovered.

From the polarization/directionality decomposition, one immediately observes that the large-
scale anisotropy is contributed by both large positive bgi; and bggl, as a trace of vertically elon-
gated structures with a dominance of the vertical component of velocity as already mentioned in
Sec. III D 1. The sharp drop of anisotropy, mostly due to a decrease of polarization anisotropy,
attests of a structural change of turbulent eddies smaller than £ with a loss of the dominance of the
vertical motions. Upon close observation of the similar, although slower, decrease of bgi;, one also
notes a change of the decay pace above the Ozmidov wavenumber ko. This decrease of directional
anisotropy corresponds to a recovery of three dimensional dependence of turbulent structures which
can be seen as a second stage of the isotropization process down the turbulent scales.

The above analysis of anisotropy applies to a vector field such as velocity, but cannot be used
for the density field which is scalar. In that case, one can introduce another measure of anisotropy,
which consists in evaluating an angle y of “accumulation” of the given field about the axis of
gravity, from the following weighted integral as proposed in Refs. 46 and 48:

Jy B(k,0)sin’0do

Jo T K2 f) B(k,0)sin®0 d6 dk
, SIn“y =
[FBk.6)sinade

0

I k2 [ B(k,6)sin6 do dk

(6)

sin? y(k) =

This quantity gives the partition of anisotropy per wavenumber, but can also be integrated over k
to provide an average anisotropy for all scales. Values of sin’y close to 2/3 correspond to isotropic
spectral distribution, whereas 1 indicates a complete concentration of B towards 8 = /2.

The distribution of the scale-integrated sin’y plotted in Figure 11(a) shows a clear dependence
of the scalar anisotropy with the flow initial conditions at large scale, or with s. It is larger for s = 1
and decreases monotonously with s, down to about 0.75 in the similarity regime for s > 4. This
seems to be an asymptote for this last case, and one expects also the same limitation of anisotropy in
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FIG. 11. (a) Evolution in time of the scale integrated sin?y for cases s = 1 to 5. (b) Distribution of sin?y (k) (evaluated from

Eq. (6)) as a function of wavenumber for the same cases, at Re = 10°. Vertical lines indicate the Ozmidov wavenumber for
each case. Horizontal dashed line for the isotropic value. (c) Same as (a) for the scale integrated anisotropy of the kinetic
energy spectrum sin’y . (d) Same as (b) for sin?y g (k).

the other cases, although the computations are not long enough to observe it (due to computational
cost limitations).

The distribution of sin*y(k) is shown on Figure 11(b) at the same Reynolds number Re = 10°
reached by all the s runs at different times. The decomposition of anisotropy per wavenumber
in Figure 11(b) shows different tendencies for different spectral subranges. First, at large scale
from k ~ 1072 to k ~ 1, we can distinguish two trends, for cases s € [1,3], on the one hand, and
cases s > 4 on the other. The first set of flows contains larger anisotropy in the energy-containing
subrange, since sin’y is close to unity. Their lowest wavenumbers have maximal anisotropy. The
second group shows a completely different behavior: at lowest wavenumber, sin’y ~ 0.7, mean-
ing lower anisotropy. Moreover, sin*y(k) increases from k = 1072 to k ~ 1. These two different
large-scale dynamics are linked to the infrared slope. While the s > 4 runs are characterized by a
steeper infrared range implying the presence of backscatter that damps anisotropy, the lack of back-
scatter in the energy cascade when s € [1,3] allows the full development of anisotropy in the large
scales under the effect of the buoyancy force. Also, nonlinear terms are acting on the largest scales
and tend to scramble them. It leads to a decorrelation at low wavenumbers which limits the amount
of large scale anisotropy. A value of s between 3 and 4 that appeared in the dynamics of isotropic
turbulence (s = 3.45)"? therefore also seems to be pivotal for the development of anisotropy in the
infrared subrange of USHT.

Figure 11(b) also shows that differences in the level of anisotropy between different s cases are
completely removed in scales smaller than the integral length scales, or, in the plots, for wavenum-
bers k larger than about 1. From this wavenumber, the anisotropy of B quickly drops to 0.66 in
all runs, indicative of isotropy of the buoyancy field at these scales, and plateaus at this value
throughout the inertial subrange and down to the dissipative scales.

Finally, we also evaluate the integrated anisotropy sin’yz and its scale-by-scale distribution
sin?yg(k) for the velocity field from Eq. (6) by replacing the buoyancy variance spectrum B(k,6)
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by the kinetic energy spectrum &(k,0) in the integral. Their evolutions and distributions are plotted
in Figures 11(c) and 11(d) for the different values of s. Figure 11(c) shows that the time evolution
of sin?yg is similar to that of sin’y, but reaches a plateau faster and at a slightly higher level
of anisotropy. The overall distribution of velocity anisotropy sin®7yg(k) in Figure 11(d) is similar
to that of buoyancy anisotropy of Figure 11(b): the large-scale anisotropy is either increasing or
decreasing with k in the infrared subrange for s smaller or larger than 4; isotropy is recovered in
the dissipative subrange; the plateau in the inertial subrange is not as large as for buoyancy anisot-
ropy, since the transition from strongly anisotropic infrared subrange to mostly isotropic inertial
dynamics is not as sharp. The separation wavenumber between two such ranges can be estimated by
the Ozmidov wavenumber ko = N3/?71/2 where ¢ is the kinetic energy dissipation.* ko is shown
on both Figures 11(b) and 11(d). It appears to mark clearly the beginning of the isotropic range
in buoyancy, or the limit of the trend towards isotropy recovery in velocity. One should, however,
beware of the fact that in our computations dissipation varies weakly from one case to another
and that stratification intensity N is the same for all runs, so that the Ozmidov wavenumber does
not vary much. Additional parametric studies would be required to confirm its universal role in
separating anisotropic from isotropic scales.

3. Detailed anisotropic spectra

We further analyse here the detailed spectral distribution first of the vertical velocity auto-
correlation spectrum Rj33(k), and the angular velocity-buoyancy flux distribution ¥ (k,#). For both
these quantities, scaling laws have been proposed.

Soulard and Griffond*’ propose a supplemented anisotropic correction due to buoyancy to the
isotropic contribution in Rs3(k) which scales as k= from linear response theory (see the Appendix).
This scaling should apply for wavenumbers smaller than ko and approaching the integral length
scale. Moreover, one expects that, in the inertial range at larger wavenumbers, Kolmogorov scaling
k=3/3 should be recovered (see also Burlot ef al.®). This last scaling is clearly recovered in the
R33(k) spectrum of Figure 12. When applying the isotropic-directional-polarization decomposition
mentioned in Sec. III D 1, we observe that the —5/3 power law in the inertial range of R33(k) is
entirely contributed by its isotropic component RiSSS"(k) in the decomposition. The two other aniso-

tropic parts Rgf{(k) and Rggl(k) are negligible in this range. They, however, are observed to scale as
k=3 (at least not too far from it) from the peak wavenumber down to the small scales, so that they
both are at the origin of the k=3 narrow subrange, with a preferential contribution of the polarization

part which is significantly larger than the directional part throughout the large scale range.
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FIG. 12. Spectrum R33(k) of the two-point correlation function of vertical velocity with vertical separation (u3(X)u3(x+
re;)), and its directional and polarization components, for s =3 at Re = 10°.
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Regarding the explicit angular dependence of the spectra, a functional law in 6 is hard to come
by for anisotropic spectra in general. Kaneda and Yoshida®® developed the deviation spectra of sta-
bly stratified turbulence in powers of the stratification parameter, and thus proposed that the vertical
velocity-buoyancy correlation spectrum depends angularly on 6 as 7 (k,0) = sin’#@ in the inertial
range. These authors used DNS data to check the validity of this dependence, but DNS statistics are
very noisy, even at high resolution. The EDQNM approach is well suited for this since the computed
spectra are explicit functions of k and 6. We therefore plot in Figure 13(a) the k-dependent ¥ (k,6)
for a series of orientations #, and in Figure 13(b) its dependence on sin” @ for different wavenumbers
k. Figure 13(a) shows that the flux is larger at 8 ~ /2 whatever the wavenumber, so that the effect
of the buoyancy force is felt at all scales. Of course, it is more intense in the energy containing
range, at very small wavenumbers, that is, at the largest scales in the flow. Figure 13(b) is a partial
check of the #-dependence proposed by Kaneda and Yoshida. At wavenumbers & in the inertial
range, 7 (k,0) is clearly linear in sin® @, thus confirming the validity of the proposed scaling. Note
that we have also verified the different angular dependences for R33 following the law proposed in
the Appendix in the inertial range. For larger or smaller wavenumbers, the scaling does not apply
at all.

However, our results show some noticeable differences with the theory proposed by Kaneda
and Yoshida®® and Soulard and Griffond.*’ The return to isotropy at wavenumbers larger than ko
is much sharper on the scalar spectra B(k,6) compared to the velocity spectra E(k,6) as shown in
Figure 11(b). This has been also observed in RT DNS.*’ As a consequence, no perceptible direc-
tional anisotropy can be detected in the inertial range of B while a sin? @ dependence is expected
from the theory. The fact that EDQNM is able to reproduce this feature suggests the importance
of non-local effects in the transfer which are not taken into account in theories such as Ref. 50 or
models such as Ref. 30. This aspect is also confirmed when comparing the different constants for
the expected scaling law from Ref. 40 and extracted from our EDQNM simulations as detailed in
the Appendix.

IV. CONCLUSION

In this work, a numerical study of unstably stratified homogeneous turbulence was performed
using an eddy-damped quasi-normal Markovian model. This model was developed and its predic-
tion compared to results from direct numerical simulations by Burlot ef al.,® showing very good
agreement. The model gives access to unprecedented parametric studies at high Reynolds number,
and is free from box-size confinement as in quickly time-evolving turbulence, either decaying, or
with increasing energy as in USH turbulence. Of course, at very large Reynolds number, the time
step reduction still limits somehow the duration of the computations, but this concerns huge values
of Re ~ 0(10°).
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We use here the EDQNM model to explore the influence of energy distribution of the initial
spectral densities of velocity auto-correlation and buoyancy auto-correlation on the late-time dy-
namics. The slope s of the infrared spectrum, defined as ]lirr(l) E(k,t) — k*, was the parameter used

to change this energy distribution. Its value varies from s = 1 to s = 5 with a step of 0.5 (not all
the intermediate values were presented here). The simulations were pursued in time to sufficiently
high Reynolds numbers so that a self-similar regime is reached. The characteristics of the various
self-similar final regimes thus reached were analysed in detail.

We found that the infrared slope has a clear and non-negligible impact on the late-time dy-
namics as suggested by Ref. 3. First, it influences the ratio between stratification effects and
nonlinear effects (Figure 1(b)) as well as the partition between kinetic and buoyancy variance
(Figure 1(c)). Also the anisotropy of the flow is impacted by the initial condition. Both polarization
and directionality show variations of late time dynamics with the modification of initial s (Figs. 9(a)
and 9(b)). This indicates that turbulent structures developing in buoyancy driven flows can be
dependent on the initial condition even after a long time of the flow evolution.

Energy spectra also show a change of distribution of large scale energy due to backscatter
effects. This was already known in homogeneous isotropic turbulence,'? but we clearly identified
it here for different values of s for USH turbulence. We observe a transition range for s € [3,4]
in our strongly anisotropic case, consistent with the value s = 3.45 found in isotropic turbulence.
Large-scale compensated spectra (Figures 5 and 6) indicate a non-permanent evolution of large
scale for s > 3.5. Furthermore, inertial range compensated spectra indicate also a modification of
the self-similar spectral shape for kinetic energy by the emergence of a peak on the lower bound
of the inertial range, near the integral scale. This was first identified by Soulard using DNS and
modelling.*

We also characterize finely the scalings of the spectra in k and 0, predicted by theory based
on strong assumptions: the k=3 inertial subrange is observed in our results thanks to the very high
Reynolds number, and we further find that it is essentially due to polarization anisotropy; the sin> @
dependence of the velocity-buoyancy correlation spectrum in the inertial range appears also very
clearly in our results, thanks to the EDQNM model, with respect to more noisy DNS data. We also
obtain close to k~7/3 scaling in compensated spectra, but we show that the convergence to this power
law in terms of Reynolds number is very slow: Re ~ 10° is required to observe a tendency. However,
the angular dependence on the buoyancy spectrum is not recovered suggesting limitation of the
local theory proposed by Ref. 40. A possible explanation can be the importance of non-local effects
in the transfer.

Overall, our results bring new information on the permanence of the big eddies that initially
drive the flow dynamics in USH turbulence, and thus on the essential role played by initial condi-
tions. In this work, our model assumes that the stratification profile does not vary in time, or very
slowly with respect to turbulence time scales. This may not be exact in turbulent mixing or convec-
tive zones, in which turbulence interacts with the background density fields and modifies its mean
variation, so that an extension of our analysis to time-varying stratification intensity N is called for
as in Refs. 3 and 5.

APPENDIX: COMPARISONS WITH EXPECTED SCALING IN THE INERTIAL RANGE
FROM LOCAL THEORY?30:40

The scaling laws for the RT inertial range have been investigated by Soulard and Griffond*’
using the spectral model of Canuto et al.>* and applying the spectral equilibrium method (or linear
response theory) introduced by Kaneda and Yoshida.’® The basic idea consists in assuming at lead-
ing order a Kolmogorov-Obukhov k>3 isotropic spectrum and then in adding a small correction in
order to take into account stratification effects. While the inertial forces are assumed dominant at
those scales, the corrective terms in the spectra are used to keep balance with the presence of the
buoyancy force. The expressions derived from this procedure, which are applied to the Canuto et al.
model, give for the vertical Reynolds stress spectra Ra3(k,6), the buoyancy spectrum B(k,8), and
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TABLE III. Values of the different constants appearing in scaling law Eqs.
(Ala)—(Alc) for the inertial zone.

Ck Co Ce Cy Cp
Proposed by*? 1.9 171 1.23 1.08 1.10
Evaluated from 1.4 07 [1.6,2.5] [2,3] [-0.06,0.04]

EDQNM simulations

the vertical buoyancy flux F (k,6) the expressions summarized below,

Riz(k,0) = RE(k,0) + RED(k,0) + Rk, 0), (Ala)
; 1 5 1
: (iso) _ 2/37,-11/3 2 1\ -5 w12
with R33 (k,9) = (ECKs k - 1_6N ECe (CK + Cpepe )k ) sin“ 6,

. 1 : 2\ .
RYU(k,0) = N24—Ce (Ck + Coepe™ )k (s1n29 - 5) sin 6,
n
1
R;’;"”(k,@) = NZECe (CK + C083871) k755in4 0,

1 1 25
B(k,0) = ECOEBS_IBIC_”B - C,,NZE (Ck + Coepe™) (3 — 2sin?6 — ﬁags—l) k3,
(Alb)
1
F(k,0) = CfN4— (Cxe'? + Coepe™) k' sin? 6. (Alc)
T

In Egs. (Ala)—(Alc), one recognizes the main isotropic scaling in k~!'/3 for R33 and B and an
anisotropic deviation proportional to N2 in k. This gives spherically integrated spectra evolving as
k=373 with an added k=3 contribution from stratification. For the vertical flux 7, the leading term is
k='1/3 giving the classical k~7/3 law on integrated spectra proposed by Ref. 39.

The Kolmogorov and Obukhov constants Ck and Cp are then supplemented by three additional
constants C,, Cy, and C,, for the anisotropic parts of the spectra. We propose to compare the values
for these constants between those suggested by Ref. 40 for RT and those measured from our USHT
EDQNM simulations assuming the validity of Eqgs. (Ala)-(Alc). The results are presented in Ta-
ble III. To begin with, it can be noticed that the values for the Kolmogorov and Obukhov constants
Ck and Cy are relatively different. This can be explained as the constants in Soulard and Griffond*’
have been extracted from DNS with relatively low turbulent Reynolds number (Re ~ 800). On
the contrary, the values from EDQNM simulations are more coherent with existing data such as
Champagne et al.’! Then considering the values for C,, Cy,and C,, we are not able to find accurate
values from our EDQNM simulations since compensated spectra do not lead to clear plateau despite
the large value of the Reynolds number. This is clearly observed, for instance, in Figure 8 for F*
which allows an estimate of 2Cy/3. Taking into account the discrepancies on Cx and Cp between
EDQNM and Soulard and Griffond,*® the estimated values for C, and Cy are coherent. However,
the constant C,, is very different and expresses the strong return to isotropy for scales smaller than
Ozmidov on the scalar spectra in EDQNM simulations and also in DNS of Soulard and Griffond.*
This is the evidence of a limitation in the theory proposed by Soulard and Griffond*® which may be
explained by the importance of non-local interactions in the equilibrium range taken into account by
the EDQNM model but not by Ref. 30.
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