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It can be shown that in the presence of a toroidal magnetic field induced by poloidal coils, combined
with the electromagnetic field induced by a central solenoid, no static equilibrium is possible within
the MHD description, as soon as non-zero resistivity is assumed. The resulting dynamic equilibrium
was previously discussed for the case of spatially homogeneous resisitivity. In the present work, it is
shown how a spatial inhomogeneity of the viscosity and resisitivity coefficients influences this equi-
librium. Parameters in both the stable, tokamak-like regime and unstable, reversed field pinch-like re-
gime are considered. It is shown that, whereas the magnitudes of the velocity and magnetic field
fluctuations are strongly modified by the spatial variation of the transport coefficients, the qualitative
flow behaviour remains largely unaffected. © 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4919960]

I. INTRODUCTION

Plasmas confined by toroidal magnetic and electric
fields are generally considered the best candidates to
achieve sustainable nuclear fusion. Tokamaks and Reversed
Field Pinches (RFPs) are two of such configurations which
are currently investigated intensively. In the ideal case, the
plasmas in such reactors would remain quietly confined
within the magnetic field in order to allow their core to
reach the temperature needed for thermonuclear fusion.
Unfortunately such a quiet confined state is, in general, not
observed, and both turbulent small scale motion and collec-
tive bulk motion lead to a complicated dynamics which
is not easily modeled. The coarsest description of such
plasmas taking into account a number of key features of
realistic plasmas is the magnetohydrodynamic (MHD)
description. MHD does not take into account effects
induced by the local violation of charge-neutrality in the
plasma, a source of small-scale turbulent fluctuations, in
particular, at the edge, but it does take into account the
global dynamics of the bulk of the plasma, including kink
and tearing instabilities. Understanding the detailed MHD
behaviour of a toroidal plasma in a toroidal magnetic field
is therefore a prerequisite for a successful development of
more complex plasma descriptions. However, even on the
level of MHD, the current understanding of toroidal plas-
mas is incomplete. In the past, an important number of nu-
merical studies of the RFP configuration have considered
the simplified case of a cylindrical geometry. For instance,
the influence of the Hartmann number (which we will
define below) on the onset of instabilities in the RFP was
considered in Refs. 1-3, the effect of compressibility in
Refs. 4 and 5. And, even though the curvature of the mag-
netic field induces effects absent in cylindrical geometry,®
recent studies in cylindrical geometry show some agreement
with experiments.”®

To study tokamaks, MHD has also been widely applied,
see, for instance, Refs. 9—11. In the older literature, it has
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been common use to start a tokamak description considering
a force-free static equilibrium. Such an equilibrium only
exists if the pressure forces are balanced by the Lorentz-
forces that originate from the imposed magnetic and electric
fields. In straight cylinder configurations, such force-free
states can be easily defined, considering, for instance,
z-pinch and 0-pinch devices.'? Even though such geometries
can be subject to MHD instabilities, a force-free state can be
defined. This changes in toroidal geometry.

In the simplest case in which the toroidal electric field is
generated by a central solenoid, without external current
drive, and where the toroidal magnetic field is induced by
the poloidally orientated coils, ignoring ripples and other
details, the imposed electro-magnetic fields have a simple
form. It was shown in previous studies'*~'® that for this case,
assuming uniform electric resistivity, such an equilibrium is
not possible. These studies showed, following an increasing
level of complexity, that the velocity can never be zero if the
current density is linked to the electric field by Ohm’s law.
The present work builds upon the results of these studies,
increasing by one step the complexity, considering spatially
non-uniform electric resistivity and viscosity profiles.
Indeed, in practice, strong pressure, density, and temperature
gradients will influence the local values of the viscosity and
resistivity in the plasma. The present approach takes this into
account in the coarsest way, by defining profiles as a func-
tion of the minor radius. In particular, we will show how dif-
ferent types of dynamic equilibrium and MHD instabilities
appear as a function of the value and the spatial distribution
of the transport coefficients.

In Sec. II, we will outline the MHD description which
we consider, and we will explain how we choose the exter-
nally imposed electromagnetic fields. In Sec. I1I, we present
the results of simulations which show how the electric resis-
tivity profile influences the dynamics when compared to a
uniform resistivity in both RFP and tokamak regime.
Conclusions are given in Sec. I'V.

© 2015 AIP Publishing LLC
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Il. MHD EQUATIONS, MAGNETIC GEOMETRY, AND
NUMERICAL METHOD
A. Equations

In the magnetohydrodynamic approximation, plasma is
modeled as a charge-neutral electro-magnetic conducting
fluid. In the incompressible description, the dynamics of the
velocity u(x, ) and B(x, ) are given, in Alfvénic units, by

Du

E:—VerVerrij @)
OB
E__VXE’ 2)
E=1n—uxB, 3)
Vou=0, “
V-B=0, (5)

with D/D, denoting the material derivative, the current den-
sity j = V x B, the pressure p, the electric field E, and the
resistivity 7. All the quantities in these equations are made
dimensionless using the Alfven speed C4 = By/\/pliy as a
reference velocity, with p the density and p the magnetic
permeability constant. The stress tensor g;; is given by

- 0ul- 8uj
61] - V(a_xl"_a_xl)v (6)

with v the kinematic viscosity. In the case of a spatially uni-
form viscosity and density and resistivity, Egs. (1) and (2)
simplify to

Du

E:—Vp—&—uAu—&—ij, @)

DB

—=B-V AB. 8

Dr u+n (®)
The study of the difference in dynamics induced by the sim-
plification leading from (1) and (2) to (7) and (8) is the main
subject of the present investigation. Therefore, the following
two cases will be considered:

(I)  Uniform magnetic resistivity o and viscosity vg;
(II)  Space dependent magnetic resistivity 1(r) and viscos-
ity v(r).
These two cases will be indicated by the roman capitals
I and /I in the following.

B. Magnetic topology

In our study, the plasma is confined in a toroidal domain
with a circular poloidal cross-section. We assume the toroidal
magnetic field to be induced by poloidal coils, ignoring the
ripples induced by the nonhomogeneous distribution of the
latter. This leads to a toroidal magnetic field proportional to

1
Bior ~ E . (9)

The toroidal electric field is deduced from the assumed pres-
ence of a central solenoid aligned with the main axis of the
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torus, through which the magnetic flux is a linearly increas-
ing function of time, so that the electric field is also inversely
proportional to the major radius
1
Eior ~ E . (10)
In the absence of velocity, the profile of the current density
can be easily determined through Ohm’s law (3)

J=E/n. an

If the magnetic resistivity is uniform, the toroidal current
induced by the solenoid will then also satisfy (10). In the
case of a non-uniform resistivity, the current profile will be
different. The viscosity and resistivity profiles we consider
in the present work mimic the profiles induced by the strong
drop of temperature near the edge of experimental fusion
reactors and are given by

n(r) = nof (r) v(r) = uf(r), (12)

el

with A = 4." This resistivity profile, combined with Eq. (11),
yields the current density profile shown in Fig. 1(a). To com-
pare the two cases, we have fixed the total amount of the
imposed toroidal current to be equal for both cases, i.e.,

with

Io = jjn(,-)ds - jj%ds, (14)

where the integration is performed over a poloidal cross-section.

The combination of the toroidal magnetic field with the
toroidal current, together with its induced poloidal magnetic
field, leads to a Lorentz force j x B which is not curl-free. It
can therefore not be balanced by the pressure gradient (since
its curl is zero) and necessarily velocity fields emerge."
These velocity fields can be of steady nature, in which case
one could call them dynamic equilibria.”‘“’ In certain cases,
MHD instabilities can lead to a chaotic, or even turbulent
state, and the parameters which delimit the thresholds to this
state were previously shown to be the Hartmann number and
the pinch-ratio.' The Hartmann number represents the ratio
of electromagnetic forces to viscous forces, and is defined as

B
NS

where L is a normalization lengthscale and B a reference
value of the magnetic field. It is clear that in the case of non-
uniform transport coefficients, Ha is inhomogeneous as well.
Its profile as a function of the major radius is shown in
Figure 1(b). In this work, the Prandtl number

Ha (15)

v

n

Pr=—, (16)

is set to unity everywhere. This implies that the resistive and
viscous Lundquist-numbers, S, M, respectively,
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are both equal in value to Ha. In the following, when chang-
ing the parameters S, M, and Ha, we change the viscosity
and thus the magnetic diffusivity. The values of B, and L are
kept constant in all the simulations. This means physically
that By is proportional to the poloidal magnetic field strength,
which is kept constant for all the simulations. The value of
the average poloidal magnetic field is determined by the
value of the mean imposed toroidal current /o = 0.5.
The pinch ratio is defined as

B tor

with a the minor radius, the bar indicating an average over
the surface with r = a, and the brackets indicating a volume
average. MHD instabilities generally appear when both the
pinch-ratio and the Hartmann number are large enough.
Judging from Figure 1(b), for case II, MHD instabilities are
thus expected to be more easily observed in the core than in
the edge of the plasma. In tokamak geometries, the toroidal
field is generally stronger than the poloidal field, and the
pinch ratio is consequently small. In this regime, where

Bpol

FIG. 2. Poloidal cross section showing
isovalues of the magnetic fields for M
= 2000 and uniform transport coeffi-
cients. On the top row, we show the
externally imposed magnetic fields,
generated by the combined effects of
the toroidal magnetic and electric
fields. On the center and bottom rows,
we show the steady-state profiles for
the tokamak and RFP regimes.



052503-4 Futatani, Morales, and Bos

35 - - - —

0 02 04 06 08 1
Nommalized flux

FIG. 3. Profiles of safety factor ¢ versus the flux-function for the different
cases. Thin lines show the initial g-profile while thick lines indicate the final
state. Red lines correspond to case I, blue lines to case II.

MHD instabilities are avoided, one usually uses the safety
factor to characterize the magnetic field geometry. This pa-
rameter, roughly related to the inverse of the pinch ratio, is

defined by
L [ 1B
=—¢— dl 19
q ZA;R By (19)

where the contour is taken in the poloidal plane. This contour
can be defined as a circle at fixed minor radius, but instead
of the minor radius, the safety factor is generally plotted as a
function of the flux function, since the magnetic surfaces are
not perfectly axisymmetric around the toroidal axis. The
normalized flux, which sets the flux function to unity at the
separatrix (the last closed flux surface of the plasma) is
defined as

v
lpnorm l//se:p - l//O 7

where ¢ is the minimum magnetic flux at the core plasma
and V,,, is the magnetic flux at the separatrix. In our case,
we choose the separatrix to be just inside the boundary of the
plasma domain.

(20)
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In all our simulations, the toroidal geometry has a minor
radius a = 0.37 and a major radius Ry = 0.557; the aspect
ratio is Ry/a ~ 1.83. The geometry is the same as in Ref. 6,
and details on the generation of the magnetic field can be
found in Ref. 17.

C. Numerical method and boundary conditions

The simulations have been performed with a pseudo-
spectral MHD solver which is based on the volume penaliza-
tion method.'® In hydrodynamics, immersed boundary tech-
niques, including penalization approaches, are nowadays
commonly employed to solve boundary or initial-boundary
value problems in complex geometries. Recently, these
methods have been extended to treat magnetohydrodynamic
flows.'” Those methods consist in embedding the original,
possibly complex spatial domain inside a larger domain hav-
ing a simpler geometry, for example, a Cartesian geometry,
while keeping the boundary conditions approximately
enforced—thanks to the new terms that are added to the
equations. In this work, the immersed boundary technique is
applied to produce the toroidal geometry. The size of the per-
iodic box where the calculations are performed is
(2m x 2m x m). The boundaries are enforced by adding a
term of the form of a Darcy-drag, —(y/€)(u — up) to the
right hand side of the Navier-Stokes equations (1). Here, y is
a mask function which is unity in the boundaries and zero in
the plasma. The vector u is the velocity that is imposed in
the boundaries, and € is a permeability parameter which is
taken small, in the present case € = 5 x 107*. The wall is
thereby modeled by a porous medium where the permeabil-
ity is taken small enough to neglect the velocities in the
walls. The mathematical convergence of the method was
studied in Ref. 18. For the magnetic field, we impose the
magnetic field at the wall in a similar fashion,'”'” by adding
aterm —(y/e)(B — By) to the RHS of the induction equation
(2). The boundary conditions for the velocity are no-slip at
the walls, corresponding to uy = 0. For the magnetic field,
we use the same value of € to impose Dirichlet boundary
conditions at the wall. These conditions for the magnetic
field are the following: We set the wall-normal component
of the magnetic field zero at the wall. This implies that there
is no magnetic flux through the wall. The poloidal compo-
nent of the magnetic field at the wall is determined such that
it corresponds to the magnetic field induced by the imposed
toroidal current. The third component of the magnetic field,
in the toroidal direction, is left free. This degree of freedom
is important in the present case since the value of the toroidal
magnetic field can change drastically in the RFP regime. The
initial conditions are zero for the velocity field and the per-
turbations of the magnetic field. From those quiescent initial
conditions, a non-trivial velocity field is generated, interact-
ing with the magnetic field, leading in most simulations to a
dynamic steady state. In the RFP limit, this state can change
into a multi-mode or turbulent state as will be observed. The
resolution for all calculations is 256> grid points.

lll. SIMULATION RESULTS

The full characterization of toroidally confined magne-
tofluids necessarily involves the exploration of an enormous
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FIG. 4. Isosurfaces for a value of 20% of the maximum toroidal velocity (red contours show positive velocity and blue contours negative) at steady state for
Lundquist number (M=2000). Also, a cross-section at a fixed value of the vertical coordinate is shown, quantifying the toroidal velocity in the plane.

parameter space. Any investigation aiming at the understand-
ing of the influence of the variation of a certain parameter on
the dynamics should carefully choose how the remaining pa-
rameters are fixed. For practical reasons, in particular, due to
the computational cost of the simulations carried out, the
Lundquist number is limited to a few thousand. Even though
this value is low compared to realistic values in existing
machines, the results might be fairly relevant if one consid-
ers that the effective transport coefficients are in reality
greatly influenced by micro-turbulence, thereby reducing the
effective Lundquist number by orders of magnitude. The cal-
culations are performed at Lundquist numbers ranging from
10 up to M = 3000, and most detailed results will be pre-
sented for M = 2000. For this last value of M, we investi-
gated values for the toroidal magnetic field, By, = 1.2, 0.6,
0.4, 0.3, 0.1, 0.05, while keeping the toroidal current, and
thereby the poloidal magnetic field, constant. At high enough
pinch ratios, which corresponds in our case to low enough to-
roidal magnetic field strength (more precisely for By, < 0.1
for M = 2000), a threshold is crossed towards an unstable
region of parameter space. The MHD (kink) instability

triggers a velocity field which significantly modifies the
magnetic field. This latter dynamics is typical of RFP devi-
ces. For the low values of the pinch ratio, the velocity field is
not zero, but dynamic, non-chaotic equilibria are observed.
In the following, we will call the chaotic state the RFP re-
gime and the non-chaotic dynamic equilibria the tokamak re-
gime. All results are presented during the statistically
stationary state of the system.

In the presentation of the results, we will indicate by
Case I the simulations where we assumed space-uniform
constant magnetic-resistivity 7o and kinematic viscosity v.
The other, Case I, corresponds to the plasma where we have
taken into account the non-uniform values of v(r) and 5(r).
For both cases, the highest pinch-ratio case, where Bio
= 0.05 (case 1), By = 0.1 (case II), will be called the R-
regime (for RFP) and the opposite, Bio; = 0.6 (case I), Bioy =
1.2 (case II) the T-regime (for tokamak). Let us stress that
this nomenclature is chosen with respect to the presence, or
absence, of MHD instabilities, without any claim that the dy-
namics are closely reproducing the dynamics in actual
machines.

Case II.R

FIG. 5. Isosurfaces at 20% of the maximum toroidal velocity (red contours show positive velocity and blue contours negative) at steady state for Lundquist

number (M=2000). (Left) By = 0.6 and (Right) B,y = 0.05.
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FIG. 6. The time evolution of the ki-
netic energy ((a) and (b)), the magnetic
energy ((c) and (d)), and total dissipa-
tion of energy ((e) and (f)) at
Lundquist number M = 2000 for both
uniform and non-uniform transport

e B 201 coefficients. The red curves in each
—B, 02 graph, corresponding to B, = 0.05
—B,_ 04 and B,,, = 0.1 for case I and II, respec-

B ~06 tively, represent simulations in the
— 12 RFP regime. The other curves corre-

spond to the more quiescent tokamak

100 200 300 400 8500 €00 700

regime.
1
(d)

- - . - - o
500 1000 1500 2000 2500 3000 0

A. Characterization of the magnetic field and flow
vizualisations

Figure 2 shows the poloidal cross section of the profiles
of the magnetic field. In the tokamak-regime (with
Bior > 0.1), the velocity fluctuations are small, and at unity
Pr, magnetic fluctuations are so as well. The magnetic fields
at steady state are thus close to the ones imposed by the
external electric and magnetic fields only. In the RFP-regime
(with By < 0.1), the MHD instabilities lead to fluctuations
of the magnetic field with an amplitude larger than 100% of
the base field. In particular, the toroidal magnetic field is
strongly increased in the plasma core while at the edge, it is
strongly decreased. In the RFP community, this modification
is often called the dynamo effect (e.g., Ref. 20), even though

100 200 200 400 500 600

t
n

this nomenclature in the geophysical community is, in gen-
eral, reserved for the generation of a magnetic field (of plan-
ets or stars) in the absence of strong initial magnetic fields.
The resulting toroidal magnetic field thereby completely
changes, to approach a poloidally symmetric shape, instead
of the toroidally symmetric field in the tokamak case.

A more quantitative way to characterize these fields is
by means of the safety-factor profiles. Figure 3 shows the
profiles of the safety factor ¢ versus the normalized flux-
function for two values of the toroidal magnetic field
strength. If the toroidal magnetic field By, is large enough,
corresponding to the tokamak (T) regime, the modification
of the initial magnetic field by the dynamic equilibrium ve-
locity is small. For case II, T, the shape of the g-profile, is
more parabolic than in the uniform-resistivity case, which is
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FIG. 7. The toroidal mode spectrum for the RFP regime for both case I and II over the time interval between 0 < ¢ < 500 of Fig. 6 for the velocity field ((a)

and (b)) and the magnetic field ((c) and (d)).

a more realistic behaviour for fusion plasmas.’' Decreasing
the toroidal magnetic field By, under its threshold value trig-
gers a chaotic plasma dynamics, characteristic of RFP devi-
ces. The resulting plasma movements change the g-profile
importantly. The change of the g-profile in the RFP regime
is strongest for case II, where the g-profile drops from a
value of 0.5 in the core to a value near zero at the edge. For
both cases I and II no complete reversal of the toroidal mag-
netic field is observed at the edge, although it approaches a
zero toroidal magnetic field more closely at the edge. The
reason of the difficulty of the achievement of the reversal of
the toroidal magnetic field at the edge may be the incompres-
siblity assumed in the present approach.”” Taking into
account compressibility of the plasma is, however, beyond
the scope of the present investigation and would require the
use of completely different numerical methods. However,

even without a complete reversal, the dramatic change in the
magnetic field configuration allows, already in the incom-
pressible description, to investigate the self-organization of
the toroidal plasma in the RFP regime.

In order to give an idea of the three-dimensional structure
of the velocity-fields, Figure 4 shows the iso-surface of 20%
of the maximum steady state toroidal velocity for case LR and
case I,T. If the toroidal magnetic field By, is large enough, the
dynamics of the magnetic field and the velocity field are not
chaotic, and their fluctuations are small compared to those in
the RFP-like regime. In the latter case, the plasma becomes
unstable and the velocity field forms a helical structure wind-
ing around the toroidal axis. The details of this latter case with
homogeneous transport coefficients are described in Ref. 6.

Vizualisations of the velocity magnitude for case I and
II in the RFP regime are shown in Figure 5. In particular, the
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FIG. 8. Top: kinetic energy. Bottom: magnetic energy. Steady-state values
versus Lundquist number. Colors are chosen as in Figure 6, the red curves
corresponding to the RFP regime, the others corresponding to the tokamak
regime. Solid lines correspond to case I (uniform viscosity and diffusivity),
dashed lines to case II.

velocity gradients are more important in case II. This is
related to the fact that the comparison of the two cases is
done for a given equal current. In the case of a non-uniform
resistivity profile, the current is more concentrated in the
center of the domain, so that the local pinch ratio will be
higher, which is in agreement with the lower value of the
safety-factor in the center of the plasma (Figure 3). This gen-
erates a wider variety of unstable rnodes,1 as is reflected in
the visualizations in Figure 5.

B. Kinetic and magnetic energy and dissipation

In the following, the magnetic energy corresponds to the
perturbation part, i.e., we do not evaluate the contribution of
the initially imposed magnetic field to the magnetic energy.

Phys. Plasmas 22, 052503 (2015)

Figure 6 shows the time evolution of the kinetic energy
and the magnetic energy for M = 2000. In the tokamak re-
gime (B; > 0.1), the energy evolution behaves similarly for
all cases, representing only quantitative differences.
However, in the RFP-regime (B, < 0.1), the energy evolu-
tion shows the signature of non-linear MHD activity with a
non-monotonic evolution of the kinetic and magnetic energy
up to t+ = 600, after which a statistically steady state is
reached. The noisy time-evolution of the dissipation suggests
that in case II, the activity is turbulent. The time-evolution of
the RFP state in case I seems to be less turbulent, with a
smoother evolution of the energy and dissipation as a func-
tion of time.

A more refined view of the nonlinear dynamics underly-
ing the RFP dynamics is obtained by monitoring the energy
evolution of the individual modes constituting the flow.
Figure 7 shows the time-evolution of the toroidal spectrum of
the velocity field and the perturbation part of the magnetic
field which are extracted from the simulation at M = 2000
and By, = 0.05 of Fig. 6 for a time-interval between 0 < ¢
< 500 to that of case I. The evolution for case II is qualita-
tively quite similar in the sense that a wide spectrum of modes
is excited. These modes are, however, fluctuating, reflecting
the more turbulent behaviour of the simulation of case II. For
both quantities (velocity and magnetic field), the spectrum
shows the temporal evolution of a wide range of modes. A
strong resemblance between the behaviour of the velocity and
magnetic field modes is observed at long times, where an im-
portant number of modes with the same order of magnitude
interacts. A dominant n = 0 magnetic mode appears instanta-
neously, corresponding to the strongly modified magnetic field
observed in Figure 2. The dominant velocity mode corre-
sponds to n = 6 for the present case, and an important n = 0
subdominant velocity mode is observed, as was shown in Ref.
6. It is the n = 6 velocity structure, flowing in both toroidal
directions, which sustains—at long-times—the modified axi-
symmetric magnetic field typical of RFP dynamics.

Figure 8 shows the steady state values of the kinetic
energy and the magnetic energy versus the Lundquist num-
ber. Increasing M leads to a decrease in the kinetic energy
roughly proportional to M~! for the tokamak regime.
However, in the RFP-regime, the kinetic energy seems to
decrease more gently with M. The fluctuating magnetic
energy increases with M until it saturates at a value depend-
ing on the pinch ratio. In the RFP regime, this increase is
smaller, probably since more energy is contained in the

<du by

0 02 04 Dﬁn oS 1 1.2

-

FIG. 9. Lundquist number dependence of the magnitudes of (a) the toroidal velocity, (b) the poloidal velocity. Colors in (a) and (b) are chosen as in Figure 6.
(c) The ratio of the quantities in (a) and (b) as a function of the toroidal magnetic field for M = 2000 for case I (blue) and case II (red).
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FIG. 10. Diagram of F versus ©. Solid lines indicate the cases of uniform
magnetic resistivity, and dashed lines are the cases of the magnetic resisti-
vity profile #(r).

velocity field. The values for case II, where the viscosity and
diffusivity are a function of the minor radius, are more than
an order of magnitude larger than the values for case 1. The
increased MHD activity in the core, due to the locally higher
pinch ratio, can be held responsible for this.

C. Toroidal and poloidal velocities and evolution of the
reversal parameter.

The kinetic energy of the MHD activity in Subsection
IIIB can be decomposed into a component in the toroidal
direction and a component in the poloidal plane. In all simula-
tions, it was observed that the time and volume-averaged toroi-
dal velocity is equal to zero, due to the up-down symmetry of
the toroidal geometry. If this symmetry is broken, the resulting
flow pattern can lead to non-zero angular momentum.'® This is
not the case here. We will however be interested in the orienta-
tion of the flow pattern with respect to the toroidal axis, and we
therefore compute the rms values of the toroidal velocity and
of the velocity in the poloidal plane. Their Lundquist number
dependence is shown in Figure 9. In the tokamak regime, both
the toroidal and poloidal velocity are a decreasing function of
the Lundquist number, while in the RFP-regime, the values
seem to saturate. In the tokamak-regime, both velocity magni-
tudes are roughly proportional to M~!. Figure 9(c) shows the
evolution of the ratio of the toroidal velocity and the poloidal
velocity, (|uwr|)/(|#por|) as a function of By, for both the toka-
mak and the RFP regime. It is observed that this ratio is an
increasing function of B,,, for fixed B,,,;, in agreement with the
observation that the velocity field tends to align with the mag-
netic field.'® Only in the REP regime, this tendency is absent,
due to the self-organization of the magnetic field. Again, the
fact that for a given total current the current-channel is reduced
by the resistivity profile leads to a modified flow geometry, as
quantified by the ratio (|uor|) /(| Upoi])-

A parameter that quantifies the modification of the mag-
netic field due to MHD activity is the reversal parameter
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with @ the minor radius. Figure 10 shows the diagram of the
reversal parameter F' versus pinch ratio ®. In general, the
non-uniform magnetic resistivity cases show lower values of
the reversal parameter for a given pinch ratio ®. In the low
Lundquist number limit (e.g., M = 100), the decrease of By,
does not substantially modify F although it increases the
pinch ratio ©. This is different in the high Lundquist regimes
(M > 2000), where by decreasing By, the reversal parameter
drops strongly. This shows that, if we identify the RFP regime
by a drop in F of, say, below 0.5, one needs necessarily a high
enough Lundquist number to trigger the RFP transition. This
is in agreement with the observations in Refs. 1 and 2, who
studied the onset of MHD instability in a periodic cylinder as
a function of the Hartmann number and pinch ratio.

IV. CONCLUSIONS

The present manuscript presented a comprehensive numer-
ical study of the dynamics of incompressible, visco-resistive
MHD in a toroidal geometry. The parameter-space was
explored by varying the safety-factor (or pinch-ratio), and the
Lundquist number. Both uniform and spatially variable viscos-
ity and resistivity were considered. The resulting dynamics
included dynamic equilibria for the quiescent, tokamak-like, re-
gime, and the chaotic RFP-like regime. It was shown that for a
given value of the Lundquist number, the kinetic and magnetic
energy can vary over orders of magnitude when the pinch ratio
is varied. The velocity magnitudes, decreasing approximately
proportional to M~! for the tokamak cases, seem to decay
more gently in the RFP regime, but more datapoints are needed
to determine its exact dependence on the Lundquist number.

For a given total current, the velocities and magnetic fluc-
tuations are more important by over an order of magnitude for
the case where the transport-coefficients are varying as a func-
tion of the radius. Furthermore, the reversal parameter drops
more importantly as a function of the pinch-ratio for this latter
case. This last effect can be explained, at least in part by the
non-uniformity of the local pinch-ratio, attaining larger values
in the current channel for the case of non-uniform resisitivity.

Apart from these quantitative differences, no important
qualitative differences seemed to be introduced by the non-
uniform transport coefficients, justifying, in part, studies
considering uniform transport coefficients, as long as no
quantitative agreement with experiments is aimed for.
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