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The cyclone-anticyclone asymmetry occurring in rotating turbulence is investigated
through the analysis of the alignment statistics between vorticity and the rotation
vector. The advantage of this approach, as compared to the usual measurement of
the vertical vorticity skewness, is that the symmetry-breaking can be thus quantified
through the analysis of first- and second-order moments, whose statistics convergence
is more easily achieved than that of third-order ones. The vorticity/rotation alignment
statistics are investigated by direct numerical simulation, both in forced and in
freely decaying homogeneous turbulence. In the forced case, the cyclone-anticyclone
asymmetry gets stronger as the Rossby number is decreased, whereas the opposite
behavior occurs in the decaying case. These findings are shown to be consistent
with the existence of a non-monotonic Rossby-number dependence of the asym-
metry. A preferential antialignment of vorticity with the rotation vector is found
in all the flows considered, a behavior supported by geometrical arguments and
by a Taylor expansion of the Navier-Stokes equations for early times of rotation
and in the weak rotation limit. A multiscale analysis of the alignment properties
between vorticity and the rotation vector is also carried out in the forced case,
evidencing the existence of a scale at which both the symmetry-breaking and the
collinearity between the two vectors are maximal. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4914176]

I. INTRODUCTION

Turbulence subjected to rotation has received considerable interest due to its ubiquity in natural
(both astrophysical and geophysical) and industrial flows (e.g., turbomachinery). In these systems,
the Coriolis force induced by rotation modifies the turbulence dynamics by imposing a preferred
direction, thereby imposing a strong anisotropy in the flow. In turn, this anisotropy results in three
generic features of rotating turbulent flows (for a review of the recent experimental and numerical
advances made in this field, see, e.g., Ref. 1): it (i) partially inhibits the energy cascade by strongly
reducing the dissipation rate, (ii) induces a partial two-dimensionalization of the turbulent velocity
field, and (iii) leads to an asymmetry in the vertical (i.e., along the rotation axis) vorticity distri-
bution, with an enhanced probability for large cyclonic vorticity values (ω ·Ω > 0, where Ω is the
rotation vector). This latter feature results in a predominance of cyclones over anticyclones, visible
in rotating turbulent flows, and is therefore widely referred to as cyclone-anticyclone asymmetry.

Two kinds of arguments have been proposed for explaining this symmetry-breaking. The first
one was proposed in Ref. 2: using the Rayleigh’s stability criterion, the authors showed that, in the
presence of a background rotation, axisymmetric columnar vortices are unstable in regions such
that ω3 < −2Ω, where ω3 ≡ ω · e3 and e3 ≡ Ω/|Ω| (a convention that will be used throughout the
paper). As a consequence, counter-rotating vortices are more likely to be unstable than co-rotating
ones if the Rossby number Ro ∼ 1. Other authors showed that Stuart vortices (an exact solution
of the steady two-dimensional Euler equations used as a model of the free shear layer3) were
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destabilized by anticyclonic rotation through a combination of the elliptical and centrifugal insta-
bilities.4 Assuming that these stability arguments are relevant in rotating turbulence, they mean
that both cyclones and anticyclones form in this type of flow, but that only the former can give
rise to long-lived structures at Ro ∼ 1. An alternative argument was developed in Ref. 5: the au-
thors considered a fully developed homogeneous and isotropic turbulent flow instantaneously sub-
jected to a background rotation at t = 0. Neglecting the induced Poincaré force and linearizing the
Navier-Stokes equations, they showed that, at t = 0+, ∂⟨ω3

3⟩/∂t = 0.4Ω⟨ωisijω j⟩|t=0, where sij is the
rate of strain tensor, and the right-hand side is therefore proportional to the enstrophy production,
a quantity widely known to be positive in isotropic turbulence.6 According to this analysis, the
vertical vorticity skewness is therefore expected to grow from 0 at t = 0− to a positive value at
t = 0+, a feature taken to be indicative of the dominance of cyclones over anticyclones. This analysis
was extended using rapid distortion theory.7

In the last decades, many studies have also been devoted to the characterization of the cyclone-
anticyclone asymmetry. This symmetry-breaking was first visualized in inhomogeneous and forced
rotating turbulence,8 then investigated quantitatively in experimental and numerical systems, both
in freely decaying2,7,9–12 and in forced13 turbulence. All these studies characterized the cyclone-
anticyclone asymmetry through the measurement of the skewness of the vertical vorticity compo-
nent ω3, which vanishes in isotropic turbulence and is positive in rotating flows. More recently, this
asymmetry was quantified in statistically stationary flows by using a set of third-order two-point
velocity correlation functions,14 or the skewness of the azimuthal velocity increments.15

We use here another method, based on the investigation of the alignment properties between
vorticity and the rotation vector. The analysis of relative orientation between coupled vectors has,
indeed, already proven useful for the characterization of turbulence in a wide variety of contexts.
In homogeneous and isotropic turbulence (HIT), for instance, the alignment properties of vorticity
with the strain eigenvectors or, equivalently, with the vortex stretching vector, turned out to be
one of the rare quantitative statistical manifestations of the existence of internal organization in
the flow16,17 (an analysis that can be extended at various scales, see, e.g., Ref. 18). The nonline-
arity depletion phenomenon, another important feature of turbulence occurring at high Reynolds
numbers, both in HIT19,20 and in more realistic flows,21 can also be evidenced by investigating the
velocity and vorticity vectors relative orientation. The depletion of nonlinear interaction between
Alfvén modes in magnetohydrodynamics22 and the self-organization of rotating shear-stratified
turbulence23 can be cited as other instances of complex features on which insight can be gained
through the investigation of alignment statistics.

Motivated by these investigations, we will focus in the present communication on the alignment
statistics between vorticity ω and the rotation axis in homogeneous rotating turbulence. Direct
numerical simulations, both in the freely decaying and in the forced cases, will be carried out to this
end. In virtue of the aforementioned features of turbulence subjected to a background rotation, it
might be expected: (i) that both vectors should be preferentially collinear, a property related to the
tendency of the flow to form intense vertical columnar vortices; (ii) that the probability distribution
function (PDF) of the cosine between ω and Ω is not symmetric, a highly probable signature of
the cyclone-anticyclone asymmetry. To the best of our knowledge, this approach has, surprisingly,
never been used to characterize the symmetry-breaking of rotating turbulence.

The manuscript is organized as follows. We first describe the numerical algorithm and give the
physical parameters of our simulations (Sec. II). The alignment statistics between vorticity and the
rotation vector are then presented in Sec. III: the statistics of cos(ω,Ω) are first investigated in freely
decaying (see Sec. III A) and in forced (see Sec. III B) turbulence, then a multiscale analysis in
the latter case is provided in Sec. III C. These numerical results are reinforced in Sec. IV, both by
geometric arguments (see Sec. IV A) and through the linearization of the Navier-Stokes equations in
the limit of weak rotation (see Sec. IV B). Section V finally contains our concluding remarks.
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II. NUMERICAL METHOD AND PARAMETERS

We consider the incompressible forced Navier-Stokes equations describing the dynamics of the
velocity field u(x, t) in a rotating frame:

∂u
∂t
+ (ω + 2Ω) × u = − 1

ρ
∇p + ν∇2u + F, (1)

∇ · u = 0, (2)

where ω = ∇ × u(x, t) is the fluctuating vorticity, p(x, t) is the pressure field (including the centrif-
ugal force contribution), ρ and ν, respectively, denote the fluid density and kinematic viscosity,
and F(x, t) is a forcing allowing to maintain a constant level of energy at large scale. Without loss
of generality, the frame is chosen in such a way that Ω = Ωe3, with Ω > 0. Equations (1) and
(2) are integrated numerically in a periodic box of size (2π)3, by using a standard pseudospec-
tral method7,24,25 with a resolution of 5123 collocation points. The advection term is written in a
semi-conservative way, and the viscous term is integrated implicitly. Time marching is achieved by
a third-order Adams-Bashforth scheme.

The forcing term, tuned to zero in the freely decaying case, is implemented by using the follow-
ing method. The low wavenumber modes (|k| ≤ K = 1.5) are solutions of the Euler equation in the
rotating frame, truncated on the sphere |k| ≤ K .26 This procedure, already used in HIT27 and more
recently in rotating turbulence,28 maintains a constant amount of energy at the largest scales and
allows to reach a statistically steady regime, starting from an incompressible random velocity field.
Typical snapshots of the resulting flow are shown in Ref. 28. It is worth mentioning that this forcing
is non helical and does not impose any large scale structure in the flow.

As already mentioned, two situations will be considered thereafter. We will first present some
results obtained in freely decaying turbulence (Runs D1 and D2). In this configuration, a fully
developed isotropic turbulent state was first generated, then the angular velocity Ω was tuned to a
finite value at t = 0. Ensemble averages ⟨. . .⟩ were approximated by a spatial average taken over the
entire computational domain. The level of anisotropy of the turbulence can be quantified by large-
and small-scale Rossby numbers, respectively, defined as Ro(L) = urms/(LΩ) and Ro(ω) = ωrms/Ω,
where urms ≡

√
⟨u2⟩/3, ωrms ≡

√
⟨ω2⟩/3, and the integral scale L ≡ 2Lcorr, with Lcorr defined as

the correlation lengthscale of the Eulerian velocity field: Lcorr ≡ π/(2u2
rms)

∫ +∞
0 dk E(k)/k, E(k)

denoting the energy spectrum.
The time dependence of Ro(L) and Ro(ω) in the freely decaying simulations is shown in Fig. 1.

Naturally, both quantities decay monotonically, and Ro(L) < Ro(ω), indicating, respectively, that the
effects of rotation get stronger as time increases and that they are more pronounced at large scales.

FIG. 1. Time dependence of the large- and small-scale Rossby numbers in Runs D1 and D2.
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TABLE I. Physical parameters of Runs F1 to F3 (forced turbulence).

Run Ro(L) Ro(ω) L/ℓZ ℓZ/η Rλ

F1 0.18 4.3 16 19 240
F2 0.12 2.5 34 7 280
F3 0.07 1.1 88 3 420

These are well-known characteristics of decaying rotating turbulence. Ro(L) ≪ 1 throughout the
calculations, meaning that, at large scales, background rotation effects are dominant over nonlinear
ones at any time. At the largest times of the calculations, Ro(ω) is also <1 in both runs, thereby
indicating that rotation effects then dominate at all scales. In both runs, the Taylor Reynolds number
Rλ varies from ≈200 at t = 0 to ≈280 at the end of the calculation (Ωt/(2π) ≈ 5.2).

Simulations in the forced case were also carried out (Runs F1 to F3). Anisotropy of the re-
sulting flows can be characterized by the Rossby numbers, and by the Zeman scale ℓZ ≡ (ε/Ω3)1/2

(where ε is the energy dissipation rate),29 which quantifies the ratio between nonlinearity and rota-
tion effects and was found to give a reasonable threshold between anisotropic (r > ℓZ) and isotropic
(r < ℓZ) scales.30,31 The ratios between ℓZ and L and η (Kolmogorov scale), as well as Ro(L), Ro(ω),
and Rλ (Taylor Reynolds number), are gathered in Table I. In these simulations, ensemble averages
were approximated by spatial and temporal averages.

III. ALIGNMENT STATISTICS BETWEEN VORTICITY AND THE ROTATION VECTOR

A. Statistics of the relative orientation between ω andΩ in decaying turbulence

We first investigate the alignment statistics between ω and Ω in decaying turbulence (Runs
D1 and D2). Figure 2 shows the time dependence of the low order moments of the cosine of the
angle between the two vectors. As expected, at t = 0, when turbulence is still isotropic, the values
of the three quantities are those that one would expect for two uncorrelated vectors, i.e., the odd
moments are zero and the variance is equal to 1/3. In the early times of the turbulence decay,
the three quantities deviate monotonously from their isotropic values. In particular, ⟨cos(ω,Ω)⟩
is a decreasing function of time, thus becoming negative. This nonzero value naturally reflects
the cyclone-anticyclone asymmetry. However, its sign is rather counterintuitive: it means that, in

FIG. 2. Low order moments of cos(ω,Ω) vs time, in Runs D1 and D2: mean ⟨X⟩ (black), variance ⟨(X − ⟨X⟩)2⟩ (blue),
skewness ⟨(X − ⟨X⟩)3⟩/⟨(X − ⟨X⟩)2⟩3/2 (red), with X ≡ cos(ω,Ω). Solid line: run D1; dashed line: run D2. The values of
these moments in HIT are indicated by the dash-dotted lines.
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FIG. 3. Skewness of ω3 vs time, in Runs D1 and D2 (⟨ω3⟩= 0 by homogeneity).

average, vorticity is preferentially oriented in a direction opposite to that ofΩ. This observation will
be interpreted in Subsection IV A.

As shown in Fig. 2, during the first stage of turbulence decay, the variance and skewness of
cos(ω,Ω) are increasing functions of time (up to some spurious time fluctuations especially visible
in the skewness signal, that can be explained by the fact that the convergence of this third-order
quantity is probably not perfectly achieved when ensemble average is approximated by a spatial
one). As a consequence, in these decaying homogeneous rotating flows, the skewness of cos(ω,Ω)
is found to become positive, and its variance to be >1/3.

For Ωt/(2π) ! 3, the three moments oscillate around constant values, thereby indicating a
steady cyclone-anticyclone asymmetry. The deviation of these quantities from their isotropic values
is the largest in Run D1, in which the Rossby numbers are higher than in Run D2: the symmetry-
breaking is therefore stronger in the flow in which the ratio between rotation effects and nonlinear
ones is the smallest. As a comparison, we show in Fig. 3 the time dependence of the vertical
vorticity skewness in both runs. This quantity also reaches plateaus at Ωt/(2π) ≈ 3, after a transient
growth during which it scales as t0.75, two features already observed in previous studies of decaying
rotating turbulence.2,7,10 Similarly to the moments of cos(ω,Ω), the skewness of ω3 is the largest in
Run D1 (in which the Rossby numbers are the largest).7 In the early times of turbulence decay, no
clear scaling of the moments of cos(ω,Ω) can be evidenced.

B. Statistics of the relative orientation between ω andΩ in forced turbulence

We now turn to the measurement of the statistics of cos(ω,Ω) in forced rotating turbulence.
This will allow us to accumulate more statistics for each value of the Rossby number and to
investigate the Ro dependence of the results in these statistically stationary flows.

The mean, variance, and skewness of cos(ω,Ω) are plotted as a function of the large scale
Rossby number in Fig. 4 (Runs F1 to F3). As expected, they all tend to their values in isotropic
turbulence (infinite Rossby numbers) as Ro(L) increases. In rotating flows, ⟨cos(ω,Ω)⟩ is found to
be negative. As in freely decaying turbulence, these nonzero values trace the cyclone-anticyclone
antisymmetry present in the flow, their sign expresses the fact that vorticity tends to be preferentially
oriented in a direction opposite to that of the rotation vector. The variance and skewness are found to
be larger than their isotropic values, as was the case in decaying turbulence. However, the deviation
of the cos(ω,Ω) moments from their isotropic values increases at decreasing Ro(L), a behavior
opposite to the one observed in decaying turbulence (see Sec. III A). In the range of Rossby num-
bers considered here, the asymmetry in forced flows is therefore stronger as rotation effects get
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FIG. 4. Ro(L) dependence of the cos(ω,Ω) mean, variance, and skewness (same definitions as in Fig. 2), in forced turbulence.
The horizontal error bars are within the symbols size. The horizontal dashed lines indicate the values of these quantities in
HIT (infinite Rossby number).

more and more pronounced as compared to nonlinear ones. This result is confirmed by the measure-
ment of the skewness of vertical vorticity in our simulations, which varies monotonously from ≈0.2
in Run F1 to ≈0.8 in Run F3. Interestingly, this behavior is similar to the one observed, in the same
range of parameters, in recent experiments of (inhomogeneous) forced rotating turbulence,14 in
which the symmetry-breaking was quantified through the measurement both of the vertical vorticity
skewness and of velocity correlation functions. The comparison of our results in decaying and in
forced flows will be done, and a discussion provided, in Sec. V.

A more refined information can be given by the probability distribution function of cos(ω,Ω),
plotted in Fig. 5 for different values of the Rossby number (Runs F2 and F3). In the most anisotropic
flow (Run F3), the PDF clearly peaks at ±1, indicating that vorticity is preferentially collinear with
the rotation axis, a well known feature of rotating turbulence. It also exhibits an asymmetry, with
an enhanced probability for negative values that explains the negative sign of ⟨cos(ω,Ω)⟩. The
PDF obtained at higher Rossby number exhibits the same properties, although less pronounced, and
is therefore closer to the flat distribution expected in isotropic turbulence. This confirms that, in

FIG. 5. PDF of cos(ω,Ω) for different Rossby numbers, in forced turbulence.
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the range of Rossby numbers considered here, the cyclone-anticyclone asymmetry is stronger for
smaller Ro(L).

C. Multiscale analysis in forced turbulence

The scale dependence of the cyclone-anticyclone asymmetry, in the framework of alignment
properties between vorticity and the rotation vector, is now addressed. To do so, one needs to
consider a generalized vorticity vector accounting for the flow variations at a given scale. A suitable
approach, to this end, consists in using the “perceived” vorticity, constructed from the antisym-
metric part of the velocity gradient tensor defined by interpolation from the locations and velocities
of a set of four points. This approach was introduced in the framework of Lagrangian turbulence (in
that case, the points are fluid particles), and allowed to investigate the structure of isotropic turbu-
lence at different scales.18,32–34 We perform here Eulerian measurements, by considering sets of
four points equally spaced in the flow to construct a perceived velocity gradient tensor, a procedure
already used in a different context in rotating turbulence.28 Several distances r0 between the points,
ranging from ≈η to ≈L/

√
2, were considered, so as to cover the entire inertial range. Between

2 × 106 and 4 × 106 randomly oriented tetrads were considered in each flow and for each value of r0,
in order to ensure a satisfactory convergence of the statistics.

The mean, variance, and skewness of the cosine between the perceived vorticity ω̃(r0) and Ω
are plotted, in Fig. 6, as a function of scale. For the smallest values of r0, the alignment properties
between the usual vorticity and Ω are recovered, i.e., (i) the mean of cos(ω̃,Ω) is negative while
its variance and skewness are larger than their isotropic values; (ii) the three quantities deviate
more significantly from their isotropic reference values as the Rossby number is decreased. These
two trends are observed at any scale, meaning in particular that the perceived vorticity is always
preferentially antialigned with Ω. All the quantities tend to their isotropic (uncorrelated) values as
r0 → L, reflecting the fact that the statistics between the four points become uncorrelated in this
limit. But the most remarkable feature is the extremum displayed by all the curves in Fig. 6. It points
out the existence of a characteristic scale at which the cyclone-anticyclone asymmetry is maximum.
This scale is the same for the three moments investigated here, and much larger than the Zeman
scales of the flows (indicated by vertical lines). It seems to depend very weakly on the Rossby num-
ber, always being of order L/3-L/2. Such a characteristic scale of the cyclone-anticyclone asym-
metry has been evidenced in experimental studies, in inhomogeneous forced turbulence, through

FIG. 6. Scale dependence of the moments of cos(ω̃,Ω), for different Rossby numbers, in forced turbulence. Mean (black
solid lines), variance (blue dashed lines), and skewness (red dotted lines). Squares: run F1; stars: run F3. The horizontal (resp.
vertical) lines indicate the isotropic values (resp. Zeman scales).
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FIG. 7. PDF of cos(ω̃,Ω) for r0/L = 3 × 10−3, 6 × 10−3, 1.2 × 10−2, 2.4 × 10−2, 4.8 × 10−2, 9.7 × 10−2,
0.19, 0.39, 0.77, from blue to red (Run F3).

the investigation of velocity correlation functions,14 and in the late stage of decaying turbulence,
measuring the vertical vorticity skewness.12 Our numerical approach not only allows to investi-
gate statistically homogeneous and stationary flows, but also to provide accurate values of the
lengthscales characterizing them (Kolmogorov, integral and Zeman scales).

The nontrivial scale dependence of the cyclone-anticyclone asymmetry can also be illustrated
by plotting the PDF of cos(ω̃(r0),Ω). This function is shown in Fig. 7 for different values of r0, in
the most anisotropic flow (Run F3). The PDFs’ peaks at ±1 confirm that vorticity is preferentially
collinear with the rotation vector for any r0. This feature, together with the asymmetry of the
PDFs that reflects the symmetry-breaking, is the most pronounced at the largest scales. However,
the evolution of the PDFs as r0 increases is nonmonotonic: the peaks of the dark orange curve
(r0/L = 0.39) are, without any ambiguity, more pronounced than those of the red one (r0/L = 0.77).
This representation therefore also evidences the existence of a scale, ≈L/2 − L/3, at which the
cyclone-anticyclone asymmetry is maximal. It appears furthermore that the collinearity of vorticity
and rotation is maximal at this scale.

IV. INTERPRETATION OF THE PREFERENTIAL ANTIALIGNMENT BETWEEN VORTICITY
AND THE ROTATION VECTOR

A. Geometric interpretation

We now focus on the negative sign of ⟨cos(ω,Ω)⟩, evidenced at any Rossby number and any
scale and reflecting a tendency of vorticity to be aligned in a direction opposite to that of the rotation
vector. It is shown here that this counterintuitive result can be explained by simple geometrical
arguments. Given that cos(ω,Ω) = ω3/(ω3)1/2 and that ⟨ω3⟩ = 0 in homogeneous turbulence, the
sign of ⟨cos(ω,Ω)⟩ can only be explained by comparing the enstrophy statistics conditioned on the
sign of ω3. The conditioned averages ⟨ω2|ω3 > 0⟩ and ⟨ω2|ω3 < 0⟩ are shown, both in decaying and
in forced turbulence, in Fig. 8. Not surprisingly, the former is always larger than the latter, thereby
indicating that vorticity is, in average, more intense in cyclonic structures than in anticyclonic ones.
This is a straightforward consequence of the enhanced probability of positive values of ω3 with
respect to negative ones, characteristic of the predominance of cyclones over anticyclones. In Fig. 8,
this asymmetry is, once more, shown to get stronger (respectively weaker) as the Rossby number is
decreased in the forced (respectively decaying) flows considered in the present investigation.

The explanation of the negative sign of ⟨cos(ω,Ω)⟩ is now straightforward, as illustrated in
Fig. 9. In average, in homogeneous turbulence the projections of cyclonic and anticyclonic vorticity
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FIG. 8. Mean enstrophy conditioned on the sign of ω3 (ω3 > 0 in blue, < 0 in red), and normalized by the total enstrophy:
(a) vs time, in decaying turbulence (Runs D1 (solid lines) and D2 (dashed lines)); (b) vs Ro(L), in forced turbulence.

vectors on the rotation axis are equal (in absolute value), but the magnitudes of the latter are smaller
(thereby indicating that enstrophy is more intense in cyclonic structures than in anticyclonic ones).
These two properties lead to a stronger collinearity of anticyclonic vorticity with rotation, and
therefore to an overall negative ⟨cos(ω,Ω)⟩.

B. Linearization of the Navier-Stokes equations in the weak rotation limit

A second argument in favor of the negative sign of ⟨cos(ω,Ω)⟩ can be obtained by considering
the Navier-Stokes equations, assuming that a developed isotropic turbulent flow is suddenly sub-
jected to a background rotation and neglecting the Poincaré force. The same kind of analysis was

FIG. 9. Schematic illustration of the geometrical mechanisms leading to the preferential antialignment of vorticity with the
rotation vector.
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performed in Ref. 5 and gave a theoretical support to the positive skewness of vertical vorticity
measured in experiments and numerical simulations.

We start from the equation satisfied by the vorticity components, in the rotating frame, in the
absence of forcing

Dωi

Dt
= sijω j + 2Ωsi3 + (ω ×Ωe3)i + ν∂jjωi, (3)

where D/Dt is the Lagrangian derivative and sij = (∂iu j + ∂jui)/2 is the rate of strain tensor. The
Einstein summation convention is used throughout the derivation. As a consequence,

1
2

D(ω2)
Dt

= ωisijω j + 2Ωωisi3 + νωi∂jjωi, (4)

and
Dω3

Dt
= ωisi3 + 2Ωs33 + ν∂iiω3. (5)

The time derivative of cos(ω,Ω) therefore reads:
D cos(ω,Ω)

Dt
=

1
(ω2)3/2

!
ω2(ωisi3 + 2Ωs33 + ν∂iiω3) − ω3(ωisijω j

+ 2Ωωisi3 + νωi∂jjωi)
"
. (6)

Let us assume now that the flow is statistically homogeneous and isotropic at the initial time
t = 0, at which Ω is instantaneously tuned to a finite value. According to Eq. (6), the contribution
of the rotation rate to D⟨cos(ω,Ω)⟩/Dt is then 2Ω

〈
s33/(ω2)1/2 − ωisi3ω3/(ω2)3/2

〉
, and has the same

sign as

⟨s33/(ω2)1/2⟩ − ⟨ωisi3ω3/(ω2)3/2⟩. (7)

At t = 0, statistical isotropy is still satisfied, and the first term of Eq. (7) can therefore be rewritten
as ⟨sii/(ω2)1/2⟩/3, which is zero due to the incompressibility condition sii = 0. Isotropy imposes
that the second term of Eq. (7) is equal to one third of a generalized total enstrophy production
rate ⟨ωisijω j/(ω2)3/2⟩, that we have found to be positive in all our simulations of homogeneous and
isotropic turbulence. Note that the mean values of the standard enstrophy production ωisijω j and of
its rate, ωisijω j/ω2, are known to be positive in HIT (see, e.g., Ref. 6). As a consequence, at t = 0+
the quantity (7) is negative, and ⟨cos(ω,Ω)⟩, that was equal to zero at t = 0−, is expected to become
negative as well.

V. CONCLUSION AND DISCUSSION

The alignment statistics between vorticity and the rotation vector were investigated, using a
unique numerical setup, in decaying and in forced statistically homogeneous turbulence. Beyond
the very well known preferential collinearity of these two vectors, we have shown that the analysis
of these statistics provides a detailed characterization of the cyclone-anticyclone asymmetry. Unlike
that of the vertical vorticity, the mean of cos(ω,Ω) is nonzero. As a consequence, the measurement
of its first (and second) moments, whose statistics converge faster than those of third-order quan-
tities, is sufficient to characterize the cyclone-anticyclone asymmetry. The price to pay for this faster
convergence is that it necessitates the simultaneous measurement of the three vorticity components,
not easily accessible experimentally.

Our results confirm some previous findings according to which, in statistically stationary flows,
the cyclone-anticyclone asymmetry gets more pronounced as the Rossby number is decreased,
while the opposite behavior occurs in freely decaying turbulence. Interestingly, in the present inves-
tigation the Rossby numbers of the decaying runs (in the late stage of the decay) are slightly
lower than those of the forced simulations. Our results might therefore indicate that the cyclone-
anticyclone asymmetry is the strongest in an intermediate range of Rossby numbers: Ro(L) ≈ 0.05;
Ro(ω) ≈ 1. The existence of a value of the Rossby number at which this asymmetry is maximal was
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already evidenced in decaying2,35 and in forced15 turbulent flows. It is worth mentioning that the
value Ro(ω) ≈ 1 found in our investigation is in agreement with that of Ref. 2 (in which Ro(ω) ≈ 0.8
with our definition). A straightforward consequence of this is the fact that the asymmetry manifests
itself if both rotation and nonlinear effects are strong enough. This result would therefore give
more support to the interpretation of the phenomenon based on a preferential stretching of cyclonic
vorticity5 than to that related to instabilities also observed in laminar flows.2

A multiscale analysis of the vorticity/rotation alignment was also performed, evidencing the
existence of a scale, much larger than ℓZ and close to L, at which both the symmetry-breaking and
the collinearity between the two vectors are maximal. One of our main findings is the tendency of
ω to be oriented in a direction opposite to that of Ω, a feature that we have interpreted through the
investigation of the enstrophy statistics conditioned on the sign of the vertical vorticity component.
These indicate, not surprisingly, that enstrophy is more intense in cyclonic structures than in anti-
cyclonic ones. These statistics incidentally appear as another indicator of the cyclone-anticyclone
asymmetry which does not necessitate the measurement of third-order quantities. Our result is also
supported by the linearization of the Navier-Stokes equations at small time and in the weak rotation
limit, an analysis that could be interestingly extended at longer times through the use of rapid
distortion theory.36,37

Given that the former argument is partially based on the statistical homogeneity of the flow, it
would be interesting to study the same kind of statistics in inhomogeneous flows for which ⟨ω3⟩ ! 0
(e.g., channel flow), so as to check if the preferential antialignment observed here is robust. The
Reynolds numbers in the simulations presented here are moderate (Rλ < 400), and much informa-
tion could be certainly brought by studies at larger Rλ. Another line of research would consist in
splitting the vorticity field into coherent and uncoherent parts (see, e.g., Ref. 38) and to carry out the
statistical analysis of the asymmetry on both sides separately. Finally, we have shown that alignment
properties are efficient tools for probing the structure of rotating turbulence. The investigation of
other statistics of this type, related to geometrical statistics, will be presented in a forthcoming
publication.
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