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The Cahn-Hilliard equation with an externally prescribed chaotic shear flow is studied in two and three
dimensions. The main goal is to compare and contrast the phase separation in two and three dimensions, using
high-resolution numerical simulation as the basis for the study. The model flow is parametrized by its amplitudes
(thereby admitting the possibility of anisotropy), length scales, and multiple time scales, and the outcome of the
phase separation is investigated as a function of these parameters as well as the dimensionality. In this way, a
parameter regime is identified wherein the phase separation and the associated coarsening phenomenon are not
only arrested but in fact the concentration variance decays, thereby opening up the possibility of describing the
dynamics of the concentration field using the theories of advection diffusion. This parameter regime corresponds
to long flow correlation times, large flow amplitudes and small diffusivities. The onset of this hyperdiffusive
regime is interpreted by introducing Batchelor length scales. A key result is that in the hyperdiffusive regime, the
distribution of concentration (in particular, the frequency of extreme values of concentration) depends strongly
on the dimensionality. Anisotropic scenarios are also investigated: for scenarios wherein the variance saturates
(corresponding to coarsening arrest), the direction in which the domains align depends on the flow correlation
time. Thus, for correlation times comparable to the inverse of the mean shear rate, the domains align in the
direction of maximum flow amplitude, while for short correlation times, the domains initially align in the
opposite direction. However, at very late times (after the passage of thousands of correlation times), the fate
of the domains is the same regardless of correlation time, namely alignment in the direction of maximum flow
amplitude. A theoretical model to explain these features is proposed. These features and the theoretical model
carry over to the three-dimensional case, albeit that an extra degree of freedom pertains, such that the dynamics
of the domain alignment in three dimensions warrant a more detailed consideration, also presented herein.
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I. INTRODUCTION

When an alloy or a binary mixture in which both compo-
nents are initially uniformly present undergoes rapid cooling
below a critical temperature, both phases separate. In the
absence of flow, domains of higher concentration in one or
the other phase form and grow algebraically in time, obeying
a coarsening process referred to as spinodal decomposition.
In fluids, this phase separation is often more complex than in
solid alloys because of the interaction between hydrodynamic
and coarsening effects [1]. Even when the flow is externally
driven, the situation is complicated. In the presence of shear
flow [2–5] or of turbulence [6,7], the coarsening can even be
arrested [8]. The aim of this communication is to apply the
methodology of these previous works to passive shear-driven
phase separation in two and three dimensions, with a view
to using the parameters inherent in the shear-flow model as
a way of regulating the phase separation. Although current
supercomputing platforms enable the simulation of such flows
at high resolution in three dimensions [6,7,9], it can be noticed
that most studies to date on stirred binary mixtures have
focused on the two-dimensional (2D) case [2–5,10]. Therefore,
a further aim of the present work is to study the effects
of dimensionality on the outcome of the phase separation.
The model is the Cahn-Hilliard (CH) equation coupled to an
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externally prescribed velocity field: we first of all review this
approach before presenting our results.

Phase separation can be described by the Cahn-Hilliard
(CH) equation with constant mobility [11]: a concentration
field C(x,t) measures the local concentration of the binary
liquid, with C = ±1 denoting saturation in one or other of
the components. Thus, C = 0 denotes a perfectly mixed state.
It is assumed that the system is in the spinodal region of the
thermodynamic phase space, where the well-mixed state is
energetically unfavorable. Consequently, the free energy for
the mixture can be modeled as F [C] = ∫

ddx[ 1
4 (C2 − 1)2 +

1
2γ |∇C|2], where the first term promotes demixing and the
second term smooths out sharp gradients in transition zones
between demixed regions; also, γ is a positive constant, and d

is the dimension of the space. The twin constraints of mass
conservation and energy minimization suggest a gradient-
flow dynamics for the evolution of the concentration: ∂tC =
∇ · [D(C)∇(δF/δC)], where δF/δC denotes the functional
derivative of the free energy and D(C) � 0 is the mobility
function. In this work, a constant mobility is assumed, such
that the basic evolution equation reads

∂C

∂t
= D∇2(C3 − C − γ∇2C). (1)

Models with variable mobility abound [4,12,13], but their
characteristics are very similar to the constant-mobility case.
Owing to the simplicity of the latter, a constant mobility is
preferred here.
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Equation (1) is modified in the presence of an incompress-
ible velocity field v(x,t):

∂C

∂t
+ v · ∇C = D∇2(C3 − C − γ∇2C), ∇ · v = 0. (2)

The velocity can either be externally prescribed (passive ad-
vection) or can arise due to coupling between hydrodynamics
and phase separation (active advection, modeled using the
coupled Navier-Stokes–Cahn-Hilliard equations [5–7]). The
focus of the present work is however on the passive case, which
can be regarded as an important physical limit of the active case
[3]. Consideration is given to symmetric mixtures for which
equal amounts of each fluid component are present, such that
〈C〉 = 0, where 〈·〉 denotes spatial averaging. In view of the
flux-conservative nature of the CH equation, for appropriate
boundary conditions on Eqs. (1)–(2), an initially symmetric
mixture will stay symmetric for all times: 〈C〉(t) = 0, for
all t � 0. Since symmetric mixtures exemplify the generic
properties of phase separation coupled with flow [4], this
specialization results in only a little loss of generality.

The dynamics of the unstirred Eq. (1) admit a constant
solution C0, with C0 = 0 most relevant for symmetric mix-
tures; we include here a very brief discussion about the
linear stability of the constant solution. Although this is
a well-established approach [11], in the present context it
provides a useful means of validating the numerical methods
used in this work; also, it serves as a starting point for the
effective-diffusion theories mentioned later in the paper, valid
when the production of concentration variance is suppressed
by strong stirring. Because of our focus here on symmetric
mixtures it suffices to consider the constant solution C0 = 0.
This is linearly unstable: by inserting the trial solution C =
C0 + δC(x,t) into Eq. (1) and omitting nonlinear terms in δC,
the equation (∂/∂t)δC = −D∇2δC − γD∇4δC is obtained,
with normal-mode solution δC ∝ eνt+ik·x , where k is the wave
vector and ν is the growth rate, connected to the wave vector
through the dispersion relation

ν(k) = D(k2 − γ k4), k = |k|. (3)

Thus, the base state C = C0 = 0 is always unstable. The
cut-off wave number is kc = γ −1/2 and the most dangerous
mode is kmax = kc/

√
2. This instability is intimately connected

to coarsening: starting with the initial condition C = C0 +
[random fluctuations], local demixing acts at early times to
produce small domains where C = ±1. These domains grow
larger over time; more precisely, the characteristic size � of
the domains grows as � ∼ t1/3 (Lifshitz-Slyozov law). In the
presence of shear flow, the coarsening is interrupted, leading
to coarsening arrest at a particular length scale set by the flow
[2–5,7].

Concerning the numerical simulation of the Cahn-Hilliard
equation, several complementary methodologies exist in the
literature. For simulations on periodic domains, pseudospec-
tral methods provide for accurate spatial discretization and
efficient implementation of the diffusionlike time step—
especially when the time evolution is to be treated implicitly
[13]. Pseudospectral methods may be extended to mixed
boundary conditions by way of an alternative choice of
basis functions in the nonperiodic directions [9,14]. Alter-
natively, the high-order spatial derivatives appearing in the

Cahn-Hilliard equation can be treated accurately using a
discontinuous Galerkin method [15]. Finally, for the coupled
Navier-Stokes Cahn-Hilliard equations, in addition to the
methods described above, a Lattice-Boltzmann approach has
also been used successfully in studies of thermocapillary flows
[16,17]. For the present study, elements of certain of the
above approaches have been combined in a way that aids
efficient parallelization of the numerical method, which is vital
for large-scale three-dimensional simulations. The precise
computational methodology is described in Sec. II below.

Certainly, study of the Cahn-Hilliard equation is a well-
worn furrow, with much insight available on the analytical
side [18], on the theory of coarsening arrest [19], the influence
of externally prescribed flow (references above), and in the
area of active mixtures [5]. The aim of the present paper
therefore is to investigate some narrow gaps in the existing
literature, in particular the effects of dimensionality on the
phase separation under the external shear flow, as well as the
effects of flow anisotropy on the outcome of the same. A further
goal in the paper is to establish a number of strict benchmarks
that a numerical method must pass in order to be deemed
a reliable way of simulating the Cahn-Hilliard dynamics.
The manuscript is organized as follows. The methodology
is first described in Sec. II (benchmark tests of the code are
presented in Appendix). Section III contains the results of our
investigations concerning coarsening arrest and the effects of
dimensionality on the outcome of phase separation. Section IV
concerns the study of the anisotropic shear flow in two and
three dimensions in the coarsening arrest regime. Concluding
remarks are presented in Sec. V.

II. METHODOLOGY

Equation (2) is solved on a unit cube in d dimensions
(d = 2,3) with periodic boundary conditions in each spatial
direction, together with a prescribed initial condition for
C(x,t = 0). The equation is discretized in space and time
and high-resolution numerical simulations are used to evolve
the initial concentration forward in time. Two complementary
numerical methods are used: a two-dimensional or three-
dimensional finite-difference code (FDCH), supplemented
by a lattice-advection model (2DLA). The 2DLA model is
obtained from Ref. [4] and is revisited briefly here as it provides
a way of rapidly generating a large parametric study in two
dimensions. For each method used, the spatial and temporal
discretizations are refined until numerical convergence is
achieved.

Finite-difference code (FDCH). In the FDCH code, the
concentration field is discretized on a single uniform grid.
All spatial derivatives (even convective terms) are discretized
using standard central differences. For temporal discretization,
both the convective term and the nonlinear term D∇2(C3 − C)
are treated using the third-order Adams-Bashforth scheme.
The code is stabilized by treating the hyperdiffusion term
−γD∇4C fully implicitly, such that at each time step, the
following linear problem must be solved:

(1 + γD�t∇4)Cn+1
ijk

= Cn
ijk + �t

[
23
12C

n
ijk − 16

12C
n−1
ijk + 5

12C
n−2
ijk

]
:= RHS, (4)
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where C = −v · ∇C + D∇2(C3 − C), the superscript n de-
notes the temporal discretization, and the subscript (i,j,k)
denotes a position on the discrete spatial grid.

To determine Cn+1
ijk and hence to evolve the state of the

system forward in time, Eq. (4) requires the inversion of
a fourth-order operator. Because of the parallel-computing
method used (discussed below), it is more computationally
efficient to solve a Helmholtz-like problem:

(1 − α∇2)2Cn+1
ijk = RHS − 2α∇2Cn+1

ijk , α =
√

γD�t.

(5)

By reducing the problem (4) to this more canonical form,
a large price is paid: the right-hand side of Eq. (5) is
indeterminate. However, in practice the term Cn+1

ijk can be
replaced by an interpolation of Cijk obtained from prior times,
and optimal interpolation coefficients can be chosen. The
expression

(1 − α∇2)2Cn+1
ijk = RHS − 2α∇2

[
2Cn

ijk − Cn−1
ijk

]
(6)

yields a numerical solution that is in excellent agreement with
a number of extremely precise benchmarks (See Appendix).
Equation (6) can therefore be inverted by solving a pair of
Helmholtz equations:

(1 − α∇2)Cn+1
ijk = ωijk, (7a)

(1 − α∇2)ωn+1
ijk = RHS − 2α∇2

[
3
2Cn

ijk − 1
2Cn−1

ijk

]
. (7b)

In practice, this equation pair was solved using standard
successive overrelaxation methods.

The accuracy of the temporal discretization is limited by
the choice of backward Euler for the hyperdiffusive term [cf.
Eq. (4)], meaning that the local truncation error incurred per
time step is O(�t2), and the truncation error over the course
of the simulation is thus O(�t). The choice of backward
Euler is unavoidable if the simulations are to be run within
an acceptable time frame: the stability of the fully implicit
treatment of the hyperdiffusive term mitigates the instability
associated with the explicit treatment of the phase-separation
terms, and the constraints imposed on the size of the time
step by the latter are not therefore severe. Even going
over to a Crank-Nicholson treatment of the hyperdiffusion
operator disrupts this balance. This is discussed in Ref. [13].
The operator-factorization in Eq. (7) induces an additional
temporal discretization error, but this can be shown to be
O(�t2+(1/2)) per time step, meaning that the local truncation
error is still dominated by the choice of backward-Euler for
the hyperdiffusion. Also, it should be noted that all spatial
derivatives are based on centered differences, and therefore
the corresponding discretization errors are at worst O(�x2),
where �x is the grid size, uniform in all three directions.
The convergence of the numerical method with respect to grid
refinement is checked for each parameter case studied. Some
details of these checks are alluded to in Appendix. Finally,
the numerical method was coded in FORTRAN 90. The method
was parallelized by domain decomposition using MPI, with a
domain-decomposition scheme that was the same in all three
spatial dimensions. Validation tests of the FDCH code are
presented in Appendix. Because of the technique used to invert

the fourth-order operator [i.e., Eq. (7)], it suffices only to swap
a single halo of grid points between neighboring processes,
thereby minimizing the computational overhead associated
with the parallel algorithm.

Lattice advection model (2DLA). The 2DLA code is an
operating-splitting technique wherein an advection half-step
is performed first, followed by a Cahn-Hilliard diffusion half-
step. The Cahn-Hilliard equation is discretized on to a uniform
grid (the lattice). The model flows suitable for this method have
no stagnation points, such that at each time step, the lattice is
mapped to itself under a bijective map defined by the flow field.
Thus, the advection half step amounts to a Lagrangian scheme
with a natural interpolation on to the underlying Eulerian
grid (the lattice). Consequently, the combined half steps are a
hybrid Eulerian-Lagrangian method, and the time step can be
very large (no Courant-Friedrichs-Lewy time-step restriction
[20]). In particular, for the model flow in Sec. III the time step
can be as large as the flow quasiperiod in the case of small
Cahn-Hilliard diffusivities. The details of the 2DLA code are
presented elsewhere, together with extensive validation of the
method [4].

Based on this generic description, some comments can be
made about the numerical accuracy of the 2DLA code. Because
the lattice advection model is essentially an operator-splitting
method, the temporal discretization is associated with (at
worst) an O(�t2) local truncation error per time step, leading
to (at worst) a truncation error over the course of the simulation
that is O(�t). Unfortunately, this cannot be ameliorated by a
clever choice of time marching: the evolution operator is split
into two components and this truncation error is associated
with the general lack of commutativity between these two
component operators [21]. Thus, the local truncation error is
limited by the initial choice of the operator-splitting approach.
However, the truncation errors associated with the spatial
variations are much improved with this method (compared
say to FDCH). There are three sources of error here. The first
two sources of error are the interpolation error associated with
the Lagrangian half step, and truncation error associated with
the Cahn-Hilliard half step. Because the sine flow involves
a bijection from the lattice to itself, no interpolation is
needed, and the advection half step (for this very particular
flow) incurs no truncation error. Because the Cahn-Hilliard
half step is implemented in a psuedospectral framework, the
discretization error here is expected to be exponentially small,
i.e., proportional to e−qNr

, where q and r are positive constants
and N is the number of grid points in each direction [22].
Finally, because the numerical instabilities are suppressed by
the backward-Euler implementation of the hyperdiffusive term
and also because the simulation is spatially well resolved, no
aliasing errors are observed, and hence the discretization error
(i.e., the third source of error) is comparable to the truncation
error [22]. Hence, the errors in the spatial dimensions are
exponentially small for the 2DLA code.

III. RESULTS: ISOTROPIC FLOWS

The effect of chaotic shear flow via passive advection is
modeled with a random-phase sine flow with quasiperiod τ
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FIG. 1. (Color online) (Circles) Average value of the maximal
fully converged infinite-time Lyapunov exponent �(N,k0,τ ) of the
flow (8) and (9), with τ = 0.01 and k0 = 2π (box size L = 1). Circles:
3D case; Crosses: 2D case.

such that, in the 3D case, at time t ,

u = A sin[k0(y + z) + ϕ], 0 � mod(t,τ ) < 1
3τ, (8a)

v = A sin[k0(x + z) + ψ], 1
3τ � mod(t,τ ) < 2

3τ, (8b)

w = A sin[k0(x + y) + χ ], 2
3τ � mod(t,τ ) < τ, (8c)

where the velocity components not listed are zero and where
t is written uniquely as t = qτ + μ for q zero or a positive
integer, with 0 � μ < τ , and hence mod(t,τ ) := μ. The
random phases (ϕ,ψ,χ ) are renewed after N quasiperiods τ .
The flow therefore has two timescales, with τcorr = Nτ being
the correlation time. Correspondingly, the 2D simulations are
obtained using a flow analogous to Eq. (8):

u = A sin (k0y + ϕ), 0 � mod(t,τ ) < 1
2τ, (9a)

v = A sin (k0x + ψ), 1
2τ � mod(t,τ ) < τ, (9b)

where the velocity components not listed are zero and all other
symbols have the same meaning as in Eq. (8). Based on the
velocity fields (8) and (9), Eq. (2) is solved in units for which
the mean velocity

U =
√

2

(
lim

T →∞
T −1

∫ T

0
〈v2〉 dt

)1/2

(10)

and box size L are both unity [hence, A = 1 in Eqs. (8)
and (9) also], meaning that there are three independent
flow parameters (τ,N,k0). The corresponding nondimensional
diffusion parameters are D = D/UL and Cn = γ /L2, which
correspond respectively to the inverse Péclet number and the
square of the Cahn number.

A preliminary investigation here concerns the derivation of
a measure of the mean strain rate associated with the flows (8)
and (9), to be denoted by �. Not only must � take account
of the flow amplitude and flow length scale, but also the flow
timescales. Thus, the mean rate of strain is identified with
the average value of the maximal Lyapunov exponent of the
flow, computed in a standard fashion in both two and three
dimensions [23]. The results are shown in Fig. 1. Care is
needed in interpreting the results reported in this figure: for
each parameter set (N,k0,τ ) a finite-time Lyapunov exponent
�q(x0) is calculated for a trajectory starting at x0 and evolved
forwards in time through q iterations of the sine-flow map
[which in turn is based on Equations (8) or (9)]. The result

TABLE I. Summary of simulations performed in Sec. III. Here
τcorr = Nτ , where τ is the quasiperiod and N is the number of
quasiperiods after which the random phases of the chaotic flow are
renewed. Also, Cn is the square of the Cahn number.

Grid size τcorr Cn

2DLA 5122 Various 1.5 × 10−5

FDCH2D-long 3142 1 10−4

FDCH2D-short 3142 0.01 10−4

FDCH3D-long 3143 1 10−4

FDCH3D-short 3143 0.01 10−4

is then averaged over a large ensemble of initial points x0

and an average value 〈�q〉 is obtained. The averaged result is
then investigated for convergence in the limit as q → ∞. Only
when convergence is achieved is the infinite-time Lyapunov
exponent �(N,k0,τ ) identified, the results of which are shown
in Fig. 1.

The reason we use a sine flow with random phases is
because the random phases break the invariant tori that exist in
the regular sine flow, a feature of which is the coexistence
of regular and chaotic regions in the flow domain. This,
in contrast to the regular sine flow, the random-phase sine
flow produces a homogeneous mixing of the phase-separating
fluid, characterized by a Lyapunov exponent that is positive
for all stirring amplitudes and for all initial conditions (the
constant-phase sine-flow has a zero Lyapunov exponent for
small flow amplitudes [3,24]). Because of the uniform nature
of the mixing in the random-phase sine flow stirring, it can be
used as a model (albeit very simplified) for turbulent stirring
at high Prandtl number, but at much lower computational cost.

A campaign of simulations based on Eq. (2) in the presence
of the shear flows (8) and (9) is carried out, the details of
which are summarized in Table I. In the FDCH code, the flow
quasiperiod is set to τ = 0.01, such that the correlation time
is τcorr = 1 for the FDCH-long simulations and τcorr = 0.01

FIG. 2. (Color online) Flow-pattern map showing the results of
the different simulations. Filled symbols indicate situations where
decay of the concentration variance occurs. Part of the boundary
between the regime of variance decay and coarsening arrest has been
filled in. Circles: FDCH3D-long; crosses: FDCH3D-short; squares:
FDCH2D-long; stars: FDCH2D-short; diamonds: 2DLA.
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FIG. 3. (Color online) Snapshot results for FDCH3D-long. Shown are isovolume plots based on φ = (C + 1)/2. Top row: D = 10−5, with
t = 1,4,8 reading from left to right; middle row: D = 10−3, with t = 1,4,8 reading from left to right; bottom row: D = 10−1, with t = 1,2,4
reading from left to right.

for the FDCH-short simulations (recall, τcorr = Nτ ). For the
2DLA code, a range of flow correlation times is possible,
relevant values of which are alluded to in the text. Also in the
2DLA simulations, a lattice method is used, such that the time
step can be set equal to the flow quasi-period (as discussed in
Sec. II). For all other simulations the time step is �t = 10−4 or
�t = 10−5 depending on the requirements for the numerical
method to converge.

A brief review of the results in Table I reveals that
coarsening arrest occurs in all simulations. For certain cases
drawn from the simulation runs 2DLA, FDCH2D-long and
FDCH3D-long, the variance σ (t) = 〈C2〉1/2 decays exponen-
tially (Fig. 2).

The full details are presented in the subsections below.
The focus in subsections A, B is on the results of the study
of passive chaotic shear-driven phase separation, reported in
three dimensions. However, these results echo the findings
of previous studies in two dimensions. Therefore, a key
point of departure is subsection C wherein the differences
between the 2D and 3D cases are made manifest in the

probability distribution function of the concentration field in
the hyperdiffusive regime.

A. Characterization of the different regimes

Snapshots of the concentration for the case FDCH3D-long
are shown in Fig. 3. For D = 10−5, the concentration field
is well mixed and the domain structure is not discernible. For
D = 10−1 a clear domain structure emerges, albeit that the
shape of the domains is modified by the flow. The case with
D = 10−3 is intermediate between these extremes.

The variance σ 2(t) as a function of D is examined in
Fig. 4(a). For D � 10−4 the variance decays exponentially
in time, at a D-dependent rate. For D � 10−2 the variance
grows rapidly and then saturates at a value close to unity.
The case D = 10−3 is intermediate: the fate of the variance
is saturation, but this is a slow process, and the saturated
value is much less than unity. Also, if the variance saturates,
it can be used to measure the typical size of the binary-fluid
domains, through the formula � ∝ (1 − σ 2)−1 [Ref. [5] and
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FIG. 4. (Color online) Results from the simulation FDCH3D-
long: (a) the concentration variance; (b) the length scale � ∝ 1/(1 −
σ 2), shown as a function of time for various values of the inverse
Péclet number D. The saturation of � at late times reveals itself more
convincingly in a plot wherein a linear scale is used on both axes. This
can be seen (albeit indirectly) by comparing (a) and (b): the variance
clearly saturates for D = 10−3,10−2,10−1 in (a) (linear scales) and
hence it can be concluded that 1/(1 − σ 2) saturates for the same
values of D in (b).

Fig. 4(b)]. ForD � 10−3, the length scale grows initially as t1/3

according to the LS growth law, until the onset of coarsening
arrest induced by the shear flow. A similar picture emerges for
the other simulations in Table I, albeit that only in the cases
FDCH3D-long, FDCH2D-long and 2DLA is genuine variance
decay observed (in the other simulations the variance saturates
at a very low level). The correlation time of the chaotic flow
therefore seems to play a crucial role in the outcome of phase
separation. To summarize, three regimes can be distinguished:

(i) For small values of diffusivity (D � 10−4), the con-
centration variance decays exponentially, thereby leading to a
well-mixed state without any discernible structure [Fig. 3(c)].
This hyperdiffusive regime has already been observed numer-
ically in the presence of forced hydrodynamic turbulence,
in the limit of high forcing amplitude [5]. It was earlier
proposed analytically, in the same context [25], wherein it was
suggested that a strong enough turbulence level might cause
the system to become well mixed through an enhancement of
eddy diffusivity.

(ii) For high values of diffusivity (D � 10−2), the charac-
teristic length scale of the flow initially grows according to the
LS law, then eventually saturates at a finite value, reflecting a
clear domain structure [see Fig. 3(i)]. This coarsening arrest
was first discussed by Ref. [8], and first evidenced numerically
in Ref. [2] for a chaotic flow. It was then observed and
quantified in numerous works, in the presence of shear [3,4]
or turbulent [5,7] flows.

(iii) For intermediate values of diffusivity (D ≈ 10−3), the
concentration variance saturates more slowly, at a value much
smaller than in case (ii) [Fig. 3(f)].

To place these results in a more quantitative context, a
comparative study based on all simulation results in Table I is
performed. The saturated value of (1 − σ 2)−1 (where it exists)
is plotted for the various simulations (Fig. 5). The quantity of
data available for this particular plot is relatively meagre for
the non-lattice-based simulations. However, for 2DLA a large
quantity of data is available. All of the evidence suggests a
dependence � ∝ (D/�)0.28 for the arrested length scale, both
in two and three dimensions.
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ln(D/Λ)
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FDCH3D−Long
FDCH2D−Long
FDCH2D−Short
2DLA
(D/Λ)0.28

FIG. 5. (Color online) The time-average of (1 − σ 2)−1 corre-
sponding to coarsening arrest.

The coarsening arrest can be explained as a dynamic
balance between the advection term u · ∇C with typical
magnitude � and the phase-separation term D∇2(C3 − C −
Cn∇2C), with typical magnitude C1/2

n D/�3 (Ref. [19]), leading
to a balance � ∼ (D/�)1/3 [3,5]. The measured exponent
(common to all simulations in both two and three dimensions)
is 0.28 and is therefore close to the theoretical value. In
Ref. [5] scaling exponents between 0.28 and 0.29 are reported
for flow fields completely distinct from the configuration in
Eqs. (8) and (9), thereby highlighting the applicability of the
universal theory for which the exponent is precisely 1/3. The
deviation from the theoretical exponent of 1/3 may arise due
to the presence of additional length scales in the flow-driven
simulations (e.g., hyperdiffusive length scale, velocity-field
correlation, etc.).

B. Onset of the diffusive regime: interpretation
in terms of Batchelor length scales

The chosen measure of length scale loses its relevance
when the variance decays, coinciding with a regime wherein
hyperdiffusion is important in its own right, thereby leading
to a collection of disparate scales that enter the balance
between advection and the other terms in Eq. (2). For this
reason, consideration is given also to the Batchelor length
scales k2 = (‖∇C‖2

2/‖C‖2
2)1/2 and k4 = (‖∇2C‖2

2/‖C‖2
2)1/4

time averaged over (quasisteady) late times. The results are
shown in Fig. 6. For the Batchelor scale k2, it is possible to
fit the curve k2 ∼ (D/�)−0.17 through all the data in Table I,
where the exponent is obtained by taking the average over all
the simulation families (average: −0.17, standard deviation
0.02). Similarly, for the scale k4 a clear trend is visible
among all the simulation families wherein the dependence
on (D/�) changes as one moves from coarsening arrest
to a more diffusive regime accompanied by a decay in the
concentration variance. The trend is clearest in the data-rich
2DLA simulation runs and for that reason, a power-law fit
for k4 is presented in that context only, with k4 ∼ (D/�)−0.09

for coarsening arrest and k4 ∼ (D/�)−0.16 for diffusion. Fits
for the other simulation cases yielded a similar result albeit
that some variation exists between each simulation family.
This is not surprising: there is a larger quantity of data in
the 2DLA simulations and the rapidity of the simulations
performed resulted in averages being taken over long intervals.
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FIG. 6. (Color online) The time average of the Batchelor scales
k2 (a) and k4 (b). Plot key: (circles) 2DLA; (squares) FDCH2D-
long; (diamonds) FDCH2D-short; (stars) FDCH3D-long. The case
FDCH3D-short is not shown because convergence to a statistically
steady state was not reached by t = 10.

Nevertheless, a clear similarity between all the simulation
runs is evidenced by Fig. 6. Again focusing on 2DLA, a
further simulation run was performed wherein it was found
that k2,4 ∼ C−0.34

n , thus, variations in the parameter Cn affect
the outcome of the phase separation.

These scaling results can be used to obtain a more quan-
titative criterion for the onset of variance decay. A variance
budget is derived by multiplying Eq. (2) by C and averaging
the result over the spatial domain [0,L]n:

1

2

dσ 2

dt
= −D〈(3C2 − 1)|∇C|2〉 − CnD〈|∇2C|2〉, (11)

where the second term of the right-hand side is negative
definite and represents dissipation; the first term is sign
indefinite and can correspond either to variance production
or dissipation. The focus herein is on the decaying case:
assuming a decaying concentration variance, quartic terms
on the right-hand side of Eq. (11) are neglected com-
pared to quadratic terms, yielding dσ 2/dt ≈ 2D〈|∇C|2〉 −
2CnD〈|∇2C|2〉, which is further approximated as

dσ 2

dt
≈ 2D

(
k2

2 − Cnk
4
4

)
σ 2, (12)

and the variance growth rate is estimated as ρ =
2D(k2

2 − Cnk
4
4), with σ 2 ∝ eρt . The remaining terms in

Eq. (12) are estimated using the scaling laws for the Batchelor
scales: k2 = c2(�/D)pC−r

n and k4 = c4(�/D)qC−r
n , where

c2 and c4 are O(1) positive constants independent of the
physical parameters. The onset of variance decay is there-
fore given by ρ = 0, hence k2

2 = Cnk
4
4. Using the scaling

rules for k2 and k4, this condition can be reexpressed as
�/D = (c4

4/c
2
2)1/(2p−4q)C(1−2r)/(2p−4q)

n . A momentary rever-
sion to dimensional physical parameters suggests that the
natural balance for the onset of hyperdiffusion is �/D ∝
C−1

n , further suggesting 2r − 1 = 2p − 4q. For the simulation
database given by 2DLA, we have 2p − 4q = 2(0.17) −
4(0.16) = −0.30 and 2r − 1 = −0.32. Allowing for some
spread between these measured exponents and the true values,
the theory can be regarded as self-consistent, and furthermore
demonstrates the manner in which each of the parameters
(�,D,Cn) affects the outcome of the phase separation. The
theory is also consistent with the scaling argument given
in Ref. [4] for the concentration spatial structure to contain
diffusive filaments rather than the droplets more characteristic
of phase separation, albeit that the decay of the concentration
variance was not observed in that earlier work owing to the
authors’ not having probed the full range of flow amplitudes
and diffusivities.

C. Probability distribution function of the concentration
in the hyperdiffusive regime

The difference between the two- and three-dimensional
cases is clearest in the hyperdiffusive regime. For this reason,
we examine the probability distribution function (PDF) of
the concentration, taken at late times, as a function of the
parameter D. Consideration is given to the cases FDCH3D-
long, FDCH2D-long, and 2DLA wherein genuine variance
decay observed. Each simulation family produces qualitatively
similar results: the PDF is unimodal and centered at the origin
in the hyperdiffusive regime, while for the coarsening-arrest
regime the distribution is bimodal, with phase separation
C = ±1 being favored (see, e.g., Ref. [4]). Between these
extremes there exists a crossover distribution that is unimodal
and centered at the origin but having a width that is much
larger than the earlier purely diffusive cases.

Further examination of the PDF for hyperdiffusive regimes
and at late times is presented in Fig. 7. The variable along the
horizontal axis is C/σ (t). The two-dimensional studies attain
a self-similar distribution during the course of the simulations,
such that the kurtosis defect of the distribution is constant on
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FIG. 7. (Color online) PDF of concentration for decaying cases: (a) a particular long-correlation-time realization of 2DLA, with τcorr = 0.5
and D = 2 × 10−3, (b) FDCH2D-long, D = 10−5, t ∈ [4,10]; (c) FDCH3D-long, D = 10−5, t ∈ [4,8]. The inset in each panel shows the
kurtosis defect (flatness) of the PDF as a function of time.

062127-7
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average [Figs. 7(a) and 7(b)]. The PDF possesses a Gaussian
core, followed by an exponentially decaying region just outside
the core. The tails of the PDF decay more slowly however,
corresponding to a very flat distribution and the large kurtosis
defect seen in the inset panels in Figs. 7(a) and 7(b). In
other words, the normalized PDF possesses fat tails whereby
extreme events are relatively common (compared to random
extreme events associated with Gaussian processes). Thus,
pockets of unmixed binary fluid where the variance is still
quite high are likely.

The simulation FDCH3D-long also demonstrates a statis-
tically steady Gaussian core followed by an exponentially
decaying region just outside the core [Fig. 7(c)]. The kurtosis
defect increases over the course of the simulation, meaning
that further flattening of the distribution is expected as time
goes by, indicating also that a completely statistically steady
state is not attained. Nevertheless, the core and exponentially
decaying regions of the distribution exhibit self-similarity out
to five standard deviations. From these results it is possible
to draw a contrast between the two- and three-dimensional
cases: in the two-dimensional case, a fully self-similar PDF
is attained relatively rapidly, characterized by an extremely
fat-tailed distribution. The tendency towards equilibrium is
slower in three dimensions and the distribution (while still far
from normal) has narrower tails.

Mathematically, this result makes sense, at least under
the supposition that the effects of the advection can be
parametrized at very late times by a linear theory involving an
effective-diffusion operator. Certainly, in the regime of interest
the amplitude of the concentration is maintained at small
values and linearized dynamics pertain. Although effective-
diffusion theory may not apply exactly (even accounting for
the presence of the Cahn-Hilliard hyperdiffusion term), such
an approach gives an insight into the effect of dimension-
ality. Thus, we use here a diffusive-type process to model
the late-stage linearized dynamics. The correlation function
Corr(r,t) = L−d

∫
[0,L]d ddx C(x + r)C(x) for such linearized

dynamics on a periodic domain is readily calculated, and
such calculations (along standard lines) reveal that Corr(r,t)
decays more rapidly in three dimensions rather than two
as |r| → ∞: correlations persist over longer scales in two
dimensions compared to three dimensions, leading to fatter
tails in the concentration PDF in two dimensions compared
to three dimensions [26]. More precise work along these lines
is a subject for future work (cf. Refs. [27,28] for pertinent
calculations going beyond effective-diffusion theories but
relating only to pure advection-diffusion processes). Indeed,
the stationarity of the normalized PDF is reminiscent of the
strange eigenmode for advection diffusion [29], wherein the
spatial distribution of the tracer concentration in a chaotic flow
(with correlation times comparable to the shear timescale)
becomes statistically self-similar, modulo the constraint that
the variance decays exponentially. In contrast to advection-
diffusion, however, the variance budget and the associated
heuristic arguments advanced herein indicate a nontrivial
dependence of the variance decay rate on the diffusivity.
These distinctions nevertheless open up the possibility that
a nontrivial extension of the spectral theory of advection
diffusion [27] might apply to the present (linearized) large-
flow-amplitude advective Cahn-Hilliard dynamics.

TABLE II. Simulations with anisotropic flow and the code
FDCH, with D = 10−2 and Cn = 10−4. For the 3D cases, Ax =
Ay = √

3/2 sin(π/12) and A2
z = 3 − A2

x − A2
y corresponding to a

larger flow amplitude in the z direction. For the 2D cases, Ax =√
2 sin(π/12) and A2

y = 2 − A2
x , corresponding to a larger flow

amplitude in the y direction.

Grid Size N τcorr = Nτ �t

2DAniso1, 3DAniso1 314n 100 1 10−4

2DAniso2, 3DAniso2 314n 1 0.01 10−4

IV. FLOW ANISOTROPY IN THE COARSENING
ARREST REGIME

The random-phase sine flow (8) is reparametrized such that
the flow amplitudes in the three spatial dimensions are possibly
distinct and equal to Ax , Ay , and Az [an analogous procedure is
carried out with respect to the two-dimensional random-phase
sine flow (9)]. The aim again is to compare and contrast the
phase separation in two and three dimensions. Four simulations
are performed, the details of which are summarized in Table II.
The results are analyzed in what follows. The 2D results are
discussed first. The Batchelor scales

kx,y(t) =
∑

k kx,y |Ck(t)|2∑
k |Ck(t)|2 , �x = 2π/kx, �y = 2π/ky

(13)

are obtained as a measure of the typical length scales in each
spatial direction, and indicate that for long correlation times,
the domains align rapidly in the direction of greatest flow
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FIG. 8. (Color online) Results for the simulation 2DAniso1
(N = 100). (a) Batchelor length scales as a function of time (the
inset is the same plot, only shown over a much longer time interval).
(b), (c) Snapshots of concentration: (b) just before saturation of �x ,
with t = 0.5 (c) after saturation of �x , with t = 5.
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FIG. 9. (Color online) Results for the simulation 2DAniso2
(N = 1).

amplitude (Fig. 8). In contrast, for short correlation times,
the domains align transiently in the direction of least flow
amplitude before slowly realigning in the opposite direction
such that the asymptotic state ends up the same regardless of
correlation time (Figs. 9 and 10).

Further simulations on larger domains (not shown) reveal
that the saturation is not due to finite-size effects, although
such effects do alter the time of saturation.

These results are explained as follows. In the case of long
correlation times, the transport is advective. Power counting
on the equation of motion gives 1/T = Ax/�x in the first half
period of the random-phase sine flow and 1/T = Ay/�y in
the second half period of the flow. The timescale is assumed
to be the same in each half period: the domains adjust to the
flow such that the time scale of the Cahn-Hilliard dynamics
can be equated with T in the above equations, giving Ax/�x =
Ay/�y , hence �y/�x = Ay/Ax , hence �y > �x . This prediction
agrees qualitatively with Figs. 8–10 (the latter at late time),
although the precise quantitative agreement is absent. This
is not surprising, as the estimates for the timescale in the
above equations are only heuristic: better estimates might be
obtained by the kind of Lagrangian calculations performed at

the beginning of Sec. III for the computation of the (isotropic)
Lyapunov exponent �.

In the case of short correlation times, the constant ren-
ovation of the phases disrupts the coherence of the ad-
vective transport, meaning the effect of the flow is more
diffusive in nature [30]. Additionally, at short times, the
amplitude of the concentration field is small, meaning that
a linearized dynamics is appropriate, wherein the advective
term is parametrized by an effective diffusivity, with ∂t 〈〈C〉〉 =
∂i(Deff,ij ∂j 〈〈C〉〉) − D∇2〈〈C〉〉 − DCn∇4〈〈C〉〉, where 〈〈C〉〉 de-
notes the homogenized concentration field in the regime of
the linearized dynamics, and where Deff,ij is the effective
diffusivity tensor. Due to the choice Ay > Ax in the flow field,
in a first approximation we take Deff,ij = Deffδi2δj2, to give

∂

∂t
〈〈C〉〉 = Deff

∂2

∂y2
〈〈C〉〉 − D∇2〈〈C〉〉 − CnD∇4〈〈C〉〉, (14)

for which the dispersion relation is

ν(kx,ky) = D
(
k2
x + k2

y

) − CnD
(
k2
x + k2

y

)2 − Deffk
2
y, (15)

with a maximum along the x axis. Thus, the modes selected
by the transient linearized dynamics are oriented strictly along
the x direction. This description agrees qualitatively with the
picture of the early-time dynamics in Fig. 10: here, the early-
time dynamics of the domain formation are frozen in to the
concentration field at early times up to t = 5 (such that the
domains align in the x direction), until the nonlinear dynamics
take over and lead to the eventual alignment of the domains in
the y direction.

The validity of this description has been confirmed by
a number of numerical experiments: we first of all carried
out a numerical simulation similar to 2DAniso2, but with
the nonlinear term C3 in the chemical potential set to zero
(i.e., linearized dynamics for all time). In this scenario, the
domains (to the extent that such structures exist within the
linearized dynamics) align in the x direction for all time. A
second experiment was performed identical to 2DAniso2 but
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FIG. 10. (Color online) Results for the simulation 2DAniso2 (N = 1), with t = 5,10,15,20,25 [reading from (a) to (e)].
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FIG. 11. (Color online) Typical length scales �x = 2π/kx , �y =
2π/ky and �z = 2π/kz corresponding to the simulations 3DAniso1
and 3DAniso2 respectively. (a) N = 100; (b) N = 1.

with highly nonlinear initial conditions (a disk-shaped domain
of C = 1 in a sea of C = −1). In this scenario, the domain
is stretched in the y direction from the very beginning of
the simulation: no alignment (no matter how brief) in the x

direction is seen, confirming the importance of the linearized
dynamics in the creation of transient structures aligned in the
x direction.

These results are consistent with our knowledge of phase
separation in passive shear flows [3,31]. There, consideration is
given to unidirectional shear flow in two dimensions (Ref. [31]
also contains some discussion about the three-dimensional
case), with v(x) = Sy x̂, where S is the shear rate. Simple
power counting on the equation of motion gives �x = St�y

in two dimensions, meaning that the system coarsens more
rapidly in the flow direction. Clearly, the present application
does not correspond exactly to unidirectional shear flow but
the analogy persists: the domains in the present application
align in the direction of greatest flow amplitude, as opposed to
the direction of the velocity gradient. Of concern in the work
on unidirectional shear flows in two dimensions is the ultimate
fate of a binary fluid under passive unidirectional shear flow
[3,31]. These works reveal that �x ∼ t and �y ∼ Const. as
t → ∞ (i.e., no quasisteady state exists). Obviously, this
particular aspect is distinct from the present work, wherein the
chaoticity of the flow arrests the coarsening (the coarsening
arrest in Figs. 8 and 10 is confirmed to be independent of
finite-size effects, in the sense that such arrest also occurs on
domains of much larger size for which limt→∞(�x,�y)  L,
where L denotes the box size in the simulation).

In three dimensions, for long correlation times, the picture
is similar to the one in two dimensions: rapid alignment
of the domains in the direction of greatest flow amplitude
[Fig. 11(a)], and eventual saturation of the domain size.

For the case of short correlation times [Fig. 11(b)], asymp-
totic switching of the domain alignment occurs by t ≈ 4:
for t � 4 we have �x ≈ �y and �z < (�x,�y), while for t � 4
the trend reverses, with �x ≈ �y persisting, but �z > (�x,�y).
This trend is obscured by t ≈ 8 where analysis breaks down.
However, by this point, finite-size effects spoil the scaling
laws, since �x,�y,�z are all comparable to half the box size.
The initial phase of the evolution up to t ≈ 4 can be explained
again with respect to Eq. (15), which now reads

ν(k⊥,kz) = D
(
k2

⊥ + k2
z

) − CnD
(
k2

⊥ + k2
z

)2 − Deffk
2
z ,

k⊥ = (kx,ky). (16)

From Eq. (16) it therefore follows that any mode k = (k⊥,0)
will be favored by the linearized dynamics, meaning that
dominant growth of the domains in the x and y directions is
equally likely. Thus, the dynamical model constructed in the
two-dimensional case for the short correlation times persists
in the 3D case also, albeit that an extra degree of freedom
pertains, such that domain alignment in the x and y directions
is equally likely in three dimensions.

V. CONCLUSIONS

Summarizing, we have performed a unified and detailed
analysis of the phase separation in the presence of chaotic shear
flow, for different values of the diffusivity and of the correlation
time, in two and three dimensions. It is shown that the correla-
tion time of the random-phase sine flow (itself a simple model
of turbulence) can be used to tune the outcome of phase sep-
aration: for long correlation times, large flow amplitudes and
sufficiently small diffusivities not only is the phase separation
arrested and a filamentary concentration field produced, but
the concentration variance decays exponentially, reminiscent
of advection diffusion. Flow time scales therefore play an
important role, and not just flow amplitudes and length scales.
In earlier studies (e.g., Ref. [5]), results were presented as a
function of these latter parameters, but the simulations were
carried out with a dynamical model of flow (Navier-Stokes
equations). As a consequence, the correlation times obeyed
the dynamics and might also vary from one case to the other.

The onset of the hyperdiffusive regime (itself characterized
by a decay of the concentration variance) is interpreted herein
in terms of Batchelor length scales, a theory shown to be
self-consistent. In the hyperdiffusive regime, the importance of
dimensionality is illustrated by investigating the concentration
PDF in the ultimate state of phase separation: the tail of the dis-
tribution is fatter in two dimensions compared to three. This has
been explained by analogy with a theory of effective diffusion:
the Green’s function for such an operator decays more slowly
in two dimensions compared to three, leading to a concentra-
tion distribution with fat tails in two dimensions. Nevertheless,
we have very carefully outlined the two criteria that are strictly
necessary for such an effective theory to hold: namely, the sup-
pression and ultimate decay of the concentration variance, and
a velocity field that varies on either short temporal or spatial
scales [30]. In this precise limit, the effects of the flow can be
thought of as equivalent to those of an effective diffusion, while
in all other cases, this analogy is only loose (and fails com-
pletely when the nonlinear dynamics takes over, i.e., in cases
when the concentration variance is no longer suppressed).

Turning to anisotropic flows, we have found that the correla-
tion time and the diffusivity can again be used as switches, this
time to tune the direction in which the binary-fluid domains
align. It will be useful to investigate the universality of these
results with respect to active Cahn-Hilliard fluids forced in a
turbulent manner according to various protocols in two and
three dimensions.
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APPENDIX: BENCHMARK TESTS OF THE NUMERICAL
METHOD FDCH

In this section the Cahn-Hilliard equation without flow is
solved numerically, using the FDCH, in three distinct contexts.
The aim is not only to validate the FDCH numerical method
described in Sec. II, but also to describe more generally
three benchmark problems that can be used to stress test any
numerical method for the Cahn-Hilliard equation.

1. Linear stability analysis

The FDCH code is configured as a one-dimensional model,
and the initial condition C(x,t = 0) = ε cos[n(2π/L)x] is
prescribed, where the size of the domain in the x direction
is L = 1, where ε = 10−4, and where n is a positive integer.
The code is executed for a range of n values. For each n

value, a time series ‖C‖2(t) := [
∫

dx C(x,t)2]
1/2

is obtained.
The L2 norm ‖C‖2(t) is seen to grow exponentially at the
growth rate ν[k = n(2π/L)], consistent with the linear theory
in Eq. (3). A comparison between the linear theory and the
numerical growth rates is shown in Fig. 12, and excellent
agreement is obtained. The agreement between the theory and
the model is due not only to the fidelity of the FDCH algorithm
to the underlying equation [Eq. (1)], but also due to the
well-resolved simulation in Fig. 12 where we have ensured that
�x  2π/kc = 2πγ 1/2 (otherwise there would be additional
discrete effects due to the numerical approximations of ∇2 via
finite differences).

2. Weakly nonlinear analysis

The linear theory exemplified by Eq. (3) represents a
dramatic simplification of the original problem (1), and is
obviously limited in its applicability to short times where
the quantity ‖C‖2 remains small, such that nonlinear terms
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FIG. 12. (Color online) Comparison between linear theory and
direct numerical simulation. Model parameters: D = 1 and γ =
5 × 10−4. Simulation parameters: �x = 1/304, �t = 10−6.

in Eq. (1) are negligible. However, (again in one spatial
dimension) the applicability of the theory can be extended
in a barely supercritical regime wherein only a single unstable
mode fits inside the periodic domain [0,L]. Parameters
appropriate for this regime are L = 1 and γ = 1/8π2. The
most dangerous mode therefore occurs at k1 = 2π/L and the
cutoff is at kc = √

2k1, with k1 < kc < 2k1, such that precisely
one unstable mode fits inside the box.

The complete solution of Eq. (1) is expanded as a Fourier
series,

C(x,t) =
∞∑

n=−∞
An(t)eiknx, kn = (2π/L)n, A−n = A∗

n,

(A1)

with A0 = 0 for symmetric mixtures. The solution (A1) is
substituted into Eq. (1). One obtains the following amplitude
equations:

dAn

dt
= ν(kn)An − Dk2

n

∞∑
p=−∞

∞∑
q=−∞

ApAqAn−p−q . (A2)

For a barely supercritical system, the fundamental mode
(n = ±1) has a positive linear growth rate, while all other
modes have a negative linear growth rate. Initially therefore,
the fundamental dominates the evolution. Overtones will only
be relevant if they couple to the fundamental. We therefore
simplify Eq. (A2) by considering the dominant modes. These
will be the fundamental and a handful of overtones. In view
of the cubic nature of the nonlinearity (and neglecting the
roundoff error that is present in an actual simulation), an
initial condition containing only the fundamental mode will
evolve into a disturbance containing only odd multiples of
the fundamental. We therefore reduce the equations down
to a triple by considering the fundamental and the n = 3,5
overtones, and by neglecting all other modes. A further
simplification occurs in the overtone equations, wherein one
considers the most-dominant interaction terms only; i.e., those
that involve powers of A1. Thus, we arrive at the following set
of equations

dA1

dt
= ν(k1)A1 − Dk2

1A1(6|A5|2 + 6|A3|2 + 3|A1|2)

− 3Dk2
1A3(A3A

∗
5 + A∗

1A
∗
1) − 6Dk2

1A
∗
1A

∗
3A5,

(A3a)

dA3

dt
= ν(k3)A3 − Dk2

3A
3
1, (A3b)

dA5

dt
= ν(k5)A5 − 3Dk2

5A
2
1A3. (A3c)

The slow-manifold approximation is made [30], whereby the
left-hand side of the overtone equations is set to zero, giving

A3 = 9Dk2
1

ν(k3)
A3

1, A5 = 675D2k4
1

ν(k3)ν(k5)
A5

1. (A4)

Of crucial relevance here is the fact that An ∝ An
1 valid at

least for n = 3,5. This is a particular case of the celebrated
Stuart-Landau theory [32]. The Stuart-Landau law (A4) is
substituted back into Eq. (A3a). One obtains a nonlinear
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FIG. 13. (Color online) Comparison between weakly linear the-
ory and direct numerical simulation. Model parameters: D = 1, L =
1, and γ = 1/8π 2. Simulation parameters: �x = 1/304, �t = 10−8.
The simulation results are shown in thick lines: solid line: |A1|,
dotted line: |A3|, dashed line: |A5|. The predictions from weakly
nonlinear theory are shown in thin lines with symbols. Squares and
circles: predictions based on Eq. (A4) for |A3| and |A5| respectively.
Diamonds: prediction based on Eq. (A5) for |A1|. The main figure is
presented again in the inset using a log-log scale to show the initial
layer of the dynamics before the onset of slaving.

evolution equation for the fundamental:

dA1

dt
= ν(k1)A1 − Dk2

1A1P (|A1|2), (A5)

where P (·) is a fifth-order polynomial. For the relevant case
γ = 1/8π2, the coefficients of P (x) are readily computed
explicitly as rational numbers (e.g., using a symbolic algebra
package), and again using a symbolic algebra package, it
is readily shown that P (x) � 0; hence, the nonlinearity in
Eq. (A5) is saturating.

The foregoing theory was compared to the results of a direct
numerical simulation seeded with the initial condition

Cinit = ε cos(k1x), ε = 10−4. (A6)

A spectral analysis of the numerical solution was obtained
and the results plotted in Fig. 13. An additional log-log plot
shown in the inset of the same figure reveals the presence
of odd-numbered harmonics even at t = 0. This is due to
roundoff error in the simulation (the simulations used the IEEE
double precision format). A combination of roundoff error and
numerical error also leads to the presence of some transient
noise in the amplitude |A5|. However, these effects are rapidly
dissipated, such that the eventual outcome of the simulation
demonstrates excellent agreement between the theory based
on Eq. (A3) and the FDCH code.
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FIG. 14. (Color online) Results for a simulation on a 5053 grid
with �t = 10−5. Time dependence of k1, with fitted power-law
exponent 0.324 close to the theoretical Lifshitz-Slyozov exponent
1/3.

3. Lifshitz-Slyozov scaling law

A final benchmark case concerns the simulation of phase
separation without flow in three dimensions. The Cahn-
Hilliard equation (1) was simulated using the FDCH on a unit
cube with periodic boundary conditions in each dimension.
The initial condition was random, with Cinit(x) assigned a
different random value (drawn from the uniform distribution)
in the range [−0.1,0.1] at each point x. Three distinct spatial
resolutions were investigated: 3133 (low), 5053 (medium),
and 7073 (high). The high-resolution case corresponds to
a simulation with over 300 × 106 grid points. The model
parameters are D = L = 1 and γ = 10−5, corresponding to a
broad spectrum of linearly unstable modes. A time step �t =
10−5 was used in each case. Snapshots of the three-dimensional
concentration field at various times (not shown) exhibit clearly
the phenomenon of domain coarsening. We have measured
the typical domain size as � = 1/k1, where k1 is a typical
wave number obtained from structure-function calculations.
Calculations based on � ∝ (1 − 〈C2〉)−1 yielded very similar
results. A sample result of the foregoing analysis is presented
in Fig. 14: the results were found to be the same for the small,
medium, and large runs. Moreover, a further run with the small
spatial resolution wherein the time step was halved also gave
the same results. Thus, it suffices to present a representative
sample result, and the scaling law for the medium-scale run is
therefore presented in the figure. Based on Fig. 14, a power
law � ∼ t0.324 is fitted to the data, close to the predicted scaling
behavior � ∼ t1/3, based on Lifshitz-Slyozov theory. Thus, we
are satisfied not only with the correctness of the code, but also
with the similarity of the coarsening dynamics (without flow)
in two and three dimensions.
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