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Abstract
We analyse the partition function of the Ising model on graphs of two different
types: complete graphs, wherein all nodes are mutually linked and annealed
scale-free networks for which the degree distribution decays as P(k)∼k−λ. We
are interested in zeros of the partition function in the cases of complex temp-
erature or complex external field (Fisher and Lee–Yang zeros respectively). For
the model on an annealed scale-free network, we find an integral representation
for the partition function which, in the case λ>5, reproduces the zeros for the
Ising model on a complete graph. For 3<λ<5 we derive the λ-dependent
angle at which the Fisher zeros impact onto the real temperature axis. This, in
turn, gives access to the λ-dependent universal values of the critical exponents
and critical amplitudes ratios. Our analysis of the Lee–Yang zeros reveals a
difference in their behaviour for the Ising model on a complete graph and on an
annealed scale-free network when 3<λ<5. Whereas in the former case the
zeros are purely imaginary, they have a non zero real part in latter case, so that
the celebrated Lee–Yang circle theorem is violated.

Keywords: partition function zeros, phase transitions, Ising model, complex
networks
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(Some figures may appear in colour only in the online journal)

1. Introduction

Since the pioneering works of Lee and Yang [1], as well as Fisher [2], analysis of partition
function zeros in the complex plane has become a standard tool to study properties of phase
transitions in various systems [3], lattice spin models being one of them.

The Lee–Yang zeros are calculated at (real) temperature (T) in the complex magnetic
field (H) plane whereas Fisher zeros (usually studied in the absence of a magnetic field) are
located in the complex temperature plane. In the thermodynamic limit when the system size N
approaches infinity, the Lee–Yang and Fisher zeros form curves on the complex (H or T)
plane. By analysing the location and scaling of these zeros, an alternative description of
critical phenomena is achieved involving angles formed by these curves [4–8]. In this way the
angles may be considered to be conjugate to the set of critical exponents and critical
amplitudes ratios. Of special interest are the finite-size scaling (FSS) properties of zeros,
which also encode universal features of underlying phase transitions [5].

Besides being of fundamental interest, and being useful for theory, the zeroes attract
attention due to their experimental observation too. The first step to connect zeros to
experimental data was made in [9]. The density of zeros on the Lee–Yang circle was
determined by analysing isothermal magnetization data of the Ising ferromagnets. Recently
Peng et al pointed out to possible relation between imaginary magnetic fields and quantum
coherence of probe spin in a bath [10, 11]. In turn, the experimentally obtained times at which
quantum coherence disappears are equivalent to imaginary Lee–Yang zeros. Such demon-
stration of experimental realization of Lee–Yang zeros is important at a fundamental level and
points to new ways of studying zeros in complex, many-bodied materials. E.g., the approach
could help in the study of real systems in which the zeros can’t easily be calculated giving
access to new quantum phenomena that would otherwise remain hidden if one were to restrict
attention to real, physical parameters. The experiments also confirm a profound connection
between a static entity (the complex magnetic field in thermodynamics) and dynamical
properties of quantum systems, namely coherence.

The aim of our paper is to analyse partition function zeros for a spin model on a complex
network [12]. In particular, we are interested in a scale-free network with power-law decay of
a node degree distribution P(K)∼K−λ, where P(K) is the probability that network node has
degree K. Such networks attract much attention due to their applications in descriptions of
numerous natural and man-made systems, see e.g. [12, 13]. It is by now well established that
models on such networks have qualitatively similar critical behaviour to those on systems
defined on regular d-dimensional lattices. In particular, the exponent λ determines collective
behaviour and plays a role similar to that of the space dimension d for lattice systems; there
are lower and upper critical values of λ for networks, analogous to lower and upper critical
dimensions for lattices. At the upper critical values λ=λuc and d=duc, scaling behaviour is
modified by multiplicative logarithmic corrections, while above them, critical exponents
assume their standard mean-field values. The above analogy has limitations; e.g., for d dlc
lattice systems remain disordered at any finite temperature T whereas systems on networks are
always ordered at lcl l . But the feature we want to emphasize by this comparison and
which will be central for the analysis presented below is that d and λ play the role of global
variables determining universal properties of critical behaviour. Therefore the parameter λ,
like the dimensionality of a regular lattice, governs the universality of thermodynamic
properties near the critical point along with the field symmetries and range of interactions. So,
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in the absence of a space dimensionality, λ controls the transition. For the Ising model,
λlc=3, λuc=5 while dlc=1 and duc=4.

Here we consider the so-called annealed network (see e.g. [14]). For a spin model on
such a network, the network configuration is fluctuating together with spins, which leads to
the partition function configurational averaging [15]. In turn, this allows one to attain an
asymptotically exact description of many spin models, placed on such a type of network [16].
The annealed network approximation gives the correct critical behaviour of the Ising model
(and many others models [17]) on uncorrelated random complex networks. However, this
approximation does not work when the network is close to the percolation point. In this
description, the partition function is represented in the form of the model on a complete
graph with random separable interactions [14]. Therefore, in our analysis we start from the
Ising model on a complete graph [18, 19], considering properties of its partition function
zeros in the complex H and T planes and then we will generalize this analysis for the case of
an annealed scale-free network. The remainder of this paper is organized as follows. In
section 2 we briefly introduce the main relations which follow from the properties of partition
function zeros and fix the notations. Section 3 delivers the analysis of the Fisher and Lee–
Yang zeros of the Ising model on a complete graph. Following [18] we represent the partition
function in integral form, extracting the number of particles into the variable of integration
and complex reduced temperature or magnetic field. In section 4 we obtain the results for both
types of zeros for the Ising model on an annealed scale-free network with a power-law decay
of the node degree distribution characterized by λ. We collect some details of our calculations
in the appendices. Certain results of the section 4.3 have been previously announced in a
Letter [20].

2. Definitions and notations

In this section, we fix the notation and recall the derivation of scaling relations required for
the rest of the paper. We wish to consider the partition function either at the critical temp-
erature T=Tc in the complex magnetic field or at H=0 in complex temperature. To
investigate the former, we write H=Re H+i Im H and determine the Lee–Yang zeros
H=Hj of Z(Tc, H) by searching numerically for the intersection in the complex magnetic-
field plane of the curves Re Z(Tc, H)=0 and Im Z(Tc, H)=0.

For our considerations in the complex temperature plane we write T=Re T+i
Im T=Tc(1+ t), where Tc is the (real) critical temperature in zero field and t=ρeiΦ

(t= (T− Tc)/Tc) parametrizes position in the complex plane relative to Tc [21]. To determine
the Fisher zeros, we search for intersections of Re Z(T,0)=0 and Im Z(T,0)=0. These
Fisher zeros accumulate in the vicinity of the critical point Tc along a line and tend to pinch
the positive real axis with the angle Φ (t → 0)=j[4, 8, 21]. Consider the locus of Fisher
zeros in the complex temperature plane depicted in figure 1. Fisher zeros are represented as
light discs (blue online), the black one being the critical point position. The critical temp-
erature is real, so the critical point is located on the real axis. Applying a real magnetic field to
the system, we observe that Fisher zeros move in the complex T plane along a curve which
defines an angle ψ with the positive real axis [5].

A useful relation connects the impact angle j with the exponent α of the specific heat
and with the specific heat universal amplitude ratio A−/A+, where A+, A− are scaling
amplitudes at t>0, t<0 respectively. On the real axis in the thermodynamic limit, the
singular part of the free energy in the vicinity of critical point in the absence of magnetic field
can be written as f F t 2 a


- . In the high-temperature phase given by t>0, this is
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f;F+t
2−α. In the low-temperature phase for which t<0 it is f;F−(−t)2−α. In the

complex plane, the free energy is analytic everywhere except along the lines of zeros of the
partition function. That line separates the two regions (high and low temperatures) in figure 1.
By analytic continuation from the high temperature real axis, the region on the right of the
line of zeros (the ‘high temperature phase’) has

f t F fe , 0 . 1i 2 reg( ) ( ) ( )r p j+ F < -a
+ +

F -
+

On the other hand, continuing the region to the left of the line of zeros (the low temperature
phase), one has

f t F fe , . 2i 2 reg( ) ( ) ( )r p j p- + - < Fa
- -

F -
-

At the transition along the line of Fisher zeros, Φ=π−j, the real parts of the free energies
of both phases are equal [4, 5]. Substituting Φ=π−j into (1), (2) and using the fact that
F−/F+=A−/A+ we arrive at the formula [5, 7, 8]:

A A
tan 2

cos

sin
. 3[( ) ] ( )

( )
( )a j

pa
pa

- =
- - +

The scaling of the zeros follows from general arguments. Replacing the volume Ld of a
regular lattice by the number of sites N on a graph the partition function in terms of complex
reduced temperature t and magnetic field H, Z(t, H), can be written as a generalized homo-
genous function [5]:

Z t H Z tN HN, , . 41 2 2( ) ( ) ( )( ) ( )= a bd a- -

The partition function is an even function of H so that the previous scaling relation may be
written either as

H N f tN , 52 2 2 1 2( ) ( )( ) ( )=bd a a- -

Figure 1. The distribution of Fisher zeros in the complex T plane. The variable t=ρ
eiΦ labels complex temperatures with respect to Tc. The angle j is the impact angle of
the zeros with the negative sense of the real axis, so that Φ≈π−j for the first few
zeros which are indicated by light discs (blue online). The angle ψ describes the motion
of the Fisher zeros in presence of a real magnetic field. The motion of the first zero with
increasing H is indicated by the circles.
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or as

tN g HN . 61 2 2( ) ( )( ) ( )=a bd a- -

At H=0 equation (6) gives the scaling of Fisher zeros:

t N g 0 , 7j j
1 2 ( ) ( )( )= a- -

where gj(0) is in general a complex number. Extending to scaling with the label index j [5]
we generalize from (5) and (6) to the Lee–Yang and Fisher zeros scaling as

H N t
j

N
, 0 , 8j

2

( ) ( )= ~
bd
a-

⎜ ⎟⎛
⎝

⎞
⎠

t N H
j

N
, 0 . 9j

1
2

( ) ( )= ~
a-

⎜ ⎟⎛
⎝

⎞
⎠

Setting t=0 in (5) leads for the Lee–Yang zeros to [5]:

H N f 0 . 10j j
2 2 2 ( ) ( )( )= bd a- -

In general, fj(0) is a complex number. However, for models that obey the Lee–Yang theorem
(all zeros are purely imaginary Hj∼ i ImHj [1]) fj(0) is a negative real number. Using this
property one can derive from the scaling properties of the partition function [5] an angle ψ of
motion of Fisher zeros in real magnetic field. At fixed t and for N  ¥, the variable Hj tends
to the Lee–Yang edge, hence, substituting N−1/(2 − α) from (7) into (10) we parametrize:

t H exp i , 11j j
1 ( ) ( )( ) y~ bd

to obtain [5]

2
. 12( )y

p
bd

=

3. Ising model on a complete graph

In this section we consider the infinite-range version of the Ising model which is equivalent to
the mean-field version of its lattice counterpart [22, 23]. It can be also regarded as an Ising
model on the complete graph, where each node of the graph is connected to every other node
making all interspin couplings equal to each other. The analysis of the complex partition
function zeros of this model which we present in this section serves two purposes. On the one
hand, we complement the results of [18], obtained for Fisher zeros, by calculating the motion
of these zeros in a real magnetic field and we use similar methodology to analyse Lee–Yang
zeros. The Lee–Yang zeros for the exact partition function for the Ising model on a complete
graph have been analysed previously [19], here we obtain the result for the expanded partition
function and calculate coordinates of the Lee–Yang zeros in terms of the reduced variable,
extracting dependency on the system size. On the other hand, we introduce the method which
will be used in section 4 for a similar analysis of zeros for the model on an annealed network.
The Hamiltonian of the model reads

N
S S H S

1

2
. 13

l m
l m

l
l ( ) å å- = +

¹

Here, indices l, m label the nodes of the graph so that (l, m)=1, ..., N; Sl=±1 are the Ising
spins; H is an external magnetic field and the sum l må ¹ spans all pairs of nodes (not
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necessarily the nearest neighbours). The coupling between the spins is taken to be inversely
proportional to the number of nodes, to make the model meaningful in the thermodynamic
limit N  ¥. One can obtain an integral representation for the partition function of the
model (13) by making use of the equality S N S Sl l l m l m

2( )å = + å ¹ to write for the N-
particle partition function

Z T H
N

S H S, Tr e e exp
2

, 14N
l

N

S l
l

l
l

1 1

2

l

2( ) ( ) ( )  å å å
b

b= = +b- -

= =

b ⎛
⎝⎜

⎞
⎠⎟

and then applying Hubbard–Stratonovich transformation to express the partition function in
the form where summation over Sl can be taken exactly:

Z T H

N Nx
S x H x

,

e
2

exp
2

d . 15

N

l

N

S m
m

1 1

2

l

2

( )

( ) ( )ò å å
b
p

b
b=

-
+ +-

= = -¥

+¥b ⎛
⎝⎜

⎞
⎠⎟

Performing the summation, one arrives at the integral representation for the partition function
of the Ising model on the complete graph:

Z T H
Nx

T
N x H T x, exp

2
ln cosh d , 16N

2
( ) [( ) ] ( )ò=

-
+ +

-¥

+¥ ⎛
⎝⎜

⎞
⎠⎟

where we have explicitly written the temperature T=β−1 dependency taking the Boltzmann
constant value kB=1. In (16) and in all other partition function integral representations
below, we omit the irrelevant prefactors.

In classical settings, to get thermodynamic functions, the integral (16) is taken by the
steepest descent method, see, e.g. [23]. In particular, the model undergoes a second order
phase transition at Tc=1 which is governed by the standard mean-field values of the critical
exponents:

0, 1 2, 3, 1. 17( )a b d g= = = =

For the sake of convenience it is appropriate to rewrite the partition function (16) in the
reduced temperature variable t=(T− Tc)/Tc=T−1. Changing the integration variable

N x T x one gets [18]:

Z t H
x t

N x N H t x, exp
1

2
ln cosh 1 d , 18N

2
( ) ( ) [ ( )] ( )ò=

- +
+ + +

-¥

+¥ ⎛
⎝⎜

⎞
⎠⎟

where the temperature dependent prefactor again has been omitted. Being primarily interested
in the properties of the partition function itself, we approximate (18) by its expansion at large
N and small H. Keeping the leading order contributions in the linear in H term, we expand the
exponent function for N  ¥ and get [18]:

Z t H
t x x

N

x N H

t
O N x, exp

2 12 1
1 d . 19N

exp
2 4

2( ) ( ) ( )ò=
-

- +
+

+
-¥

+¥ ⎛
⎝⎜

⎞
⎠⎟

In the remainder of this section we analyse the expressions for the exact and approxi-
mated partition functions of the Ising model on a complete graph, equations (18) and (19).

3.1. Fisher zeros for the Ising model on a complete graph at H=0

We start from the analysis of the exact integral representation for the partition function at zero
external field. First, we obtain the Fisher zeros by solving the system of equations Re Z(t,
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H)=0 and Im Z(t, H)=0 for the complex variables t=Re t+i Im t using function (18) at
H=0. In figure 2(a) we show the first five Fisher zeros in the t plane for increasing values of
N=50, 200, 2000. They collapse on a master curve and in the vicinity of the critical point,
impact onto the real axis, defining the angle j.

It is instructive also to observe the motion of the zeros if the temperature is parameterized
in a different way. Let us introduce the reduced inverse temperature:

T T T T1 1 1 1 1 , 20c c( ) ( ) ) ( )t = - = -

getting from (16) at H=0:

Z
Nx

N x xexp
1

2
ln cosh 1 d . 21N

2
( ) ( ) [( ) ] ( )òt

t
t=

- -
+ -

-¥

+¥ ⎛
⎝⎜

⎞
⎠⎟

The zeros of the function (21) in the complex τ plane are shown in figure 2(b). As one can see
from the figures, the zeros tend to form a smooth curve and accumulate in the vicinity of the
critical point (t= τ= 0), and with an increase of N they tend to pinch the real positive
temperature axis at the critical point. Using known values of the critical exponents and
amplitude ratios one can evaluate the value of the angle j under which the zeros pinch the
real axis. Substituting (17) into (3) and taking that the corresponding heat capacity amplitude
ratio A+/A−=0 one arrives at

4. 22( )j p=

This value in shown in the figure 2 by the solid line. The fact that the lines along which the
zeros tend to accumulate with increasing N make the same angle j both in the t and τ planes
illustrates the conformal invariance of this angle—angles are independent of any analytic
parametrization in the complex plane. However, the approach of the angle to its value in the
thermodynamic limit N  ¥ is parametrization dependent. Indeed, depending on
parametrization, the curves of figure 2 reach the asymptotics from below (panel (a)) or from
above (panel (b)). This is further outlined in figure 3, where we show how the values of the
angle j and of the critical temperature change with N. To this end, we calculate the first five

Figure 2. The first five Fisher zeros for the exact partition function (18) with different
values of N (a) in the complex t plane (t= T− 1) and (b) in the complex τ plane
τ=1−1/T. With increasing N, the zeros accumulate at the critical point, pinching
the real axis at t=τ=0. The solid line has an angle j=π/4 with the real axis.
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Fisher zeros for the system sizes ranging up to N=50 000, fit these points by a straight line
and find the values of the angle (taking P= j/ π so that equation (22) predicts P=0.25) and
of the crossing point of this line with the real axis. The larger the system size, the more
accurate the fit is (for N> 100 the accuracy interval is less than the size of the data point in
the figure). Starting from N=5000, j differs from its exact value (j= π/4) by less than 1%
while the critical temperature differs from the exact value at t=0 by less than 1% starting
from N=10 000.

Figures 2 and 3 quantify the main features of the behaviour of the Fisher zeros for the
exact partition function (16) in the complex temperature plane. Results for the impact angle j
and for the critical temperature obtained on their basis if compared with the exact results
demonstrate two tendencies: (i) they improve with an increase of N and (ii) the agreement is
better for smaller values of the index j.

We now turn our attention to the zeros of the approximated partition function (19) to
check how are these tendencies manifested in this case. For zero magnetic field, keeping only
the term leading in 1/N, the partition function (19) reads

Z t
x t x

N
xexp

2 12
d . 23N

exp
2 4

( ) ( )ò= - -
-¥

+¥ ⎛
⎝⎜

⎞
⎠⎟

The first five Fisher zeros for the approximated partition function (23) are shown in the
complex t plane in figure 4(a) for different values of N. Similarly as for the exact partition
function (see figure 2(a)), with an increase of N, the zeros accumulate in the vicinity of the
critical point and tend to pinch the real axis at the critical point. An obvious difference in the
behaviour of zeros for the exact and expanded partition functions is that in the last case the
angle of zeros accumulation is very robust and almost does not depend on N. The reason
becomes apparent when the function under the integral in (23) is rewritten as

Figure 3. Values of (a) the reduced impact angle P=j/ π and of (b) the critical
temperature for the exact partition function obtained by fitting of the first five Fisher
zeros for different N. Squares: results in the complex t plane; discs: results in the
complex τ plane; lines: exact results. The larger the system size, the more accurate is
the fit. For N>100 the accuracy interval is less than the size of the data point in the
figure.
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Z z z x x xexp d , 242 4( ) ( ) ( )ò= - -
-¥

+¥

where the N and temperature dependencies are combined in the single scaling variable z

z N t3 . 25( )=

Now it is easy to see that the connection between two sets of zeros tj(N1) and tj(N2) calculated
for two different system sizes N1 and N2 is given by a simple rescaling:
t N t N N Nj j1 2 1 2( ) ( )= . This, in turn, is manifested by the fact that zeros calculated for
different system sizes align along the same line in figure 4(a).

The same expression (23), written for different values of N expressed in terms of the τ

variable takes the form

Z
x x

N
xexp

2

1

12
d . 26N

exp
2 2 4 4

( ) ( ) ( ) ( )òt
t t t

= -
-

-
-

-¥

+¥ ⎛
⎝⎜

⎞
⎠⎟

Here, the τ dependence is nonlinear and the zeros are non-trivial functions of N. Indeed, the
first few are depicted in figure 4(b) where one finds behaviour rather similar to that
demonstrated in figure 2 for the exact partition function: sets of zeros calculated at different N
tend to form the common curved locus. However, evaluating (26) near the critical point for
small τ and keeping the leading order contributions in the linear term in τ, one arrives at the
expression for ZN

exp(τ) that coincides with the corresponding expression (19) for ZN
exp(t) in

which t is simply substituted by τ. In turn, at zero magnetic field and close to the critical point,
functions ZN

exp ( )t and Z tN
exp ( ) attain the same form given by equation (23). In particular, in

this approximation the ZN
exp ( )t function was considered in [18].

Zeros of the partition function (24) in the complex z plane are shown in figure 5. The
thick and thin curves (green and violet online) give numerical solutions of the equations ReZ
(z)=0 and Im Z(z)=0, respectively. The crossing points of the lines give coordinates of the
Fisher zeros. These have to align in the asymptotic limit N  ¥ along the line forming an
angle j=π/4 and starting at the critical point (the straight line in the figure). As it is clearly
seen within the scale of the figure, the higher the index of the zero, the closer it is to the line.
This tendency is further outlined in figure 6, which demonstrates the behaviour of the angle j

Figure 4. First five Fisher zeros for the approximated partition function for different
values of N (a) in the complex t plane (equation (23)) and (b) in the complex τ plane
(equation (26)). The solid line has an impact angle j=π/4.
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and of the estimates for critical value zc if they are obtained by fitting finite numbers of Fisher
zeros in the interval j j j,...,min max= to a straight line. Fits for high j-values give better results.
This tendency differs from the one observed above for the zeros in complex t and τ planes
(see figure 4) and is explained by the form of the scaling variable (25), which incorporates
now both the temperature and the system size dependencies.

The coordinates of the first nine Fisher zeros in the z plane as found numerically are listed
in the left column of table 1. As one observes from the table, as the zero-index j increases, its
real and imaginary part become closer, which corresponds to an approach of j to the value
j=π/4 (see also figure 5). The value of zj for high j can be evaluated asymptotically,
writing the partition function (24) via the special functions:

Figure 5. Loci of zeros for the real and imaginary parts of the approximated partition
function (24) are plotted as thick and thin curves respectively (green and violet dots
online). The points where the lines cross give the coordinates of the Fisher zeros. These
have to align along the straight solid line in the asymptotic limit.

Figure 6. Estimates (a) for the reduced impact angle P=j/ π and (b) for the critical
temperature zc for the partition function (24) obtained by fitting of Fisher zeros in the
interval j j j,...,min max= for jmax=10 and different values of jmin. The solid line in
panel(a) represents the exact value P=1/4.
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where K1/4(x) and D−1/2(x) are the Bessel and parabolic cylinder functions [24], respectively.
The leading term of the asymptotic expansion reads [18]:

z j O j2 2 exp 3 i 4 1 1 , 28j
1 2( ) ( )( ( )) ( )p p +

which in turn leads to the fact that z z jRe Im 4j j p= - = for high j. This asymptotic value
is shown for different j in the right column of table 1. Equation (28) has been obtained in [18]
for z 1j  . Since already for the first zero z 41  , the asymptotic formula gives quite
accurate values for the zeros for all j as one may see comparing the left and right columns of
the table. Starting from j=9 the numerically calculated values coincide with their asymptotic
counterparts within the accuracy presented.

3.2. Lee–Yang zeros for the Ising model on the complete graph at T=Tc

We now turn to the analysis of the partition function for complex magnetic field H at T=Tc.
The exact expression for the partition function (18) at t=τ=0 reads:

Z H
x

N x N H xexp
2

ln cosh d . 29N

2
( ) [ ] ( )ò= - + +

-¥

+¥ ⎛
⎝⎜

⎞
⎠⎟

On the other hand, keeping only contributions leading in N−1 in the expanded partition
function (19) one gets:

Z H
x

N
x N H xexp

12
d . 30N

exp
4

( ) ) ( )ò= - +
-¥

+¥ ⎛
⎝⎜

⎞
⎠⎟

It has been suggested [5] that at the critical point the partition function zeros scale as a
fraction of their total number j/N for large values of the index j. Moreover, many models give
scaling in the ratio (j−C)/N in which C=1/2 is an empirical fitting factor[25, 26].
Recently, a more comprehensive form for the scaling of the Lee–Yang zeros in the critical
region was suggested [27]. In our case it reads

Table 1. Fisher zeros for the partition function (24). The second column shows
our numerical results for the zeros given by j=1, ..., 9. In the third column they
are compared with the values given by the asymptotic formula (28). When digits in the
left and right columns coincide, they are underlined. Starting from j=9 the numeri-
cally calculated values coincide with their asymptotic counterparts within the accuracy
presented.

j Numeric Equation (28)

1 2.9852 i3.2061- + 2.9823 i3.2023- +
2 4.6236 i4.7707- + 4.6231 i4.7700- +
3 5.8237 i5.9414- + 5.8235 i5.9411- +
4 6.8167 i6.9176- + 6.8167 i6.9174- +
5 7.6829 i7.7725- + 7.6828 i7.7724- +
6 8.4610 i8.5425- + 8.4609 i8.5424- +
7 9.1734 i9.2486- + 9.1733 i9.2486- +
8 9.8343 i9.9046- + 9.8343 i9.9045- +
9 10.4536 i10.5197- + 10.4536 i10.5197- +
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where the exponent σ is related to the order parameter and heat capacity critical exponents via

2
. 32( )s

b d
a

=
-

Figure 7. The behaviour of Im Hj for several leading Lee–Yang zeros of the exact
partition function (29). (a) The finite-size Im Hj(N) dependency for first three zeros
j=1, 2, 3. The scaling with N, equation (31), holds even for small N and j with an
exponent very close to σ=3/4. (b) Coordinates of the first five zeros calculated for
several values of N=20, 100, 1000, 10000. The scaling exponents remain almost
unchanged for different N but they are far from their asymptotic value. (c) Variance of
residuals Δ and exponent σ obtained while fitting coordinates of the first five Lee Yang
zeros via equation (31) for N=1000 as functions of the fitting parameter C. The
optimal σ is evaluated at Copt=0.31 where the Δ(C) curve has minimum. The
resulting value σ(Copt)=0.7563(1) is close to the exact result σ=0.75.
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Substituting the values of the exponents (17) into (32) one arrives at

3 4. 33( )s =

Next we check whether the scaling form (31) holds for the Lee–Yang zeros of the exact and
approximated partition functions and we seek to estimate the value of the parameter C.

Numerically solving the system of equations Re Z(t, H)=0 and Im Z(t, H)=0 at
t=tc=0 for the real and imaginary parts of the exact partition function (29) we get
coordinates of its zeros in the complex H plane. We find that the Lee–Yang zeros are purely
imaginary in this case. The fact that they lie on the imaginary axis validates the famous Lee–
Yang circle theorem [1]: expressed in terms of the variable eH all zeros lie on a circle of unit
radius. In figure 7(a) we plot numerical values of the coordinates of the first three Lee–Yang
zeros as function of the system size N. There are two remarkable feature of the plots of
figure 7(a): (i) all Hj(N) dependencies are power laws (represented by straight lines in the log–
log plots); (ii) these power laws are governed by the same value of the exponent (the lines are
parallel) for different j. Therefore, the scaling with N as it is predicted by the equation (31)
holds even for small N and j. Using linear fits for all eleven data points of the figure 7(a) we
find for each j: σ=0.749(5) (j= 1), σ=0.744(3) (j= 2), σ=0.750(1) (j= 3).

To check how the scaling of the zeros holds with j, we plot in figure 7(b) coordinates of
the first five zeros calculated for several values of N=20, 100, 1000, 10000. The fits to the
power law dependency gives the following values of the exponent σ=0.930(22) (N= 20),
σ=0.909(22) (N= 100), σ=0.901(22) (N= 1000), σ=0.900(21) (N= 10 000): the
exponents remain almost unchanged for different N but they are far from their asymptotic
value σ=3/4, equation (33). However, introducing a fit parameter C via equation (31)
changes the picture.We fit the dependence of the first five Lee–Yang zeros on j on a log–log
scale by a linear function at different values of the fitting parameter C and evaluate goodness
of fits by calculating variance of residuals (reduced χ2), i.e. the weighted sum-of-squares
residuals divided by the number of degrees of freedom, further denoted by Δ. The Δ(C)
curve is shown in figure 7(c), the optimal value of the fitting parameter Copt corresponds to
minimum of Δ. In our case Copt=0.31. Therefore, the value of the exponent σ is calculated
as σ(Copt)=0.7563(1) and is close to the exact result σ=0.75.

Figure 8. Lines of zeros for the real and imaginary part of the approximated partition
function (34) at T=Tc in the complex magnetic field plane, thin and thick curves
(violet and green online) respectively. The points where the lines of different colour
cross give the coordinates of the Lee–Yang zeros. Note that one of the Im Z(h)=0
lines coincides with the vertical axis in the plot.
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For the expanded partition function, equation (30) can be conveniently written in terms of
the rescaled variables:

Z h x x h xexp d , 344( ) ( ) ( )ò= - +
-¥

+¥

where the field and the system size dependence is absorbed into a single variable

h H N12 . 353 1 4( ) ( )=

Figure 8 displays the lines of zeros for the real and imaginary parts of the partition
function (34) at T=Tc in the complex magnetic field h plane, thin and thick curves (violet
and green online) respectively. Again, the coordinates of the Lee–Yang zeros (the crossing
points of the lines) are purely imaginary (obeying the Lee–Yang circle theorem). The scaling
of hj with the system size N is given by (35) and hence the scaling exponent is equal to its
asymptotic value (33) for any index j. Note, that since the real part of the Lee–Yang zero
coordinate Re h=0, it is straightforward to show from (30) that the imaginary coordinate
Im h is obtained as a solution of an integral equation:

x h xe cos Im d 0. 36x

0

4 ( ) ( )ò =
¥

-

Let us consider now the scaling with j. To this end, in figure 9 we plot the numerically
obtained coordinates hIm j of the first sixteen Lee–Yang zeros as functions of j−C for
different values of C=0, 1/4, 1/3, 1/2. As expected, for large enough j the linear scaling
with j occurs and the data points align along a single line with the tangent σ;3/4. However,
as for the exact partition function, this dependence is nonlinear for smaller values of j and the
choice of an appropriate fitting parameter C similar as it was done for the exact function, see
figure 7(c), allows to improve the linearity. As a result, we get the optimal value Copt=0.31
and σ(Copt)=0.7531(2).

Figure 9. The behaviour of Im hj for leading Lee–Yang zeros of the approximated
partition function (34). (a) Coordinates Im hj of numerically calculated first sixteen
Lee–Yang zeros as functions of j−C for different values of C=0, 1/4, 1/3, 1/2. The
solid line is an eye guide to show linear scaling with an exponent σ=3/4. Such
scaling is manifested by a merge of the data points with an increase of j. (b) Variance of
residuals Δ and exponent σ obtained while fitting coordinates of the first sixteen Lee
Yang zeros via equation (31) as functions of the fitting parameter C. The value of the
exponent σ(Copt)=0.7531(2) is close to the exact result σ=0.75.
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3.3. Motion of the Fisher zeros in a real external field

In the final part of this section we analyse the motion of the Fisher zeros in the presence of a
(real) external field [5]. Since the Lee–Yang zeros of the model under consideration have
purely imaginary coordinates, in the vicinity of the critical point the lines of motion of Fisher
zeros form an angle ψ that encodes order parameter critical exponents via equation (12). In
our case, for the values of the exponents β and δ given by (17) one gets for the angle:

3
. 37( )y

p
=

The expression for the approximated partition function in the vicinity of the critical point is
obtained from (19) and reads

Z t H
t x x

N
x N H x, exp

2 12
d . 38N

exp
2 4

( ) ( )ò=
-

- +
-¥

+¥ ⎛
⎝⎜

⎞
⎠⎟

To get (38) we have kept, as before, only the leading order contributions in H and t terms. As
was pointed above, in this case the approximated expressions for the partition function attain
the same form both in t- and τ- representations. Therefore, the analysis of the Fisher zeros
presented below concerns both the complex t- and complex τ-planes equally well. The
expansion (38) can be conveniently rewritten in the rescaled variables z, h, equations (25),
(35):

Z z h x, e d . 39zx x hxexp

0

2 4( ) ( )ò=
¥

- - +

Note that for h=0 or z=0 (39) reduces to equations (24) or (34) respectively.
Figure 10(a) shows the coordinates of the first five Fisher zeros for different values of the

(real) magnetic field in the complex z plane. The coordinates have been calculated for dif-
ferent values of the magnetic field hj=j, j=0,1, ..., 20. For hj=0 we recover the values of

Figure 10. (a) Coordinates of the first five Fisher zeros of the partition function (39) in
the complex z plane for different values of the magnetic field hj=j, j=0, 1, ..., 20.
The plots have a tendency to settle along lines forming an angle ψ=π/3 with a real z
axis. (b) Scaling functions for the first five zeros hj ( ) (lower plots), hj ( ) (upper
plots) for the real and imaginary part of the first Fisher zeros coordinate, equation (47),
as functions of the scaling variable h HN1 2= + b

a- .
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the coordinates shown in figure 5. One can see the tendency of the zeros to settle along a line
forming an angle

3
y = p with the real z axis (shown by a solid line in the figure). However,

the asymptotics are preceded by a crossover region for very small values of h. Similar
tendency for a first few zeros of a 3D Ising model was observed in [5] and explained by the
finite-size corrections [28]. The closer the zeros to the critical point, the smaller the crossover
region.

To further analyse motion of the zeros we apply the FSS as outlined below. According to
the FSS theory [29], for a d-dimensional system in the vicinity of the critical point one
expects the following scaling for the real and imaginary parts of the jth zero coordinate in the
reduced temperature t plane:

t N H b H b N bRe , , , 40j j
y d1 H( ) ( ) ( ) = n- -

t N H b H b NbIm , , . 41j j
y d1 H( ) ( ) ( ) = n- -

Here, b is the scaling factor, ν and yH are the correlation length critical exponent and field
scaling dimension, x y,j ( )  and x y,j ( )  are the scaling functions. Being generalized
homogeneous functions of two variables, the scaling functions can be rewritten as functions
of a single conveniently chosen scaling variable. Choosing the factor b=N−1/ d the
expressions (40), (41) attain the following form:

t N H N H NRe , , 1 , 42j
d

j
y d1 H( ) ( ) ( ) = n- -

t N H N H NIm , , 1 . 43j
d

j
y d1 H( ) ( ) ( ) = n- -

Making use of the familiar (hyper)scaling relations (dν= 2− α, yh/d= 1− β/2− α) we get
the following expressions for the motion of zeros:

t N H N H NRe , , 44j j
11

2 2( ) ( ) ( ) = +a
b

a- -

t N H N H NIm , , 45j j
11

2 2( ) ( ) ( ) = +a
b

a- -

where we have introduced the single variable functions:

x x x x, 1 , , 1 . 46j j j j( ) ( ) ( ) ( ) ( )      º º

Note that relations (44), (45) contain the system size only via the number of particles N
(and not via the spacial extent and dimension) and therefore are convenient for using them for
systems on graphs, where the notion of Euclidean dimension is not defined. Equations (44),
(45) can be rewritten in the rescaled variables z, h (see equations (25) and (35)):

z h

z h

Re ,

Im , 47

j j

j j

( )

( ) ( )









=

=

where

h h h h3 12 , 3 12 . 48j j j j
4 4( ) ( ) ( ) ( ) ( )      º º

We plot the scaling functions (48) in figure 10(b) for the first five zeros j=1, ..., 5. The
prominent feature of the plot is that a ratio of the values of the scaling functions at h=0
gives the value of the Fisher pinching angle:

0 0 0 0 tan . 49j j j j( ) ( ) ( ) ( ) ( )       j= =
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Indeed, with the value tan tan 4 1j p= = - , equation (22), one gets
0 0j j( ) ( )  = - or 0 0j j( ) ( )  = - as is nicely observed in the figure.

4. Ising model on an annealed scale-free network

Now, with knowledge of the behaviour of the partition function zeros on a complete graph to
hand, we consider the critical behaviour of the Ising model on complex networks, i.e. on a
random graph [12]. The Hamiltonian of the model in this case reads

J S S H S
1

2
. 50

l m
lm l m

l
l ( ) å å- = +

¹

Here, the sums are performed over all graph nodes l, m and the adjacency matrix J stores all
information about the graph structure: the matrix elements Jlm=1 if the nodes are linked and
Jlm=0 otherwise. In random graphs different nodes have different number of links (different
node degrees K). The node degrees are random variables and inherent features of their
distribution p(K) appear to play one of the key roles governing universal critical behaviour
[13]. As a first instance of a complex network we will consider an annealed network. This
network is defined as an ensemble of all networks consisting of N nodes with a given degree
sequence {K1, K2, ..., KN}, maximally random under the constraint that their degree
distribution is a given one, p(K) (see e.g. [14, 17]). Such a construction resembles the
uncorrelated configuration model of a complex network (see e.g. [30]). However the latter is
an example of a quenched network, whereas for the Ising model on an annealed network, the
graph configuration is also fluctuating just like Ising spins do. When thermodynamic
properties are calculated, the presence of quenched disorder is taken into account by
averaging the free energy over different disorder configurations, whereas in the annealed case
the partition function is averaged [15]. Therefore, considering the Ising model on an annealed
network, we will be interested in the behaviour of the partition function averaged with respect
to different network configurations.

4.1. Partition function

For the Hamiltonian (50) the corresponding partition function is obtained by:

Z T H, Tr Tr e . 51N S J( ) ( )= b-

As in (14), the first trace is taken over the spin system: Tr ... ...S l S 1l
( ) ( )=  å = , whereas the

second one means an averaging with respect to the distribution of the network links
J( ) : JTr ... ...J l m l m J, , 0,1lm

( ) ( ) ( )=  å¹ = .
To construct an annealed network of N nodes l=1, ..., N, each node l is assigned a label

kl and the probability of a link between nodes l and m is defined as:

p
k k

N k
, 52lm

l m

⟨ ⟩
( )=

where k k
N l l
1⟨ ⟩ = å . The variables k are taken from the distribution p(k) and indicate the

expected node degree. Indeed, it is straightforward to show that the expected value of the
node degree K p kl m lm l = å = . One can show [14] that averaging (51) over the distribution
of network links with probability function (52) leads to the following expression for the
partition function:
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An analogous expression for the partition function is usually obtained also within the mean
field approximation for the Ising model on an uncorrelated quenched network [13, 30]
(configuration model). For the annealed network however the factor in front of the double
sum in (53) is a certain function of temperature [14]. Since in our study we are interested in
the angles of incidence of partition function zeros, which are independent of any analytic
parametrization of the temperature plane, we keep in (53) only a linear term of this function.

Since for the annealed network the interaction term in (50) attains a separable form, one
can apply the Stratonovich–Hubbard transformation to (53) to take the trace exactly and to get
the following expression for the partition function:
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As in the previous section, the prefactors are omitted here and below. Now, the sum over l in
the exponent (54) can be rewritten in terms of the integral over k for a given distribution
function p(k):

f k N p k f k kd , 55
l

l
k

k
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max

( ) ( ) ( ) ( )òå =

where kmin and kmax are the minimal and maximal values of the variable k. For further analysis
it will be convenient to keep the integral in x in the positive half-plane leading to the
representation for the partition function
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For the complete graph of N nodes substituting in (56) p(k)=δ(k−N+ 1) one recovers (18).
In this section we are interested in the scale-free networks, when the function p(k) is given by
a power law

p k c k , 57( ) ( )= l
l-

with a normalizing constant cλ. Note, that scale-free networks with kmin=1 do not possess a
spanning cluster for λ>λc (λc= 4 for continuous degree distribution and λc; 3.48 for the
discrete one [31]). To avoid this restriction, without loss of generality we choose from now on
kmin=2, whereas for the upper integration boundary in (55) we take in the thermodynamic
limit6 klimN max  ¥¥ . Then, for the scale-free network, equation (56) can be conveniently
rewritten as:

Z T H I x I x x, e exp exp d , 58N
0

k x T2

2( ) { [ ( )] [ ( )]} ( )
⟨ ⟩

ò= +l l

+¥
+ --

6 The leading in N value of this integral representation does not depend on the way in which kmax tends to infinity.
These are the next-leading terms that will depend on the N dependency of the upper cut-off. See appendix A for more
details.
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Consider the integral in (59). For large y the integrand decays as y1−λ and the integral is finite
at the upper integration boundary for the values λ>3 we are interested in. However, for
small y the integrand behaves as y H T y ...2( ) + +l- and leads to divergent terms when
the lower integration boundary is set to zero, i.e. in the thermodynamic limit N  ¥. These
divergent terms do not appear in the whole expression since they are canceled by the N-
dependent prefactor in (59). To single them out and to show this cancelation explicitly, it is
instructive to consider the function I x( )l

 (59) for different values of λ (see e.g. [32] for a
more detailed account). As in the former section, we make asymptotic estimates for small H.
Leading terms of the resulting expressions read:
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where the numerical values of the coefficients
a c y y y y ad ln cosh 2 , 0

0
2( ) ( ) ( )òl l= - - >l

l¥ - , are listed for different λ in [32] and
the moments of the variable k are calculated with the distribution (57). The case λ=5 is to be
considered separately. Integrating out the logarithmic singularity one gets for the first leading
terms:
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With the expressions (60)–(62) for I x( )l
 we are in a position to analyse the partition

function (58) at different values of λ. As is well established by now, critical behaviour of a
system on a scale-free network with the partition function (58) depends of the value of the
exponent λ in an essential way [12, 13]. In particular, the system remains ordered for any
finite temperature at 3l . A second order phase transition at finite temperature occurs for
λ>3. It is governed by standard mean field exponents (17) in the region 5l with
logarithmic corrections at λ=5, however the exponents attain λ-dependency for 3<λ<5
[30]:

5 3 , 1 3 , 2, 1. 63( ) ( ) ( ) ( )a l l b l d l g= - - = - = - =

The mean-field approximation delivers the classical value for the magnetic susceptibility
exponent γ=1 for any λ>3. The other exponents however become λ dependent at
3<λ<5. This is because the Ising model on complex scale-free networks follows a
heterogeneous rather than homogeneous mean-field.

Our task will be to describe the phase transition in the Ising model on an annealed scale-
free network in terms of the partition function zeros, similarly as it was done for the complete
graph in the previous section. Substituting values of the exponents (63) together with the
critical amplitude ratio A+/A−=0 [33] into relations (3), (32) we get for the region
3<λ<5:
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Let us check if these values can be obtained directly from the analysis of the zeros of the
partition function (58) in complex T and H planes.

4.2. Fisher zeros for the Ising model on an annealed scale-free network at H=0

Substituting expressions for I±λ(x) (60)–(62) at H=0 into the partition function (58) at
different values of λ we get:
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with t=(T− Tc)/Tc and the (pseudo)critical temperatureT k kc
2⟨ ⟩ ⟨ ⟩= .7 Similar to the

previous section, the partition function can be conveniently represented in terms of a single
variable z that combines t and N dependencies, see equation (25). However, now this variable
differs in different regions of λ:
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Written in terms of the variables appearing in (67), the partition function (66) has a simple
form:
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Two obvious conclusions follow: (i) since the functional form of Z(z) dependency at λ=5
and λ>5 is the same, the location of the Fisher zeros in the complex z plane will be the same
too. This leads to the conclusion that an impact angle j that corresponds to the Ising model on
an annealed network does not change for 5l and (ii) these expressions coincide with the
partition function of the Ising model on the complete graph, equation (24). Therefore, analysis
of the Fisher zeros of the last model, performed in section 3.1 applies equally well to the
Fisher zeros of the Ising model on an annealed network. In particular, one concludes, that:

4, 5. 69( )j p l=

7 For a finite-size system, Tc depends on N via the N-dependency of the moments k k, 2⟨ ⟩ ⟨ ⟩.
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Let us note as well, that the logarithmic corrections to scaling appear in the marginal case
λ=5 [33–36]. Such a logarithmic correction appears in I x( )l

 at λ=5 too. However, it does
not contribute to the terms leading in 1/N, resulting in the conclusion, that the impact angle of
Fisher zeros (and, therefore, the leading exponent for the heat capacity) is the same at λ=5
and λ>5.

Similar to the preceding sections for the Ising model on the complete graph, to proceed
with the analysis of the Fisher zeros at 3<λ<5, we calculate the numerical values of the
coordinates of several first zeros as shown in figure 11. As is seen from the figure, the zeros
have a clear tendency to situate along the straight lines crossing the real z axis in the vicinity
of the critical point zc. Moreover, the angle formed by each of the lines differs for different λ
and decreases with λ. To study this dependency in more detail, for each value of λ we fit j
Fisher zeros in the interval j=jmin, ..., jmax for jmax=7 and give the resulting estimate for j
in table 2. One can see that the values determined numerically approach those predicted by an
analytic formula (64), the higher the order of the zeros used for the fit, the higher the
accuracy. This tendency is quite similar to those observed for the Fisher zeros on a complete
graph (see figure 6). To further demonstrate this resemblance, we plot in figure 12(a) the

Figure 11. Fisher zeros for the Ising model on an annealed scale-free network at zero
magnetic field for different λ. The zeros have a clear tendency to situate along the
straight lines crossing the real z axis in the vicinity of the critical point zc. The angles
formed by each of the lines with the real z axis decrease in the region 3<λ<5 as
predicted by equation (64).

Table 2. Numerically calculated values of the angle j for different λ. The angle is
calculated by linear fitting of Fisher zeros with the indices j=jmin, K, 7. The con-
fidence interval, when not written explicitly, is less than the last significant digit. The
last row gives j predicted by the analytic formula (64).

jmin 5l λ=4.8 λ=4.5 λ=4.2 λ=4 λ=3.7

1 0.246(5)π 0.233(1)π 0.209(1)π 0.180(1)π 0.158(1)π 0.117(2)π
2 0.248π 0.234π 0.210π 0.182π 0.160(1)π 0.121(1)π
3 0.248π 0.234π 0.211π 0.183π 0.162π 0.123π
4 0.248π 0.235π 0.212π 0.184π 0.162π 0.124π
5 0.248π 0.235π 0.212π 0.184π 0.163π 0.125π
6 0.249π 0.235π 0.212π 0.185π 0.163π 0.125π
Exact 0.250π 0.237π 0.214π 0.188π 0.167π 0.130π
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dependency of the ratio of the numerically calculated angle j to its value predicted by
formula (64): Pnorm

3

2 1

( )
( )

j= p l
l
-
-

. This ratio tends to Pnorm=1 with an increase of the order
of the zeros used for the fit. One can notice a similar tendency for the behaviour of the critical
temperature zc, see figure 12(b). Again one observes similarity with the behaviour of zc for the
Ising model on a complete graph, see figure 6(b).

Another inherent feature of the locations of the Fisher zeros is that the distance between
two successive zeros decreases with increasing index (see figure 11 for the annealed scale-free
network as well as figure 5 for the complete graph). Indeed, taken that the FSS of the jth zero
tj in the complex t plane for large j is given by [5]:

t
j

N
70j
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a-
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Figure 12.Values (a) of the ratio Pnorm
3

2 1
( )
( )j= p l
l
-
-

and (b) of estimates for the critical

temperature zc for the partition function (68) obtained by fitting of j Fisher zeros in the
interval j=jmin, ..., jmax for jmax=7 and different values of jmin. A solid line in panel
(a) shows an exact value Pnorm=1.

Table 3. Linear fitting of the function z a b jln lnj = + for the Fisher zeros with

indices j=jmin, K,7 at different λ. The table shows results for the angle coefficient b.
The confidence interval, when not written explicitly, is less than the last significant
digit. The last row gives the value b=1/(2− α) as predicted by an analytic form-
ula (71).

jmin λ>5 λ=4.8 λ=4.5 λ=4.2 λ=4 λ=3.7

1 0.558(8) 0.528(7) 0.477(6) 0.417(5) 0.370(5) 0.286(3)
2 0.537(4) 0.509(3) 0.460(3) 0.402(3) 0.357(2) 0.277(2)
3 0.529(2) 0.501(2) 0.453(2) 0.396(2) 0.352(1) 0.274(1)
4 0.525(1) 0.497(1) 0.450(1) 0.393(1) 0.349(1) 0.271(1)
5 0.522(1) 0.494(1) 0.447(1) 0.391(1) 0.348(1) 0.270(1)
6 0.520 0.492 0.445 0.390 0.346 0.269
Exact 0.500 0.474 0.429 0.375 0.333 0.259
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one arrives at the conclusion that t t t jj j j 1D º - ~ k
- , with κ=(α− 1)/(2− α). The last

exponent is negative for the values of α we are interested in: 1 2, 5k l= - and κ=−2/
(λ− 1), 3<λ<5. Rewriting (70) in terms of zj (67) gives:

z j . 71j
1

2 ( )~ a-

To check how does the scaling of the Fisher zeros hold with j, we calculate the value of the
exponent in (71) fitting the function z a b jln lnj = + for the Fisher zeros with indices
j=jmin, K,7 at different λ. The results are compared with the exact value in table 3. One can
see the right tendency of approach of the numerically calculated numbers to their exact
counterparts with an increase of j.

In order to check scaling of the Fisher zeros tj with N, there is no need to calculate
explicitly their coordinates at different values of N. Indeed, the tj(N) dependency follows from
the z(t, N) functional form, as given by (67). Expressing t from there one gets that the power
law scaling t Nj

1 2( )~ a- holds for 3<λ<5 and λ>5 whereas it is enhanced by a
logarithmic correction at λ=5: t N Nlnj

1 2 1 2( )~ - .

4.3. Lee–Yang zeros for an annealed scale-free network at T=Tc and motion of Fisher zeros in
the magnetic field

Substituting expressions for I x( )l
 (60)–(62) at T T k kc

2⟨ ⟩ ⟨ ⟩= = into the partition function
(58) at different values of λ and keeping the leading contributions in 1/N we get:
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Here, the H- and N-dependencies of the partition function are adsorbed in a single variable h.
Its explicit form differs for different regions of λ:
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Similar to the discussion for the tj(N) scaling at the end of the previous subsection, here,
the scaling of hj(N) directly follows from the h(H, N) dependency given by (73). Comparing
(73) with the definition (31) one gets:
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The logarithmic correction appears at λ=5: H N Nlnj
3 4 1 4( )~ - .

In figure 13 we plot numerically obtained lines of zeros for the real and imaginary parts
of the partition function (72) at T=Tc and different values of λ in the complex magnetic field
h=Re h+i Im h plane. The points where the lines of different colour cross give the coor-
dinates of the Lee–Yang zeros. Note that whereas the coordinate of the first Lee–Yang zero
(that closest to the origin) is purely imaginary for any value of 3< λ< 5 (and it is its presence
that allows to make conclusions about the scaling with N governed by the exponent (74)), it is
not the case for the zeros of higher order: the number of zeros with Re hj=0 decreases with j.
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In this respect the behaviour of Lee–Yang zeros for the Ising model on an annealed scale-free
network differs crucially from the behaviour on the complete graph (see the previous section).
Whereas in the complete graph the zeros were entirely imaginary and obeyed the Lee–Yang
circle theorem, this theorem is violated in the case of the annealed scale-free network.

As seen in figure 13, the imaginary part of Z(h) vanishes when h itself is imaginary. This
is because the partition function is an even function of h. The intersections of the different
types of contour on the plot give the locations of the Lee–Yang zeros. When 5l all zeros
are on the imaginary axis. But for λ=4.5 only first three zeros are imaginary and zeros of
higher order (hj for j> 3) have non-vanishing real parts. Similar behaviour is found for all
values of λ between 3 and 5; there is a number,  , finite in size, such that hj is purely
imaginary for j  but has non-vanishing real part for j > . The number  decreases
with decreasing λ.

Figure 13. Lines of zeros for the real and imaginary part of the partition function (72) at
T=Tc and different values of λ in the complex magnetic field plane,thin and thick
curves (violet and green dots online) respectively: (a) 5;l (b) λ=4.5; (c) λ=4;
(d) λ=3.5. The points where the lines of different colours cross give the coordinates
of the Lee–Yang zeros. Note that one of the Im Z=0 lines coincides with the vertical
axis in the plot.
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The values of Lee–Yang zeros determined numerically are listed in table 4 for different
values of 3<λ<λuc=5, and for 5l . When λ=4, 3 = while for

3.5, 1l = = . In this respect the behaviour of the zeros differs for 5l (where it is the
same as for the partition function of the Ising model on a complete graph) and for 3<λ<5.
In appendixB we confirm this observation showing that the asymptotic behaviour of the
integral (72) for non-integer 3<λ<5 qualitatively differs from that at 5l .

Since it has been established for the Ising model on a regular lattice [1], the Lee–Yang
theorem has been extended to a wider class of regular lattice Ising models. Besides the
classical lattice discrete spin models [37], the theorem also holds for continuous spin systems
[38]; for quantum systems such as an ideal pseudospin −1/2 Bose gas in an external field and
arbitrary external potential [39]; for non-equilibrium systems [40], which narrate the col-
lective phenomena and biophysics processes [41, 42]. There are many models for which the
Lee–Yang theorem does not hold: Ising models with antiferromagnetic interactions [43, 44];
with degenerated spins [45, 46]; models with multi-spin interactions at sufficiently high
temperature [47, 48]; and van der Waals gases [49, 50]. The theorem also fails for the model
for which the first order phase transition is observed: a high-q Potts model and the Blume–
Capel model [51, 52]. Theorem is violated for the certain quantum many-body systems: Ising
ferromagnet with arbitrary spin [53] and the quantum isotropic Ising chain in a transverse
field [54]. For a more detailed review see [55].

Consequently, the Ising model on an annealed scale-free network at 3<λ<5 belongs
to the group of models where the Lee–Yang theorem is violated, whereas the model on the
complete graph obeys the theorem. The difference in behaviour of the Lee–Yang zeros of the
Ising model on a complete graph and on an annealed scale-free network manifests itself also
when one checks the scaling of the zero coordinates with j. The coordinate of the zeros being
complex, the scaling in principle can be observed with respect to the real or imaginary part of
the coordinates or their combination. Typical results of our calculations are demonstrated in
figure 14, where we plot coordinates of Im hj, Re hj and hj for the first ten Lee–Yang zeros of
the Ising model on an annealed scale-free network at fixed value of λ=4.5. The solid lines
correspond to the expected value σ(λ= 4.5);0.714, see (74). One can see that the curves
for Im hj and hj are very close to each other, since the value of Re hj is relatively small.
Similar behaviour is observed for the other values of λ. In particular, for high j the Im hj and
hj functions are governed by the power law asymptotics with an exponent given by (74). The

Table 4. Coordinates of the few first Lee–Yang zeros hj for the Ising model on an
annealed scale-free network for different λ. In the region 3<λ<5 the number of
purely imaginary zeros decreases with a decrease of λ. However, the coordinate of the
first Lee–Yang zero remains purely imaginary for any value of λ.

j⧹l λ>5 λ=4.5 λ=4 λ=3.5

j=1 i3.453 i3.495 i3.569 i3.762
j=2 i6.784 i6.933 i7.823 1.875+i7.212
j=3 i9.636 i9.474 i8.149 3.659+i9.496
j=4 i12.229 0.589+i12.848 2.418+i11.466 5.138+i11.351
j=5 i14.650 2.297+i16.346 4.014+i14.174 6.435+i12.983
j=6 i16.945 3.761+i19.405 5.446+i16.574 7.608+i14.470
j=7 i19.140 5.130+i22.229 6.767+i18.776 8.690+i15.850
j=8 i21.254 6.427+i24.886 8.005+i20.835 9.702+i17.146
j=9 i23.301 7.667+i27.414 9.176+i22.783 10.656+i18.375
j=10 i25.289 8.859+i29.838 10.293+i24.642 11.563+i19.548
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power law behaviour is less pronounced for small j. Introducing a more general form of
scaling that involves the parameter C as it was done for the complete graph, see equation (31),
does not help to improve the picture.

Let us next consider the motion of the Fisher zeros in the real magnetic field. To this end,
similar as it was done in the former section for the Ising model on the complete graph, we
present the partition function of the Ising model on an annealed scale-free network as a
function of rescaled variables z and h. Substituting expansions (60)–(62) for the functions
I x( )l
 into the partition function (58) one arrives at the following representations:

Figure 14. Coordinates of the first ten Lee–Yang zeros hj of the Ising model on an
annealed scale-free network at λ=4.5. Different curves correspond to

h h hIm , Re ,j j j as shown in the legend. One can see that the curves for Im hj and

hj are very close to each other (since the value of Re hj is relatively small). The lines
correspond to the expected value σ(λ= 4.5);0.714, from (74).

Figure 15. (a) Motion of the first Fisher zeros of the partition function (75) in the
complex z plane for different values of the real magnetic field h=s, s=0,1, ...,15 and
λ. (b) Scaling functions h1 ( ) (lower plots), h1 ( ) (upper plots) (77) for the real and
imaginary part of the first Fisher zero coordinate z1, as functions of the scaling variable
h at different values of λ.
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where t and h are defined by the equations (67) and (73) respectively.
Figure 15(a) shows results obtained for the motion of the Fisher zeros in the real

magnetic field calculated at different λ for functions (75). The squares correspond to 5l
and the expected value of the angle of motion from (76) is ψ=π/3. Therefore, in this region
of λ our numerical results are in a good agreement with the analytical prediction as we get
ψ; 59°. However, this is not the case for the smaller values of 3<λ<5. Indeed, naively
substituting critical exponents values into the equation (12) for the angle ψ one gets
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In particular, from (76) one expects that the angle of motion will decrease with λ. The three
curves from the figure 15(a), calculated for λ=4.8, 4.5 and 4 demonstrate the opposite
behaviour: the angle increases with decreasing λ with a tendency to reach asymptotics at
ψ=π/2. As we have shown above, for the model under consideration the zeros at the critical
point do not obey the Lee–Yang theorem: there is only a small number of zeros with purely
imaginary coordinates for 3<λ<5. Therefore the equation (76) that was obtained under an
assumption that this theorem holds is not applicable. The angle ψ (12) describing the motion
of Fisher zeros in real magnetic field does not seem to be related by a simple scaling relation
to the critical exponents.

Similar to what was done for the Ising model on a complete graph, one can define scaling
functions for the real and imaginary parts of the jth zero zj. Using the definition (48) of the
scaling functions from the section 3.3 for h h,j j( ) ( )   in different regions of λ we define
the scaling functions for the Ising model on an annealed scale-free network as
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and expressions for h at different λ are given by (73). The scaling functions for the first Fisher
zero z1 at different values of λ are plotted in figure 15(b). From equation (49) we expect that
the ratio 0 0I R

1 1( ) ( )  gives the Fisher pinching angle j, which in the case of the scale-free
network is λ-dependent (see section 4.2). From figure 15(b) we calculate

0 0 0.921; 0.798; 0.577i
I

i
R( ) ( )  = or j ; 0,249π; 0.228π; 0.18π for λ=4,8; 4.5;

4 respectively. These values agree with those predicted by equation (64) and given in table 2.
Note that the agreement increases with an increase of the zero number j.

5. Conclusions and outlook

In this paper we analyse the properties of the complex zeros of the partition function for the
case of the Ising model on graphs of two types. First, we considered the case of the complete
graph and then, we addressed the new features that are introduced by the changes in
graph topology, by considering the Ising model on an annealed scale-free network. While the
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former case have been already a subject of several studies (see e.g. [17, 18]), the latter is
addressed here for the first time.

In particular, using the approach of[18] we have analysed the behaviour of Lee–Yang
zeros as well as tracked the motion of the Fisher zeros in the real external magnetic field. As
has been observed before for some other models [5, 28], this motion is governed by the
universal angle ψ, that encodes values of the order parameter critical exponents through (12).
A fundamental feature of the Ising model on the complete graph, as well as of those models
where such behaviour of Fisher zeros in real magnetic field was observed, is that their zeros in
complex magnetic field at the critical temperature are governed by the Lee–Yang theorem:
plotted in the plane e−h they align along the unit circle [1].

Analysis of section 4 has shown that complex zeros behaviour of the Ising model on an
annealed scale-free network is characterized by several new and rather unexpected features.
First of all, as far as the universality class of the model is defined by the node-degree
distribution decay exponent λ (57), the pinching angle j as well as the Lee–Yang edge
exponent σ are λ-dependent too. Their dependence on λ in the region 3<λ<5 is given by
equations (64), (65). In turn, for the fast-decaying degree distributions with λ>5 we recover
the values obtained previously for the Ising model on the complete graph. Secondly, the
logarithmic corrections to leading scaling behaviour that arise for the spin models on scale-
free networks [33–36] at λ=5 are observed for the exponents that govern condensation of
Lee–Yang and Fisher zeros with an increase of the system size. Corresponding gaps in H- and
t planes decrease with N at λ=5 as

H N N t N Nln , ln . 78j j
3 4 1 4 1 2 1 2( ) ( ) ( )~ ~- -

Note, that the powers of the logarithms comply with the corresponding scaling relations [36].
The striking feature of the Ising model on an annealed scale-free network is that its

partition function zeros calculated at Tc in complex magnetic field does not obey the Lee–
Yang theorem. The number of purely imaginary zeros decreases with the decrease of λ, and
the zeros acquire both real and imaginary parts. Note that experimental identification of the
Lee–Yang zeros [11] has so far only be made for purely imaginary zeros [10]. The results
identified herein show that while these are accessible for lattices and complex networks for
sufficiently large λ, not all network zeros are accessible in this manner for λ<5. A challenge
for experiment is to find another way to access them.

As we have already mentioned, there are some other models, for which the Lee–Yang
theorem does not hold [43–54]. Unlike the above examples, the problem we have considered
in this paper concerns ferromagnetic Ising model, and the Lee–Yang theorem was proven [56]
to hold for any Ising-like model with ferromagnetic interaction, see also [57]. In this respect
the analysed here Hamiltonian (50) looks as if it will lead to the Lee–Yang property of the
partition function too, since the adjacency matrix elements Jlm are non-negative. Furthermore,
in the course of partition function calculation, in the spirit of the mean-field approximation,
the matrix elements Jlm are substituted by klkm>0, see equation (53). Again, this should not
spoil the Lee–Yang property for any fixed choice of the node degree kl. Next step in the
derivation was the integration over k with the distribution function p(k), equation (55). This is
the place which leads to the violation of the Lee–Yang unit circle theorem: indeed, if one
takes a sum (or an integral) of functions each of which possesses the Lee–Yang property, the
sum might not possess such property at all. That is exactly what is observed for the annealed
network.
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Appendix A. Notes on the natural cut-off

In this appendix we discuss in more detail the choice of the upper cut-off in equation (56). A
network of finite size (finite number of nodes N) cannot contain a node of infinite degree k by
definition. For a scale-free network, the maximal node degree kmax for finite N (the so-called
natural cut-off) can be defined in different ways. In [58] it was proposed to define a cut-off
kmax as the value of the degree for which one expects to observe one vertex at most:

Np k 1. 79max( ) ( )~

From here one gets an N dependency of the cut-off:

k N . 80max
1 ( )~ l

The drawback of (80) is that for continuous k this definition contains the probability of a
single point (which is zero). Another definition of cut-off was given in [30]. There, the cut-off
is interpreted as the value of the degree k above which one expects to find at most one vertex:

N p k kd 1, 81
k max

( ) ( )ò ~
¥

leading to

k N . 82max
1 1 ( )( )~ l-

In [59] the extreme value theory was used to define the natural cut-off. In this case the exact
value for kmax slightly differs, however it remains N dependent. Below we will show that the
form of kmax(N) dependence does not change the asymptotic estimate for the partition
function (58) in the leading order in N.

For simplicity, let us consider the partition function (54) for zero magnetic field H=0
(the derivation for non-zero H is quite similar):

Z T
N k x T

xk xexp
2

ln cosh d . 83N
l

l

2
( ) ⟨ ⟩ ( ) ( )ò å=

-
+

-¥

+¥ ⎛
⎝⎜

⎞
⎠⎟

Using (55) we rewrite the sum over network nodes lå in the exponent in terms of the integral
over k for a given distribution function p(k), keeping the lower and upper cut-off:

Z T

N
k x t

p k xk xk k xexp
2

ln cosh
1

2
d d , 84

N

k

k2 2
2

min

max

( )
⟨ ⟩ ( )[ ( ) ( ) ] ( )ò ò=

-
+ -

-¥

+¥ ⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
with t=(T− Tc)/Tc and T k kc

2⟨ ⟩ ⟨ ⟩= . To evaluate (84) we make use of the fact that at large
N the main contribution comes from small x. In turn, this means that we need to evaluate the
integral over k in (84) at small x and for large N. To keep the network connected for all
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3<λ<5 we have chosen the lower cut-off value to be kmin=2 (see section 4.1). The
crucial point is that the value of this integral does not depend on the way in which kmax tends
to infinity (e.g. k Nmax

1
1~ l- ). It is because kmin and kmax are the only terms in (84) that

depend on N. Moreover, this dependence may be taken in the form of the natural cut-off (82)
or in any other form that satisfies klimN max  ¥¥ . Therefore, one gets:

p k xk xk k

p k xk xk k

lim lim ln cosh
1

2
d

lim ln cosh
1

2
d . 85

x N k

k

x

0

2

0 2

2

min

max

( )[ ( ) ( ) ]

( )[ ( ) ( ) ] ( )

ò

ò

-

= -

 ¥



¥

The integral in the right-hand side of (85) has been already evaluated (see e.g. [34] or [32]). It
is

p k xk xk k a x O xlim ln cosh
1

2
d , 86

x 0 2

2 1( )[ ( ) ( ) ] ( ) ( )ò - = +l
l l



¥
-

with known values of the coefficients aλ [32, 34]. Substituting (86) into (84) we arrive at:

Z N
k x

a x xexp
2

d , 3 5. 87N
0

2 2
1( ) ⟨ ⟩ ( ) ( )òt

t
l l~ - + < <l

¥
-

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭
Now the integral (87) can be taken by a steepest descent method. The result we have obtained
is consistent with the Landau theory for the Ising model on scale-free networks [60] as well as
with the mean field analysis [34, 35]. In this way, all three approaches (Landau, mean field,
and the current one—based on the integral representation) lead to the same thermodynamics.

Appendix B. Asymptotic estimates for the integral (72)

In this appendix we determine an asymptotic estimate for the behaviour of the partition
function Z(h) (72) at Re h=0 in the limit of large Im h. To this end, let us consider an
integral

Z r rx xi e cos d , 88x

0

1( ) ( ) ( )ò=
¥

- l-

that depends on the real variable r. At r=Im h (88) gives an imaginary part of the partition
function (72). Asymptotic behaviour of Z(ir) follows from the Erdelyi lemma (see e.g. [61])
as explained below.

The Erdelyi lemma gives an asymptotic behaviour of the integral:

F y x f x xe d . 89
A

b yx

0

1 i a( ) ( ) ( )ò= -

According to the lemma, if a b1, 0 > and the function f(x) becomes zero together with all
its derivatives at the upper integration limit: f A f x f x... 0x A

n
x A( ) ( ) ( )( )= ¢ = = == = , the

following asymptotic estimate for the integral (89) is valid:

F y a y y, , 90
k

k
0

k b
a( ) ( )å~  ¥
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¥
- +

J. Phys. A: Math. Theor. 49 () 135001 M Krasnytska et al

30



where the coefficients ak are given by
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Changing variables in (88) one can represent Jλ(y) in the form similar to (90):

Z r x xi
5

1
Re e e d . 92x rx

0

1 i5
1
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-

¥
- -l

l
-

-

Note that the upper integration limit in this case is a = ¥. It is easy to see that the conditions
of the lemma are satisfied and an asymptotic expansion for the function (88) follows:

Z r b r ri , , 93
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where the coefficients bk are defined as
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Note, that coefficients bk=0 for the marginal values λ=3 and λ=5: the decay differs
from the power law. To evaluate it, we proceed as follows.

• λ=3
For λ=3 the integral (88) is taken exactly leading to

Z r ri 2 exp 4 . 952( ) ( ) ( )p= -

Therefore, in the limit of large r the integral decays exponentially. Moreover, Z(ir)>0
for any r0 < < ¥ which signals about an absence of partition function zeros on the
complex h plane at λ=3. In turn, this brings about an absence of the phase transition in
this case.

• λ=5
In this case integral (88) can be rewritten as:

Z r rx x xi e cos d
1

2
Re e e d . 96x x xr

0

i4 4( ) ( ) ( )ò ò= =
+¥

-

-¥

+¥
-

Its asymptotics can be evaluated by a steepest descent method, calculating the function
under the integral in the point of extremum at x=(ir/4)1/3 and leading to:

Z r r r ri
1

2
exp

3

2
4 cos

3 3

2
4 , . 974 3 4 3( ) ( ) ( ) ( )~ -  ¥⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

The integral Z(ir) has an infinite number of zeros due to the presence of an oscillating
function in the rhs, as we further demonstrate below.

In figure 16 we compare behaviour of the numerically calculated function Z rlog i( ) with
its asymptotic expansion using equations (93) and (97) for different λ. One can see that
behaviour of the function for λ<5 is qualitatively different from that at 5l : whereas in
the last case the function keeps oscillating in the asymptotics (meaning that the number of
zeros is unbounded), it is not the case for 3<λ<5. Here, after finite number of oscillations
the function approaches its asymptotics from above. Therefore, the number of zeros is limited.
As one can see from the figures 16(a), (b), (c), the number of oscillation decreases with the
decrease of λ.
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