
HAL Id: hal-01298206
https://hal.science/hal-01298206v2

Submitted on 11 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel floating-point expansions for extended-precision
GPU computations

Caroline Collange, Mioara Joldes, Jean-Michel Muller, Valentina Popescu

To cite this version:
Caroline Collange, Mioara Joldes, Jean-Michel Muller, Valentina Popescu. Parallel floating-point ex-
pansions for extended-precision GPU computations. The 27th Annual IEEE International Conference
on Application-specific Systems, Architectures and Processors (ASAP), Jul 2016, London, United
Kingdom. �hal-01298206�

https://hal.science/hal-01298206v2
https://hal.archives-ouvertes.fr

Parallel floating-point expansions for
extended-precision GPU computations

Caroline Collange
INRIA Rennes

caroline.collange@inria.fr

Mioara Joldes
LAAS CNRS, Toulouse

joldes@laas.fr

Jean-Michel Muller
CNRS, ENS Lyon

jean-michel.muller@ens-lyon.fr

Valentina Popescu
ENS Lyon

valentina.popescu@ens-lyon.fr

Abstract—GPUs are an important hardware development plat-
form for problems where massive parallel computations are
needed. Many of these problems require a higher precision than
the standard double floating-point (FP) available. One common
way of extending the precision is the multiple-component ap-
proach, in which real numbers are represented as the unevaluated
sum of several standard machine precision FP numbers. This
representation is called a FP expansion and it offers the simplicity
of using directly available and highly optimized FP operations.

In this article we present new data-parallel algorithms for
adding and multiplying FP expansions specially designed for
extended precision computations on GPUs. These are generalized
algorithms that can manipulate FP expansions of different sizes
(from double-double up to a few tens of doubles) and ensure a
certain worst case error bound on the results.

Index Terms—floating-point arithmetic, floating-point expan-
sions, high precision arithmetic, multiple-precision arithmetic,
graphics processing unit, parallel computations

I. INTRODUCTION

In numerical computing, we sometimes encounter calcu-
lations that require more precision than the one offered by
current processors. A way of handling such higher-precision
calculations is to represent real numbers by floating-point
(FP) expansions, i.e., by unevaluated sums of FP numbers.
Several slightly different definitions of what a FP expansion
is have been introduced in the literature, together with different
arithmetic algorithms for manipulating them [1], [2], [8].
Choosing between these algorithms frequently depends on
a compromise between accuracy, speed, and safety (because
some of the more complex algorithms are just heuristic: they
do not come with a proof). With Graphics Processing Units
(GPUs) oriented implementation in mind, other important as-
pects are parallelism and locality. Should we try to parallelize
the arithmetic algorithms that manipulate FP expansions (or,
rather, build variants that are suitable for parallelization), or
should we keep them sequential and try to parallelize at
a higher level? In a previous study [3], some of us have
dealt with an “embarrassingly parallel” problem with compact
intermediate data. However, many applications do not provide
as much parallelism. Even for those that do, locality can be
a problem. Increasing the precision of sequential arithmetic
operations requires a corresponding increase in the amount of
intermediate data to keep. Thus, parallel arithmetic algorithms
are attractive not just by the extra parallelism they provide,
but also by the locality improvements they enable. Here,

with different numerical problems in mind, we parallelize the
addition and multiplication of FP expansions on GPUs.

Section II recalls the basic notions related to FP expansions.
In Sections III and IV we present data-parallel algorithms for
addition and multiplication, respectively, of FP expansions.
The implementation details are given in Section V followed
by some performance assessment in Section VI. We finish by
concluding our work in Section VII.

II. FLOATING-POINT EXPANSIONS

A normal binary precision-p floating-point (FP) number is
a number of the form

x = Mx · 2ex−p+1,

with 2p−1 ≤ |Mx| ≤ 2p − 1. The integer ex is called the
exponent of x, and Mx · 2−p+1 is called the significand of x.
Using Golberg’s definition we denote ulp(x) = 2ex−p+1 [4,
Chap. 2].

A natural generalization of the notion of double-double or
quad-double is the notion of floating-point expansion.

Definition II.1. A FP expansion u with n terms is the
unevaluated sum of n FP numbers u0, u1, . . . , un−1, in which
all nonzero terms are ordered by magnitude (i.e., if v is the
sequence obtained by removing all zeros in the sequence u,
and if sequence v contains m terms, |vi| ≥ |vi+1|, for all
0 ≤ i < m− 1).

Arithmetics on FP expansions have been introduced by
Priest [1], and later on by Shewchuk [2].

To make sure that such an expansion carries significantly
more information than only one FP number, it is required that
the ui’s do not “overlap”. The notion of (non-)overlapping
varies depending on the authors. Intuitively, the stronger the
sense of the nonoverlapping definition, the more difficult it is
to obtain, implying extra manipulation of the FP expansions.
In what follows we give the definition that we chose to use,
referred to as ulp-nonoverlapping, in an attempt to allow for a
more relaxed manipulation of the FP expansions. We specify
first that even if a FP expansion may contain interleaving zeros,
the definition that follows applies only to the non-zero terms
of the expansion (i.e., the array v in Definition II.1).

Definition II.2. An expansion u0, u1, . . . , un−1 is ulp-
nonoverlapping if for all 0 < i < n, we have |ui| ≤
ulp(ui−1).

In other words, the components are either P-nonoverlapping
(that is, nonoverlapping according to Priest’s definition [5]) or
they overlap by one bit, in which case the second component
is a power of two.

Depending on the nonoverlapping type of an expansion,
when using standard FP formats for representation, the ex-
ponent range forces a constraint on the number of terms. The
largest expansion can be obtained when the largest term is
close to overflow and the smallest is close to underflow. We
remark that, when using ulp-nonoverlapping expansions, for
the two most common FP formats, the constraints are:

• for double-precision (exponent range [−1022, 1023]) the
maximum expansion size is 39;

• for single-precision (exponent range [−126, 127]) the
maximum is 12.

In this article we deal with so called parallel FP expansions,
i.e., the expansion is stored on parallel execution threads, with
one term/thread. This implies that the user has to launch as
many threads as the expansion size.

The majority of algorithms performing arithmetic operations
on expansions are based on the so-called error-free transforms
(EFT) (such as the algorithms 2Sum, Fast2Sum, Dekker’s
product and 2MultFMA presented for instance in [4]), that
make it possible to compute both the result and the rounding
error of a FP addition or multiplication. This implies that
in general, each such EFT applied to two FP numbers, also
returns two FP numbers. More precisely, the sum of two FP
numbers can be represented exactly as a FP number which is
the correct rounding of the sum, plus a second FP number
corresponding to the rounding error. Under certain assump-
tions, this decomposition can be computed at a very low cost
by a simple sequence of standard precision FP operations. For
instance, assuming that a and b are two FP numbers, a simple
algorithm (called 2Sum and due to Knuth [4]) computes S and
E, the decomposition of a + b using only 6 FP operations.
Similarly, if a FMA operator1 is available, 2ProdFMA [4]
returns P and the error E (namely ab−P) in 2 FP operations.

Algorithms like these can be extended to be used with
arbitrary precision computations by chaining, resulting into
the so-called distillation algorithms [6], for summing several
FP numbers. From these we make use of the VecSum algo-
rithm [2], [7], which is simply a chain of 2Sum that performs
an EFT on n FP numbers.

A potential problem appears when subsequent computations
are done using these results; the size of the exact result is going
to increase more and more. To avoid this, some “truncation”
methods (both on-the-fly or a-posteriori) may be used to
compute only an approximation of the exact result. Also,
so-called (re-)normalization algorithms are used to render
the result non-overlapping, which implies also a potential
reduction in the number of components.

1A FMA (Fused Multiply-Add) operator evaluates an expression of the
form xy + t with one final rounding only.

III. DATA-PARALLEL ADDITION ALGORITHM FOR FP
EXPANSIONS

An algorithm that performs addition of two FP expansions
x and y with n and m terms, respectively, will return a FP
expansion with at most n + m terms as the exact result.
This implies a continuous increase in the number of terms as
subsequent computations are done using the obtained result.
This is why, in practice, the results are “truncated” to obtain
only an approximation of x+ y.

Many variants of algorithms that compute the sum of two
FP expansions have been presented in the literature [1], [2],
[8], [6], each using different methods and having different
complexities, but, from our knowledge, none of these algo-
rithms are implemented in parallel and, even more, some of
them are highly sequential, making them unsuitable for parallel
architectures.

In what follows we will present a safe data-parallel algo-
rithm for adding FP expansions that offers a tight error bound
on the result and it allows to prove a clear constraint between
the terms of the result. We also present a fast version with
more relaxed error bounds based on the same scheme that
may be used if computations are not cancellation-prone.

The safe data-parallel summation algorithm is presented in
Fig. 1 and Algorithm 1. All arithmetic operations including
EFTs like 2Sum are performed in parallel element-wise on
R-element vectors. We assume vectors can be merged and
elements inside a vector can be shuffled. These assumptions
make the algorithms applicable to most SIMD units, including
Intel SSE/AVX instruction set extensions [9] and recent Nvidia
GPUs [10].

Algorithm 1 Safe data-parallel algorithm for adding FP expansions.

Input: FP expansion vectors x = (x0, x1, . . . , xR−1) and
y = (y0, y1, . . . , yR−1).

Output: FP expansion vector s = (s0, s1, . . . , sR−1).
1: a← (x0, 0, 0, . . . , 0)
2: b← (y0, 0, 0, . . . , 0)
3: (s, e)← 2Sum(a,b)
4: for i← 1 to R do
5: e′ ← (xi, e0, e1, . . . , eR−2) //Shift right & insert xi

6: (s, e)← 2Sum(s, e′)
7: e′ ← (yi, e0, e1, . . . , eR−2) //Shift right & insert yi

8: (s, e)← 2Sum(s, e′)
9: end for

10: for i← 1 to R− 2 do
11: e′ ← (0, e0, e1, . . . , eR−2)
12: (s, e)← 2Sum(s, e′)
13: end for
14: e′ ← (0, e0, e1, . . . , eR−2)//Shift right

15: s← s + e′

16: return s.

For the sake of simplicity, we only present here the “input-
R-output-R” version of the algorithm, even though the gener-
alized version allows for different input sizes.

Fig. 1: Safe data-parallel FP expansion addition algorithm, illustrated
for the case when R = 3 terms.

Fig. 2: Sequential scheme of the FP expansion addition algorithm.

The algorithm is based on a pipelined error propagation.
We start by adding the first elements of each expansions, x0
and y0 on the first vector component. We continue to add the
rest of the elements on the first component one by one and
propagating the error upwards, to the other vector components.
When we run out of elements to add we continue to propagate
the errors for another R− 1 steps by injecting 0s on the first
component. In the last step of the algorithm there is no need
to use EFT, since we are not going to propagate the errors
anymore; this is why we use only simple addition.

By using this scheme to add the two expansions we ensure
that the most significant term of the output, s0, is the sum
of the inputs rounded to nearest. Moreover, the terms of the

output are arranged in terms of magnitude in decreasing order,
with some constraints. Let us prove this in what follows.

It is easily seen that the parallel scheme presented in Fig. 1
can be reduced to the sequential one presented in Fig. 2.

If there is a “Sterbenz relation” between x0 and y0 (i.e.,
if they are of opposite signs and

∣∣x0

2

∣∣ ≤ |y0| ≤ |2x0|) then
e01 = 0 and s01 = x0 + y0. This implies that s12 = e02 and
e12 = 0, and so on. In this case we end up propagating a 0, to
the end of the result expansion, and we are left with the same
scheme as we began with (illustrated in Fig. 3). This means
that we can eliminate the case in which we have a “Sterbenz
relation”.

Fig. 3: Reduction of the sequential scheme in Fig. 2 based on the
“Sterbenz relation”.

Now let us prove the following proposition that refers to
only one horizontal line of the scheme, as presented in Fig. 4.

Fig. 4: Addition of a FP number t to the array a, starting from the
left side and propagating the error.

Proposition III.1. Let us assume a = a0, a1, . . . an−1, an
array of FP numbers that satisfy |ai| ≤ 2−i(p−1)+δ|a0|, for
some (presumably small) integer δ and |t| ≤ 2−p+`|a0|, for
some (presumably small) integer `. If s = s0, s1, . . . , sn is the
sum obtained by adding t to a as shown in Fig. 4 (from left to
right, propagating the error), then all the terms in s satisfy:
|si| ≤ 2−i(p−1)+δ+1, for all 0 < i ≤ n.

Proof: From the proof of the algorithm 2Sum we know
that |ei| ≤ 1

2 ulp(si) = 2−p|si|.
From

|s0|(1− 2−p) ≤ |a0 + t| ≤ |s0|(1 + 2−p) and
|a0|(1− 2−p+`) ≤ |a0 + t| ≤ |a0|(1 + 2−p+`),

we get

|s0|
1− 2−p

1 + 2−p+`
≤ |a0| ≤ |s0|

1 + 2−p

1− 2−p+`
. (1)

It follows that

|a1| ≤ 2−(p−1)+δ|a0| ≤ 2−(p−1)+δ · 1 + 2−p

1− 2−p+`
· |s0|.

This gives

|e0 + a1| ≤ 2−p
[
1 +

2δ+1(1 + 2−p)

1− 2−p+`

]
|s0| .

From which we deduce

|s1| ≤ 2−p(1 + 2−p)

[
1 +

2δ+1(1 + 2−p)

1− 2−p+`

]
|s0| . (2)

We can continue, by noticing that |e1| is bounded by 2−p|s1|,
and bounding |a2| by 2−2(p−1)+δ 1+2−p

1−2−p+` · |s0|. This gives
a bound on |e1 + a2|, and a bound on s2 is obtained by
multiplying that last bound by (1 + 2−p). An easy induction
finally gives

|si| < 2−ipθi|s0|, (3)

with

θi = (1 + 2−p)i +
1

1− 2−p+`

i∑
j=1

2j+δ(1 + 2−p)i−j+2. (4)

One easily finds

θi = (1 + 2−p)i +
2δ+1(1 + 2−p)2

1− 2−p+`

[
2i − (1 + 2−p)i

1− 2−p

]
,

hence,
θi = 2i+δ+1Hi,

with

Hi =
(1 + 2−p)i

2i+δ+1
+

(1 + 2−p)2

1− 2−p+`

(
1− (1+2−p)i

2i

1− 2−p

)
.

Denote u = 2−p. In all practical cases ` ≥ 2 and δ ≥ 0, so
that Hi ≤ Gi, with

Gi =
1

2

(
1 + u

2

)i
+

(1 + u)2

1− 4u

(
1−

(
1+u
2

)i
1− u

)
.

We have,

Gi = 1− 1
2

(
1+u
2

)i
+ u(u+6)

1−4u −
− 1

2

(
1+u
2

)i · (2u(7−3u)
(1−4u)(1−u)

)
The only positive term (after the initial “1”) in that sum is
u(u+6)
1−4u , which is less than 7u for all pertinent values of u =

2−p. Hence Gi < 1 as soon as 2i+1 ≤ 2p/7, which occurs in
all practical cases. This gives

|si| < 2−i(p−1)+δ
′
|s0|,

with δ′ = δ + 1.
This concludes our proof.
Hence, in the array of Fig. 1, δ is increased by 1 at each line.

For instance, if we add two order-n expansions (i.e., we use
2n− 1 lines in the Array of Fig. 1, then the terms s0, s1, . . .
of the result satisfy

|si| ≤ 2−(p−1)i+2n−1|s0|,

and the expansion obtained by keeping the first n terms only
represents the sum with an error less than

(2−np+3n−1 + 2−(n+1)p+3n + 2−(n+2)p+3n+1 + · · ·) · |a0|,

i.e., with a relative error bounded by a value slightly larger
than 2−np+3n−1.

We would like to also mention here a faster, relaxed version
of the above algorithm, that requires at most R − 1 steps in
order to compute the result (the last step using only simple
addition). This algorithm (Fig. 5) offers a worse error bound
and it does not ensure the correct result when cancellation
occurs, if no re-normalization algorithm is applied on the
result. It performs best when FP expansions of the same sign
and close magnitudes are added. We recommend using it for
fast computations that can be validated a-posteriori.

Fig. 5: Fast data-parallel FP expansion addition algorithm, illustrated
for the case when R = 4 terms.

IV. DATA-PARALLEL MULTIPLICATION ALGORITHM FOR
FP EXPANSIONS

In general, an algorithm that performs the multiplication of
two expansions x and y with n and m terms, respectively, will
return a FP expansion with at most 2nm terms [1], which, as
in the case of addition, implies an increase in the number of
terms.

The algorithm that we present (Algorithm 2) computes
an approximation of x · y, where x and y are two parallel
expansion. Here we also present just the “input-R-output-R”
version.

We consider two parallel FP expansions x and y, each
with R terms and we compute the R most significant FP
components of the product π = x · y. We use the following
intuition: let ε = 1

2 ulp(π0), then roughly speaking, if π0 is
of order of O(Λ), then e0 is of order O(εΛ). This means
that for each product (p, e) = 2MultFMA(xi, yj), p is of
order O(εi+jΛ) and e of order O(εi+j+1Λ). We truncate
the result on-the-fly, by considering only the terms for which
0 ≤ i + j ≤ R − 1, since the smaller terms have an order of
magnitude much smaller and usually they will not influence
the result.

Algorithm 2 Data-parallel algorithm for multiplying FP expansions.

Input: FP expansion vectors x = (x0, x1, . . . , xR−1) and y =
(y0, y1, . . . , yR−1).

Output: FP expansion vector π = (π0, π1, . . . , πR−1).
1: s← (0, . . . , 0)
2: π ← (0, . . . , 0)
3: for i← 0 to R− 2 do
4: y′ ← (yi, yi, . . . , yi) //Broadcast

5: (p, e)← 2MultFMA(x,y′)
6: (s, e′)← 2Sum(s,p)
7: πi ← s0 //Insert into vector

8: s← (s1, s2, . . . sR−1, 0) //Shift left

9: while e 6= 0 do
10: (s, e)← 2Sum(s, e)
11: e← (0, e0, e1, . . . , eR−2) //Shift right

12: end while
13: while e′ 6= 0 do
14: (s, e′)← 2Sum(s, e′)
15: e′ ← (0, e′0, e

′
1, . . . , e

′
R−2) //Shift right

16: end while
17: end for
18: p← x · y
19: s← s + p
20: πR−1 ← s0 //Insert into vector

21: return π.

The multiplication algorithm runs as follows: at each itera-
tion i of the for loop (lines 3-16) we compute p+e = x ·y; we
add p to the result of the same order, using an EFT, which also
generates an error, e′. After that, using the two while loops
(lines 8 − 11 and 12 − 15) we propagate the two generated
errors, e and e′ to the lower order results. In the last step of the
algorithm, we do not use any EFT, because the errors that are
supposed to be computed are going to be of order O(εRΛ),
and we do not need to propagate them anymore. This algorithm
has the same behavior as the sequential algorithm presented
in Fig. 6, but a graphical representation of the parallel one
would be too difficult to read.

While the exact product xy of two FP expansions x and

y is computed as
R−1;R−1∑
i=0;j=0

xiyj =
2R−2∑
k=0

∑
i+j=k

xiyj , in this

algorithm we “truncate” it on-the-fly by computing and adding

only the relevant part of the scalar products (the first
R∑
k=1

k

individual products) and after that outputting the R most
significant components in the result. In what follows we
compute the error bound in two steps: first we compute
the error generated by “truncating” the partial products, and
second we compute the error given by the discarded errors.

Proposition IV.1. (Error bound on the truncated products)
Let x and y be two ulp-nonoverlapping FP expansions, with
R terms. If, when computing the product xy we “truncate” the
operations by computing and adding only the most significant

Fig. 6: Graphical representation of the sequential algorithm that
behaves like Algorithm 2.

individual products, the first
R∑
k=1

k products, then the maxi-

mum error that we can obtain is:

∣∣∣∣∣xy − R−1∑
k=0

∑
i+j=k

xiyj

∣∣∣∣∣ =

2R−2∑
k=R

∑
i+j=k

xiyj ≤ |x0y0| 2−(p−1)R R−1
1−2−(p−1) .

Proof: The maximum error given by the discarded prod-
ucts satisfies:

2R−2∑
k=R

∑
i+j=k

xiyj ≤
2R−2∑
k=R

∑
i+j=k

2−p(i+j)+i+j |x0y0| ;

≤ |x0y0|
2R−2∑
k=R

(2R− 1− k)2−(p−1)k;

≤ |x0y0| 2−(p−1)R
R−2∑
k′=0

(R− 1− k′)2−(p−1)k
′
.

We now consider the function φ(α) =
∞∑
k=0

(R − 1 − k)αk

and we get:

φ(α) =

∞∑
k=0

−kαk +

∞∑
k=0

(R− 1)αk;

= −α d

dα

(∞∑
k=1

αk

)
+ (R− 1)

1

1− α
;

=
−α

(1− α)2
+
R− 1

1− α
.

Using φ(2−(p−1)), we obtain:

2R−2∑
k=R

∑
i+j=k

xiyj ≤ |x0y0| 2−(p−1)R ·

·
(
−2−(p−1)

(1− 2−(p−1))2
+

R− 1

1− 2−(p−1)

)
,

and since −2−(p−1)

(1−2−(p−1))2
is negative and very small we

conclude our proof by:
2R−2∑
k=R

∑
i+j=k

xiyj ≤ |x0y0| 2−(p−1)R
R− 1

1− 2−(p−1)
. (5)

Proposition IV.2. (Final error bound) Let x and y, two ulp-
nonoverlapping FP expansions, with R terms. When com-
puting π, an approximation of xy to R terms, as shown in
Algorithm 2 and Fig. 6, the result satisfies:

|xy − π| ≤ |x0y0|2−(p−1)R(R− 1)

·
[
1 + 2p−2(1 + 2−p) +

+(R3 −R)((R− 1)!)2
]
.

(6)

Proof: From the definition we know that |xi| ≤
2−i(p−1) |x0| and |yj | ≤ 2−j(p−1) |y0|, so we can deduce

|xiyj | ≤ 2−(p−1)(i+j) |x0y0| .

For computing π0 we use only 2MultFMA(x0, y0), and we
get |π0| ≤ |x0y0| (1 + 2−p).

For computing π1 we use VecSum#1, with 3 entries of
order O(εΛ): the error from the previous step, and two partial
products, which are less than 2−(p−1) |x0y0| (1 + 2−p). It is
easily seen that all these entries are bounded by the same
value. We define the following notation:

Ω1 = 2−(p−1) |x0y0| (1 + 2−p). (7)

It follows that π1 < 3 · 2−(p−1) |x0y0| (1 + 2−p)3 and the
outputted errors are less than Ω2 = 3·2−2p+1 |x0y0| (1+2−p)3.

For computing π2 we use VecSum#2 which is going to have
7 entries of order O(ε2Λ): 2 errors outputted by VecSum#1,
bounded by Ω2; 2 errors from the previous step’s partial
products, which are less than 2−2p+1 |x0y0| (1 + 2−p); and
3 partial products, less than 2−2(p−1) |x0y0| (1 + 2−p). We
observe once more that all the entries are less than Ω2.

For the induction step we consider VecSum#i − 1. For
computing πi−1 we have (i−1)2+i entries, which we assume
are all less than Ωi−1. It follows:

πi−1 < (2Ωi−1(1 + 2−p) + Ωi−1)(1 + 2−p) + . . .

< (i2 − i+ 1)Ωi−1(1 + 2−p)i
2−i

and also, the largest error term outputted and implicitly all the
others are less than 1

2 ulp(πi−1).

This implies that all error terms are less than:

= (i2 − i+ 1)Ωi−1(1 + 2−p)i
2−i · 2−p;

= 2−(p−1) |x0y0| (1 + 2−p) ·

·
i∏

n=1

(n2 − n+ 1)(1 + 2−p)n
2−n2−p;

= 2−(p−1)−ip |x0y0|

<2︷ ︸︸ ︷
(1 + 2−p)1+2+...+(i2−i) ·

i∏
n=1

(n2 − n+ 1);

< 2−(i+1)p+2 |x0y0| (i!)2. (8)

and this last value will define Ωi.
This implies that, since we use only simple summation for

computing πR−1, in the last step we neglect R2 + R terms,
all less than ΩR.

We also have to account for the errors that occur
when computing the last partial products using only sim-
ple multiplication. This means R − 1 terms less than
2−R(p−1)+p−2 |x0y0| (1 + 2−p)

When adding all these errors with the one given in (5) we
get the following bound:

|xy − π| ≤ |x0y0|2−(p−1)R(R− 1)

·
[

1

1− 2−(p−1)︸ ︷︷ ︸
<1

+2p−2(1 + 2−p) +

+ 2−p−R+2︸ ︷︷ ︸
<1

(R2 +R)(R− 1)((R− 1)!)2
]

≤ |x0y0|2−(p−1)R(R− 1)

·
[
1 + 2p−2(1 + 2−p) +

+(R3 −R)((R− 1)!)2
]
.

(9)

And this concludes our proof
Unfortunately, for the multiplication algorithm we are un-

able to prove any constraints on the terms of the result. Even
though cancellation cannot happen when multiplying two FP
numbers, it may happen during the summation process, in
which case we can get |πi| < |πj |, with i < j. If this
happens we can apply a re-normalization algorithm, like the
one presented in [11], in order to render the result non-
overlapping. Since this implies adding a sequential step at the
end of Algorithm 2, slowing it’s performance, we recommend
using this algorithm only if computations are known not to be
cancellation-prone or if the result can be verified a-posteriori.

V. WARP-SYNCHRONOUS GPU IMPLEMENTATION

GPUs are highly multi-threaded SIMD architectures [12].
They are programmed in languages like CUDA and OpenCL,
that expose a pure multi-thread programming model. Program-
mers describe compute kernels as a single program run by

many fine-grained threads. The compiler and hardware group
these threads into so-called warps, containing 32 threads on
current Nvidia architectures. Threads inside a warp run in
lockstep and share a single control flow, and their instructions
are executed on SIMD units, with one thread per lane.

This implicit SIMD model is equivalent to explicit SIMD:
a GPU program can be also understood as computations on
vectors from the point of view of a warp. This enables direct
implementation of the data-parallel algorithms we propose.
Recent additions to the available hardware primitives make
this warp-synchronous programming style particularly efficient
[10]. Our implementation targets GPUs with compute capabil-
ity 3.0 or above, such as Kepler and Maxwell architectures,
that support warp vote and shuffle instructions. The code was
written in CUDA C, using double-precision numbers (i.e.
p = 53).

Warp vote instructions perform boolean reductions across all
threads within a warp. For instance, they can check whether
a condition holds for all the threads, or for any of the threads
of the warp. The __any function computes the logical OR
of a warp-sized vector of predicates and broadcast it to all
elements. We use it to implement the loop exit conditions of
the FP expansion multiplication in Algorithm 2.

Warp shuffle instructions allow arbitrary communication
between threads in a warp, without having to go through
memory. They are analogous to shuffle or permute instruction
in explicit SIMD instruction sets [9]. We use them to shift
vector components to propagate the errors across expansion
terms, and to insert and extract scalar values inside vectors.
• shfl_up(x, n, R) and shfl_down shift compo-

nents respectively upward or downward by n positions
within each R-element vector;

• shfl reads an arbitrary vector component within each
vector lane.

As mentioned in Section III, similar shuffle and permute
operations are available in explicit SIMD instruction sets such
as Intel AVX. GPUs that do not support the shuffle instruction
can also exchange data through the OpenCL local memory at
a cost in performance.

We illustrate the warp-synchronous implementation of Al-
gorithm 2 for FP expansion multiplication in Fig. 7. The
code appears from a single thread’s perspective, but it runs
in parallel and it takes decisions based on the vector lane
within an expansion (i.e. threadIdx.x). Although the hardware
only support shuffling 32-bit data, we implemented shuffle
instructions on the double type by shuffling each half
separately.

Although we present here a version of the code that is
parameterized by only one parameter, R, our actual imple-
mentation uses different template parameters for inputs and
output, meaning that we allow static generation of any input-
output precision combinations.

We exploit both the parallelism that exist between expansion
terms and across different expansions. To benefit from the
SIMD execution and intra-warp communication primitives,
all terms in a given expansion have to be computed by

template<int R>
__device__ double parallelMul(double x, double y){
int lane = threadIdx.x; // Index within expansion
double s = 0., r = 0., y_i, p, s, e, ep;
for(int i=0; i<R-1; i++) {
y_i = shfl(y, i, R); // Broadcast y_i
p = TwoProdFMA(x, y_i, &e);
s = TwoSum(s, p, &ep);

double tmp = shfl(s, 0, R);
if(lane == i) r = tmp; // Save s_0 to r_i
s = shfl_down(s, 1); // Shift left
if(lane == K-1) s = 0.;

while(__any(e != 0.)) { // Accumulate e
s = TwoSum(s, e, &e);
e = shfl_up(e, 1, R); // Shift right
if(lane == 0) e = 0.;

}
while(__any(ep != 0.)) { // Accumulate e’
s = TwoSum(s, ep, &ep);
ep = shfl_up(ep, 1, R); // Shift right
if(lane == 0) ep = 0.;

}
}
y_i = shfl(y, R-1, R);
p = x * y_i;
s = s + p;
double tmp = shfl(s, 0, R); // save r_{R-1}
if (lane == R-1) r = tmp;
return r;
}

Fig. 7: Multiplication Algorithm 2 implemented in CUDA C, sim-
plified for the case in which the inputs and the output have the same
power-of-two size, R.

threads of the same warp. As warps have 32 threads on
Nvidia architectures, the maximal supported expansion size
is 32. Smaller expansions are packed together inside warps.
Although this approach works with any expansion size R
between 1 and 32 using appropriate padding, we recommend
using power of two sizes, which allow filling the whole warp.

VI. COMPARISON AND DISCUSSION

In this section we present performance measurements ob-
tained on a Tesla K40 GPU (Kepler architecture), using the
CUDA 7.5 software architecture. The code also runs on the
newer Maxwell architecture, although the performance of all
algorithms becomes limited by the lower double-precision
performance of current Maxwell-based GPUs. We measure
throughput on embarrassingly-parallel computations. The val-
ues are given in million of operations per second (Mop/s). By
one op we understand one operation using extended precision.
The tests were done using random generated examples, run-
ning on 1024 blocks each with 1024, 512 or 256 execution
threads, depending on the expansion size and the required
resources to run the algorithms.

To analyze the effect of parallelism on memory footprint,
we consider two different shared memory usage scenarios: one
best case that assumes the application uses no intermediate
data outside of the registers used for the computation, and
one worst case where the application uses 256 bytes of CUDA
shared memory for each term of the expansion.

For comparison, we report to Bailey’s GQD library [8] and
CAMPARY [11], which offer extended precision using FP

expansions on GPU. The arithmetic algorithms they employ
are not by themselves parallel. Moreover, the GQD library
is limited to double-double and quad-double precisions, and
the algorithms used in the implementation are not provided
with any correctness proof and there is no specific error
bound given. CAMPARY is a recent software, that comes with
correctness proofs and results guaranteed within a certain error
bound.

In Table I we show the addition algorithm’s performance for
the best-case, no-memory configuration, followed by the per-
formance obtained in the memory-constrained configuration,
in Tables II.

TABLE I: Performance in Mop/s for adding two FP expansions on
the GPU in the best case with no internal memory usage; R represent
the number of terms in both input and output expansions. ∗ precision
not supported

R Safe (Alg. 1) Fast CAMPARY QD
2 6,294 11,914 3,188 41,549
4 1,141 4,637 1,448 5,310
8 314.4 2,234 493.6 ∗
16 73.89 830.3 158.6 ∗
32 13.57 131.4 41.77 ∗

TABLE II: Performance in Mop/s for FP expansion addition al-
gorithms in the memory-constrained case with 256B shared memory
per expansion term

R Safe (Alg. 1) Fast CAMPARY QD
2 1,774 1,424 971.9 4,830
4 337 528 131.3 391.4
8 70.52 229.4 28.2 ∗
16 16.67 103.9 6.52 ∗
32 3.82 16.03 1.04 ∗

Even in the worst-case embarrassingly-parallel setup, the
performance of data-parallel addition algorithm is competi-
tive with the best known sequential algorithms for smaller
expansions: the parallelism comes at little cost in number of
operations per expansion.

For the multiplications algorithm we asses performance in
Tables III and IV, for the best case setting and for the memory
constrained one, respectively.
TABLE III: Performance in Mop/s for multiplying two FP expan-
sions on the GPU in the best case with no internal memory usage

R Algorithm 2 CAMPARY QD
2 6,484 11,100 27,390
4 756.2 1,363 2,726
8 135.2 47.19 ∗
16 25.07 12.10 ∗
32 2.63 2.62 ∗

TABLE IV: Performance in Mop/s for FP expansion multiplica-
tion algorithms in the memory-constrained case with 256B shared
memory per expansion term

R Algorithm 2 CAMPARY QD
2 882.87 2,093 3,501
4 99.37 180.8 250.9
8 18.05 7.06 ∗
16 4.04 0.84 ∗
32 0.23 0.096 ∗

From the data obtained in the best case scenario we observe
that addition on larger expansions and multiplications suffer

from parallelization overhead. The benefits of exploiting the
parallelism available within each expansion are fully realized
when parallelism is constrained by internal memory usage. The
performance of data-parallel algorithms remains stable in this
setup, while the performance of sequential algorithm decreases
sharply with memory usage. Although the QD library remains
faster on expansions of size 2 (double-double), the data-
parallel algorithms significantly outperform their sequential
counterparts for all larger expansions. The performance gap
increases with the expansion size, eventually reaching an order
of magnitude for 32-term expansions.

VII. CONCLUSION

We presented data-parallel algorithms for addition and mul-
tiplication of floating-point expansions. By taking advantage
of data parallelism within FP expansions, they are suitable
for SIMD architectures. We present fast addition and mul-
tiplication algorithms, as well as a safe addition algorithm
with rigorous error bounds. A GPU implementation of the
algorithms using warp-synchronous programming in CUDA is
already competitive with state-of-the-art sequential algorithm
in an idealistic embarrassingly parallel setup. However, data-
parallel algorithms really shine in the more realistic case of
applications that manipulate a sizable amount of intermediate
data, significantly outperforming sequential algorithms for
expansions of size 4 and greater.

REFERENCES

[1] D. M. Priest, “Algorithms for arbitrary precision floating point arith-
metic,” in Arith-10, Jun. 1991, pp. 132–144.

[2] J. R. Shewchuk, “Adaptive precision floating-point arithmetic and fast
robust geometric predicates,” Discrete Computational Geometry, vol. 18,
pp. 305–363, 1997.

[3] M. Joldes, V. Popescu, and W. Tucker, “Searching for sinks for the
hénon map using a multipleprecision gpu arithmetic library,” SIGARCH
Comput. Archit. News, vol. 42, no. 4, pp. 63–68, Dec. 2014.

[4] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-
Point Arithmetic. Birkhäuser Boston, 2010.

[5] D. M. Priest, “On properties of floating-point arithmetics: Numerical
stability and the cost of accurate computations,” Ph.D. dissertation,
University of California at Berkeley, 1992.

[6] S. M. Rump, T. Ogita, and S. Oishi, “Accurate floating-point summation
part I: Faithful rounding,” SIAM Journal on Scientific Computing,
vol. 31, no. 1, pp. 189–224, 2008.

[7] T. Ogita, S. M. Rump, and S. Oishi, “Accurate sum and dot product,”
SIAM Journal on Scientific Computing, vol. 26, no. 6, pp. 1955–1988,
2005.

[8] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for quad-double
precision floating-point arithmetic,” in ARITH-16, Jun. 2001, pp. 155–
162.

[9] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo, “Intel AVX:
New frontiers in performance improvements and energy efficiency,” Intel
white paper, Tech. Rep., 2008.

[10] NVIDIA, “Kepler GK110 architecture,” NVIDIA Whitepaper, Tech.
Rep., 2012.

[11] M. Joldes, O. Marty, J.-M. Muller, and V. Popescu, “Arithmetic algo-
rithms for extended precision using floating-point expansions,” IEEE
Transactions on Computers, vol. PP, no. 99, p. 1, 2015.

[12] M. Garland and D. B. Kirk, “Understanding throughput-oriented archi-
tectures,” Communications of the ACM, vol. 53, no. 11, pp. 58–66, 2010.

