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Abstract. The problem of cyclic scheduling for specialized processors systems is pre-
sented and a worst case analysis of a heuristic scheduling algorithm is studied. A
resource constrained cyclic scheduling problem is characterized by k, the number of
types of functional units employed, mx the maximal number of processors of the same
type and δ the maximal precedence delay. The main problem is to cope with both
precedence and resource constraints which make the problem NP-complete in general.

A guaranteed approach, called decomposed software pipelining, has been proposed by
Gasperoni and Schwiegelshohn, followed by the retiming method by Calland, Darte
and Robert to solve the problem for parallel processors. We present, in this paper,
an extension of this approach to resource-constrained cyclic scheduling problems with
precedence delays and we provide an approximation algorithm. Let λ and λopt be
respectively the period given by the algorithm and the optimal period. We establish
the bound:

λ ≤ (k + 1− 1

mxδ
)λopt + (1− 1

mxδ
)δ

Mots-Clefs. Cyclic scheduling ; Specialized processors ; Performance bound.

1 Introduction

Cyclic scheduling problems have numerous practical application in production systems [1]
as well as in embeded systems [2]. Our research in this field is partically motivated by the
advances in hardware technology, but our results still available for mass production systems.

Embedded architectures used for devices such as mobile, automotive and consumer elec-
tronics need high performance, low silicon implementation costs, low power consumption and
rapid development to ensure minimum time-to-market. Most of todays heigh performance
applications uses instruction level parallel processors such as VLIW processors [3].

VLIW architectures are mainly used for media processing in embedded devices, and in-
struction schedules produced by the compiler is a performance critical optimization that has
a direct impact on the overall system cost and energy consumption. High-quality instruction
schedules enable to reduce the operating frequency given real-time processing requirements.
Most of the parallelism present in these systems is expressed in the form of loops.

In this paper, we consider a loop composed of many unit processing tasks that are to
be executed a large number of times. Instruction scheduling for inner loops is also known
as software pipelining [4] and can be modelised by a cyclic scheduling problem. Among the
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different cyclic scheduling frameworks, modulo scheduling [5] is the most successful in pro-
duction compilers. The modulo scheduling focuses on finding a periodic schedule with the
minimal period λ.

The classical results of modulo scheduling apply to problems that are too limited to be
of practical use in instruction scheduling in modern processors as well as in mass production
problems. For example, these results assume simple precedence constraints on tasks in a
schedule, instead of precedences with delays like those in pipelined processors, and focus on
machine models where each operation uses one of m identical processors for its execution.

In order to model the software pipelining problem, [6] proposes an extension of the classic
modulo scheduling problem to resource-constrained modulo scheduling problems with prece-
dence delays where the resources are adapted from the renewable resource of the resource-
constrained scheduling problem [7].

We define, in this paper, a special case of this problem where the processing times as well
as the resource demand is unitary, and we present a guaranteed algorithm for these problems.

1.1 Problem formulation

An instance of a resource-constrained cyclic scheduling problem can be defined by:

– An architecture model defined by P = {P(i,j)\1 ≤ i ≤ k, 1 ≤ j ≤ mi}, where k denotes the
number of different types of processors and mi denotes the number of type i processors.
Let mx = max

1≤r≤k
mr.

– Precedence graph G(V,E) where:

• V is a set of n tasks V = {Ti}1≤i≤n with unit processing time. To each task Ti is
associated a binary vector {bi

r}1≤r≤k over the resource types, such that Ti uses bi
r

units of resource of type r during its execution.

• E is a set of edges defining uniform dependence relations denoted by Ti
lij ,hij−→ Tj ,

where the delay lij and the height hij are positive integers. lij and hij model the fact
that the task Tj at iteration q has to be issued at least lij time units after the start
of task i in iteration q − hij . We denote by δ = max

(Ti,Tj)∈E
lij .

Notice that this model generalize the classical parallel processors statements (in which k = 1
-i.e. there is a unique type of processors) as well as typed tasks systems where each binary
vector {bi

r}1≤r≤k has only one positive component. Let us illustrate the notions of tasks,
iterations, latencies and heights with the following example. We will work on this example
throughout the paper.

The loop has n = 7 tasks, each one is executed N times. N is a given parameter represent-
ing the number of iterations and can be very large. The associated precedence graph G(V,E)
is given in Figure 1. Values of lij and hij are displayed next to the corresponding arc. The
resource request {bi

1, b
i
2} of each task Ti is highlighted next to the corresponding node.
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for 1 ≤ i ≤ N do
(T1) : t1(i) = t3(i)
(T2) : t2(i) = t3(i)
(T3) : t3(i) = t2(i− 3)
(T4) : t4(i) = t2(i− 1)
(T5) : t5(i) = t4(i− 2) + t2(i− 1) + t7(i)
(T6) : t6(i) = t5(i− 1)
(T7) : t7(i) = t6(i− 1)

Fig. 1. An example of precedence graph G(V,E).

A resource-constrained cyclic scheduling problem is to find a schedule σ that assigns an
issue time σ(Ti, q) for each task occurence (Ti, q) such that for all r ∈ {1, · · · , k} the number
of tasks issued on processors of the same type r is at most equal to mr, and

(
Ti

lij ,hij−→ Tj

)
⇒ σ(Ti, q) + lij ≤ σ(Tj , q + hij) ∀q ∈ N

The modulo scheduling focuses on finding a periodic schedule with the minimal period λ
such that:

∀i ∈ {1, · · · , n}, ∀q ∈ N : σ(Ti, q) = σ(Ti, 0) + q · λ

Periodic schedules are of high interest from a practical point of view, because their represen-
tation is compact so that they can be easily implemented in real systems.
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1.2 Decomposed software pipelining

Generating an optimal resource constrained cyclic scheduling with minimal period is known
to be NP-hard. To overcome this NP-hardness, we used the decomposed software pipelin-
ing approach introduced simultaneously by Gasperoni and Schwiegelsohn [9], and by Wang,
Eisenbeis, Jourdan and Su [10]. The main idea is to decouple the problem into dependence
constraints and resource constraints so as to decompose the problem into two subproblems:
a cyclic scheduling problem ignoring resource constraints, and a standard acyclic graph for
which efficient techniques are known.

Gasperoni and Schwiegelshohn give an upper bound to the period λ for the problem with
m identical processors and precedences without latencies. Let λopt be the optimal (smallest)
period. For unit execution tasks, this bound is given by the following inequality:

λ ≤ (2− 1
m

)λopt

[11] presents a heuristic based on circuit retiming algorithms to generalize the efficiency
bound given for Gasperoni-Schwiegelshohn algorithm. The main idea is to use a retiming R
to decide which edges to cut in G(V,E) so as to make it acyclic.

R : V → Z, ∀(i, j) ∈ E,R(j) + hij −R(i) ≥ 0

A legal retiming for G of Figure 1 is given in Table 1

Table 1. A retiming R of G.

Tasks T1 T2 T3 T4 T5 T6 T7

R 0 1 0 2 2 0 1

Then, we define the acyclic graph GR by keeping only the arcs of G for which R(j)+hij−
R(i) = 0. We add two pseudo-tasks with null processing times and no resource use Start and
Stop:

– Start is a predecessor of each task with lStart,i = 0, ∀i ∈ E.
– Stop is a successor of each task with li,Stop = max

j∈Succ(i)
lij , ∀i ∈ E.

Let πR be any (non cyclic) schedule of GR that fulfills the resource constraints as well as
the precedences induced by GR then, setting λR = πRStop and for any task Ti,

σR(Ti, q) = πRi + (q +R(Ti))λR

, we get the following result:

Lemma 1. σR is a feasible periodic schedule of G with period λR.
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Proof.
Now, the idea, previously used by [9] and [11] is to choose a particular retiming and use a

guaranteed algorithm to get a schedule πR of GR, and then to extend the guarantee to the
induced periodic schedule.

List scheduling algorithms are the most used heuristics for scheduling with precedence
and resource constraints. Chou, in [?] proves that for specialized processors with precedence
delays these algorithm have the following worst case performance:

Cmax ≤ (k + 1− 1
mx(δ)

)Copt
max

We thus propose the following generic algorithm 1 to solve our problem, by using a list
algorithm to produce πR. Figures 2 and 3 illustrate the algorithm on our example.

Fig. 2. The acyclic graph
given by the retiming R.

Fig. 3. A pattern generated by a list scheduling of GR: λR = 8.

The acyclic graph provided by the retiming R is given by Figure 2 and its corresponding
list scheduling allocation is presented in Figure 3. The makespan of this pattern is λR = 8
and it gives the period of the modulo scheduling of G. The different steps of this heuristic are
illustrated by the following algorithm.

2 Worst case analysis

In this section we analyze the worst case performance of algorithm 1 in general, making use of
the proof of Chou [?] for list scheduling. Then, we show that using some particular retiming,
that can be computed in polynomial time, we can get an overall guarantee for the Extended
DSP algorithm.

2.1 Minimal length of pattern

Consider a dependence graph G. An acyclic graph GR is obtained by a retiming R. Then, we
schedule GR by a list algorithm and generate a pattern πR. We note φR the length (sum of
the delays) of the longest path in GR . Let λopt be the optimal period of G.
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Algorithm 1: Extended DSP
1. Find a legal retiming R for G;
2. for (Ti, Tj) ∈ E do

if R(Tj)−R(Ti) + hij = 0 then
keep (Ti, Tj) in GR ; add nodes Start and Stop;

3. Perform a list scheduling on GR coping with both precedence and resource constraints.
Compute πRi the start time of task Ti in this schedule and λR = Cmax(GR) = πRStop;

4. Define the cyclic schedule σR by:
for 1 ≤ q ≤ N do
for Ti ∈ V do

σR(Ti, q) = πRi + λR(q +R(Ti)) ;

We consider two type of bounds obtained from resource and precedence constraints.

Resource bound :

Lemma 2. For each type i, let ui and mi be respectively the number of tasks using resource
type i and the number of machines of type i. Then,

λopt ≥ max
1≤i≤k

ui

mi
.

Proof. The shortest time required to complete the tasks of type i is
ui

mi
. Furthermore, the

length of the optimal period λopt is not shorter than the time required to schedule any type
of tasks. Hence, λopt ≥ max

1≤i≤k

ui

mi
.

Precedence bounds on schedule πR :
Let πR be a schedule induced by a list algorithm on GR. In order to reveal the dependencies

among tasks, we classify the time slots into three kinds:

1. A full slot tf is a time slot in which at least all the processors of a certain type are
executing tasks.

2. A partial slot tp is a time slot in which at least one processor of each type is idle.
3. A delay slot td is a time slot in which all processors are idle.

We note:

– p: the number of partial slots in πR.
– d: the number of delay slots in πR.

Lemma 3. The partial-slots lemma:
If πR contains p partial slots and d delay slots, then φR ≥ p + d.



Worst case analysis on modulo scheduling 7

Proof. We prove this lemma by finding a chain h =< Tj1 , · · · , Tjc
> in πR such that the

length of h is at least equal to p + d.
Let Tjc

= Stop and assume that we already have a chain < Tji+1 , · · · , Tvc
>. Consider, if

it exists, the predecessor Tvi of Tji+1 such that

πRji
+ lji,ji+1

is maximum.
The construction of h leads to the following observation: All the slots before πRj1 or between

πRji
+ lji,ji+1 and πRji+1

(if they exist) are full slots and in which there is no available processor
in a type of resource used by Tji+1 . Otherwise, Tji+1 would have been scheduled earlier by
the list algorithm.

Therefore, all the p partial slots and d delay slots are covered by the intervals [πRvi
, πRji

+
lji,ji+1), so that the length of h not less than p + d. Thus, φR ≥ p + d.

Lemma 4. The delay-slots lemma:

If πR contains d delay slots, then φR ≥ d + d d

δ − 1
e.

Proof. The schedule is computed by a list algorithm, then the number of any consecutive
delay slots is not greater than δ − 1. Consider the chain h defined in the previous lemma.
All the delay slots are included in ∪1≤i≤c−1[πRji

+ 1, πRji
+ lji,ji+1), since at time πRji

, Tji is
performed. Now the length of each interval [πRji

+ 1, πRji
+ lji,ji+1) is less than δ − 1. So that

c(δ − 1) ≥ d. The length of h is thus not less than d plus the number of the chained tasks c,

which is greater than d d

δ − 1
e . Thus, φR ≥ d + d d

δ − 1
e.

2.2 Performance bound

Here we define the notations to be used below:
M =

∑

1≤i≤k

mi.

ui: the number of tasks using resources of type i.
vi: the number of tasks using resources of type i which are scheduled in partial slots in

πR.
V = ∪1≤i≤kvi: the set of tasks which are scheduled in partial slots in πR.

Consider the pattern πR:

MλR = number of non-idle cycles + number of idle cycles.

where the second term on the right hand side is composed of the number of idle cycles
associated with tf , those associated with td and those associated with tp.

1. The number of idle cycles per processor associated with td is equal to Md.
2. The number of idle cycles per processor associated with tp is at most equal to Mp− |V |.
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3. Using Lemma 2, the number of idle cycles associated with tf is bounded by the following
value:
≤

∑

1≤i≤k

(M −mi)
ui − vi

mi

≤
∑

1≤i≤k

(M −mi)
ui

mi
−

∑

1≤i≤k

(M −mi)
vi

mi

≤
∑

1≤i≤k

(M −mi) max
1≤i≤k

ui

mi
− (M −mx)

|V |
mx

≤ (kM −M)λopt − (M −mx)
|V |
mx

Then,

MλR ≤ Mλopt + (kM −M)λopt − (M −mx)
|V |
mx

+ Mp− |V |+ Md

≤ kMλopt − (M −mx)
|V |
mx

+ Mp− |V |+ Md

≤ kMλopt −M
|V |
mx

+ Mp + Md

|V | is the number of tasks scheduled in the partial slots, since each partial slot contains
at least one task, |V | ≥ p. Thus,

λσ ≤ kλopt − p

mx
+ p + d

≤ kλopt + (1− 1
mx

)(p + d) +
1

mx
d

≤ kλopt + (1− 1
mx

)(p + d) +
1

mx

δ − 1
δ

δ

δ − 1
d

≤ kλopt + (1− 1
mx

)(p + d) +
1

mx

δ − 1
δ

(d + d d

δ − 1
e)

From Lemmas 3 and 4, we have φR ≥ p + d and φR ≥ d + d d

δ − 1
e. Then,

λR ≤ kλopt + (1− 1
mx

)φR +
1

mx

δ − 1
δ

φR

≤ kλopt + (1− 1
mxδ

)φR

Theorem 1 Consider a dependence graph G. Let R be a legal retiming R on G and φR the
length of the longest path in GR. Then,

λR

λopt
≤ k + (1− 1

mxδ
)

φR

λopt
.

2.3 Choosing a good retiming

In order to improve the performance bound, it seems important to minimize the ratio between
φR and λopt. So if we have a good lower bound LB of λopt, using theorem 7 in [12], we can
verify the existence of a legal retiming R′ such that φR

′ ≤ LB ≤ λopt. If such retiming exists,
we have a performance guarantee of:
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λR
′

λopt
≤ k + 1− 1

mxδ
.

An another approach consist on minimizing the length of the longest path in the pattern.
There are well-known retiming algorithms [12] to minimize φR. Let Ropt a retiming for which
the length of the longest path in the acyclic graph GRopt is minimal. We note it φopt. We also
denote by σ∞ an optimal periodic schedule for unlimited resources (with period λ∞).

Lemma 5.
λ∞ + δ − 1 ≥ φopt.

Proof. Consider an optimal cyclic schedule σ∞ for unlimited resources. Let us define r : V →
[0, λ∞ − 1] and R : V → Z such that:

σ∞(i, q) = r(i) + λ∞(q +R(i)), ∀i ∈ V, ∀q ∈ N

Then, the precedence constraint for each edge (i, j) ∈ E is:
σ∞(i, q) + lij ≤ σ∞(j, q + hij)

r(i) + λ∞(q +R(i)) + lij ≤ r(j) + λ∞(q + hij +R(j))
r(i) + lij ≤ r(j) + λ∞(hij +R(j)−R(i))

[11] proved that R defines a valid retiming for G. Furthermore, GR is obtained by keeping
the edges of G for which R(j) + hij −R(i) = 0. Thus ,

r(i) + lij ≤ r(j), ∀(i, j) ∈ E

Let h =< Tj1 , · · · , Tjc , Stop > be a chain in GR.

r(ji) + lji,ji+1 ≤ r(ji+1), ∀i ∈ {1, · · · , c− 1},

By summing up these c− 1 inequalities, we have

r(j1) +
c−1∑

i=1

lji,ji+1 = r(jc)

Thus,

r(j1)
c−1∑

i=1

lji,ji+1 ≤ r(jc)

c−1∑

i=1

lji,ji+1 ≤ r(jc)

This inequality is true for any chain of GR in particular for the longest path in GR. Hence,
c−1∑

i=1

lji,ji+1 + max
k∈Succ(Tjc )

ljck

︸ ︷︷ ︸
φR

−maxk∈Succ(Tjc ) ljck ≤ r(jc)

φR −δ ≤ λ∞ − 1
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Hence, φR − δ ≤ λ∞ − 1 and since φopt ≤ φR, we have the desired result.

Finally, using theorem 1 applied to Ropt, we have

λRopt ≤ kλopt + (1− 1
mxδ

)φopt

≤ kλopt + (1− 1
mxδ

)(λ∞ + δ − 1)

≤ kλopt + (1− 1
mxδ

)(λopt + δ − 1)

≤ (k + 1− 1
mxδ

)λopt + (1− 1
mxδ

)(δ − 1)

Theorem 2

λRopt ≤ (k + 1− 1
mx(δ + 1)

)λopt + (1− 1
mx(δ + 1)

)(δ − 1).

3 Conclusion
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